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Summary 

Fractional factorial (FF) designs with minimum aberration are often regarded as the best designs 
and are commonly used in practice. There are, however, situations in which other designs can meet 
practical needs better. A catalogue of designs would make it easy to search for 'best' designs 
according to various criteria. By exploring the algebraic structure of the FF designs, we propose an 
algorithm for constructing complete sets of FF designs. A collection of FF designs with 16, 27, 32 and 
64 runs is given. 

Key words: Defining contrast subgroup; Minimum aberration design; Resolution; Word-length 
pattern; Letter pattern. 

1 Introduction 

An outstanding problem in experimental design theory is the choice of 'good' two-level 
and three-level fractional factorial designs which are commonly used in practice. A key 
question is how to choose a fraction of the full factorial design for a given run size and 
number of factors. Box & Hunter (1961) first approach the problem by introducing the 
notion of resolution as a goodness criterion for designs. Since designs of the same 
resolution may not be equally good, Fries & Hunter (1980) suggest the minimum 
aberration criterion to further discriminate designs. The minimum aberration criterion 
was already used implicitly in the construction of designs in the classic work at the 
National Bureau of Standards (1957, 1959). As argued and demonstrated in Section 2, 
when there is no design with resolution V or higher, maximum resolution and minimum 
aberration do not always lead to best designs. Different situations call for use of different 
designs. Since we cannot anticipate all the goodness criteria for designs, it seems 
impractical to give optimal designs for each criterion. A more realistic approach, adopted 
in this paper, is to give a catalogue of designs which are judged to be good by the 
minimum aberration criterion. Our rationale is that useful designs are in most cases good 
according to the minimum aberration criterion. For designs with 16 and 27 runs, we give a 
complete catalogue. For 32 and 64 runs, the number of designs is too large to be all 
included. Only five to ten designs are given in most cases. An algorithm for enumerating 
designs is presented in Section 3. Some comments on the designs in the catalogue are 
given in Section 4. 
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2 Definitions and Motivations 

An Sn-k fractional factorial design, which has n factors of s levels and s'-k runs, is 

uniquely determined by k independent defining words. A word consists of letters which 
are names of factors denoted by 1, 2,. .. , n or A, B, .... The number of letters in a 
word is called word-length and the group formed by the k defining words is the defining 
contrast subgroup. The vector 

W=(A, .. .,A,) (1) 

is called the word-length pattern, where Ai denotes the number of words of length i in the 
defining contrast subgroup. The concept of resolution, proposed by Box & Hunter (1961), 
is defined as the smallest r such that Ar > 1. It is a useful and convenient criterion for 

selecting practical designs. 
Goodness of a design, however, cannot be fully judged by its resolution. Consider, for 

example, the following two 27-2 designs: 

d,: I = 4567 = 12346 = 12357, 

d2: I = 1236 = 1457 = 234567. 

Both have resolution IV, but have different word-length patterns 

W(d)= (0, 0, 0, 1, 2, 0, 0), and W(d2)= (0, 0, 0, 2, 0, 1, 0). 

The design d1 has three pairs of aliased two-factor interactions (2fi's), e.g., 45 & 67, 46 
& 57, 47 & 56 while d2 has six pairs. This is because d, has one 4-letter word while d2 has 
two. To further characterize or discriminate fractional factorial designs, Fries & Hunter 
(1980) propose the following criterion. For two designs di and d2 with r being the smallest 
value such that Ar(dl) Ar(d2), we say that d1 has less aberration than d2 if 
Ar(dl) <Ar(d2). If there is no design with less aberration than dl, then d1 has minimum 
aberration (MA). Obviously, for given n and k, an MA design always exists. However, we 
do not know whether it is unique in general. See Chen (1992). 

For small number of factors (up to 11) and run size (up to 128), Box, Hunter & Hunter 
(1978, p. 410) provides a useful catalogue of 2-level fractional factorial designs with 
minimum aberration. Franklin (1984) constructs more minimum aberration designs. Chen 
& Wu (1991) and Chen (1992) investigate some theoretical properties of MA designs and 
construct MA 2"-k designs for k < 5 and any n. 

Both definitions of resolution and minimum aberration are based on the hierarchical 
assumption: 

(i) lower order effects are more important than higher order effects, 
(2) 

(ii) effects of the same order are equally important. 

The minimum aberration criterion can rank-order almost any two designs. In general it is a 
good design measure unless these two conditions are grossly violated. However, in some 
practical situations described later, the hierarchical assumption does not hold and better 
designs can be found. The second but more subtle point concerns its reliance on the 
word-lengths of the defining contrasts. Although minimizing the numbers of short-length 
words usually leads to the estimability of more lower order effects or under less stringent 
assumptions, combinatorial complexity of the defining contrasts makes the relation 
between lengths and estimability less certain. This point is best illustrated by the following 
example (due to C.F.J. Wu). 
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Consider the minimum aberration 29-4 design, which has the word-length pattern 
(0, 0, 0, 6, 8, 0, 0, 1, 0) and the defining contrast subgroup 

I = 1236 = 1347 = 1389 = 2467 = 2689 = 4789 
= 12458 = 12579 = 14569 = 15678 = 23459 = 23578 
= 34568 = 35679 = 12346789. 

Under the relative weak assumption of negligible 3-factor and higher order interactions, 
all the main effects and the eight 2fi's (15, 25, 35, 45, 56, 57, 58, 59) are estimable. (Note 
that 5 does not appear in any of the words of length four.) In Wu & Chen (1992), any 2fi 
that is not aliased with any main effect or other 2fi's is called clear. So this design has 
eight clear 2fi's. Consider then the second best design in terms of the aberration criterion, 
which has the word-length pattern (, 0, 0, 7, 7, 0, 0, 1) and the defining contrasts 

I = 1236 = 1278 = 1347 = 1468 = 2348 = 2467 
= 3678 = 12459 = 13589 = 15679 = 23579 = 25689 
= 45789 = 34569 = 123456789. 

Although it has seven words of length four, one more than the MA design, both 5 and 9 
are missing in these seven words. Therefore it has 15 clear 2fi's, 

(15, 25, 35, 45, 56, 57, 58, 59, 19, 29, 39, 49, 69, 79, 89). 
From the estimation point of view, it is far superior to the minimum aberration design. 
This illustrates the need of finding designs other than MA designs. 

In some experimental situations the assumption 2(ii) does not hold. As argued in Wu & 
Chen (1992), there are practical situations in which certain interactions can be a priori 
identified as being potentially important and should be estimated clear of each other. In 
order to accommodate a set of specified interactions, one may have to choose a design 
with worse aberration. For example, consider the choice of a 26-2 design, in which the 
following interactions (13, 14, 16, 23, 34, 35, 36, 45, 56) can be estimated clear of each 
other and of the main effects (assuming the other 2fi's are negligible). By using a graph 
representation Wu & Chen (1992) show that the resolution III design with I = 125 = 2346 
meets the requirements while the MA design with I = 1235 = 2346 does not. Broading the 
choice of designs will make it possible to find flexible graphs otherwise nonexistent. 

There is indeed a whole class of problems that do not satisfy the assumption 2(i) and 
2(ii). In parameter designs (Taguchi, 1987), the factors are divided into two types: control 
factors and noise factors. Since the noise factors are not controllable except when special 
efforts are made, estimability of the noise main effects is usually less important than that 
of the control-by-noise interactions. This violates 2(i). Similarly estimability of the 
noise-by-noise interactions is less important than that of the control-by-noise interactions, 
which violates 2(ii). As a result, neither the resolution nor the aberration criterion can 
guarantee a good statistical design for this type of experiments. A simple example is used 
to illustrate the point. Consider the resolution III design d, given by I= ABCr = rst = 
ABCst, and the resolution IV design d2 given by I = ABCr = BCst = Arst, where A, B, C 
are three control factors and r, s, t are three noise factors. Under the assumption that 
3-factor and higher order interactions are negligible, A, B, C, As, Bs, Cs, At, Bt, Ct are 
estimable in dl, whereas only the main effects A, B, C, r, s, t are estimable in d2. Since it 
is much less important to be able to estimate the three noise main effects r, s, t in d2 than 
to estimate the six control-by-noise interactions in dl, design d, is preferred in spite of its 
lower resolution. Further discussion on planning techniques for parameter designs can be 
found in Shoemaker, Tsui & Wu (1991). 
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The overall conclusion is that, practical situations can be different from one to the other 
and they may sometimes be contradictory. Using a single criterion such as the minimum 
aberration criterion for selecting designs exclusively cannot meet practical needs. It is 
hence desirable to collect good designs in a catalogue. 

3 Construction Method 

3.1 Basic Idea 

If a design d, can be obtained from d2 by relabeling the factor numbers in the defining 
contrast subgroup or by change of signs, we say dl is isomorphic to d2. Since isomorphic 
designs are essentially the same, it is sufficient to include only one of them in any 
catalogue of designs. To catalogue all possible designs, a straightforward approach does 
not work. For example, in a 32(=25) run design with 15 two-level factors, there are 5 

independent factors, and 10 additional factors can be defined in (31 
- 

=11,735 
15 - 5'1'7 

ways. It is impractical to identify isomorphic designs among all 5,311,735 designs because 
of the difficulties in discriminating between non-isomorphic designs. This number 
becomes much larger as the run size and number of factors increase. By applying some 
algebraic and combinatorial methods, we are able to reduce the computations sig- 
nificantly. The basic idea of the proposed sequential construction method is to break the 
huge amount of combinatorial computations into a sequence of much smaller computa- 
tions. At each step, the total number of designs are significantly reduced by keeping only 
non-isomorphic designs. 

The 2n-k designs given in Section 2 can be viewed as submatrices of regular Hadamard 
matrices. A regular Hadamard matrix of order 2q is a 2q x 2q orthogonal matrix of ?1 
with the additional property that the entrywise product of any two columns is among the 
2q columns. By replacing -1 by 1 and 1 by 0 and using addition over GF(2), these 2q 
columns form an elementary Abelian group over GF(2), where GF(2) is the Galois field 
with two elements. Except for the column corresponding to the identity element in the 
group, we may write the remaining columns as 

C=-{CI, . . , C2yq_-. (3) 

Within C, we can find q independent columns that generate all the columns in C. A 2n-k 

design can now be viewed as a subset of C with n columns. Out of the n columns, 
n - k(=q) are independent columns and the remaining k columns can be generated from 
the n - k columns through the defining relations in its defining contrast subgroup. A 
similar matrix representation for three-level designs can be defined. The only difference is 
that its columns are grouped into pairs. For each pair of columns, one is a multiple of the 
other modulus three. This simple representation for 2n-k and 3n-k designs will be 
employed in the tabulation of designs. 

Let D,R be the set of non-isomorphic n-k designs with resolution > R, and D k = D," n,k k. n 

for convenience. For given R, k, and DR,k we construct D ,k+ by assignin the 
additional factor to one of the unused columns of each design in D ,k. There are at most 
(n-k 1)/(s - 1) - n ways to assign this factor. Therefore, we obtain a class of designs, 
denoted by D5+ ,k+l with cardinality 

{# of designs in D,k} x [(" - k1)/(s - 1) - n]. 

Clearly, DR+,k+l )D D+I,k+. However, some designs in Dn+l,k+ are isomorphic and ~~~n +l, k+l - nD Dl,k+1.reis 
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some may have resolutions less than R. To construct D+i ,k+l, we need to eliminate these 
redundant designs. It is easy to eliminate designs with resolution smaller than R. To 

identify isomorphic designs, we divide all designs into different categories according to 
their word-length patterns and letter patterns. The letter pattern counts the frequency of 
letters contained in the words of different lengths (Draper & Mitchell, 1970). Note th*at 
same letter pattern implies same word-length pattern. Designs with different letter 
patterns are obviously non-isomorphic. Therefore we only need to examine the 
isomorphism of designs with the same letter pattern. This is done by using the following 
result in Chen (1992). Two designs of d1 and of d2 are isomorphic if there exists a one to 
one map M from the columns d1 to the columns d2 such that 

M(cil + Ci2 + . .. + Cil(mod 2)) = M(Cil) + M(Ci2) + ... + M(Cit) (mod 2) 

for any I and C,1, Ci2,..., Cil E d1. After the elimination of isomorphic designs, we 
reduce Dn+l,k+l to Dn+l,k+l. 

Note that designs with the same letter pattern are not necessary isomorphic. See Chen 
& Lin (1991), which disproves a conjecture of Draper & Mitchell (1970). 

This procedure will not only give us the complete set of s(n+l)-(k+l) designs, but also 
reduce the amount of computations for the subsequent step of constructing s(n+2)-(k+2) 

designs. 
The rationale of this method is supported by the following facts. 

FACT 1. (Completeness) DL + l,k + Dn +l.k+I. 

FACT 2. (Monotonicity of resolution) D + lk+ D +I+ 

The proofs are straightforward and omitted. 

3.2 Implementation 

Isomorphism Check: 
Our approach to isomorphism check uses an idea which is illustrated by a simple example. 
To save space, the technical details are not given here. 

Let us consider the 27-3 designs, in which a, b, c, d denote four independent columns of 
the regular 24 x 24 Hadamard matrix. The set of columns C is then 

{a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd}. 

To check isomorphism between the two 27-3 designs: 
d = {a, b, c, d, ab, abd, bcd}, 

d2 = {a, b, c, d, ac, acd, abcd}, 

which have the same word-length pattern and letter pattern, we apply the following 
scheme: 

1. Select four independent columns from d2, say, {a, b, ac, acd}. There are (7) 
choices. 

2. Select a relabeling map from (a, b, ac, acd} to {A, B, C, D}, i.e., A = a, B =b, 
C = ac, D = acd. There are 4!(=24) choices. 

3. Write the remaining columns {c, d, abcd} in d2 as interactions of {A, B, C, D}, 
i.e., c =AC, d = CD, abcd = BD. Then d2 can be written as (A, B, C, D, AC, 
CD, BD}. 

4. Compare the new representation of d2 with that of d,. If they match, d, and d2 
are isomorphic, and the process stops. Otherwise, return to step 2 and try another 
map of (A, B, C, D}. When all the relabeling maps are exhausted, return to step 
1 and find another four columns. 
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If two designs are isomorphic, an isomorphic map will be found eventually. If two designs 
with the same letter pattern are nonisomorphic, it requires a complete search of 
relabeling maps. Fortunately, this happens rarely in our experience. 

The isomorphism check for 3-level designs is similar but slightly more complicated. The 
details are omitted. 

4 Tables of Designs 

Using the method described in the last section, we obtain complete collections of 

designs with 16, 27, and 32 runs. We do not include 8- and 9-run designs because their 
number is small and can be found in standard texts. Since the total number of 64-run 

designs is too large, we only keep those with resolution IV or higher in the computer 
search. To save space, for 32 and 64 runs, we present only five to ten designs in most 
cases. The complete catalogue is available upon request. These designs are not chosen 
exclusively according to the minimum aberration criterion. Designs with worse aberration 
may be judged to be better by other properties, e.g. the number of clear 2fi's. 

For each run size, we put the column set C (see (3)) in Yates order. The column 
numbers of the independent columns are indicated by bold face. A 2n-k design is given by 
a subset of n columns of C, consisting of n - k independent columns and k additional 
columns. Only the latter are specified in the tables. For clarity, we call it design n - k.i in 
the tables, where i denotes the ith 2n-k design in the catalogue. The word-length pattern 
and the number of clear 2fi's are also provided. To save space, at most five non-zero 
components of the word-length patterns are given. Also, we use the notation 19 - 22 for 
columns 19 to 22. The three-level 27-run designs are given in the same vein. Note that in 
the corresponding design matrix, the three levels are denoted by 0, 1 and 2. 

Usage of the tables is illustrated by the following example. 

Example. 26-2 fractional factorial design 
The columns set C is presented in Table 1 with independent columns {1, 2, 4, 8}. The 

first 26-2 design in the table is 7, 1, i.e., the design consists of columns 
{1, 2, 4, 8, 7, 11}. To find the defining words, we name the corresponding factors A, B, C, 
D, E, F. Column 7 is the sum of columns 1, 2, and 4 (mod 2), i.e. the generator for factor 
E is E = ABC. Similarly, the generator for factor F is F = ABD. 

Some comments on the tables: 

1. If a design with resolution V or higher exists, we do not list any designs of 
resolution III or IV. 

2. Among resolution IV designs, those with large numbers of clear 2fi's are not 
necessarily good according to the minimum aberration criterion. This phenome- 
non is especially pronounced for 64-run designs with n = 14 to 17. 

3. For the 32-run designs with n = 10 to 16, none of the resolution IV designs has 
any clear 2fi's. 

4. The numbering of designs is not strictly according to the minimum aberration 
criterion. Designs with worse aberration but with a much larger number of clear 
2fi's may be placed ahead of others with less aberration. For example, designs 
14-8.4 and 14-8.5 have worse aberration than designs 14-8.6 to 14-8.10. 



Table 1 

Design matrices for 16, 32 and 64-run designs. (For 16-run designs, it consists of the first 4 rows 
and 15 columns; for 32-run designs, it consists of the first 5 rows and 31 columns, and for 64-run 
designs, it is the whole matrix, Independent columns are numbered 1, 2, 4, 8, 16 and 32.) 

1 
1 
0 
0 
0 
0 
0 

22 
0 
1 
1 
0 
1 
0 

43 
1 
1 
0 
1 
0 
1 

2 
0 
1 
0 
0 
0 
0 

3 
1 
1 
0 
0 
0 
0 

4 
0 
0 
I 
0 
0 
0 

23 24 25 
10 1 
10 0 
10 0 
01 1 
11 1 
00 0 

44 45 46 
01 0 
00 1 
11 1 
11 1 
00 0 
11 1 

5 
I 
0 
1 
0 
0 
0 

6 
0 
1 
1 
0 
0 
0 

26 27 
0 1 
1 1 
0 0 
1 1 
1 1 
0 0 

47 48 
1 0 
1 0 
1 0 
1 0 
0 1 
1 1 

7 
1 
1 
1 
0 
0 
0 

8 
0 
0 
0 

0 
0 

9 
1 
0 
0 

0 
0 

28 29 30 
01 0 
00 1 
11 1 
1 11 
11 1 
00 0 

49 50 51 
10 1 
01 1 
00 0 
00 0 
11 1 
11 1 

10 11 12 
0 10 
11 0 
00 1 
11 1 
00 0 
00 0 

31 32 33 
10 1 
10 0 
10 0 
10 0 
10 0 
01 1 

52 53 54 
0 10 
00 1 
11 1 
00 0 
11 1 
11 1 

13 
1 
0 
1 
1 
0 
0 

14 15 
0 1 
1 1 
1 1 
1 1 
0 0 
0 0 

34 35 36 
01 0 
11 0 
00 1 
00 0 
00 0 
11 1 

55 56 57 
10 1 
10 0 
10 0 
01 1 
11 1 
11 1 

16 17 
0 1 
0 0 
0 0 
0 0 
1 1 
0 0 

37 
1 
0 

0 
0 

1 

38 
0 
1 
1 
0 
0 
1 

58 59 
0 1 
1 1 
0 0 
1 1 
1 1 
1 1 

18 19 20 
01 0 
11 0 
00 1 
00 0 
11 1 
00 0 

39 40 41 
10 1 
10 0 
10 0 
01 1 
00 0 
11 1 

60 61 62 
01 0 
00 1 
11 1 
11 1 
11 1 
11 1 

137 

21 
1 
0 
1 
0 

0 

42 
0 

0 
0 
1 

63 
1 

13 

1 
1 

Table 2 

Complete Catalogue of 16-run designs (Each design consists of columns 1, 2, 4, S and those specified 
in the "Additional Columns '. W = (A3, A4,...- ) iS the wordlength pattern defined in (1). C is the 
number of clear 41i ~. Designs for n = 13, 14, 15 are unique.) 

Design Additional columns W C 

5-1.1 15 
5-1.2 7 
5-1.3 3 

6-2.1 7 1 1 
6-2.2 3 13 
6-2.3 3 12 
6-2.4 3 5 

7 11 13 
3 5 14 
3 5 10 
3 59 
3 56 

7 1 1 13 14 
3 5 9 14 
3 5 10 12 
3 5 6 15 
3 56 9 
3 56 7 

3 5 9 14 15 
3 5 10 12 15 
3 5 6 9 14 
3 5 6 9 10 
3 567 9 

3 5 6 9 14 15 
3 5 6 9 10 13 
3 5 6 9 10 12 
3 5 6 7 9 10 

3 5 6 9 10 13 14 
3 5 6 7 9 10 12 
3 5 6 7 9 10 11 

3 5 6 9 10 13 14 15 
3 5 6 7 9 10 11 12 

00 1 
01 0 
1 00 

0 3 00 
1 1 10 
2 00 1 
2 10 0 

0 7 000 
23 20 0 
32 11 0 
33 00 1 
43 00 0 

0 14 0 0 0 1 
3 74 01 0 
4 54 20 0 
4 64 00 1 
5 52 2 10 
7 70 01 0 

4 14 8 0 4 1 0 
6 9 96 001 
6 10 8 4 2 1 0 
79 66 30 0 
8 10 4 4 4 1 0 

8 18 16 8 8 5 0 0 
9 16 15 12 7 3 1 0 
10 15 12 15 10 0 0 1 
10 16 12 12 10 3 0 0 

12 26 28 24 20 13 4 
13 25 25 27 23 10 3 
13 26 24 24 26 13 0 0 1 
16 39 48 48 48 39 16 0 0 1 
17 38 44 52 54 33 12 4 1 

7-3.1 
7-3.2 
7-3.3 
7-3.4 
7-3.5 

8-4.1 
8-4.2 
8-4.3 
8-4.4 
8-4.5 
8-4.6 

9-5.1 
9-5.2 
9-5.3 
9-5.4 
9-5.5 

10-6.1 
10-6.2 
10-6.3 
10-6.4 

11-7.1 
11-7.2 
11-7.3 

12-8.1 
12-8.2 

10 
4 
7 

0 
6 
9 
S 

0 
2 
4 
0 
6 

0 

0 
0 

2 
7 

0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
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Table 3. 

Selected 32-run designs for n =6 to 28. (Each design consists of columns 1, 2, 4, 8, 16 and those specified in the 
"Additional Columns". C is the number of clear 2fi's. W = (A, .. ., A7) when n <17 and W = (A, . . ., A,) 
when n > 17. Designs for n = 29, 30 and 31 are unique.) 

Design Additional columns W C 

27 
25 
11 
29 
28 
13 
12 
5 

11 29 
11 21 
11 19 
11 13 
13 22 
5 30 
13 21 
12 21 
5 26 
5 25 

11 19 29 
11 13 30 
11 21 25 
11 13 19 
11 13 14 
13 21 26 
13 21 25 
12 21 26 
5 9 30 
5 10 28 

11 19 29 30 
11 21 25 31 
11 13 19 21 
11 13 14 19 
13 21 25 28 
13 21 25 30 
12 21 26 31 
5 14 22 25 
5 14 23 26 
5 9 14 31 

13 19 21 25 
13 14 19 21 

14 22 25 31 
14 22 26 29 
14 22 26 28 
10 23 27 28 
9 22 26 29 
9 22 26 28 
9 14 22 26 
9 14 18 29 

11 13 14 19 21 25 
11 13 14 19 21 22 
5 9 14 22 26 29 
5 9 14 22 26 28 
5 10 12 22 27 29 
5 10 12 22 25 31 
5 6 15 23 25 30 
5 9 14 17 22 26 
5 9 14 15 22 26 
5 9 14 18 20 31 

0 

0 
0 
0 
1 
1 
1 
2 
2 

0 
0 
0 
0 
1 
2 
1 
2 
2 
2 

0 
0 
0 
0 
0 
1 
1 
2 
3 
3 

0 
0 
0 
0 
1 
1 
2 
2 
2 
3 

0 
0 
2 
2 
2 
3 
3 
3 
3 
4 

0 
0 
3 
3 
4 
4 
4 
4 
4 
5 

0010 

1 2 0 0 
2 0 1 0 
3 0 0 0 
0110 
1 0 0 1 
1 1 0 0 
0010 
1 0 0 0 

3 4 0 0 
5020 
6000 
7 0 0 0 
2 3 1 0 
1 2 2 0 
3 2 0 1 
1 2 2 0 
2 1 1 1 
2 2 0 0 

6 8 0 0 
7 7 0 0 
9060 
10 0 4 0 
14 0 0 0 
5621 
7 4 0 3 
3 6 4 0 
3 4 4 1 
3 4 4 1 

10 16 0 0 
15 0 15 0 
16 0 12 0 
18 0 8 0 
14 7 0 7 
10 11 4 3 
7 12 7 2 
8 12 4 2 
9 9 6 4 
8 11 4 1 

25 0 27 0 
26 0 24 0 
14 22 8 6 
16 16 12 10 
18 14 8 14 
13 19 11 9 
15 13 15 13 
16 12 12 16 
16 13 12 13 
12 18 12 8 

38 
39 
25 
26 
20 
22 
23 
25 
26 
19 

0 52 0 
0 48 0 
23 27 25 
22 24 28 
32 22 20 
28 20 28 
28 16 28 
19 27 31 
20 24 28 
29 25 23 

6-1.1 

7-2.1 
7-2.2 
7-2.3 
7-2.4 
7-2.5 
7-2.6 
7-2.7 
7-2.8 

8-3.1 
8-3.2 
8-3.3 
8-3.4 
8-3.5 
8-3.6 
8-3.7 
8-3.8 
8-3.9 
8-3.10 

9-4.1 
9-4.2 
9-4.3 
9-4.4 
9-4.5 
9-4.6 
9-4.7 
9-4.8 
9-4.9 
9-4.10 

10-5.1 
10-5.2 
10-5.3 
10-5.4 
10-5.5 
10-5.6 
10-5.7 
10-5.8 
10-5.9 
10-5.10 

11-6.1 
11-6.2 
11-6.3 
11-6.4 
11-6.5 
11-6.6 
11-6.7 
11-6.8 
11-6.9 
11-6.10 

12-7.1 
12-7.2 
12-7.3 
12-7.4 
12-7.5 
12-7.6 
12-7.7 
12-7.8 
12-7.9 
12-7.10 

31 

7 
7 
7 
3 
3 
3 
3 
3 

7 
7 
7 
7 
3 
3 
3 
3 
3 
3 

7 
7 
7 
7 
7 
3 
3 
3 
3 
3 

7 
7 
7 
7 
3 
3 
3 
3 
3 
3 

7 
7 
3 
3 
3 
3 
3 
3 
3 
3 

7 
7 
3 
3 
3 
3 
3 
3 
3 
3 

15 

15 
9 
6 
18 
12 
12 
15 
11 

13 
4 
0 
7 
13 
18 
10 
16 
12 
12 

8 
15 
0 
2 
8 
9 
12 
12 
15 
13 

0 
0 
0 
0 
14 
8 
6 
4 
5 
12 

0 
0 
0 
6 
6 
3 
4 
4 
4 
5 

0 
0 
5 
5 
0 
0 
0 
3 
3 
2 

11 
11 
5 
5 
5 
5 
5 
5 
5 
5 
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Table 3 

(Cont'd) 

Design Additional Columns W C 

13-8.1 7 11 13 14 19 21 22 25 
13-8.2 3 5 9 14 17 22 26 28 
13-8.3 3 5 9 14 15 22 26 29 
13-8.4 3 5 9 14 15 22 26 28 
13-8.5 3 5 9 14 15 17 22 26 
13-8.6 3 5 10 12 15 22 27 29 
13-8.7 3 5 9 14 18 20 24 31 
13-8.8 3 5 9 15 18 20 24 30 
13-8.9 3 5 9 15 18 20 24 31 
13-8.10 3 5 6 9 14 17 26 29 

14-9.1 7 11 13 14 19 21 22 25 26 
14-9.2 3 5 9 14 15 17 22 26 28 
14-9.3 3 5 9 14 15 17 22 23 26 
14-9.4 3 5 9 15 18 20 24 30 31 
14-9.5 3 5 9 14 15 18 20 24 31 
14-9.6 3 5 6 9 14 17 22 26 29 
14-9.7 3 5 9 14 15 18 20 24 30 
14-9.8 3 5 6 9 14 15 23 26 29 
14-9.9 3 5 6 9 14 17 22 26 27 
14-9.10 3 5 6 9 14 15 17 26 29 

15-10.1 7 11 13 14 19 21 22 25 26 28 
15-10.2 3 5 9 14 15 17 22 23 26 28 
15-10.3 3 5 9 14 15 17 22 23 26 27 
15-10.4 3 5 6 9 14 17 22 26 27 28 
15-10.5 3 5 6 9 14 15 17 22 26 29 
15-10.6 3 5 6 9 14 15 17 22 26 27 
15-10.7 3 5 9 14 18 20 23 24 27 29 
15-10.8 3 5 6 9 14 18 23 24 29 31 
15-10.9 3 5 9 14 15 18 20 23 24 30 
15-10.10 3 5 6 9 14 15 17 22 23 26 

16-11.1 7 11 13 14 19 21 22 25 26 28 31 
16-11.2 3 5 9 14 15 17 22 23 26 27 28 
16-11.3 
16-11.4 
16-11.5 
16-11.6 
16-11.7 
16-11.8 
16-11.9 
16-11.10 

17-12.1 
17-12.2 
17-12.3 
17-12.4 
17-12.5 

18-13.1 
18-13.2 
18-13.3 
18-13.4 
18-13.5 

3 
3 
3 
3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

S 

6 
6 
6 
9 
6 
6 
6 
6 

9 
6 
6 
6 
6 

6 
6 
6 
6 
6 

9 14 15 17 22 26 27 28 
9 14 15 17 22 23 26 29 
9 14 15 17 22 23 26 27 
14 18 20 23 24 27 29 31 
9 10 14 17 22 27 28 29 
9 10 14 17 22 23 26 29 
9 10 14 15 17 22 26 29 
9 10 14 17 22 26 29 31 

14 15 17 22 23 26 27 28 29 
9 14 15 17 22 23 26 27 28 
9 10 14 17 22 23 26 27 28 
9 10 14 15 17 22 27 28 29 
9 10 14 15 17 22 23 26 29 

9 14 15 17 22 23 26 27 28 29 
9 10 14 15 17 22 23 26 27 28 
7 9 10 11 17 18 19 28 29 30 
9 14 15 18 21 23 24 27 28 31 
9 10 14 17 22 23 24 27 28 29 

0 55 0 96 0 
4 38 32 52 56 
4 38 33 52 52 
4 39 32 48 56 
5 38 28 52 62 
6 28 51 42 42 
6 29 46 46 50 
6 30 44 44 56 
7 28 42 50 56 
7 29 42 46 56 

0 77 0 168 0 
5 55 45 96 106 
6 55 40 96 116 
8 42 64 85 112 
8 42 65 84 108 
8 43 64 80 112 
8 43 64 80 112 
8 45 64 72 112 
9 42 60 84 118 
9 43 61 80 114 

0 105 0 280 0 
6 77 62 168 188 
7 77 56 168 203 
10 60 90 141 212 
10 61 90 136 212 
11 60 85 141 222 
12 49 108 144 176 
12 51 102 144 192 
12 51 102 144 192 
12 61 80 136 232 

0 140 0 448 0 
7 105 84 280 315 
12 83 124 230 376 
12 84 124 224 376 
13 83 118 230 391 
15 65 156 232 315 
15 70 141 231 358 
15 71 140 226 363 
15 73 140 216 363 
16 65 148 236 336 

8 140 112 448 
14 112 168 364 
18 95 192 354 
18 95 193 354 
18 96 192 348 

16 148 224 560 
21 126 259 532 
22 126 252 532 
24 108 288 552 
24 113 272 547 

0 
4 
4 
4 
2 
0 
0 
0 
2 
2 

0 
3 
1 
0 
0 
0 
0 
0 
2 
2 

0 
2 
0 
0 
0 
2 
0 
0 
0 
2 

0 
1 
0 
0 
2 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

O 

O 
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Table 3 

(Cont'd) 

Design Additional Columns W C 

19-14.1 3 5 6 9 10 14 15 17 22 23 26 27 28 29 24 164 344 784 0 
19-14.2 3 5 6 7 9 10 11 17 18 19 28 29 30 31 25 164 336 784 0 
19-14.3 3 5 6 9 10 14 15 17 18 22 23 26 27 28 28 147 364 791 0 
19-14.4 3 5 6 9 10 13 14 15 17 22 23 26 27 28 28 148 364 784 0 
19-14.5 3 5 6 9 10 13 14 17 22 23 24 26 29 31 30 136 378 816 0 

20-15.1 3 5 6 9 10 14 15 17 18 22 23 26-29 32 188 480 1128 0 
20-15.2 3 5 6 9 10 13 14 15 17 22 23 26-29 32 189 480 1120 0 
20-15.3 3 5 6 7 9-12 17 18 19 28-31 33 188 472 1128 0 
20-15.4 3 5 6 9 10 14 15 17 18 22 23 26 27 28 31 35 175 491 1155 0 
20-15.5 3 5 6 9 10 13 14 15 17 18 22 23 26 27 28 35 176 490 1148 0 

21-16.1 3 5 6 9 10 14 15 17 18 22 23 26-29 31 40 220 641 1608 0 
21-16.2 3 5 6 9 10 13 14 15 17 18 22 23 26-29 40 221 640 1600 0 
21-16.3 3 5 6 7 9-12 17-20 28-31 41 220 632 1608 0 
21-16.4 3 5 6 9 10 13 14 17 19 22 23 24 26 28 29 31 42 210 651 1638 0 
21-16.5 3 5 6 9 10 13 14 15 17 18 21-25 26 29 42 213 644 1624 0 

22-17.1 3 5 6 9 10 13-15 17 18 21-23 25 26 29 30 48 263 832 2224 0 
22-17.2 3 5 6 9 10 13-15 17 18 21-23 25-28 49 259 833 2240 0 
22-17.3 3 5 6 7 9-12 17-20 25 28-31 49 261 825 2240 0 
22-17.4 3 5 6 7 9-12 17-20 24 28 29 30 31 50 260 816 2249 0 
22-17.5 3 5 6 7 9-13 17-20 28-31 50 261 816 2240 0 

23-18.1 3 5 6 9 10 13 14 15 17 18 21 22 23 25-29 56 315 1064 3024 0 
23-18.2 3 5 6 7 9-13 17-20 26 28-31 58 311 1050 3056 0 
23-18.3 3 5 6 7 9-13 17 18 19 20 21 26 27 28 30 59 308 1047 3073 0 
23-18.4 3 5 6 7 9-13 17-20 22 28-31 59 310 1041 3065 0 
23-18.5 3 5 6 7 9-13 17-21 26-29 59 311 1040 3056 0 

24-19.1 3 5 6 9 10 13-15 17 18 21-23 25-30 64 378 1344 4032 0 
24-19.2 3 5 6 7 9-13 17-21 26-30 67 371 1324 4088 0 
24-19.3 3 5 6 7 9-13 17 18 20 21 22 24 26 27 30 31 68 369 1316 4106 0 
24-19.4 3 5 6 7 9-14 17-20 27-31 68 370 1316 4096 0 
24-19.5 3 5 6 7 9-13 17-20 22 24 27-30 69 366 1311 4129 0 

25-20.1 3 5 6 7 9-13 17-21 26-31 76 442 1656 5376 0 
25-20.2 3 5 6 7 9-13 17-20 22 24 27-31 78 437 1641 5422 0 
25-20.3 3 5 6 7 9-14 17-21 26-30 78 438 1640 5412 0 
25-20.4 3 5 6 7 9-14 17-22 25-28 79 436 1632 5430 0 
25-20.5 3 5 6 7 9-14 17-22 25 26 28 31 79 437 1630 5422 0 

26-21.1 3 5 6 7 9-14 17-21 26-31 88 518 2032 7032 0 
26-21.2 3 5 6 7 9-14 17-22 25-29 89 516 2023 7052 0 
26-21.3 3 5 6 7 9-14 17-22 24-26 28 31 90 515 2012 7063 0 
26-21.4 3 5 6 7 9-15 17-22 24-26 28 90 515 2013 7062 0 
26-21.5 3 5 6 7 9-15 17-26 90 516 2012 7052 0 

27-22.1 3 5 6 7 9-14 17-22 25-30 100 606 2484 9064 0 
27-22.2 3 5 6 7 9-15 17-26 28 101 605 2473 9075 0 
27-22.3 3 5 6 7 9-15 17-27 101 606 2472 9064 0 

28-23.1 3 5 6 7 9-14 17-22 25-31 112 707 3024 11536 0 
28-23.2 3 5 6 7 9-15 17-28 113 706 3012 11548 0 
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Table 4 

Selected 64-run designs for n = 7 to 32. (Each design consists of columns 1, 2, 4, 8, 16, 32 and those specified in 
the "Additional Columns " C is the number of clear 2fi's. W = (A4, .. ., A7) when n < 18 and W = (A4, A5, A6) 
when n 18.) 

Design Additional Columns 

7-1.1 63 

8-2.1 15 51 

9-3.1 7 27 45 
9-3.2 7 25 43 
9-3.3 7 27 43 
9-3.4 7 11 61 
9-3.5 7 25 42 
9-3.6 7 11 53 
9-3.7 7 11 51 
9-3.8 7 11 29 
9-3.9 7 11 49 
9-3.10 7 11 21 

10-4.1 7 27 43 53 
10-4.2 7 25 42 53 
10-4.3 7 11 29 51 
10-4.4 7 11 29 46 
10-4.5 7 11 29 49 
10-4.6 7 11 29 45 
10-4.7 7 25 42 52 
10-4.8 7 11 21 57 
10-4.9 7 11 21 45 
10-4.10 7 11 13 62 

11-5.1 7 11 29 45 51 
11-5.2 7 25 42 52 63 
11-5.3 7 11 29 46 49 
11-5.4 7 11 21 46 56 
11-5.5 7 11 29 45 49 
11-5.6 7 11 19 29 62 
11-5.7 7 11 21 38 57 
11-5.8 7 11 21 41 51 
11-5.9 7 11 13 30 49 
11-5.10 7 11 13 30 46 

12-6.1 7 11 29 45 51 62 
12-6.2 7 11 21 46 54 56 
12-6.3 7 11 21 41 51 63 
12-6.4 7 11 21 41 54 56 
12-6.5 7 11 13 30 46 49 
12-6.6 7 11 19 37 57 63 
12-6.7 7 11 19 29 37 59 
12-6.8 7 11 19 29 37 57 
12-6.9 7 11 21 25 38 58 
12-6.10 7 11 13 19 46 49 

13-7.1 7 11 21 25 38 58 60 
13-7.2 7 11 13 30 46 49 63 
13-7.3 7 11 19 29 37 59 62 
13-7.4 7 11 19 29 37 41 60 
13-7.5 7 11 13 19 46 49 63 
13-7.6 7 11 19 30 37 41 52 
13-7.7 7 11 13 19 37 57 63 
13-7.8 7 11 19 37 41 60 63 
13-7.9 7 11 19 29 37 41 47 
13-7.10 7 11 13 19 35 49 63 

14-8.1 7 11 19 30 37 41 49 60 
14-8.2 7 11 19 29 30 37 41 47 
14-8.3 7 11 13 19 21 25 35 60 
14-8.4 7 11 13 14 19 21 25 54 

141 

W C 

0001 

0210 

1420 
2311 
2400 
3040 
3040 
3202 
3300 
3400 
4020 
5020 

2840 
3642 
3740 
3830 
4622 
4800 
5 0 10 0 
5424 
5522 
7070 

4 14 8 0 
5 10 10 5 
5 12 7 4 
6 10 8 4 
6 12 4 4 
6 12 8 0 
7878 
7966 
8 10 4 4 
8 14 0 0 

6 24 16 0 
8 20 14 8 
9 18 13 12 
10 15 16 11 
10 20 8 8 
10 16 12 16 
10 16 16 8 
10 18 10 12 
11 14 15 12 
12 14 12 12 

14 28 24 24 
14 33 16 16 
15 24 32 16 
15 27 21 27 
15 28 20 24 
16 22 30 22 
16 24 22 32 
16 26 18 30 
18 20 28 24 
18 21 24 24 

22 40 36 56 
22 40 41 48 
29 26 46 50 
38 17 52 44 

21 

28 

30 
24 
24 
21 
18 
21 
21 
21 
15 
12 

33 
27 
30 
30 
24 
24 
15 
21 
21 
24 

34 
25 
28 
25 
25 
27 
22 
22 
28 
28 

36 
27 
24 
21 
30 
20 
20 
20 
21 
23 

20 
36 
12 
16 
22 
17 
18 
12 
20 
21 

8 
16 
19 
25 
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Table 4 

(Cont'd) 

Design Additional Columns W C 

14-8.5 7 11 13 14 19 21 22 57 39 16 48 48 25 
14-8.6 7 11 19 29 30 37 41 49 22 41 36 52 8 
14-8.7 7 11 19 30 37 41 52 56 23 32 56 40 13 
14-8.8 7 11 13 19 21 41 54 63 23 38 38 54 16 
14-8.9 7 11 13 19 21 46 54 56 23 40 36 48 16 
14-8.10 7 11 19 29 37 41 47 49 24 31 54 42 16 

15-9.1 7 11 19 30 37 41 49 60 63 30 60 60 105 0 
15-9.2 7 11 19 29 30 37 41 49 60 30 61 60 100 0 
15-9.3 7 11 19 29 37 41 47 49 55 33 44 96 72 14 
15-9.4 7 11 13 14 19 21 35 41 63 39 38 80 88 19 
15-9.5 7 11 13 14 19 21 22 25 58 55 22 96 72 27 
15-9.6 7 11 13 19 21 35 37 57 58 33 54 60 108 6 
15-9.7 7 11 13 19 21 25 35 60 63 34 52 65 100 12 
15-9.8 7 11 13 19 21 35 41 49 63 35 42 88 80 14 
15-9.9 7 11 13 19 21 25 35 37 63 37 40 84 84 17 
15-9.10 7 11 13 14 19 21 25 35 60 43 34 80 88 18 
16-10.1 7 11 13 19 21 35 37 57 58 60 43 81 96 189 0 
16-10.2 7 11 19 29 37 41 47 49 55 59 45 60 160 120 15 
16-10.3 7 11 13 19 21 25 35 37 41 63 49 56 144 136 15 
16-10.4 7 11 13 14 19 21 25 35 37 63 53 52 136 144 18 
16-10.5 7 11 13 14 19 21 22 25 35 60 61 44 136 144 17 
16-10.6 7 11 13 14 19 21 22 25 26 60 77 28 168 112 29 
16-10.7 7 11 13 14 19 21 35 37 57 58 47 72 98 192 4 
16-10.8 7 11 13 14 19 21 25 35 60 63 49 68 108 176 8 
16-10.9 7 11 13 14 19 21 22 35 57 60 51 64 102 192 4 
16-10.10 7 11 13 14 19 21 22 35 37 57 57 48 120 160 15 
16-10.11 7 11 13 19 21 35 41 50 61 62 59 0 262 0 0 
16-10.12 7 11 13 19 21 35 41 49 61 62 60 0 256 0 0 
16-10.13 7 11 13 19 21 35 41 52 56 62 60 0 256 0 0 
16-10.14 7 11 19 37 41 47 49 55 59 62 60 0 256 0 0 
16-10.15 7 11 13 19 21 25 35 44 55 61 60 0 257 0 0 
17-11.1 7 11 13 14 19 21 35 37 57 58 60 59 108 150 324 0 
17-11.2 7 11 19 29 37 41 47 49 55 59 62 60 80 256 192 16 
17-11.3 7 11 13 19 21 25 35 37 41 49 63 65 75 232 216 16 
17-11.4 7 11 13 14 19 21 25 35 37 41 63 68 72 224 224 16 
17-11.5 7 11 13 14 19 21 22 25 35 37 63 73 67 216 232 19 
17-11.6 7 1113 14 19 21 22 25 26 28 63 105 35 280 168 31 
17-11.7 7 11 13 14 19 21 22 35 37 38 57 76 64 192 256 16 
17-11.8 7 11 13 19 21 25 35 37 42 61 62 79 0 394 0 0 
17-11.9 7 11 13 14 19 21 35 41 49 50 61 80 0 388 0 0 
17-11.10 7 11 13 14 19 21 22 25 26 35 60 84 56 224 224 16 
18-12.1 7 11 13 14 19 21 22 35 37 57 58 60 78 144 228 0 
18-12.2 7 11 13 14 19 21 22 35 37 38 57 58 84 128 240 0 
18-12.3 7 11 13 14 19 21 22 25 26 35 60 63 92 112 280 0 
18-12.4 7 11 13 19 21 25 35 37 42 49 61 62 102 0 588 0 
18-12.5 7 11 13 14 19 21 25 35 44 49 52 62 103 0 582 0 

19-13.1 7 11 13 14 19 21 22 35 37 38 57 58 60 100 192 336 0 
19-13.2 7 11 13 14 19 21 22 35 41 44 49 55 56 131 0 847 0 
19-13.3 7 11 13 14 19 21 25 35 37 42 49 50 61 131 0 847 0 
19-13.4 7 11 13 14 19 21 22 35 41 42 49 52 56 132 0 840 0 
19-13.5 7 11 13 14 19 21 25 35 37 41 49 50 61 132 0 840 0 

20-14.1 7 11 13 14 19 21 22 35 37 38 57 58 60 63 125 256 480 0 
20-14.2 7 11 13 14 19 21 22 35 41 42 49 52 56 62 164 0 1208 0 
20-14.3 7 11 13 14 19 21 22 35 41 42 49 52 56 61 165 0 1200 0 
20-14.4 7 11 13 14 19 21 22 35 41 42 49 50 61 62 165 0 1200 0 
20-14.5 7 11 13 14 19 21 25 35 37 42 49 52 59 61 165 0 1200 0 
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Table 4 

(Cont'd) 

Design Additional Columns W C 

21-15.1 7 11 13 14 19 21 22 25 35 41 42 49 52 56 62 204 0 1680 0 
21-15.2 7 11 13 14 19 21 22 25 35 37 41 42 49 50 61 205 0 1672 0 
21-15.3 7 11 13 14 19 21 22 25 35 37 41 42 49 52 56 205 0 1672 0 
21-15.4 7 11 13 14 19 21 22 25 35 41 42 49 50 61 62 205 0 1672 0 
21-15.5 7 11 13 14 19 21 22 25 26 37 41 44 49 52 59 206 0 1666 0 
22-16.1 7 11 13 14 19 21 22 25 35 37 41 42 49 52 56 62 250 0 2304 0 
22-16.2 7 11 13 14 19 21 22 25 26 35 37 41 44 49 52 59 251 0 2296 0 
22-16.3 7 11 13 14 19 21 22 25 26 37 41 44 49 52 59 62 251 0 2296 0 
22-16.4 7 11 13 14 19 21 22 25 26 35 37 38 41 44 49 56 252 0 2288 0 
22-16.5 7 11 13 14 19 21 22 25 26 35 37 38 41 44 49 55 252 0 2289 0 
23-17.1 7 11 13 14 19 21 22 25 26 35 37 41 44 49 52 56 62 304 03105 0 
23-17.2 7 11 13 14 19 21 22 25 26 35 37 38 41 44 49 55 56 304 03105 0 
23-17.3 7 11 13 14 19 21 22 25 26 35 37 38 41 42 49 52 56 305 03096 0 
23-17.4 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 49 52 306 0 3089 0 
23-17.5 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 49 50 307 03080 0 
24-18.1 7 11 13 14 19 21 22 25 26 35 37 38 41 42 49 52 56 62 365 04138 0 
24-18.2 7 11 13 14 19 21 22 25 26 35 37 38 41 42 49 52 56 61 366 0 4128 0 24-18.3 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 49 52 56 366 04129 0 
24-18.4 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 44 49 50 367 04120 0 
24-18.5 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 49 52 369 04106 0 
25-19.1 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 49 52 56 62 435 0 5440 0 
25-19.2 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 44 49 50 52 436 05430 0 
25-19.3 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 49 52 56 437 05422 0 
25-19.4 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 49 50 438 05412 0 
25-19.5 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 442 05376 0 
26-20.1 7 11 13 14 19 21 22 25 26 28 35 37 38 41 42 44 49 50 52 56 515 0 7062 0 26-20.2 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 49 5256 515 0 7063 0 26-20.3 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 4 424 49 50 52 516 0 7052 0 
26-20.4 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 495 518 07032 0 
27-21.1 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 49 50 52 56 605 0 9075 0 
27-21.2 711 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 606 09064 0 
28-22.1 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 56 706 011548 0 28-22.2 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 707 0 11536 0 
29-23.1 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 819 014560 0 
30-24.1 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 59 945 018200 0 
31-25.1 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 59 61 1085 0 22568 0 
32-26.1 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 59 61 62 1240 0 27776 0 

Table 5 

Design matrix for 27-run designs 

1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 1 0 0 1 1 1 111 
0 l 1 2 0 0 1 1 2 0 1 1 2 
0 0 0 0 1 1 1 1 1 2 2 2 2 
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Table 6 

Complete catalogue of 27-run designs. (Each design consists of columns 1, 2, 5 and those specified in 
the "Additional Columns " W = (A3, A4, .. .). Designs for n = 11 and n = 12 are unique.) 

Design Additional Columns W C 

4-1.1 8 0 1 0 
4-1.2 3 1 0 3 

5-2.1 3 9 1 3 0 0 
5-2.2 3 6 2 1 1 0 
5-2.3 3 4 4 0 0 4 

6-3.1 3 9 13 2 9 0 2 0 
6-3.2 3 6 11 3 6 3 1 0 
6-3.3 3 6 7 4 3 6 0 0 
6-3.4 3 4 6 5 3 3 2 0 

7-4.1 3 10 11 13 5 15 9 8 3 0 
7-4.2 4 8 10 11 6 11 15 4 4 0 
7-4.3 4 8 9 11 7 10 12 9 2 0 
7-4.4 3 4 9 13 8 9 9 14 0 0 

8-5.1 3 8 9 10 11 8 30 24 32 24 3 0 
8-5.2 4 8 9 10 11 10 23 32 30 22 4 0 
8-5.3 3 4 9 11 13 11 21 30 38 15 6 0 

9-6.1 3 8 9 10 11 13 12 54 54 96 108 27 13 0 
9-6.2 3 4 8 9 10 11 15 42 69 96 93 39 10 0 
9-6.3 4 9 10 11 12 13 16 39 69 106 78 48 8 0 

10-7.1 3 6 7 8 10 11 12 21 72 135 240 315 189 103 18 0 
10-7.2 3 4 6 7 8 10 11 22 68 138 250 290 213 92 20 0 
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Resume 

Les plans factoriels fractionnes (FF) avec aberration minimum sont souvent consideres comme les 
meilleurs plans et sont souvent utilises en pratique. Il y a toutefois des situations dans lesquelles 
d'autres plans repondent mieux aux besoins pratiques. L'acces a un catalogue de plans faciliterait la 
recherche des "meilleurs" plans selon divers criteres. Apres avoir etudie la structure algebrique des 
plans FF, nous proposons un algorithme pour la construction d'ensembles complets de tels plans. Un 
ensemble de plans FF comportant 16, 27, 32 et 64 passages est fourni. 

Mots-cles: Sous-groupe a contraste determinant; Plans a aberration minimum; Resolution; 
Structure des longueurs de mots; Structure des lettre. 
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