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Abstract: In this paper, we establish the axiomatic conditions of hull operators and introduce the category
of interval spaces. We also investigate their relations with convex spaces from a categorical sense. It is
shown that the category CS of convex spaces is isomorphic to the category HS of hull spaces, and they are
all topological over Set. Also, it is proved that there is an adjunction between the category IS of interval
spaces and the category CS of convex spaces. In particular, the category CS(2) of arity 2 convex spaces can be
embedded in IS as a re�ective subcategory.
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1 Introduction
Convexity is an important and basic property in many mathematical areas. However, in some concrete
mathematical setting, suchas vector spaces, it is not themost suitable setting for studying thebasic properties
of convex sets. In order to avoid this de�ciency, abstract convex structures (convex structures, in short) are
de�ned by three axioms [1], which is a similar way of de�ning topological structures. Up to now, the convexity
theory has become a branch of mathematics dealing with set-theoretic structures satisfying axioms similar
to that usual convex sets ful�ll. Actually, convex structures appeared inmany research areas, such as lattices
[2], graphs [3], and topology [4]. Besides, convexity theory is also investigated from the lattice-valued aspect,
including L-convex structures [5–13] and M-fuzzifying convex structures [14–19].

Category theory plays an important role in demonstrating the relations between di�erent types of
spatial structures. It emerges frequently in general topology and fuzzy topology, especially in crisp and
fuzzy convergence theory [20–29]. This motivates us to apply category theory to convex structures since
convex structures can be considered as topology-like structures. Actually, like continuousmappings between
topological spaces, there is also a special kind ofmappings between convex spaces,which is called convexity-
preserving mapping. Under a convexity-preserving mapping, convex sets in the range space are inverted to
convex sets of the domain. Such mappings arise in various constructions of convexities. For spaces derived
from an algebraic structure, convexity-preserving mappings usually agree with the corresponding notions of
homomorphisms. In fact, convexity-preserving mappings are exactly the appropriate notions of morphisms
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in the category of convex spaces. This is just one of our motivations of this paper. That is, we would like to
investigate the categorical properties of convex spaces.

A convex structure is completely determined by a special kind of closure operators, which is called
algebraic closure operators. Actually, algebraic closure operators can be treated as the hull operators of
convex spaces. Except for algebraic closure operators, interval operators, as a generalization of intervals,
provide a natural and frequent method of describing or constructing convex structures. There are also close
relations between convex structures and interval operators. Inspired by this, we will not only provide a new
characterization of convex structures by closure operators and present an axiomatic hull operators, but
also focus on the categorical properties of interval spaces and study its relations with convex spaces from
a categorical sense.

2 Preliminaries

Throughout this paper, let X denote a nonempty set and 2X the powerset of X. Let {Aj}j∈J
dir
⊆ 2X denote that

{Aj}j∈J is a directed subset of 2X, which means for each B, C ∈ {Aj}j∈J, there exists D ∈ {Aj}j∈J such that
B ⊆ D and C ⊆ D.

Let X, Y be two nonempty sets and f : X −→ Y be a mapping. De�ne f→ : 2X −→ 2Y and f← : 2Y −→ 2X

as follows:
∀A ∈ 2X , f→(A) = {f (x) | x ∈ A}; ∀B ∈ 2Y , f←(B) = {x | f (x) ∈ B}.

De�nition 2.1 ([1]). A convex structure C on X is a subset of 2X which satis�es:
(CS1) ∅, X ∈ C;
(CS2) {Ai}i∈I ⊆ C implies

⋂
i∈I Ai ∈ C;

(CS3) {Aj}j∈J
dir
⊆ C implies

dir⋃
j∈J∈ C.

For a convex structure C on X, the pair (X, C) is called a convex space.

A mapping f : (X, CX) −→ (Y , CY ) is called convexity-preserving (CP, in short) provided that B ∈ CY implies
f←(B) ∈ CX. The category whose objects are convex spaces and whose morphisms are CP mappings will be
denoted by CS.

De�nition 2.2 ([1]). A closure operator on X is a mapping C : 2X −→ 2X which satis�es:
(CL1) C(∅) = ∅;
(CL2) A ⊆ C(A);
(CL3) A ⊆ B ⇒ C(A) ⊆ C(B);
(CL4) CC(A) = C(A).

For a closure operator C on X, the pair (X, C) is called a closure space. It will be called algebraic if it also
satis�es that,

(CLA) C(A) =
⋃
{C(B) | B is a �nite subset of A}.

The pair (X, C) is called an algebraic closure space.

A mapping f : (X, CX) −→ (Y , CY ) between closure spaces is called convexity-preserving (CP, in short)
provided that f→(CX(A)) ⊆ CY (f→(A)) for all A ∈ 2X. The category whose objects are closure spaces and
whose morphisms are CP mappings will be denoted by CLS, and the full subcategory of algebraic closure
spaces by ACLS.

For a convex space (X, C), de�ne CC : 2X −→ 2X by CC(A) =
⋂
A⊆B∈C B. Then C

C is an algebraic closure
operator on X. Conversely, for a closure operator (X, C), de�ne CC ⊆ 2X by CC = {A ∈ 2X | A = C(A)}. Then CC

is a convex structure on X. Furthermore, they are one-to-one corresponding. In a categorical sense, we have

Theorem 2.3. The category CS is isomorphic to the category ACLS.
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De�nition 2.4 ([29, 30]). A category C is called a topological category over Set with respect to the usual
forgetful functor from C to Set if it satis�es (TC1), (TC2) and (TC3) or (TC1)′, (TC2) and (TC3).

(TC1) Existence of initial structures: For any set X, any class J, and family ((Xj , ξj))j∈J of C-object and any
family (fj : X −→ Xj)j∈J of mappings, there exists a unique C-structure ξ on X which is initial with respect to
the source (fj : X −→ (Xj , ξj))j∈J , this means that for a C-object (Y , η), a mapping g : (Y , η) −→ (X, ξ ) is a
C-morphism i� for all j ∈ J, fj ◦ g : (Y , η) −→ (Xj , ξj) is a C-morphism.

(TC1)′ Existence of �nal structures: For any set X, any class J, and family ((Xj , ξj))j∈J of C-object and any
family (fj : Xj −→ X)j∈J of mappings, there exists a unique C-structure ξ on X which is �nal with respect to
the sink (fj : (Xj , ξj) −→ X))j∈J , this means that for a C-object (Y , η), a mapping g : (X, ξ ) −→ (Y , η) is a
C-morphism i� for all j ∈ J, g ◦ fj : (Xj , ξj) −→ (Y , η) is a C-morphism.

(TC2) Fibre-smallness: For any set X, the C-�bre of X, i.e., the class of all C-structures on X, which we
denote by C(X), is a set.

(TC3) Terminal separator property: For any set X with cardinality at most one, there exists exactly one
C-object with underlying set X (i.e. there exists exactly one C-structure on X).

Lemma 2.5 ([29, 30]). Suppose that F : A −→ B and G : B −→ A are concrete functors. Then the following
conclusions are equivalent:
(1) {idY : F ◦ G(Y) −→ Y | Y ∈ B} is a natural transformation from the functor F ◦ G to the identity functor

idB on B, and {idX : X −→ G ◦ F(X) | X ∈ A} is a natural transformation from the identity functor idA on
A to the functorG ◦ F.

(2) For each Y ∈ B, idY : F ◦ G(Y) −→ Y is a B-morphism, and for each X ∈ A, idX : X −→ G ◦ F(X) is a
A-morphism.
In this case, (F,G) is called an adjunction between A and B.

If (F,G) is an adjunction, then it is easy to verify thatF is a left adjoint ofG or equivalently,G is a right adjoint
of F.

The class of objects of a categoryA is denoted by |A|. For more notions related to category theory we refer
to [29] and [30].

3 The categories of convex spaces and hull spaces
In this section, we �rst study some categorical properties of convex spaces. Then we introduce the axiomatic
hull operators and investigate its relations with convex structures.

De�nition 3.1. For a nonempty, let FC(X) denote the �bre

{(X, C) | C is a convex structure on X.}

of X. For convex spaces (X, C1) and (X, C2), we say (X, C1) is �ner than (X, C2), or (X, C2) is coarser than
(X, C1), denoted by (X, C1) 6C (X, C2), if the identity mapping idX : (X, C1) −→ (X, C2) is CP. We also write
C1 6C C2.

Example 3.2. Let X be a nonempty set.
(1) De�ne C* by C* = 2X. Then C* is the �nest convex structure on X, which is called the discrete convex

structure on X.
(2) De�ne C* by C* = {∅, X}. Then C* is the coarsest convex structure on X, which is called the indiscrete

convex structure on X.

Theorem 3.3. The category CS is topological over Set.
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Proof. We �rst prove the existence of �nal structures. Let ((Xλ , Cλ))λ∈Λ be a family of convex spaces and let X
be a nonempty set. Let further ((fλ : (Xλ , Cλ) −→ X))λ∈Λ be a sink. De�ne C ⊆ 2X by

C = {A ∈ 2X | ∀λ ∈ Λ, f←λ (A) ∈ Cλ}.

Since f←λ preserves arbitrary meets and directed joins, we can verify that C is a convex structure on X.
Let further (Y , CY ) be a convex space and g : X −→ Y be amapping. Assume that g ◦ fλ is CP for all λ ∈ Λ.

We have for all B ∈ CY ,
∀λ ∈ Λ, f←λ (g←(B)) = (g ◦ fλ)←(B) ∈ Cλ .

By de�nition of C, we obtain g←(B) ∈ C. This implies that g : (X, C) −→ (Y , CY ) is CP, as desired.
Secondly, the class of all convex structures on a �xed set X is a subset of 2(2

X), which means that the CS
�bre of X is a set.

Finally, for a one point set X = {x}, there exists only one convex structure C = {∅, {x}} on X. Hence, CS
satis�es the terminal separator property. Therefore, CS is a topological category in the sense of [29]. That is,
a well-�bred topological category in the terminology of [30].

Corollary 3.4. (FC(X),6C) is a complete lattice.

Next we will introduce the axiomatic hull operators and study its relations with convex structures.

De�nition 3.5. A hull operator on X is a mapping co : 2X −→ 2X which satis�es:
(H1) co(∅) = ∅, co(X) = X;
(H2) A ⊆ co(A);
(H3) A ⊆ B ⇒ co(A) ⊆ co(B);
(H4) co(co(A)) = co(A).

(H5) co(
dir⋃
j∈J Aj) =

⋃
j∈J co(Aj).

For a hull operator co on X, the pair (X, co) is called a hull space. Actually, a hull operator on X is a closure
operator on X which satis�es (H5).

De�nition 3.6. A mapping f : (X, coX) −→ (Y , coY ) is called convexity-preserving (CP, in short) provided
that f→(coX(A)) ⊆ coY (f→(A)) for all A ∈ 2X.

The category whose objects are hull spaces and whose morphisms are CP mappings will be denoted by HS.

Proposition 3.7. Let (X, C) be a convex space and de�ne coC : 2X −→ 2X by

∀A ∈ 2X , coC(A) =
⋂

A⊆B∈C
B.

Then coC is a hull operator on X.

Proof. By Theorem 2.3, coC is an algebraic closure operator on X. Thus coC satis�es (H1)–(H4). It su�ces to

verify (H5). For {Aj}j∈J
dir
⊆ 2X, take any x ∈ ̸

⋃
j∈J co

C(Aj) =
⋃
j∈J

⋂
Aj⊆B∈C B. Then there exists Bj ∈ 2X such

that Aj ⊆ B ∈ C and x ∈ ̸ Bj for each j ∈ J. Let Cj = coC(Aj). By (C2) and (H3), we know Aj ⊆ Cj ∈ C and {Cj}j∈J
is directed. Put B =

⋃
j∈J Cj. By (C3), we obtain

⋃
j∈J Aj ⊆ B ∈ C. Further, since Cj ⊆ Bj, it follows that x ∈ ̸ Cj

for each j ∈ J. This implies that x ∈ ̸ B. As a consequence, we obtain B ∈ 2X such that
⋃
j∈J Aj ⊆ B ∈ C and

x ∉ B. This means that x ∉ coC(
dir⋃
j∈J Aj). By the arbitrariness of x, we have coC(

dir⋃
j∈J Aj) ⊆

⋃
j∈J co

C(Aj).
The inverse inequality holds obviously. Therefore, coC is a hull operator.

Proposition 3.8. If f : (X, CX) −→ (Y , CY ) is a CP mapping, then so is f : (X, coCX ) −→ (Y , coCY ) .

Proof. Since f : (X, CX) −→ (Y , CY ) is a CP mapping, it follows that

∀B ∈ 2Y , B ∈ CY implies f←(B) ∈ CX .
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Then for each A ∈ 2X, we have

f←(coCY (f→(A))) =
⋂

f→(A)⊆B∈CY

f←(B)

⊇
⋂

A⊆f→(B)∈CX

f←(B)

⊇
⋂

A⊆C∈CX

C = coCX (A).

This shows f→(coCX (A)) ⊆ coCY (f→(A)), as desired.

By Propositions 3.7 and 3.8, we obtain a functor F : CS −→ HS as follows:

F :


CS −→ HS

(X, C) 7−→ (X, coC)
f 7−→ f .

Proposition 3.9. Let (X, co) be a hull space and de�ne Cco = {A ∈ 2X | A = co(A)}. Then Cco is a convex
structure on X.

Proof. (C1) is obvious. We need only verify (C2) and (C3).
(C2) Take any {Ai}i∈I ⊆ Cco. Then for each i ∈ I, co(Ai) = Ai. By (H3), co(

⋂
i∈I Ai) ⊆

⋂
i∈I co(Ai). In

order to show the inverse inequality, take any x ∉ co(
⋂
i∈I Ai) ⊇

⋂
i∈I Ai. Then there exists i0 ∈ I such that

x ∉ Ai0 = co(Ai0 ). This implies that x ∈ ̸
⋂
i∈I co(Ai). By the arbitrariness of x, we obtain

⋂
i∈I co(Ai) ⊆

co(
⋂
i∈I Ai). Hence, it follows that

⋂
i∈I co(Ai) = co(

⋂
i∈I Ai). This means that

⋂
i∈I Ai ∈ Cco.

(C3) Take any {Aj}j∈J
dir
⊆ Cco. Then Aj = co(Aj) for each j ∈ J. By (H5), it follows that

co(
dir⋃

j∈J
Aj) =

dir⋃
j∈J

co(Aj) =
dir⋃

j∈J
Aj .

This means that
dir⋃
j∈J Aj ∈ Cco.

Proposition 3.10. If f : (X, coX) −→ (Y , coY ) is a CP mapping, then so is f : (X, CcoX ) −→ (Y , CcoY ).

Proof. Since f : (X, coX) −→ (Y , coY ) is a CP mapping, we have

∀A ∈ 2X , coX(A) ⊆ f←(coY (f→(A))).

Then for each B ∈ CcoY , it follows that

coX(f←(B)) ⊆ f←(coY (f→(f←(B)))) ⊆ f←(coY (B)) = f←(B).

This implies that coX(f←(B)) = f←(B). Hence, f←(B) ∈ CcoX .

By Propositions 3.9 and 3.10, we obtain a functorG : HS −→ CS as follows:

G :


HS −→ CS

(X, co) 7−→ (X, Cco)
f 7−→ f .

Theorem 3.11. The category CS is isomorphic to the category HS.

Proof. It su�ces to show thatG◦F = ICS andF◦G = IHS. That is, for each (X, C) ∈ |CS|andeach (X, co) ∈ |HS|,
coC

co
= co and Cco

C

= C.
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For each A ∈ 2X, we have

coC
co
(A) =

⋂
A⊆B∈Cco

B =
⋂

A⊆B=co(B)

B = co(A)

and
A ∈ Cco

C

⇐⇒ A = coC(A) =
⋂

A⊆B∈C
B ⇐⇒ A ∈ C.

This completes the proof.

4 The category of interval spaces
In this section, we will introduce the category of interval spaces with interval spaces as objects and with
interval-preserving mappings as morphisms. Then we will study its categorical properties.

De�nition 4.1 ([1]). An interval operator on X is a mapping I : X × X −→ 2X which satis�es:
(I1) x, y ∈ I(x, y);
(I2) I(x, y) = I(y, x).

For an interval operator I on X, the pair (X, I) is called an interval space.

De�nition 4.2 ([1]). Amapping f : (X, IX) −→ (Y , IY ) is called interval-preserving (IP in short) provided that

∀x, y ∈ X, f→(IX(x, y)) ⊆ IY (f (x), f (y)).

It is easy to check that all interval spaces and IP mappings form a category, denoted by IS.

De�nition 4.3. For a nonempty set X, let FI(X) denote the �bre

{(X, I) | I is an interval operator on X}

of X. For interval spaces (X, I1) and (X, I2), we say (X, I1) is �ner than (X, I2), or (X, I2) is coarser than (X, I1),
denoted by (X, I1) 6I (X, I2), if the identity mapping idX : (X, I1) −→ (X, I2) is IP. We also write I1 6I I2.

Example 4.4. Let X be a nonempty set.
(1) De�ne I* : X × X −→ 2X by I*(x, y) = {x, y} for each x, y ∈ X. Then I* is the �nest interval operator on

X, which is called the discrete interval operator on X.
(2) De�ne I* : X × X −→ 2X by I*(x, y) = X. Then I* is the coarsest interval operator on X, which is called

the indiscrete interval operator on X.
(3) Suppose thatR is the set of real numbers. De�ne IR : R ×R −→ 2R by

∀a, b ∈ R, IR(a, b) = [min{a, b},max{a, b}].

Then IR is an interval operator onR.
(4) Suppose that d is a metric on X. De�ne Id : X × X −→ 2X by

∀x, y ∈ X, Id(x, y) = {z ∈ X | d(x, y) = d(x, z) + d(z, y)}.

Then Id is an interval operator on X.

Proposition 4.5. Let (X, IX), (Y , IY ) and (Z, IZ) be interval spaces. If f : X −→ Y and g : Y −→ Z are IP, then
g ◦ f : (X, IX) −→ (Z, IZ) is IP.

Proof. The proof is easy and omitted.
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In the category IS, important constructions like the formulations of products and subspaces, are always
possible.

Theorem 4.6. The category IS is topological over Set.

Proof. We �rst prove the existence of initial structures. Let ((Xλ , Iλ))λ∈Λ be a family of interval spaces and let
X be a nonempty set. Let further ((fλ : X −→ (Xλ , Iλ)))λ∈Λ be a source. De�ne I : X × X −→ 2X by

∀x, y ∈ X, I(x, y) =
⋂
λ∈Λ

f←λ (Iλ(fλ(x), fλ(y))).

Then it is easy to verify that I is an interval operator on X.
Let further (Y , IY ) be an interval space and g : Y −→ X be a mapping. Assume that fλ ◦ g is IP for all

λ ∈ Λ. We then have for each y1, y2 ∈ Y and for each λ ∈ Λ,

(fλ ◦ g)→(IY (y1, y2)) ⊆ Iλ(fλ(g(y1)), fλ(g(y2))).

From this we obtain

g→(IY (y1, y2)) ⊆
⋂
λ∈Λ

f←λ (Iλ(fλ(g(y1)), fλ(g(y2)))) = I(g(y1), g(y2)).

This means that g : (Y , IY ) −→ (X, I) is IP, as desired.
Secondly, the class of all interval operators on a �xed set X is a subset of 2((2

X)X×X), which means that the
IS �bre of X is a set.

Finally, for a one point set X = {x}, there exists only one interval operator I on X, which is de�ned by
I(x, x) = X. Hence, IS satis�es the terminal separator property. Therefore, IS is a topological category over
Set.

Corollary 4.7. (FI(X),6I) is a complete lattice.

Example 4.8 (Product Spaces). Let {(Xλ , Iλ)}λ∈Λ be a family of interval spaces. The interval operator Π − I
on

∏
λ∈Λ Xλ which is initial with respect to the projections (pλ)λ∈Λ is called the product interval operator and

the pair (
∏
λ∈Λ Xλ , Π − I) is called the product space. By de�nition, we have for x, y ∈

∏
λ∈Λ Xλ,

Π − I(x, y) =
⋂
λ∈Λ

p←λ (Iλ(pλ(x), pλ(y))) =
∏
λ∈Λ

Iλ(pλ(x), pλ(y)).

Example 4.9 (Subspaces). Let (X, IX) be an interval space and let Y ⊆ X. The interval operator IY on Y which
is initial with respect to the inclusion mapping idY : Y −→ X is called the sub-interval operator and the pair
(Y , IY ) is called the subspace of (X, IX). By de�nition, we have for x, y ∈ Y,

IY (x, y) = IX(x, y) ∩ Y .

5 Relations between IS and CS

In this section, we will focus on the relations between IS and CS. In particular, we will propose a full
subcategory of CS, consisted of arity 2 convex spaces and study its relations with interval spaces.

De�nition 5.1. A convex space (X, C) is called arity 2 if it satis�es
(AR2) ∀A ∈ 2X, ∀x, y ∈ A, coC({x, y}) ⊆ A implies A ∈ C.

Let CS(2) denote the full subcategory of CS, consisted of arity 2 convex spaces.

Next we will study the relations between CS (CS(2)) and IS.
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Proposition 5.2. Let (X, C) be a convex space and de�ne IC : X × X −→ 2X by

∀x, y ∈ X, IC(x, y) = coC({x, y}) =
⋂

x,y∈A∈C
A.

Then IC is an interval operator on X.

Proof. The veri�cations of (I1) and (I2) are straightforward and omitted.

Proposition 5.3. If f : (X, CX) −→ (Y , CY ) is a CP mapping, then f : (X, ICX ) −→ (Y , ICY ) is a IP mapping.

Proof. Since f : (X, CX) −→ (Y , CY ) is a CP mapping, it follows that f←(B) ∈ CX for each B ∈ CY . Then for
each x, y ∈ X, we have

f←(ICY (f (x), f (y))) =
⋂

f (x),f (y)∈B∈CY

f←(B)

⊇
⋂

x,y∈f←(B)∈CX

f←(B)

⊇
⋂

x,y∈A∈CX

A = ICX (x, y).

This implies that f→(ICX (x, y)) ⊆ ICY (f (x), f (y)), as desired.

By Propositions 5.2 and 5.3, we obtain a functorH as follows:

H :


CS −→ IS

(X, C) 7−→ (X, IC)
f 7−→ f .

Proposition 5.4. Let (X, I) be an interval space and de�ne CI as follows:

CI = {A ∈ 2X | ∀x, y ∈ A, I(x, y) ⊆ A}.

Then (X, CI) is an arity 2 convex space.

Proof. (C1) is obvious. We need only verify (C2), (C3) and (AR2).
(C2) Take any {Ai}i∈I ⊆ CI. Then for each i ∈ I and for each x, y ∈ Ai, I(x, y) ⊆ Ai. This implies that

x, y ∈
⋂
i∈I
Ai ⇐⇒ ∀i ∈ I, x, y ∈ Ai

⇐⇒ ∀i ∈ I, I(x, y) ⊆ Ai
⇐⇒ I(x, y) ⊆

⋂
i∈I
Ai .

Hence,
⋂
i∈I Ai ∈ CI.

(C3) Take any {Aj}j∈J
dir
⊆ CI. Then for each x, y ∈

dir⋃
j∈J Aj , there exist j1, j2 ∈ J such that x ∈ Aj1 and

y ∈ Aj2 . Since {Aj}j∈J is directed, there exists j3 ∈ J such that Aj1 ⊆ Aj3 and Aj2 ⊆ Aj3 . This implies that

x, y ∈ Aj3 ∈ CI. Then it follows that I(x, y) ⊆ Aj3 ⊆
dir⋃
j∈J Aj. This means

dir⋃
j∈J Aj ∈ CI.

(AR2) Take any A ∈ 2X such that

∀x, y ∈ A, coC
I

({x, y}) ⊆ A.

In order to show A ∈ CI, take any x, y ∈ A. It follows that

coC
I

({x, y}) =
⋂

x,y∈B∈CI

B ⊇ I(x, y).

Then we have I(x, y) ⊆ coC
I

({x, y}) ⊆ A for each x, y ∈ A. This implies that A ∈ CI, as desired.
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Proposition 5.5. If f : (X, IX) −→ (Y , IY ) is a IP mapping, then f : (X, CIX ) −→ (Y , CIY ) is a CP mapping.

Proof. Since f : (X, IX) −→ (Y , IY ) is a IP mapping, it follows that

∀x, y ∈ X, f→(IX(x, y)) ⊆ IY (f (x), f (y)).

Then for each B ∈ CIY , take any x, y ∈ f←(B). It follows that f (x), f (y) ∈ B ∈ CIY . This means that
IY (f (x), f (y)) ⊆ B. Further we have

IX(x, y) ⊆ f←(IY (f (x), f (y))) ⊆ f←(B).

This implies that f←(B) ∈ CIX , as desired.

By Propositions 5.4 and 5.5, we obtain a functorK : IS −→ CS as follows:

K :


IS −→ CS

(X, I) 7−→ (X, CI)
f 7−→ f .

Theorem 5.6. (K,H) is an adjunction between IS and CS.

Proof. Since K and H are both concrete functors, we need only verify that K ◦ H 6C ICS and H ◦ K >I IIS.
That is to say, for each (X, C) ∈ |CS| and (X, I) ∈ |IS|, CIC 6C C and I 6I IC

I

.
On one hand, take any x, y ∈ X. Then

I(x, y) ⊆
⋂

x,y∈A∈CI

A = coC
I

({x, y}) = IC
I

(x, y).

On the other hand, take any A ∈ 2X. Then

A ∈ C =⇒ ∀x, y ∈ A, coC({x, y}) ⊆ A
⇐⇒ ∀x, y ∈ A, IC(x, y) ⊆ A
⇐⇒ A ∈ CIC .

This means that C ⊆ CIC , that is, CIC 6C C, as desired.

By Propositions 5.2 and 5.4, we knowK* , K : IS −→ CS(2) andH* , H|CS(2) : CS(2) −→ IS are still functors.
Moreover, we have the following result.

Theorem 5.7. (K*,H*) is an adjunction between IS and CS(2). Moreover,K* is a left inverse ofH*.

Proof. By Theorem 5.6, it su�ces to show that CIC = C for each arity 2 convex space (X, C). Take any A ∈ 2X.
Then

A ∈ C ⇐⇒ ∀x, y ∈ A, coC({x, y}) ⊆ A ((X, C) is arity 2)
⇐⇒ ∀x, y ∈ A, IC(x, y) ⊆ A
⇐⇒ A ∈ CIC .

This means CIC = C.

Corollary 5.8. The category CS(2) can be embedded in the category IS as a re�ective subcategory.
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6 Conclusions
In this paper we provided a categorical approach to abstract convex theory. On one hand, we introduced the
axiomatic conditions of hull operators and showed that the resulting category is isomorphic to the category of
convex spaces. On the other hand, we investigated the relations between convex spaces and interval spaces.
We showed that there is an adjunction between the category of interval spaces and the category of convex
spaces. Furthermore, the category of arity 2 convex spaces can be embedded in the category of interval spaces
as a re�ective subcategory. As is shown in this paper, category theory is an e�ective tool to deal with convex
structures and interval operators. This also implies that category theory will be signi�cant in the research
on the theory of convex structures. In the future, we will consider applying category theory to fuzzy convex
structures and establishing the relations between fuzzy convex structures and some other related structures.
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