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Abstract We employ the minimal geometric deformation
approach to gravitational decoupling (MGD-decoupling)
in order to build an exact anisotropic version of the
Schwarzschild interior solution in a space-time with cosmo-
logical constant. Contrary to the well-known Schwarzschild
interior, the matter density in the new solution is not uniform
and possesses subluminal sound speed. It therefore satisfies
all standard physical requirements for a candidate astrophys-
ical object.

1 Introduction

The Schwarzschild interior metric is one of the best known
solutions of Einstein’s field equations [1]. This exact solu-
tion represents an isotropic self-gravitating object of uni-
form density (incompressible fluid), and has been widely
studied, generally without considering the cosmological con-
stant. As far as we know, it is one of the few analytic solu-
tions for a bounded distribution which fits smoothly with the
Schwarzschild exterior metric [2]. However, it cannot be
used to represent a stellar model as its speed of sound is
not subliminal (see Ref. [3] where a model of two fluids is
used to circumvent the problem of causality). Despite of the
above, some studies on the possible impact of the vacuum
energy on perfect fluids have been carried out which made

a e-mail: gabbanelli@icc.ub.edu
b e-mail: jovalle@usb.ve
c e-mail: adrian.sotomayor@uantof.cl
d e-mail: zdenek.stuchlik@fpf.slu.cz
e e-mail: casadio@bo.infn.it

use of this solution for both positive and negative values of the
cosmological constant. Such analyses can help to elucidate
some properties of the Schwarzschild-(anti-)de Sitter space-
time in presence of matter [4,5] (see also [6–8]). Moreover,
some alternatives to black holes, like the gravastars [9,10],
are mainly generated from this solution [11,12], and an exact
time-dependent version was recently reported in Ref. [13].
Therefore, it is not only natural, but also useful, to construct
a possible extension of this solution for more realistic stel-
lar scenarios, such as that represented by non-uniform and
anisotropic self-gravitating objects. Above all, it would be
very important to develop versions that do not suffer from the
causal problem. However, given the complexity of Einstein’s
field equations, we know that extending a known solution to
more complex scenarios is an arduous and difficult task [14],
even more so if we wish to keep it physically acceptable. For-
tunately, the so-called method of gravitational decoupling by
Minimal Geometric Deformation (MGD-decoupling, hence-
forth) [15,16], which has been widely used recently [17–32],
has proved to be a powerful method to extend known solu-
tions into more complex scenarios.

The original version of the MGD approach was devel-
oped in Refs. [33,34] in the context of the brane-world sce-
nario [35,36], and it was eventually extended to study black
hole solutions in Refs. [37,38] (for some earlier works on
the MGD, see for instance Refs. [39–42], and Refs. [43–52]
for some recent applications). On the other hand, the MGD-
decoupling has three main characteristics that make it par-
ticularly useful in the search for new solutions of Einstein’s
field equations, namely:
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I. one can extend simple solutions of the Einstein equations
into more complex domains. In fact, we can start from a
source with energy-momentum tensor T̂μν for which the
metric is known and add the energy-momentum tensor
of a second source,

T̂μν → Tμν = T̂μν + T (1)
μν . (1.1)

We can then repeat the process with more sources T (i)
μν to

extend the solution of the Einstein equations associated
with the gravitational source T̂μν into the domain of more
intricate forms of gravitational sources Tμν ;

II. one can also reverse the previous procedure in order to
find a solution to Einstein’s equations with a complex
energy-momentum tensor Tμν by splitting it into simpler
components,

Tμν → T̂μν + T (i)
μν , (1.2)

and solve Einstein’s equations for each one of these
components. Hence, we will have as many solutions as
the components in the original energy-momentum tensor
Tμν . Finally, by a simple combination of all these solu-
tions, we will obtain the solution to the Einstein equations
associated with the original energy-momentum tensor
Tμν . We emphasise that the MGD-decoupling works as
long as the sources do not exchange energy-momentum
directly among them, to wit

∇μT̂ μν = ∇μT (1)μν = · · · = ∇μT (n)μν = 0, (1.3)

which further clarifies that their interaction is purely
gravitational;

III. it can be applied to theories beyond general relativity.
For instance, given the modified action [16]

SG = SEH + SX =
∫ [

R

2 k2 + LM + LX

] √−g d4 x,

(1.4)

whereLM contains all matter fields in the theory andLX

is the Lagrangian density of a new gravitational sector
with an associated (effective) energy-momentum tensor

θμν = 2√−g

δ(
√−g LX)

δgμν
= 2

δLX

δgμν
− gμν LX, (1.5)

the method in I. allows one to extend all the known
solutions of the Einstein-Hilbert action SEH into the
domain of modified gravity represented by SG. This rep-
resents a straightforward way to study the consequences
of extended gravity on general relativity.

In this paper we will apply the procedure I. to the Schwarzsc-
hild interior solution in order to build a new interior con-
figuration with non-uniform matter density and anisotropic
pressure.

The paper is organised as follows: in Sect. 2, we start
from the Einstein equations with cosmological constant for a
spherically symmetric stellar distribution and we show how
to decoupling two spherically symmetric and static gravi-
tational sources {Tμν, θμν}. After providing details on the
matching conditions at the star surface under the MGD-
decoupling, in Sect. 3, we implement the MGD-decoupling
following the scheme I. to generate the extended version of
the Schwarzschild solution; finally, we summarise our con-
clusions in Sect. 4.

2 Spherically symmetric stellar distribution

Let us start from the standard Einstein field equations1

Rμν − 1

2
R gμν + � gμν = k2 Tμν, (2.1)

where � is a positive cosmological constant. The energy-
momentum tensor Tμν in Eq. (2.1) is given by

Tμν = T̂μν + θμν, (2.2)

where T̂μν represents the energy-momentum tensor of a per-
fect fluid, and θμν adds anisotropic effects on Tμν . Since the
Einstein tensor is divergence free, the total energy momen-
tum tensor Tμν must satisfy the conservation equation

∇ν T μν = 0. (2.3)

In Schwarzschild-like coordinates, the spherically symmetric
metric reads

ds2 = eν(r) dt2 − eλ(r) dr2 − r2
(

dθ2 + sin2 θ dφ2
)

, (2.4)

where ν = ν(r) and λ = λ(r) are functions of the areal
radius r only, ranging from r = 0 (the star’s centre) to some
r = R > 0 (the star’s surface). The cosmological constant
can be thought to contribute the stress-energy tensor being
responsible for the expansion of the universe, with a non-
zero vacuum energy density and negative pressure satisfying
ρvac = −pvac = �/k2. Explicitly, the field equations read

k2
(
ρ + θ 0

0

)
+ � = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (2.5)

k2
(
−p + θ 1

1

)
+ � = 1

r2 − e−λ

(
1

r2 + ν′

r

)
, (2.6)

1 We use the metric signature (+−−−) and the constant k2 = 8 π GN.
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k2
(
−p + θ 2

2

)
+ �

= 1

4
e−λ

[
−2 ν′′ − ν′2 + λ′ ν′ − 2

ν′ − λ′

r

]
, (2.7)

while the conservation equation, which is a linear combina-
tion of Eqs. (2.5)–(2.7), yields

−p′− ν′
2

(ρ + p)+(θ 1
1 )′− ν′

2

(
θ 0

0 − θ 1
1

)
− 2

r

(
θ 2

2 − θ 1
1

)
= 0,

(2.8)

where f ′ ≡ ∂r f .
By simple inspection of Eqs. (2.5)–(2.7), we can identify

an effective density

ρ̃ = ρ + θ 0
0 , (2.9)

an effective isotropic pressure

p̃r = p − θ 1
1 , (2.10)

and an effective tangential pressure

p̃t = p − θ 2
2 . (2.11)

This clearly illustrate that the source θμν generates an
anisotropy

� ≡ p̃t − p̃r = θ 1
1 − θ 2

2 (2.12)

inside the stellar distribution.
Eqs. (2.5)–(2.7) contain five unknown functions, namely,

three physical variables: the density ρ̃(r), the radial pres-
sure p̃r (r) and the tangential pressure p̃t (r); and two geo-
metric functions: the temporal metric function ν(r) and the
radial metric function λ(r). Therefore these equations form
an indefinite system [53,54] which requires additional infor-
mation to produce any specific solution.

2.1 Gravitational decoupling by MGD

In order to solve the Einstein Eqs. (2.5)–(2.8) we implement
the MGD-decoupling. In this approach, one starts from a
solution for the isotropic fluid and the field equations with
the anisotropic source θμν will take the form of effective
“quasi-Einstein” equations [see Eqs. (2.22)–(2.24) below].

A solution to Eqs. (2.5)–(2.8) with θμν = 0 will be given
by a General Relativity perfect fluid solution with cosmo-
logical constant � and be characterised by the four functions
{ξ, μ, ρ, p} such that the metric reads

ds2 = eξ(r) dt2−eμ(r) dr2−r2
(

dθ2 + sin2 θ dφ2
)

, (2.13)

where

e−μ(r) ≡ 1 − k2

r

∫ r

0
x2 ρ dx = 1 − 2 m(r)

r
(2.14)

is the standard General Relativity expression containing the
Misner-Sharp mass function m = m(r). Next, we turn on
the anisotropic effects by adding the θμν . These effects can
be encoded in the geometric deformation undergone by the
perfect fluid geometry in Eq. (2.13), namely

ξ �→ ν = ξ + α g, (2.15)

e−μ �→ e−λ = e−μ + α f, (2.16)

where g and f are the deformations undergone by the tempo-
ral and radial metric component of the perfect fluid geometry
{ξ, μ}, respectively. Among all possible deformations (2.15)
and (2.16), the so-called minimal geometric deformation is
given by g = 0 and f = f ∗, where f ∗ satisfies a suitable
condition [33,34] in order to minimise the departure from
General Relativity. Only the radial metric component there-
fore changes to

e−μ(r) �→ e−λ(r) = e−μ(r) + α f ∗(r) . (2.17)

The system (2.5)–(2.8) can be decoupled by plugging the
deformation (2.17) into the Einstein equations (2.5)–(2.7).
In fact, the system splits into two sets of equations: (i) one
having the standard Einstein field equations for a perfect
fluid with cosmological constant �, whose metric is given
by Eq. (2.13) with ξ(r) = ν(r),

k2ρ + � = 1

r2 − e−μ

(
1

r2 − μ′

r

)
, (2.18)

k2 (−p) + � = 1

r2 − e−μ

(
1

r2 + ν′

r

)
, (2.19)

k2 (−p) + �

= 1

4
e−μ

[
−2 ν′′ − ν′2 + μ′ ν′ − 2

ν′ − μ′

r

]
, (2.20)

along with the conservation equation (2.3) with θμν = 0,
namely ∇ν T̂ μν = 0, yielding

p′ + ξ ′

2
(ρ + p) = 0, (2.21)

which is a linear combination of Eqs (2.18)–(2.20); and (ii)
one for the source θμν , which reads

k2 θ 0
0 = −α f ∗

r2 − α f ∗′

r
, (2.22)

k2 θ 1
1 = −α f ∗

(
1

r2 + ν′

r

)
, (2.23)

k2 θ 2
2

= −α f ∗

4

(
2ν′′ + ν′2 + 2 ν′

r

)
− α f ∗′

4

(
ν′ + 2

r

)
.

(2.24)
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The conservation equation ∇ν θμν = 0 explicitly reads

(θ 1
1 )′ − ν′

2
(θ 0

0 − θ 1
1 ) − 2

r
(θ 2

2 − θ 1
1 ) = 0, (2.25)

which is a linear combination of Eqs. (2.22)–(2.24). We recall
that, under these conditions, there is no exchange of energy-
momentum between the perfect fluid and the source θμν and
therefore their interaction is purely gravitational.

2.2 Matching conditions at the surface

The interior (0 ≤ r ≤ R) of the self-gravitating system of
radius (r = R) is described by the MGD metric

ds2 = eν−(r) dt2−
[

1 − 2 m̃(r)

r

]−1
dr2−r2

(
dθ2 + sin 2θdφ2

)
,

(2.26)

where the interior mass function is given by

m̃(r) = m(r) − r

2
α f ∗(r), (2.27)

with the Misner-Sharp mass m given in Eq. (2.14) and f ∗
the geometric deformation in Eq. (2.17). On the other hand,
the exterior (r > R) space-time will be described by the
Schwarzschild-de Sitter metric

ds2 =
(

1 − 2M

r
− �

3
r2

)
dt2

− dr2(
1 − 2M

r − �
3 r2

) − r2
(

dθ2 + sin2 θ dφ2
)

.

(2.28)

The metrics in Eqs. (2.26) and (2.28) must satisfy the
Israel-Darmois matching conditions [55] at the star surface
� defined by r = R. In particular, the continuity of the metric
across r = R implies

eν−(R) = 1 − 2M

R
− �

3
R2, (2.29)

and

1 − 2 M

R
+ α f ∗

R = 1 − 2M

R
, (2.30)

where M = m(R) and f ∗
R = f ∗(R) is the minimal geometric

deformation evaluated at the star surface.
Likewise, the extrinsic curvature (or second fundamental

form) of spheres

Kμν = ∇μ rν, (2.31)

where rμ is the unit radial vector normal to a surface of con-
stant r , must be continuous across the sphere �, which can
be written in terms of the Einstein tensor as2

[
Gμν rν

]
�

≡ lim
r→R+

(
Gμν rν

)− lim
r→R−

(
Gμν rν

) = 0, (2.32)

Using Eq. (2.32) and the general Einstein equations (2.1), we
then find

[
(k2 Tμν + � gμν) rν

]
�

= 0, (2.33)

which leads to

[
k2

(
p − θ 1

1

)
− �

]
�

= 0. (2.34)

This matching condition takes the final form

pR − (θ 1
1 )−R = 0, (2.35)

where pR ≡ p(R) and (θ 1
1 )−R ≡ θ 1

1 (r → R−). The condi-
tion (2.35) holds in general for the second fundamental form
associated with the Einstein equations (2.1) and the energy-
momentum (2.2). After decoupling the source θμν and by
using Eq. (2.23) for the interior geometry, Eq. (2.35) can be
written as

p̃R ≡ pR + α
f ∗
R

k2

(
1

R2 + ν′
R

R

)
= 0, (2.36)

where ν′
R ≡ ∂rν

−|r=R . Eqs. (2.29), (2.30) and (2.36) are the
necessary and sufficient conditions for matching the interior
MGD metric (2.26) with the outer Schwarzschild-de Sitter
metric (2.28).

The expression in Eq. (2.36) in particular contains criti-
cal information about the conditions that the self-gravitating
system must fulfil in order to be consistently coupled with
the Schwarzschild-de Sitter geometry (2.28). First of all, the
effective radial pressure p̃ at the surface must vanish, which
is a very well-known result. However, if the geometric defor-
mation f ∗(r < R) is positive, hence weakening the gravita-
tional field, [see Eq. (2.27)], the exterior geometry (2.28) can
only be compatible with a non-vanishing θμν if the perfect
fluid has pR < 0, which may be interpreted as regular matter
with a solid crust [43]. If we want to avoid having a solid-crust
and keep the standard condition pR = 0, we must impose
that the anisostropic effects on the radial pressure pressure
vanish at r = R. For instance, this is achieved if we assume
that (θ 1

1 )−R ∼ pR in Eq. (2.35), which leads to a vanishing
inner deformation f ∗

R = 0 [see further Eq. (3.13)].

2 For more details see for instance Ref. [56].
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3 Anisotropic Schwarzschild-de Sitter interior solution

Let us recall that the interior Schwarzschild-de Sitter solution
for the system (2.18)–(2.21) represents a stellar system of
radius R formed by an incompressible perfect fluid of total
mass M and is given by [6]

eν(r) =
⎡
⎣A − B

√
1 − r2

C2

⎤
⎦

2

(3.1)

e−μ(r) = 1 − r2

C2 (3.2)

k2 ρ = 3

C2 − � (3.3)

k2 p(r) =
A

(
1 − � C2

) − B
(
3 − � C2

) √
1 − r2

C2

C2

(
B

√
1 − r2

C2 − A

) . (3.4)

The constants A, B and C can be expressed in terms of the
physical parameters M , R and � by means of the match-
ing conditions with the outer Schwarzschild-de Sitter vac-
uum (2.28). In fact, Eqs. (2.29), (2.30) and (2.36) with α = 0
yield M = M and

A = B
3 − � C2

1 − � C2

√
1 − R2

C2 (3.5)

B = 3 M − � R3

6 M + � R3 (3.6)

R2

C2 = 2 M

R
+ � R2

3
. (3.7)

We see that the pressure (3.4) becomes singular in the centre
r = 0 when

A = B. (3.8)

We can avoid the singularity, while we keep p(0) > 0, when
the compactness satisfies

M

R
<

1

9

(
2 +

√
4 − 3 � R2

)
, (3.9)

which is the Buchdahl inequality with cosmological constant
(for the details, see for instance, Ref. [57]). For simplicity,
we just show the final expressions for the case � = 03, for
which we have

eν(r) = 1

4

⎛
⎝

√
1 − 2 M r2

R3 − 3

√
1 − 2 M

R

⎞
⎠

2

(3.10)

e−μ(r) = 1 − 2 M r2

R3 (3.11)

3 From the phenomenological point of view, the cosmological constant
� ∼ 10−52 appears irrelevantly small for any astrophysical systems.

k2 p(r) =
6 M

(√
R3 − 2 M r2 − R

√
R − 2 M

)

R3
(

3 R
√

R − 2 M − √
R3 − 2 M r2

) , (3.12)

from which we easily see that pR = 0, as required.
In order to generate the anisotropic version of the

Eqs. (3.1)–(3.4), we need to determinate the anisotropic
source θμν , whose field equations are given by the expres-
sions (2.22)–(2.24). This system has four unknowns and we
therefore need to give some physically motivated prescrip-
tions. Since we further want to avoid having a solid crust at
the surface, we require the radial pressure satisfies the “mimic
constraint” defined by

θ 1
1 (r) = α p(r), (3.13)

which, according to Eqs. (2.19) and (2.23), yields

f ∗(r) = −e−μ(r) + 1 − � r2

1 + r ν′(r)
. (3.14)

We remark that the constraint (3.13) ensures that the effective
radial pressure vanishes at r = R, since p̃(R) = p(R) = 0
from Eq. (3.4).

Using the expression (3.14) in the MGD deforma-
tion (2.17), the radial metric component becomes

e−λ(r) = (1 − α) e−μ(r) + α
1 − � r2

1 + r ν′(r)

=
(

1 − r2

C2

)

+α
r2

C2

⎡
⎢⎣ A (1 − � C2) − B (3 − � C2)

√
1 − r2

C2

A
√

1 − r2

C2 − B
(

1 − 3 r2

C2

)
⎤
⎥⎦

√
1 − r2

C2 , (3.15)

where the minimal geometric deformation is given by

f ∗(r) = r2

C2

⎡
⎢⎣ A (1 − � C2) − B (3 − � C2)

√
1 − r2

C2

A
√

1 − r2

C2 − B
(

1 − 3 r2

C2

)
⎤
⎥⎦

√
1 − r2

C2 . (3.16)

By using the metric functions ν(r) and λ(r) in (3.1)
and (3.15) in the field equations (2.5)–(2.7), we find the effec-
tive density

k2 ρ̃(r) = k2 ρ − α

(
f ∗(r)

r2 + f ∗′
(r)

r

)
, (3.17)
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the effective radial pressure

k2 p̃r (r) = (1 − α) k2 p(r), (3.18)

and the effective tangential pressure

p̃t (r) = p̃r (r) + �(α, r), (3.19)

where

�(α, r) = α
A

(
1 − r2

C2

)3/2 − B
(

1 − 2r2

C2 + 2r4

C4

)

k2 r2
(

1 − r2

C2

)3/2
(

B
√

1 − r2

C2 − A

) f ∗(r)

+α
A

√
1 − r2

C2 − B
(

1 − 2r2

C2

)

2 k2 r

[
A
√

1 − r2

C2 − B
(

1 − r2

C2

)] f ∗′
(r), (3.20)

and is rather cumbersome to display explicitly. The expres-
sions (3.1), (3.15), (3.17)-(3.19) represent an exact solution
for the anisotropic system (2.5)-(2.7).

We can next match the interior metric (2.4) with metric
functions (3.1) and (3.15) with the exterior Schwarzschild-
de Sitter vacuum solution (2.28). We can see that, for a
given total mass M and radius R, we have four unknown
parameters, namely A, B and C from the interior solution in
Eqs. (3.1) and (3.15), and the massM in Eq. (2.28). However,
the mass M is related to the constant C and the radius R by
the definition (2.14). We therefore have only three unknown
constants to be determined by the three conditions (2.29),
(2.30) and (2.35) at the star surface. The continuity of the
metric given by Eqs. (2.29) and (2.30) leads to

⎛
⎝A − B

√
1 − R2

C2

⎞
⎠

2

= 1 − 2M

R
− �

3
R2, (3.21)

and

(
1 − R2

C2

)
+ α f ∗

R = 1 − 2M

R
− �

3
R2, (3.22)

with f ∗
R = f ∗(R) can be obtained from Eq. (3.16). Continu-

ity of the second fundamental form in Eq. (2.35) under the
constraint (3.13) now holds provided

pR = 0, (3.23)

which is ensured by the same expression for A shown in
Eq. (3.5). This result is in agreement with our prescription to
avoid having a solid crust and also ensures that

f ∗
R = 0 (3.24)

as we can verified from Eq. (3.16). Therefore the condi-
tion (3.22) leads to

M = M, (3.25)

where Eq. (3.3) has been used. The result in Eq. (3.25) is in
agreement with the expressions in (2.30) and (3.24) and tells
us that the the constant C is also related to M , R and � by
the same expression given in Eq. (3.7). We remark that the
condition (3.24) shows that, despite the anisotropic effects,
the total mass of the stellar distribution remains unchanged.
Finally, by using Eqs. (3.5) and (3.25) in the matching condi-
tion (3.21), we obtain the same expression for the constant B
in Eq. (3.6). We therefore conclude that the relations between
the constants A, B and C in terms of M , R and � are not
affected by the anisotropy.

Given a stellar distribution of mass M and radius R in
a background with cosmological constant �, we can now
analyse the anisotropic effects on physical variables for dif-
ferent values of α. The first thing to notice is that the effec-
tive radial pressure p̃r remains proportional to the isotropic
expression (3.12), and we therefore find the usual Buchdahl
limit for the star compactness [58] with cosmological con-
stant in Eq. (3.9). This result is further supported by the fact
that both the effective density ρ̃ and the tangential pressure
p̃ do not show any singularity for 0 ≤ r ≤ R when Eq. (3.9)
holds. Moreover, the effective density is not uniform and ρ̃′
turns out to be proportional to −α, which implies that the
effective density decreases (increases) towards the surface
for α > 0 (respectively, α < 0). In the following we shall
therefore only consider cases with α > 0 so that the effective
density decreases from the centre outwards.

Since the explicit expressions are rather cumbersome, Fig-
ure 1 shows the effective radial and tangential pressures in
Eqs. (3.18) and (3.19) for two values of α > 0 (compared to
the standard Schwarzschild solution α = 0). We see that the
anisotropy decreases the effective radial pressures p̃r for all
values of 0 ≤ r ≤ R. The effective tangential pressure p̃t is
always smaller than p̃r in the centre of the star, but decreases
more slowly, and eventually becomes larger than p̃r , near
the surface. Moreover, the tangential pressure at the surface
p̃t (R) > 0, whereas p̃r (R) = pR = 0 by construction. On
the other hand, we see from Figure 2 that the effective den-
sity ρ̃ in Eq. (3.17) also shows a similar behaviour to p̃t , and
the anisotropy � increases steadily from the centre (where
� = 0) towards the surface. We want to remark that both the
dominant energy condition,

ρ̃ ≥ | p̃r |, ρ̃ ≥ | p̃t | , (3.26)

and strong energy condition

ρ̃ + p̃r + 2 p̃t ≥ 0, ρ̃ + p̃r ≥ 0, ρ̃ + p̃t ≥ 0 (3.27)
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Fig. 1 Effective radial pressure p̃r (r) [10−4] and effective tangential
pressure p̃t (r) [10−4] for a stellar system with compactness M/R = 0.2
compared to the standard Schwarzschild case α = 0 with pr = pt .

Radial coordinates are in units of M (r = 5 = R). The cosmological
constant � ∼ 10−52 is too small to be relevant

Fig. 2 Effective density ρ̃(r) [10−3] and anisotropy �(α, r) [10−4] for a stellar system with compactness M/R = 0.2. Radial coordinates are in
units of M (r = 5 = R). The cosmological constant � ∼ 10−52 is too small to be relevant

Fig. 3 Radial velocity (v2
r ) and tangential velocity (v2

t ) for a stellar system with compactness M/R = 0.2. Radial coordinates are in units of M
(r = 5 = R). The cosmological constant � ∼ 10−52 is too small to be relevant
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are satisfied [59]. Finally, it is worth to examine the causal
conditions,

v2
r (r) = d p̃r (r, α)

dρ̃(r, α)
≤ 1 (3.28)

v2
t (r) = d p̃t (r, α)

dρ̃(r, α)
≤ 1, (3.29)

where vr and vt are the radial and tangential sound speed,
respectively, displayed in Figure 3. In both cases we observe
that the speed decreases with the anisotropy and remains sub-
luminal. We also notice that both speeds increase from the
center to the stellar surface, which might be interpreted as
a signal of instability. This may be true in the case of per-
fect fluids, however, it is not necessarily so when anisotropic
effects are presents, as the stability conditions become much
more involved [60,61].

4 Conclusions

By using the MGD-decoupling approach, we found the
anisotropic and non-uniform version of the Schwarzschild-
de Sitter interior solution with cosmological constant given
by the exact and analytical expressions displayed in Eqs. (3.1),
(3.15), and (3.17)–(3.19). Contrary to the well known
Schwarzchild interior solution, this new system satisfies all
of the physical requirement, namely, it is regular at the ori-
gin, pressure and density are positive everywhere (at least
for α > 0), mass and radius are well defined when the
Buchdahl limit (3.9) holds, density and pressure decrease
monotonically from the centre outwards (for α > 0), the
dominant energy condition is satisfied, and the sound speeds
are subluminal. Regarding this last requirement, our inte-
rior anisotropic solution is causal, showing thus that the
anisotropic effects produce a more realistic stellar structure.

The matching conditions at the stellar surface were stud-
ied in detail for an outer vacuum Schwarzschild-de Siter
space-time. In particular, the continuity of the second fun-
damental form in Eq. (2.36) was shown to yield the impor-
tant result that the effective radial pressure p̃r can be made
to vanish at the surface by a suitable choice (3.13) of the
anisotropic source. The effective pressure (2.10) contains
both the isotropic pressure of the undeformed Schwarzschild
solution and the anisotropic effects produces by the inner
geometric deformation f ∗ induced by the generic energy-
momentum θμν , which could also represent a specific matter
source. If the geometric deformation f ∗ is positive and there-
fore weakens the gravitational field [see Eq. (2.27)], an outer
Schwarzschild-de Sitter vacuum could only be supported if
the isotropic pR < 0 at the star surface, which can be inter-
preted as regular matter with a solid crust [43]. However,
we could keep the standard condition pR = 0 by imposing
that the anisostropic effects on the radial effective pressure

be proportional to p(r), as shown in Eq. (3.13). This leads
to a vanishing inner deformation f ∗

R = 0 and therefore the
total mass M of the standard Schwarzschild interior solution
is not affected by the anisotropy, as we can see in the condi-
tion (2.30). A direct consequence of this is that the surface
redshift

z =
[

1 − 2 M

R

]−1/2

− 1 (4.1)

remain equal for both solutions, namely, the standard
Schwarzschild solution and its new causal version.

In this paper we included a cosmological constant � for
generality. However, since the present value of � would
introduce corrections of order 10−52, its effects could be
significant mainly at very large scales, with no sizeable con-
sequences on self-gravitating stellar objects. In particular,
it was shown [8] that � plays a significant role for very
extended polytropic spheres that could describe galactic dark
matter halos (see also Ref. [62] where the effects of � in
several astrophysical situations is summarised). On the other
hand, a large effective cosmological constant could be related
to phase transitions in the early universe, and that could influ-
ence compact objects created during this period, like primor-
dial black holes. For example, the electroweak phase transi-
tion at Tew ∼ 100 GeV corresponds to �ew ∼ 0.028 cm−2,
while for the quark confinement at Tqc ∼ 100 MeV one
would have �qc ∼ 2.8 · 10−10 cm−2 [63].

We conclude by mentioning that, for the study of non-
primordial compact configurations, we can safely ignore
the cosmological constant without jeopardising our causal
solution. This yields even simpler expressions which could be
exploited more easily to investigate some interesting cases,
such as the gravastar limit and the extended Kerr source [11],
or even a possible generalisation including a nontrivial time
dependence, as those in the exact time-dependent version
found in Ref. [13], but without the space-time singularities
present therein.
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