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ABSTRACT

Empirical orthogonal function (EOF) analyses (rotated or not) are widely used in climate research. In recent
years there have been several studies in which EOF analyses were used to highlight potential physical mechanisms
associated with climate variability. For example, several SST modes were identified such as the ‘‘Tropical Atlantic
Dipole,’’ the ‘‘Tropical Indian Ocean Dipole,’’ and different SLP modes in the Northern Hemisphere winter. In
this note it is emphasized that caution should be used when trying to interpret these statistically derived modes
and their significance. Indeed, from a synthetic example it is shown that patterns derived from EOF analyses
can be misleading at times and associated with very little climate physics.

1. Introduction

In recent years the EOF technique has been largely
used to identify potential physical modes. The problems
that may arise by using EOF or rotated EOFs is the
subject of this note.

In North et al. (1982) and Richman (1986) the problem
of statistical uncertainty in the estimation of the EOFs is
discussed. Here we would like to focus on problems of
the EOF technique that are not due to statistical uncer-
tainties and more inherent to the method itself.

In order to derive the leading modes of variability in
a multivariate dataset, the EOF and rotated EOF anal-
yses work with some basic, subjective, but well-moti-
vated, assumptions. In the standard EOF analysis it is
assumed that the modes are orthogonal in space and
time, and that the first mode is the mode that maximizes
the explained variance over the total dataset. The VAR-
IMAX rotation of EOFs finds modes that are more lo-
calized in the space than the standard EOF modes.

It is often claimed that the VARIMAX method is more
subjective than the EOF analysis itself because there are
more free parameters that have to be defined. However,
within the context of this study the VARIMAX method
is as objective as the EOF analysis. The only difference
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between the two statistical analyses, as defined in this note,
is the criterion with which we chose our spatial patterns.
An overview of the different ways in rotating EOFs or
defining the VARIMAX rotation can be found in Kaiser
(1958), Richman (1986), and Mestas Nuñez (2000).

Although the assumptions made by the EOF and
VARIMAX methods seem to be well motivated, the
discussion of the examples presented below will show
that these methods may lead to misinterpretations of the
variability modes.

This paper is organized as follows. In the next section
we shall present three examples of observed climate
variability in which the interpretation by EOF, VARI-
MAX, and regression analyses leads to conflicting re-
sults in recent publications. Section 3 a simple low-
dimensional example of multivariate data analysis is
described that has, by construction, no statistical un-
certainties in the determination of the EOF and VAR-
IMAX patterns. In section 4, the main focus of this note,
we shall then discuss the problems in interpreting the
EOF, VARIMAX, and regression patterns in different
examples and in general. We shall conclude this note
by highlighting some caveats when interpreting the re-
sults of EOF or rotated EOF analyses.

2. Examples of EOF analyses
In the following text, the dominant modes of vari-

ability in three different observed datasets are shown as
derived by EOF, VARIMAX, and regression analyses.
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FIG. 1. The EOFs, VARIMAX patterns, and regressions of box averaged monthly mean SST in the tropical Atlantic Ocean. The
amplitudes are in kelvins.

Unless otherwise noted, all patterns are derived from
unnormalized data (the amplitudes are in units of the
analyzed quantity), and each pattern is associated with
a time series of unit standard deviation (normalized time
series). We shall call the spatial pattern of the EOF or
VARIMAX mode the pattern and refer to the normalized
time series of the modes as the principal component
(PC).

For all datasets the VARIMAX representation has
been calculated by the rotation of the first 10 EOF pat-
terns. We used the ‘‘raw’’ VARIMAX criterion instead
of the ‘‘normal’’ criterion (see Kaiser 1958), in order
to be consistent with the EOF analysis, in which we did
not normalize the data (as it would be necessary to
obtain the normal VARIMAX criterion). However, we
shall discuss the differences between the two VARI-
MAX criteria in section 4 when we discuss the differ-
ences between covariance- and correlation-matrix-based
EOF analysis.

We would like to discuss here only the patterns ob-
tained from the different analyses. We do not intend to

present new evidence about the variability in the three
domains. Since statistical uncertainties in the estimation
of the EOF patterns do not matter in the following dis-
cussion, we assume that all spatial patterns are well
defined.

For the analyses of the SST we have used monthly
mean SST anomalies based on the dataset of Reynolds
and Smith (1994), which covers the period from 1958
to 1998. For the SLP analysis we have taken the monthly
mean anomalies from November to April from the Na-
tional Centers for Environmental Prediction (NCEP) re-
analysis dataset covering the period from 1958 to 1997
(Kalnay et al. 1996).

a. SST in the tropical Atlantic

The first two EOFs and VARIMAX patterns of the
tropical Atlantic SST anomalies are shown in Fig. 1.
The EOF-1 pattern is more or less uniform over the
entire domain, while the EOF-2 is an interhemispheric
dipole pattern. In contrast to the two EOF patterns, the
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FIG. 2. The EOFs, VARIMAX patterns, and regressions of box averaged monthly mean SST in the tropical Indian
Ocean. The amplitudes are in kelvins.

two leading VARIMAX patterns are more localized,
while each of the two leading VARIMAX pattern covers
just one hemisphere and the two patterns do not overlap
significantly. Two regression patterns between the box
averaged SST of the centers of the dipole pattern and
the SST field are shown additionally for comparison in
Fig. 1.

The interhemispheric dipole pattern in the EOF-2 has
received a lot of attention in terms of whether this pat-
tern represents a potential physical mode of SST vari-
ability on decadal timescales (Weare 1977; Servain
1991; Nobre and Shukla 1996; Chang et al. 1997; Tourre
et al. 1999), or is only an artifact of the EOF analysis
(Houghton and Tourre 1992; Enfield et al. 1999; Dom-
menget and Latif 2000). Dommenget and Latif (2000)
basically argue on the basis of coupled model results
and observations that the dipole in the tropical Atlantic
does not represent a physical mode.

b. SST in the tropical Indian Ocean

A similar analysis is now repeated for the tropical
Indian Ocean. The first two EOF and VARIMAX pat-
terns and two regression patterns between box averaged
SST and the SST field are shown in Fig. 2.

Again, the EOF-2 of the SST variability is charac-
terized by a dipole. However, there are some significant
differences compared to the tropical Atlantic. First, the
EOF-1 of the Indian Ocean explains much more vari-
ance than the EOF-1 of the tropical Atlantic, and second,
the EOF-1 explains also much more variance than the

EOF-2 of the tropical Indian Ocean. Furthermore, the
VARIMAX patterns do not pick up the two centers of
EOF-2. The eastern center of the dipole does not show
up in any of the four most dominant VARIMAX patterns
(patterns 3 and 4 are not shown).

The first two EOF patterns have been interpreted in
terms of potential physical processes by Saji et al.
(1999). They point out that the EOF-1 has a strong
correlation with the El Niño in the tropical Pacific and
can therefore be interpreted as the Indian Ocean re-
sponse to El Niño. A response of the Indian Ocean to
ENSO is well known and has also been pointed out by
others (e.g., Venzke et al. 2000; Reason et al. 2000).
Since the EOF-2 has an orthogonal time evolution to
EOF-1, they argue that the EOF-2 can be interpreted as
an El Niño–independent mode of variability, which is
unique to the tropical Indian Ocean. However, the VAR-
IMAX representation and the regressions provide no
indication for the existence of a dipole mode, as sug-
gested by EOF-2.

c. SLP variability in the Northern Hemisphere

We shall now analyze the Northern Hemisphere win-
ter SLP variability. The following example is different
in many aspects compared to the ones described above.
In contrast to SST anomalies, SLP anomalies in one
region are usually compensated by SLP anomalies of
opposite sign in a nearby region at the same time. There-
fore, the patterns of SLP have, in general, a dipole or
multipole structure.
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Furthermore, the standard deviation of the SLP is
very inhomogeneous, with much stronger variance in
higher latitudes compared to lower latitudes. In datasets
with inhomogeneous standard deviations, the covari-
ance-matrix-based EOF can be very different from a
correlation-matrix-based EOF analysis. It is therefore
instructive to additionally calculate the correlation-ma-
trix-based EOF-analysis.

In Fig. 3, the first two covariance-matrix-based EOFs,
correlation-matrix-based EOFs, VARIMAX modes, and
two regression patterns are shown. Again, the different
methods of representing the SLP variability in the
Northern Hemisphere give quite different results with
respect to the teleconnections. This may be one of the
reasons why there is a scientific debate about which of
these patterns best describe the dominant modes of SLP
variability. For an overview of this controversy, see Am-
baum et al. 2001 (see also Barnston and Livezey 1987;
Thompson and Wallace 2000; Wallace 2000).

3. A simple low-dimensional example

A simple three-dimensional example might help to
understand the difficulty in interpreting the patterns of
the former examples. The advantage of the following
artificial example compared to the ones described above
is that we discuss a low-dimensional problem that is
well defined and in which statistical uncertainties do not
exist.

We assume that our domain can be divided into three
regions. We then define three different modes of vari-
ability, which are shown in the upper panel of Fig. 4.
We have one mode that acts only in the left region, one
only in the right region, and one that covers all three
regions. The explained variance of each mode is shown
in the titles of each plot in Fig. 4. We assume that the
time evolutions of theses modes are uncorrelated and
that the standard deviation of all time series of these
modes amount to unity.

The structures of the physical modes are motivated
by the analyses of the SST in the tropical Atlantic and
Indian Oceans. The three modes may therefore yield
some further insight into the modal structure in these
regions.

For the SLP in the Northern Hemisphere, mode-1
could be interpreted as the North Atlantic oscillation
(NAO) of the Atlantic–European region (similar to
VARIMAX-1 in Fig. 3), mode-2 as the Pacific–North
America (PNA) pattern (similar to VARIMAX-2 in Fig.
3), and the mode-3 would be an annular mode (similar
to EOF-1 in Fig. 3, but much weaker and more zonal).
The three regions of the simple example would then be
interpreted as the Atlantic–European region (the left re-
gion in Fig. 4), the Pacific domain (the right region),
and the rest of the Northern Hemisphere (the central
region).

However, to keep the problem as simple as possible
we represent each region by one point only. The values

at these points are printed on top of the mode (see Fig.
4). We can therefore interpret each physical mode as a
three-dimensional vector, where each component of this
vector represents the variability of one region. The set
of the three vectors defines a matrix M. The actually
observed variability in the three regions defines a vector
Y that is related to M by

Y 5 MP (1)

T:P 5 [P (t), P (t), P (t)] . (2)1 2 3

The coordinates Pi of vector P describe the time evo-
lutions (PCs) of the basis modes. By construction is the
variance–covariance matrix S PP 5 I, where I is the
identity matrix.

The construction of our example allows us to cal-
culate the covariance matrix exactly because our ex-
ample has been constructed such that the characteristics
of the physical modes are known exactly. Therefore, all
structures that appear in the following statistical analysis
are well defined.

The square root of the covariance matrix yields the
regressions of one coordinate of the vector space (one
region) with all coordinates (regions) of the vector
space. The regression patterns and values are shown in
the lower panel of Fig. 4.

Based on the covariance matrix we can also calculate
the EOF vectors exactly. We therefore do not have to
consider the sampling error problem, which can lead to
unstable estimations of the EOF vectors (North et al.
1982). The EOFs are also shown in Fig. 4. The EOF
vectors are not degenerated, because all eigenvalues of
the covariance matrix are different (see explained var-
iances of the EOFs in Fig. 4).

The set of the three EOF vectors define a matrix Q.
Similar to Eq. (1) the observed vector Y is related to
Q by

Y 5 QP .Q (3)

The vector PQ describes the time evolutions (PCs) of
the EOFs. Using Eqs. (1) and (3) we can show that the
vector PQ can be presented by a linear combination of
the vector P:

QP 5 MP (4)Q

TT⇒ Q QP 5 Q MP (5)Q

with L 5 QTQ 5 the diagonal matrix of the eigenvalues
of the EOFs we find

T⇒ LP 5 Q MP (6)Q

21 T⇒ P 5 L Q MP (7)Q

21 T:A 5 L Q M. (8)

Thus the matrix A describes the linear combination
of the vector P, which constructs the vector PQ.

The coefficients of A are listed in Table 1. A row in
Table 1 describes the relative influence of the basis
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FIG. 3. The leading EOFs, VARIMAX patterns, and regressions of box averaged monthly mean winter time (Nov–
Apr) SLP in the Northern Hemisphere. The amplitudes are in pascals.
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FIG. 4. The physical modes (first panel from top), EOF (second panel from top), VARIMAX (third panel from top)
pattern, and the regressions patterns of each coordinate with all coordinates (bottom panel) of the simple low-dimensional
example are shown. The values plotted on top of the patterns represent the associated vectors and are identical to the
amplitudes of the patterns in the respective region. The amplitudes are in arbitrary units.

modes onto a single EOF mode. For example, it can
easily be seen (in Fig. 4 and corresponding in Table 1)
that the EOF-2 includes the time evolutions of mode-2
with positive loadings and mode-1 with slightly smaller
negative values (Table 1). Please note that the EOF-2
represents a pattern that does not really exist in our
simple example, so that it is completely artificial.

Usually the VARIMAX representation is calculated
by using the EOF patterns. Here we can directly cal-
culate the VARIMAX representation from our basis vec-
tors because the basis vectors are already given with
orthogonal time evolutions, which is usually not the case
in climatological datasets. Therefore, the VARIMAX
vectors are well defined. The VARIMAX patterns and
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TABLE 1. The matrix A by which the PCs of the EOF vectors are
constructed.

Principal
component Mode-1 Mode-2 Mode-3

PC-1
PC-2
PC-3

0.74
20.56

0.37

0.40
0.81
0.43

0.54
0.6

20.82

TABLE 2. The matrix A by which the PCs of the VARIMAX
vectors are constructed.

Principal
component Mode-1 Mode-2 Mode-3

VPC-1
VPC-2
VPC-3

0.94
20.07

0.33

20.06
0.93
0.36

0.33
0.35

20.87

their explained variances are also shown in Fig. 4, and
the corresponding transformation matrix A for the PCs
of the VARIMAX vectors are listed in Table 2.

Our simple three-dimensional example has an inho-
mogeneous distribution of the local standard deviation,
with larger variability in the left and right region and
less variability in the center region. It is therefore similar
to the inhomogeneous standard deviation of Northern
Hemisphere winter SLP variability.

In datasets with inhomogeneous standard deviations,
the covariance-matrix-based analysis can be very dif-
ferent from a correlation-matrix-based analysis. We
have therefore calculated the correlation-matrix-based
EOFs and VARIMAX modes, and correlations between
the different regions (Fig. 5). The correlation-matrix-
based VARIMAX analysis is equivalent to the normal
VARIMAX as stated in Kaiser (1958).

The transformation matrix A for the PCs of the cor-
relation-matrix-based EOFs and VARIMAX vectors are
listed in Tables 3 and 4.

4. Discussion

We used three different statistical methods (EOF,
VARIMAX, and regression analysis) to identify the dif-
ferent variability modes in different multivariate data-
sets.

In the following discussion we compare the results
from the simple low-dimensional example with those
from the other three examples using observed data. We
do not consider statistical uncertainties because the
problems due to statistical uncertainties in EOF analysis
have already been discussed elsewhere (e.g., North et
al. 1982; Richman 1986). Furthermore, the points that
we make here are not related to statistical uncertainties.

Although the discussion will be mostly focused on
the differences in the spatial patterns, one has to take
into account that each pattern is related to a specific
time series. Patterns that do show large differences in
the spatial structures will, in general, also have large
differences in the corresponding time series.

Additionally, we like to mention that the whole dis-
cussion is focused on standing modes of variability. Sta-
tistical analysis of propagating signals is an entirely
different issue and cannot be discussed within this
framework. For propagating signals other statistical
methods such as principal oscillating patterns (POPs),
extended or complex EOFs may be used (e.g., Hassel-
mann 1988; von Storch et al. 1990).

In the simple low-dimensional example we consider
three variability modes. The three modes can be inter-
preted as the ‘‘real physical modes’’ of the domain.
From a mathematical point of view all representations
(e.g., EOF, VARIMAX) of the simple low-dimensional
example are equally valid, but from a physical point of
view we would like to find the representation, which is
most clearly pointing toward the real physical modes of
the problem.

We constructed the simple low-dimensional example
by two local and spatially orthogonal modes, which
should represent some simple internal modes (see Fig.
4). The third mode in this example represents a do-
mainwide mode, which may be regarded, for instance,
as the response of the domain to some kind of external
influence. The third mode is not orthogonal in space
with the other two, which will be important in the fol-
lowing discussion. By construction the simple low-di-
mensional example does not contain any statistical un-
certainties, which allows us to determine the EOF and
VARIMAX patterns exactly.

Although the mode-3 is the weakest one in the simple
low-dimensional example, the EOF-1 is very similar to
it (see Fig. 4). Despite the fact that it captures some
features of the two other basis modes, it may be inter-
preted as the domain response to some kind of external
influence, similar to how Saji et al. (1999) have inter-
preted the EOF-1 of the tropical Indian Ocean. Although
the EOF-1 in the simple low-dimensional example is
very similar to the mode-3, the PC-1 is a superposition
of all three basis modes (see Table 1).

In the tropical Indian and Atlantic Ocean SSTs this
kind of weak external influence may be the ENSO re-
sponse or a greenhouse warming trend, as expressed by
the leading EOFs (see Figs. 1 and 2). In the Northern
Hemisphere SLP such an external influence might man-
ifest itself as an annular mode such as the EOF-1 of
Northern Hemisphere SLP (see Fig. 3).

On the other hand, we would like to clarify that the
EOF-1 does not need to be a superposition of many
modes. If we would have chosen the mode-3 as the most
dominant mode in our simple example, then the patterns
of the EOF and VARIMAX analyses would not look
much different compared to the ones shown in Fig. 4,
but the PC-1 would clearly be dominated by the mode-
3. It is, for example, well known that the EOF-1 of the
tropical Pacific SST is really representing the El Niño
mode.

The orthogonality constraint in space forces the EOF-
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FIG. 5. Same as in Fig. 4, but all analysis are based on the correlation matrix and the values are in terms of
correlation.

2 of the simple low-dimensional example to be a do-
mainwide dipole, although the two centers of the dipole
are not anticorrelated by construction (see Fig. 4). It can
therefore be concluded that a domain that has an EOF-
1 pattern with a shape of a domainwide monopole must
have a dipole in the EOF-2. The dipole, however, is
totally an artifact of the orthogonality constraint.

The EOF-3 and VARIMAX-3 patterns in Fig. 4 are

interesting because they indicate a kind of central mode
that does not really exist. Interestingly, the time evo-
lution of this mode is a superposition of all three basis
modes. This leads to the fact that the PC-3 includes
variability from the basis mode-1 and mode-2 that ac-
tually are not influencing this region at all (see Tables
1 and 2).

By construction the EOF analysis maximizes the ex-
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TABLE 3. The matrix A by which the PCs of the correlation-
matrix-based EOFs vectors are constructed.

Principal
component Mode-1 Mode-2 Mode-3

PC-1
PC-2
PC-3

0.38
0.75
0.55

0.39
20.66

0.64

0.84
20.03
20.54

TABLE 4. The matrix A by which the PCs of the correlation-
matrix-based (normal) VARIMAX vectors are constructed.

Principal
component Mode-1 Mode-2 Mode-3

VPC-1
VPC-2
VPC-3

0.98
0.00

20.19

20.04
0.98

20.21

0.19
0.21
0.96

plained variance in the leading EOFs. This will gen-
erally lead to the fact that only a few EOF patterns are
needed to explain a large amount of variability. In the
artificial example the two leading EOFs explain more
than 95% of the total variance (see Fig. 4). However,
our artificial example has three modes. This indicates
that the EOF analysis will, in general, underestimate the
complexity of the problem. This is also indicated in the
tropical Indian Ocean SST analysis in which the two
leading EOFs explain much more total variance than
the two leading VARIMAX patterns (see Fig. 2).

Sometimes maps of explained local variances are
shown in order to highlight certain regions in which a
relatively high amount of variance is explained, indi-
cating that these regions should be analyzed in greater
detail. This approach will generally favor the VARI-
MAX method because VARIMAX optimizes the sim-
plicity and therefore produces local patterns. Although,
the VARIMAX representation is often a very instructive
representation of the data, it may often fail to find global
modes, such as the mode-3, due to the optimization of
the simplicity that favors localized modes.

In Fig. 5, we have repeated the analysis of our simple
example but with correlation-matrix-based EOFs and
VARIMAX analysis, and by computing the correlations
between the different regions. The patterns are presented
in terms of correlation values. These representations
look quite different from the covariance-matrix-based
analyses. Here, the VARIMAX analysis and the cor-
relations are in very good agreement with the original
modes, but the EOF patterns are again very different
from the original modes.

This example and the example of the SLP variability
in the Northern Hemisphere (see Fig. 3) may indicate
that correlation-matrix-based analyses are more instruc-
tive than covariance-matrix-based analyses. However,
we believe that this cannot be generalized. Whether cor-
relation- or a covariance-matrix-based analysis gives a
better representation of the ‘‘physical modes’’ depends
strongly on the spatial structure of the physical modes.
Imagine, for instance, that the Pacific and the Atlantic
pole in the covariance-matrix-based EOF-1 in Fig. 3
would have the same spatial structure, but the Pacific
pole would have a larger amplitude than the Atlantic
pole. In this case a correlation-matrix-based analysis
would not be able to focus on one of the poles, as in
Fig. 3, because the larger amplitude of the Pacific pole
is not known to the correlation matrix. In this case the
covariance-matrix-based analyses would be a better rep-

resentation, and the EOF-1 would be focused on the
stronger Pacific pole.

In the artificial example the regression patterns seem
to be most instructive in representing the dominant
modes of variability. However, the disadvantages of the
regression analysis is that the choice of the index region
is highly subjective and it is much easier to choose an
index that is not instructive at all than to choose an
adequate index. For the SLP in the Northern Hemi-
sphere, for instance, we could have chosen an index
region over the North Pole, and the regression would
look very much like the covariance-matrix-based EOF-
1 (the regression pattern is not shown, but see Fig. 3
for the EOF-1). Thus, the disadvantage of the regression
analysis is its subjectivity so that one always needs to
argue why a certain index has been chosen.

Often regression indices are motivated by EOF anal-
ysis (e.g., the tropical Atlantic or Indian Ocean dipole
indices), which seem to make the regression indices
more objective. However, one has to consider that these
indices are as limited in the interpretations as the EOF
patterns themselves from which these indices are de-
rived.

In our simple example both covariance-matrix-based
EOF and VARIMAX analysis some-how fail to ade-
quately represent the weak global mode (mode-3) and
one can imagine that in many practical problems the
correlation-matrix-based EOF and VARIMAX analysis
will also fail to identify the weak global mode. It may
therefore be a good approach to eliminate the weak
global mode prior to the EOF analysis.

However, there is no simple way to determine the
pattern and time series of such a weak global because
one cannot derive these structures by analyzing the do-
main itself. This would again lead to a superposition of
the local and weak global modes into one mode, as in
the EOF-1 in Figs. 4 and 5. The structure of the weak
global mode has to be determined by some additional
knowledge about external influences such as global
warming or ENSO.

5. Conclusions

We have shown that EOF and rotated EOF analyses
have problems in identifying the dominant centers of
action or the teleconnections between these centers of
action in multivariate datasets. We therefore have to be
very careful in interpreting the EOF or rotated EOF
modes as potential physical modes.
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The problems in interpreting the patterns derived
from EOF and VARIMAX analyses arise from the basic
assumptions that are made by these statistical methods
that are not identical to the assumptions that we make
to derive the so-called physical modes of the problem.
The EOF analysis always represents modes of vari-
ability that are orthogonal in time and space. The con-
straint of the orthogonality in space is often not con-
sistent with the real nature of the problem, as in the
simple example, in which the basis modes are not or-
thogonal in space (see Fig. 4). The VARIMAX analysis
is looking for localized modes, which is also not ade-
quate for our simple example because the mode-3 is
highly nonlocal.

A good strategy for statistical analysis of climate data
is to look at the data with different statistical tools, such
as regressions, VARIMAX, or EOF analysis, and de-
velop a hypothesis for the potential physical modes that
is consistent with all representations of the data, instead
of developing a hypothesis for the potential physical
modes based on only one representation, which is often
in contradiction with other representations.

We would like to conclude our discussion with the
following caveats for the interpretation of the results of
the EOF or VARIMAX methods.

R The teleconnection patterns derived from the orthog-
onal analysis cannot necessarily be interpreted as te-
leconnections that are associated with a potential
physical process (e.g., the dipole pattern Fig. 4).

R The centers of action derived from the EOF or VAR-
IMAX methods do not need to be the centers of action
of the real physical modes (see EOF-3 or VARIMAX-
3 in Fig. 4).

R The PCs of the dominant patterns are often a super-
position of many different modes that are uncorrelated
in time and that are often modes of remote regions
that have no influence on the region in which the
pattern of this PC has its center of action.

Acknowledgments. We would like to thank Astrid Ba-
quero, David Enfield, Ian Jolliffe, Ute Merkel, Alberto
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