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Abstract 

Analog-to-digital converter (ADC) is one of the most important blocks in nowadays 

systems. Most of the data processing is done in the digital domain however, the physical 

world is analog. ADCs make the bridge between analog and digital domain.  

The constant and unstoppable evolution of the technology makes the dimensions of 

the transistors smaller and smaller, and the classical solutions of Sigma-Delta converters 

(ΣΔ) are becoming more challenging to design because they normally require high active 

gain blocks difficult to achieve in modern technologies.  

In recent years, the use of voltage-controlled oscillators (VCO) in ΣΔ converters 
has been widely explored, since they are used as quantizers and their implementations are 

mostly made with digital blocks, which is preferable with new technologies. 

In this work a second-order ΣΔ modulator based on two current-controlled 

oscillators (CCO) with a single output phase and an independent phase generator for each 

CCO that generates any desired number of phases using the oscillation of its CCO as 

reference has been proposed. 

This ΣΔ modulator was studied through a MATLAB/Simulink® model, obtaining 

promising results with the SNDR in the order of 75 dB, at a sampling frequency of 1 GHz, 

and a bandwidth of 5 MHz, corresponding to an ENOB of, approximately, 12 bits. 

Keywords: Sigma-Delta, ADC, DAC, CCO-based ADC, VCO-based ADC, 

analog-to-digital converter, digital-to-analog 
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Resumo 

O conversor analógico-digital (ADC) é um dos blocos mais importantes dos 

sistemas da atualidade. A maioria do processamento de dados é feito no domínio digital, 

no entanto, o mundo físico é analógico. Os ADCs fazem a ponte entre o domínio 

analógico e digital.  

A constante e imparável evolução da tecnologia faz com que as dimensões dos 

transístores sejam cada vez mais pequenas e que as soluções clássicas de conversores 

Sigma-Delta (ΣΔ) sejam cada vez mais difíceis de projetar por necessitarem, 

normalmente, de blocos com ganhos ativos elevados, que são cada vez mais difíceis de 

projetar com tecnologias recentes.  

Nos últimos anos o uso de osciladores controlados por tensão (VCO) em 

conversores ΣΔ tem sido amplamente explorado, uma vez que estes usados como 

quantizadores e as suas implementações são maioritariamente feitas com blocos digitais. 

O que é preferível com as novas tecnologias. 

Neste trabalho propõe-se um modulador ΣΔ de segunda ordem baseado dois 

osciladores controlados por corrente (CCO) com uma só fase de saída e um gerador de 

fases independente por cada CCO, que gera um qualquer número de fases desejado 

usando a oscilação do seu CCO como referência. 

Este modulador ΣΔ foi estudado através de um modelo de MATLAB/Simulink®, 

obtendo-se resultados promissores com a SNDR na ordem dos 75 dB, para uma 

frequência de amostragem de 1 GHz, e uma largura de banda de 5 MHz, o que 

corresponde a um ENOB de, aproximadamente, 12 bits. 

Palavras-chave: Sigma-Delta, ADC, DAC, baseado em CCO ADC, baseado em 

VCO, ADC, conversor analógico-digital, digital-analógico 
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1 Introduction 

In this chapter, a brief introduction to subjects related to the work accomplished is done. 

First, the identification of the problem that this work intends to address as well as the 

motivation to address it. Second, the contributions of the solution found. And last, the 

organization of this dissertation. 

1.1 Motivation 

XXI century’s society has a never-ending hunger for technology. And today’s technology 
is performing computational and signal processing tasks mostly in the digital domain [1]. 

This is due to how robust digital circuits are, and how simple and small the 

implementations are. This small and simple circuits can perform simple tasks on their 

own, but when multiple cells are combined, more complex tasks can be performed. The 

main problem of the digital domain is dealing with the physical world, that, unfortunately 

for digital circuits, is analog. And that is why the analog-to-digital converters (ADCs) are 

so important in today’s systems. To make the bridge between real world and current day 
technology. 

The ΣΔ ADC is one of the most common architectures, since it can achieve high 

resolutions with low complexity. However, a classical ΣΔ ADC depends on high gain 
loop filters to shape the quantization noise to higher frequencies, away from the signal 

bandwidth. Furthermore, the transistors have less intrinsic gain as CMOS technologies 

advance, what makes the design of classical ΣΔs more challenging. But with smaller 
transistors, the switching capacity increases as the timing resolution. For that reason, 
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VCO-based ΣΔ ADCs are becoming more and more popular, since they rely on timing 

resolution [2]. Also, this architecture can be implemented with mostly digital blocks, 

decreasing the need for high gain analog blocks. 

1.2 Contributions 

The main contribution of this dissertation was the study and modulation of an innovating 

architecture. In which a single-phase current-controlled oscillator (CCO) was used with 

a separated phase generator that produced the required number of phases desired for the 

quantization process from one reference CCO. This implements a multi-phase CCO. Two 

instances of this multi-phase generator are needed in this work. 

In this study several sets of conditions were simulated for three resolutions (3, 4 

and 4.7-bit), in order to understand the limits of the proposed architecture. 

A CCO based on a relaxation oscillator were, also, designed and implemented. 

While carrying out this dissertation a paper named “Impact of VCO Non-Linearities 

on VCO-based” were also published on 2nd International Young Engineers Forum on 

Electrical and Computer Engineering. 

1.3 Dissertation Structure 

This dissertation is organized as follows: 

• Chapter 2 is a literature review of fundamental concepts for the 

development of the proposed work. With a study on oscillators and ΣΔ 
ADCs, traditional and VCO-based; 

• Chapter 3 describes the CCO designed and the multi-phase generator at first, 

and finishes with the results obtained for these two components;  

• Chapter 4 explains the proposed architecture of a CCO-based ΣΔ ADC first. 
It also contains all the results for the simulations carried out for the proposed 

architecture and discussion of these. 

• At last, Chapter 5 contains some conclusions that were possible to extract 

from the work accomplished as well as some future work proposals.  
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2 State of the art of VCO-based ΔΣM ADC 

In this chapter is presented a literature review on fundamental concepts for the 

development of the work. First, a study on oscillators concepts and topologies. Second, a 

study of the fundamentals of ΣΔ modulation. Finally, a VCO-based ΣΔ ADCs study was 
made, with some examples of recent approaches to the concept as well as comparison of 

these recent works. 

2.1 Oscillators 

In VCO or CCO-based ADCs the oscillator is crucial part responsible for the quantization. 

An oscillator is a circuit capable of producing periodic signals with a fixed frequency. 

This AC signals are produced depending in a DC input. 

The oscillators can be considered linear or non-linear depending on the type of wave 

produced. The linear oscillators can produce sinusoidal signals and respect the 

Barkhausen criterion. The non-linear oscillators do not respect the Barkhausen criterion 

[3] and are typically RC active circuits that can generate different waveforms. These are 

the type of oscillators desirable for integrated circuitry, since they do not use inductors 

that occupies large areas. However, active RC oscillators produce more phase noise. 

2.1.1 Barkhausen Criterion 

Sinusoidal output oscillators produce a sinusoid wave with frequency ω0 and amplitude 

V0, which output can be described by: 

 𝑣𝑜𝑢𝑡 = 𝑉0 cos(𝜔0𝑡 + 𝜃) (2.1) 



2 State of the art of VCO-based ΔΣM ADC 

4 

where θ represents the initial phase of the sinusoid. 

Figure 2.1 shows the sinusoidal output in time and frequency domain. The 

sinusoidal oscillators can also be analyzed as positive feedback system like the one in 

Figure 2.2.  

 

(a)  (b) 

Figure 2.1: Sinusoidal oscillator output: (a) Time domain; (b) Frequency domain [3]  

 

Figure 2.2: Positive feedback block diagram 

The transfer function of the feedback system is given by: 

 
𝑌(𝑗𝜔)𝑋(𝑗𝜔) = 𝐴(𝑗𝜔)1 − 𝐴(𝑗𝜔)β(jω) (2.2) 

The Barkhausen criterion consists in two conditions about the loop gain that ensures 

a steady-state oscillation with a frequency ω0. The loop gain must be unity (gain 

condition), and the open-loop phase shift must be 2nπ, where n is an integer including 

zero (phase condition) [3]. The following equations describe the criterion: 

 |𝐴(𝑗𝜔0)𝛽(𝑗𝜔0)| = 1 (2.3) 

 arg[𝐴(𝑗𝜔)𝛽(𝑗𝜔)] = 2𝑛𝜋 (2.4) 



2.1 Oscillators 

5 

The conditions of Barkhausen ensures a stable oscillation. However, when booting 

the oscillator, the loop gain as to be bigger than one to make an instable system that is 

triggered by noise. 

2.1.2 Phase Noise 

The noise generated at the output of the oscillator causes variations of the output 

amplitude and phase. Theses variations are responsible for the appearing of bands around 

ω0 and its harmonics as shown in Figure 2.3. 

 

Figure 2.3: Output spectrum of an oscillator with phase noise [3] 

 The oscillator noise can be described in frequency domain, the phase noise, and in 

time domain, correspondent to the jitter. A common way to quantify the noise is in terms 

of the single sideband noise spectral density, L(ωn), expressed in decibels below the 

carrier per hertz (dBc/Hz) and is given by: 

 𝐿(𝜔𝑚) = 𝑃(𝜔𝑚)𝑃(𝜔𝑜)  (2.5) 

where P(ω0) is the carrier power, and the P(ωn) is the single sideband noise power at a 

distance of ωm from the carrier in a 1 Hz bandwidth. 

2.1.3 Quality Factor (Leeson- Cutler) 

The quality factor (Q) is the most used figure of merit for oscillators [3], and it is directly 

related total phase noise of the oscillator. There are three definitions of it. One of them is 

the Leeson definition that considers a single resonator network with -3 dB bandwidth B 

and resonance frequency ω0, shown in Figure 2.4, and given by: 

 𝑄 = 𝜔0𝐵  (2.6) 
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Figure 2.4: Q definition for second order system [3] 

2.1.4 Leeson-Cutler Phase-Noise Equation 

The most used phase-noise model is the Leeson-Cutler semi empirical equation [3], that 

is given by: 

 𝐿(𝜔𝑚) = 10 log {2𝐹𝑘𝑇𝑃𝑆 [1 + ( 𝜔02𝑄𝜔𝑚)2] (1 + 𝜔1/𝑓3|𝜔𝑚| )} (2.7) 

where: 

k – Boltzman constant; 

T – absolute temperature; 

PS – average power dissipated in the resistive part of the tank; 𝜔0 – oscillation frequency; 

Q – quality factor; 

ωm – offset from the carrier; 𝜔1/𝑓3 – corner frequency between 1/f3 and 1/f2 zones of the noise spectrum 

F – empirical parameter, called excess noise factor 

Figure 2.5 shows a typical asymptotic noise spectrum of an oscillator output, with 

three different regions: 

• (1) For frequencies very far away from the carrier, and the noise is only due 

to white noise sources in the circuit and, therefore, the noise floor. 
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• (2) The region between ω1 and ω2, that is affected by the modulation 

frequency of the oscillator by its white noise sources, with a -20 dB/decade 

slope. 

• (3) The area near the carrier frequency, has a -30 dB/decade slope due to 1/f 

noise of the active devices. 

 

Figure 2.5: Typical asymptotic noise spectrum of an oscillator output [3] 

2.1.5 VCO and CCO 

A voltage-controlled oscillator (VCO) is a circuit that generates an oscillatory 

signal with a frequency controlled by an input voltage (𝑉𝑐𝑡𝑟𝑙).  
There are two main types of voltage-controlled oscillators for integrated design, the 

LC oscillators and ring oscillators.  

The VCO output is generally given by: 

 𝑉𝐶𝑂𝑜𝑢𝑡(𝑡) = 𝑉0 sin(𝜔𝑐𝑡 + 𝜑) (2.8) 

where 𝜑 is the phase, 𝑉0 is the amplitude of the output wave, and 𝜔𝑐 angular carrier 

frequency: 

 𝜔𝑐(𝑉𝑐𝑡𝑟𝑙) = 2𝜋𝑓𝑐(𝑉𝑐𝑡𝑟𝑙) (2.9) 

dependent in the tuning voltage (𝑉𝑐𝑡𝑟𝑙). 
The current-controlled oscillator (CCO) is similar to the VCO, but the oscillation 

frequency is controlled by an input current. The main advantage of CCOs over VCOs is 

the much superior linearity on the output frequency. This is due to current being directly 

related to how fast charge moves. This movement sets the output frequency [4]. 
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2.1.6 Oscillator examples 

LC Oscillators 

Figure 2.6 shows an example of this approach and it is basically a capacitor C in parallel 

with an inductor L to build a resonance tank and resistor with negative value (-R) to 

compensate the losses of the inductor. The capacitance C is proportional to the tuning 

voltage (𝑉𝑐𝑡𝑟𝑙), making it behave like a VCO. 

The LC oscillators are commonly used in high frequency applications. The 

inductors involved occupy large areas compared to the ring oscillator, what is not a good 

practice in integrated circuit design [5]. 

 

Figure 2.6: Basic LC-VCO (adapted from [5]) 

LC oscillators have a limited tuning range but have less phase noise than ring 

oscillators and lower power consumption.  

Also, being a linear oscillator the Barkhausen criterion can be applied for sizing of 

the oscillator. 

Relaxation Oscillators 

The relaxation oscillator is basically an integrator and a Schmitt-trigger as shown in 

Figure 2.7(a). The Schmitt-trigger controls the direction of the integration, maintaining 

the direction of the integration until a certain value and inverting it until it reaches another 

value, repeating the process. Figure 2.7(b) shows the waveforms of this kind of oscillator. 

The output of the Schmitt-trigger is a square wave with two possible values, leading the 

integrator output to be a triangular wave. 

This class of oscillators are not linear, meaning that the Barkhausen criterion cannot 

be applied. 
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(a)   (b) 

Figure 2.7: Relaxation Oscillator: (a) block diagram; (b) oscillator waveforms [3] 

Ring Oscillators 

In Figure 2.8 is represented a typical ring oscillator, which consists in a series of inverters 

cascade connected. The oscillation is obtained if a phase shift of 180° in total is achieved 

to form a positive feedback. Each inverter, also called delay cell, has an intrinsic delay 

associated and the sum of all them is what make the circuit oscillate at a certain frequency. 

In this single-ended example an odd number of inverters must be used to achieve 

oscillation. In a fully differential structure an even number of inverters can be used as 

long as the connection between two are inverted. The tuning is normally done by the 

voltage supply of the inverters. 

 

Figure 2.8: Typical ring-oscillator: (a) single ended; (b) fully differential (adapted from [6]) 

The ring oscillator has a wide tuning range and occupies a very small area; however, 

phase noise and power consumption are typically higher than the LC oscillators. 

Ring oscillators are preferable for VCO-based due to the multiple phases that are 

available in this kind of oscillators as explained in Section 2.3. 

 

  (a) 

 

 (b) 
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2.2 Basis of sigma-delta modulation (ΣΔM) 

Sigma-delta modulators (Figure 2.9) are the most commonly used oversampling data 

converters. This kind of converters use a sampling frequency, 𝑓𝑆, much higher than the 

Nyquist rate (twice de bandwidth of the modulator, 𝑓𝐵), by a factor of 8 to 512 times, 

usually [1]. This factor is called oversampling ratio (OSR) and is given by: 

 𝑂𝑆𝑅 = 𝑓𝑆2 × 𝑓𝐵 (2.10) 

 Over Nyquist rate converters, ΔΣ modulators are superior in the following aspects: 

• Relieve the requirements of analog circuitry, but are reliant on complex 

digital circuits, which is desirable for modern CMOS technologies, with less 

intrinsic gain and lower power supplies. 

• The high sample rate of the data converter shifts the image components far 

away from the bandwidth of the desired signal, thus, reducing the 

requirements of anti-aliasing filters. 

• The quantization noise power can be reduced by increasing the over 

sampling ratio (OSR) what increase the resolution of the ADC. 

 

Figure 2.9: ΔΣM: (a) block diagram; (b) linear z-domain model 

 

(a) 

 

(b) 
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The modulator is a feedback loop containing an ADC and a DAC, both with low 

resolution, and a loop filter in the forward path, typically, an integrator, as shown in 

Figure 2.9 a). Even though, the modulator is not linear, it can be approximated by linear 

model [1] to ease the analysis, as shown in Figure 2.9 b). 

2.2.1 Quantization error 

Assuming only the effects of quantization error generated by the ADC. If the input signal 

is constantly changing, it is possible to approximate the quantization error 𝑒𝑄(𝑡) to a 

random variable varying between ±Δ/2, with Δ being the difference between two 

consecutive levels of quantization, otherwise known as step of the ADC. This is 

equivalent to a white noise source [7] and the power spectral density (PSD) of the total 

quantization noise power 𝑆𝑄(𝑓) is an uniform distribution as well, as observable in Figure 

2.10 and given by: 

 𝑆𝑄(𝑓) = 1𝐹𝑠 [1Δ ∫ 𝑒𝑄2 𝑑𝑒𝑄Δ/2
−Δ/2 ] = Δ212 × 𝐹𝑠. (2.11) 

 

Figure 2.10: PSD of ADC quantization noise 

With the use of a low pass filter with a transfer function 𝐻(𝑓) and a bandwidth of 𝑓𝐵, modulator bandwidth, the quantization error within 𝑓𝐵 and 𝑓𝑆/2 is eliminated, if the 

filter is ideal. This way, the quantization noise power is given by: 

 𝑃𝑄(𝑓) =  ∫ 𝑆𝑄(𝑓)|𝐻(𝑓)|𝑑𝑓∞
−∞ = ∫ 𝑆𝑄(𝑓)𝑑𝑓𝑓𝐵𝑓𝐵 = Δ212 ( 1𝑂𝑆𝑅) (2.12) 
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It is easy to observe by the expression that the higher OSR the lower the noise 

power, for example, doubling the OSR, is possible to reduce 3 dB to the noise power 

because the total quantization noise is spread over the double of the spectrum. 

2.2.2 Noise Shaping 

The output of the model present in Figure 2.9 b) can be expressed by: 

 𝑌(𝑧) = 𝑆𝑇𝐹(𝑧)𝑈(𝑧) + 𝑁𝑇𝐹(𝑧)𝐸𝑄(𝑧) (2.13) 𝑈(𝑧) and 𝐸𝑄(𝑧) are the z-transforms of the signals 𝑢(𝑧) and 𝑒𝑄(𝑛), respectively. 

The Signal Transfer Function (STF) and the Noise Transfer Function (NTF) are given by: 

 𝑆𝑇𝐹(𝑧) = 𝑌(𝑧)𝑈(𝑧) = 𝐻(𝑧)1 + 𝐻(𝑧) (2.14) 

 𝑁𝑇𝐹(𝑧) = 𝑌(𝑧)𝐸𝑄(𝑧) = 11 + 𝐻(𝑧) (2.15) 

If 𝐻(𝑧) ≫ 1, the 𝑆𝑇𝐹(𝑧) ≈ 1 and 𝑁𝑇𝐹(𝑧) ≈ 0, meaning that the input signal is 

almost not affected, and the quantization noise is almost completely attenuated. 

If the NTF has a zero located at DC to form a high-pass filter 

To have first-order noise shaping, i.e. the quantization noise is shaped to a 

frequency far from the modulator bandwidth, the NTF should have a zero located at DC 

(z = 1) to form a high-pass filter. This requirement can be met using a first-order 

integrator, with the following transfer function: 

 𝐻(𝑧) = 1𝑧 − 1, (2.16) 

thus, leading to a 𝑆𝑇𝐹(𝑧) = 𝑧−1 and 𝑁𝑇𝐹(𝑧) = 1 − 𝑧−1. The STF introduces a delay, 

while NTF implements a first order difference correspondent to a high-pass filter. 

Considering 𝑧 = 𝑒𝑗2𝜋 𝑓𝑓𝑆, the NTF frequency response is given by: 

 𝑁𝑇𝐹(𝑓) = 1 − 𝑒−𝑗2𝜋 𝑓𝑓𝑆 = sin (𝜋 𝑓𝑓𝑆) × 2𝑗 × 𝑒−𝑗2𝜋 𝑓𝑓𝑆 (2.17) 

Adding the noise shaping to (2.12) result in following quantization noise power: 

 𝑃𝑄(𝑓) = ∫ 𝑆𝑄(𝑓)|𝑁𝑇𝐹(𝑓)|2𝑑𝑓𝑓𝐵−𝑓𝐵 = Δ2𝜋236 1𝑂𝑆𝑅3 (2.18) 
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With noise shaping the noise power improves significantly. Now, doubling the OSR 

results in a 9dB reduction of the quantization noise power. 

For higher order noise shaping, is required a higher order loop, and the generic 

expression of 𝑁𝑇𝐹(𝑧)  and quantization noise power is given by: 

 𝑁𝑇𝐹(𝑧) = (1 − 𝑧−1)𝑁, (2.19) 

and, 

 𝑃𝑄(𝑓) = Δ2𝜋2𝑁12(2𝑁 + 1) × 1𝑂𝑆𝑅2𝑁−1, (2.20) 

in which the N is the order of the filter. 

Figure 2.11 shows the noise transfer functions for different orders of noise shaping 

in ΔΣ modulator. 

 

Figure 2.11: Noise transfer function of different orders of noise shaping in ΔΣM 

2.2.3 Performance Metrics and Parameters 

The noise generated by the circuit and by quantization can have a big impact on ΔΣ 
modulators performance. The ratio between the output signal power, 𝑃𝑠𝑖𝑔, and the in-band 
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noise power without the circuit contributions, 𝑃𝑄, assuming an ideal low-pass filter with 

a cut-off frequency equal to the bandwidth of the modulator, and it is given by: 

 𝑆𝑄𝑁𝑅 = 𝑃𝑠𝑖𝑔𝑃𝑄  (2.21) 

The maximum SQNR, in dB of a ΔΣ modulator with first order is 

 𝑆𝑄𝑁𝑅𝑚𝑎𝑥 = 6.02 × 𝑁 + 1.76 − 5.17 + 30log (𝑂𝑆𝑅) (2.22) 

Unfortunately, SQNR is not enough for measuring the ADC performance, because 

it does not take into account the noise caused by the circuit. For that, exists the Signal-to-

Noise Ratio, SNR, and Signal-to-Noise-and-Distortion Ratio, SNDR, that also includes 

the distortion of the circuit. 

In Figure 2.12 is shown the relation between SNDR and SNR, and a new parameter, 

DR, the Dynamic Range. The dynamic is the ratio of the maximum and minimum 

amplitudes that the converter can process. Both SNDR and SNR increase linearly with 

amplitude of the input signal until it reached the maximum DR. When the input amplitude 

gets closer to the maximum, the SNR start increasing slower until it studently drops. The 

SNDR have a similar behavior but it happens sooner, because of the distortion which is 

also considered. 

 

Figure 2.12: SNR, SNDR and DR of a ΔΣM 
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To evaluate the resolution of an ADC, the Effective Number Of Bits, also known 

as ENOB is used, and it is given by: 

 𝐸𝑁𝑂𝐵 ≈ 𝑆𝑁𝐷𝑅𝑚𝑎𝑥 − 1.766.02  (2.23) 

FoMs (Figure of Merit) are the most common forms of comparing different circuits. 

For modulators the Walden FoM [8], that considers bandwidth, BW, power consumption, 

PC and ENOB and the Schreier FoM [9], that considers SNDR or DR, signal bandwidth 

and power consumption are the most common and can be consulted in (2.18), (2.19) and 

(2.20).  

 𝐹𝑜𝑀𝑊 = 𝑃𝐶2𝐸𝑁𝑂𝐵 × 2 × 𝐵𝑊 × 1015 [fJ/conv − step] (2.24) 

 𝐹𝑜𝑀𝑆1 = 𝑆𝑁𝐷𝑅 + 10 log (𝐵𝑊𝑃𝐶 ) [dB] (2.25) 

 𝐹𝑜𝑀𝑆2 = 𝐷𝑅 + 10 log (𝐵𝑊𝑃𝐶 ) [dB] (2.26) 

In the first one, a smaller value is better, while the others a higher value is 

preferable. 

2.3 VCO-based Continuous Time Sigma-Delta ADCs 

The principle in this kind of modulators is to count the edges of the wave generated by 

the VCO, since it produces a signal with a certain frequency depending on the input 

voltage (Vctrl). Counting the edges within a sampling period will provide an estimation of 

the frequency of the VCO’s signal and, consequently, and estimation of the Vctrl as well 

[10]. 

To count the edges of the VCO signal, the phases of all inverters in the ring 

oscillator are stored in registers, so that, at the end of each sampling period a XOR 

operation is performed between the current phases of the oscillator and the previous ones, 

detecting the changes of phase and, consequentially, the edges occurred. Adding the 

changes detected results in a quantized Vctrl, which corresponds to the input signal. 

 Figure 2.13 shows the structure of a VCO-based quantizer and the process of 

counting edges. 
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Figure 2.13: VCO-based quantizer: (a) structure; (b) binary sequences (adapted from [10]) 

In this kind of structure is present a very important feature, the outputs of the XOR 

gates are barrel-shifted for consecutive phases. What provides an intrinsic Dynamic 

Element Matching (DEM) within the feedback loop, once each element is used multiple 

times across the sampling periods while the final output is shifted trough the multiple 

XOR gates. Therefore, the mismatch between DAC elements is first-order shaped 

improving the overall resolution of the DAC. 

In Figure 2.14 is shown a block diagram and frequency-domain model of the VCO-

based quantizer. 

 

Figure 2.14: VCO-based quantizer using the VCO frequency as output: (a) block diagram; 

(b) linearized frequency-domain model (adapted from [10]) 

 

(a)      (b) 

 

(a)  

 

(b) 
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The quantizer in the block diagram Figure 2.14 a) has as inputs the multiple phases 

of the multiple ring VCO, so the quantizer block corresponds to the registers that store 

the sampled phases outputs and the first order difference represents the XOR gates which 

are responsible for detecting phase changes comparing both registers. 

In the second model, frequency-domain, the VCO is simulated by an integrator 

block with a gain of 2𝜋 × 𝐾𝑉𝐶𝑂 and the phase noise is added to the output of the integrator 

block. A sampler with quantization noise added represents the quantizer block. To convert 

the phase signal of the VCO to a VCO frequency signal, the first order difference is 

responsible for the operation of differentiation of the current and previous sample, with 

the transfer function of 1 − 𝑧−1. 

So far, the many advantages of VCO-based quantizers have been exposed, although 

the central block of this kind of quantizer, the VCO, have an inherent problem. It’s voltage 
to frequency tuning curve is very non-linear and this can lead to harmonic distortion, thus, 

having a negative impact on the modulator performance, mentioned in [11].  

There are some solutions for this problem. The first one is to substitute de VCO for 

CCO (Current-Controlled Oscillator), since they are much more linear than VCOs. This 

is due to the fact the current is directly related to the charge time of the inverters in a ring 

oscillator which is responsible for the oscillation. This solution is studied in [4], 

comparing both tuning curves of VCO and CCO. The other solution is to put the VCO 

quantizer in the feedback loop as shown in Figure 2.15, since the presence of high gain 

filtering reduces the effects of the VCO non-linear tuning curve and phase noise. 

However, both solutions have problems. The first does not solve the non-linear tuning 

curve completely and phase noise. The second on needs a high gain filter in the loop, with 

high power consumption and scaling unfriendly. 

 

Figure 2.15: ΣΔ feedback to suppress VCO linearity and quantization errors (adapted from 

[10]) 
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To avoid the non-linear tuning curve of the VCO, a solution, that as become very 

popular, suggested to use the VCO phase instead of the frequency for the quantized output 

[12], as shown in Figure 2.16. For that the quantizer compares the phase of the VCO with 

a phase reference generated by a clock signal. Is no longer required to convert the VCO 

phase to frequency, so a difference operation is avoided at the quantizer. For this reason, 

the error resultant of the comparison of phases must be fed back trough a DAC. This way, 

the quantizer behaves like an integrator with infinite DC gain from the VCO. There is no 

longer the first order noise shaping, since the first order difference is not present. This 

way the DAC elements mismatch will have a negative impact on the DAC mismatches, 

since the generated code no longer depends on counting of edges of the signal of the 

VCO, the barrel-shifted output is lost, and DEM is lost too. To solve this problem a 

Dynamic Weight Average (DWA) as to implemented before the DAC elements, 

increasing general complexity. On the other hand, the impact of non-linearities is very 

attenuated, since the tuning voltage is confined to a small interval due to the error as input 

of the VCO. 

 

Figure 2.16: VCO-based CT Σ∆ ADC using the VCO phase as quantized output (adapted 
from [12]) 

2.4 Recent approaches to VCO-based CT ΔΣM ADC 

In Figure 2.17 is represented an approach suggested in [13] that uses the VCO phase as 

quantized output. In this case the phase difference between two VCOs, placed in a 

differential form, is the output of the ADC. Doing this permits the VCOs frequency to be 

chosen with less restrictions, and, therefore a low frequency can be chosen improving the 

VCOs phase noise and power consumption. This structure as natural rotation of the DAC 

selection patterns at the speed of twice the central frequency of the VCOs, resulting in an 

intrinsic DEM capability of clocked averaging (CLA) [14]. This way the DAC mismatch 

errors are moved away from the signal band. 
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Figure 2.17: Differential CCO-based CT ΔΣ ADC (adapted from [13]) 

As the previous work, the ΔΣM present in Figure 2.18 also relies on VCO phase 

quantized and it also as the VCOs arranged in differential manner, operating very similar 

and once again suppressing the need for explicit DEM. It also has a extended phase 

quantizer (PEQ), which not only compares the phases of the two VCOs but also detects 

which of them is delayed in relation to the other, doubling the overall resolution of the 

quantizer [15]. The passive loop filters (green) are achieved with elements present in the 

circuit, namely, the loading effect from the DAC, the input resistor of the DAC (RDAC) 

and the parasitic effect of the CCO input. This effect is also used as passive integrator for 

second order noise shaping achievement. 

 

Figure 2.18: CCO-based CT ΔΣM with passive integrator and capacitive feedback (adapted 
from [16]) 

Figure 2.19 shows a structure with a very different approach, using a residue 

cancelling quantizer. The flash ADC quantize the input signal while the VCO quantizer 

is fed with the difference between the input signal and the flash DAC output of the 

quantized input (residue). This way, the VCO is going to quantize only the quantization 

error of the flash ADC, which as voltage swing much smaller than the overall input, 
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therefore a smaller interval in the tuning curve of the VCO can be used, thus improving 

linearity. The overall output is the sum of the input quantized by the flash ADC and the 

quantization error of this, quantized by the VCO quantizer, resulting in an output free of 

the quantization noise of the flash ADC, but with the quantization noise of the VCO 

quantize which is first order shaped. The VCO quantizer uses frequency as quantized 

output providing intrinsic DEM capability. 

 

Figure 2.19: VCO-based ΔΣM with residue cancelling (adapted from [17]) 

So far, the circuits presented purpose either VCO frequency or phase as quantized 

output. The following work, in Figure 2.20, purpose a hybrid idea, using both options. 

 

Figure 2.20: VCO-based ADC with combined frequency and phase feedback (adapted from 

[18]) 

The VCO phase goes through a path (blue) and the VCO frequency through other 

(red) and they are summed for output of the ADC and fed back to the input. With this 

configuration is possible to achieve an improved linearity (VCO phase quantized 

characteristic) and intrinsic DEM capability (VCO frequency quantized characteristic), 

reducing the requirements of the ADC. 
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2.5 Comparison of recent works 

In the Table 2.1 a comparison of the state of the art VCO-based CT ΔΣ modulator ADCs 
is presented. 

Table 2.1: Comparison of state of the art VCO-based CT ΔΣ modulator ADCs 

 [12] [13] [16] [15] [19] [17] [18] 

Process (nm) 130 130 40 LP 130 65 90 90 

Loop Order 4 1 2 1 1 2 4 

Output Phase Phase Phase Phase Phase Frequency Both 

BW (MHz) 20 2 6 2 1.67 10 50 

FS (MHz) 900 300 330 250 250 600 1200 

SNDR (dB) 78 66.5 68.6 74.7 70.6 78.3 71.5 

SNR (dB) 81 68 69.1 ≈ 76 -- 83 71.7 

DR (dB) 80 70 70.8 77.6 74 83.5 72 

Power (mW) 87 1.75 0.524 1.05 0.91 16 54 

Area (mm2) 0.45 0.03 0.028 0.13 0.04 0.36 0.5 

FoMW (fJ/conv.) 335.0 253.3 19.9 59.1 98.4 119.0 175.8 

FoMS1 (dB) 161.6 157.1 169.2 167.5 163.2 166.3 161.2 

FoMS2 (dB) 163.6 160.6 171.4 170.4 166.6 171.5 161.7 

Looking at Schreier FoM results, [15], [16] and [17], stand out from the other 

works. [17] is the older reference (2012) of the three and achieved the best result, being 

the other two much recent (2017). Even though, recent works tend to use phase as 

quantized output, [17], depicted in Figure 2.19, uses frequency as some older works, 

achieving great results. 
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3 Current-Controlled Oscillator and Phase 
Generator 

In this chapter the current-controlled oscillator (CCO) designed and the phase generator 

are described. The oscillator was developed in Cadence software in CMOS 65nm 

technology. The way it operates, and results are present in section 3.1. The phase 

generator was tested with a MATLAB/Simulink® model. The behavior and results 

achieved are present in section 3.2. 

3.1 CCO 

For the oscillator there were two important requirements: high linearity in the tuning 

curve and a large tuning range, in order to achieve the best possible results [20]. For the 

high linearity, a current-controlled oscillator was chosen since CCOs are known for 

having a much linear tuning curve than VCOs. 

A multiphase oscillator is typically used in VCO-based ΣΔ ADCs. As the number 
of phases are equal to the number of quantization levels. However, in this architecture, a 

separated phase generator was used, explained in the next section (3.2). Due to this fact, 

just a single-phase oscillator was needed. This way was possible to achieve higher gains 

of frequency in the oscillator [3]. Nevertheless, to achieve high frequencies, a simple 

circuit must be used. For that reason, a simple relaxation oscillator was chosen, that have, 

also, the best phase noise performance, theoretically [21], in comparison to ring 

oscillators. In Figure 3.2(a) it is possible to observe a classic implementation of the 

circuit. The capacitor acts as an integrator where the capacitor voltage (vC) is the output 



3 Current-Controlled Oscillator and Phase Generator 

24 

and the capacitor current (iC) is the input. The rest of the circuit implements the Schmitt-

trigger, shown in Figure 3.1(a), that have as the input the output of the integrator and as 

output the input of the integrator. The output of the oscillator is the difference between 

the voltages of the gates of the transistors, v2-v1, by convenience. 

 

(a)  (b) 

Figure 3.1: Schmitt-trigger: (a) circuit implementation; (b) transfer characteristic (adapted 

from [3]) 

 

(a)  (b) 

Figure 3.2: Relaxation Oscillator: (a) Fixed Frequency; (b) Current-controlled frequency 
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The amplitude of the output signal is 4IR and the oscillator integration constant is 

I/C. Therefore, its oscillation frequency is: 

 𝑓0 = 𝐼2𝐶(4𝑅𝐼) = 18𝑅𝐶 (3.1) 

In equation (3.1) it is possible to conclude that it is not possible to control the 

oscillation frequency with the current I. Therefore, it is a simple oscillator and not a 

current-controlled oscillator (CCO). In Figure 3.2(b) there is an alternative [22]. By 

simply adding a PMOS transistor in diode connected configuration in parallel with the 

resistor it is possible to assume control over the output frequency of the oscillator. This 

way, the voltage of the resistor is no longer dependent of the current but fixed by the 

diode that either is on or off. With this approach, the output frequency of the oscillator is 

given by: 

 𝑓0 ≈ 𝐼𝑉𝑠𝑔𝑂𝑁𝐶 (3.2) 

The voltage of the transistor is constant as well as for the capacitance C, and the 

oscillator frequency is directly proportional to the current I, by the equation (3.2).  

The current sources can be implemented by current mirrors. It was extremely 

important that the linearity of the CCO was less affected as possible. And for that a 

cascode current mirror in Figure 3.3, was designed. 

 

Figure 3.3: Cascode current mirror 

3.1.1 CCO sizing and results 

To achieve high frequencies, and to have a wide tuning range, smaller channel lengths in 

the transistors are preferred, especially in transistors M1_a and M1_b, responsible for the 

commutation of the Schmitt-trigger, that as to be quick to invert the phase of the wave. A 

wide channel is also preferred to lower the resistance of the transistors. To the devices 
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M2_a and M2_b that implements the diodes in the circuit, the same logic is applied. In 

the current mirror, the relation applied is 1-to-1, and that is why the dimensions of M3_a, 

M3_b and M5 are the same, as well as the dimensions of M4_a, M4_b and M6. The 

transistor M7 is responsible for the bias voltage of the devices M3_a, M3_b and M5. The 

sizing of all the transistors is shown in Table 3.1. The capacitor C has a capacitance of 

200 fF, and the resistors R has a resistance of 5 kΩ. The current Iref is equal to Iin, this is 

the control current. 

Table 3.1: CCO transistor sizing 

Device W/L [μm]. Device W/L [μm] 

M1_a, M1_b (NMOS) 10/0.06 M4_a, M4_b (NMOS) 1.5/0.18 

M2_a, M2_b (PMOS) 20/0.06 M5, M6 (NMOS) 1.5/0.18 

M3_a, M3_b (NMOS) 1.5/0.18 M7 (NMOS) 0.15/0.18 

The CCO tuning range is shown in Figure 3.4(b). The dashed straight-line next to 

the tuning curve shows that the oscillator is very linear, especially between 35 μA and 

115 μA, with frequencies of 415.6 MHz and 997.8 MHz, respectively. Within this 

interval, the maximum integral error of linearity is less than 2%, with an average error of 

0.45%. The differential error is about 0.17% in average and as a maximum value of 1.1%. 

This last error is more important due to the small input swing of the oscillator. The central 

frequency of the CCO is 698.6 MHz at 75 μA of input current. The current-to-frequency 

gain (KCCO) is about 7.2 THz/A. These results are summarized in Table 3.3.  

 

 (a) (b) 

Figure 3.4: CCO: (a) waveform example; (b) Current-to-Frequency gain 
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At high frequencies the output of the oscillator becomes “more sinusoidal” as 
shown in Figure 3.4(a), and extra circuitry is needed to make it square. 

Figure 3.5 shows the phase noise of the implemented CCO and in Table 3.2 some 

numeric results. It is possible to observe a -30 dB slope correspondent to the flicker noise 

as well as -20 dB slope at further frequencies caused by the phase noise [23]. 

 

Figure 3.5: Phase Noise of the implemented CCO 

Table 3.2: Phase Noise of the implemented CCO 

Offset Frequency Phase Noise [dBc/Hz] 

@100 kHz -55.41 

@1 MHz -83.05 

@10 MHz -105.90 

 

Table 3.3: CCO results 

KCCO [THz/A]  f0 [MHz] Linear Range Max. Linearity 

Error 

Power Consumption 

[μW]  

7.2 698.6 @75 μA 35 μA → 115 μA < 2% 222 @698.6 MHz 
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3.2 Phase Generator 

The great difference in this work to the ones presented in section 2.4 is the way the phases 

are generated. While in all the approaches studied, a multiphase VCO or CCO where 

used, in the proposed architecture was decided to use an independent phase generator 

with a single-phase oscillator. This allows freedom when choosing the architecture of the 

oscillator.  

In Figure 3.6(a) it is possible to observe the phase generator architecture studied. 

The architecture was based on a work about shift-registers used for low jitter multiphase 

clock generation [24]. It consists in a chain of N D flip-flop (DFF) with the Q output 

connected to the D input of the next DFF. The oscillator output is fed to the clock input 

of the DFFs. The last DFF in the chain has its Q output inverted and connected to the D 

input of the first DFF. This way the first DFF is inverted every N cycles of the oscillator. 

With this scheme it is possible to have N phases with a delay of an oscillation period of 

the CCO of each other. Which corresponds to a delay phase of π/N. Each phase as duty 

cycle of 1/2 and a frequency that is given by: 

 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒 = 12𝑁 × 𝑅𝑒𝑓. 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (3.3) 

Figure 3.7 shows an example of a 3-phase generator results. In Figure 3.7(a) is the 

reference oscillator waveform and the three phases of the generator are pictured in Figure 

3.7(b). Phase1 as its value inverted every 3 periods of the oscillator waveform. 

Furthermore, the total period of Phase1 is equal to six periods of the reference oscillator 

wave, what proves that the frequency was divided by 6 (2 × 3 phases). Phase 1, 2 and 3 

are delay of one period of the oscillator of each other. 

 

(a)  (b) 

Figure 3.6: Phase Generator: (a) DFF chain architecture; (b) DFF cell 
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(a) 

 
(b) 

Figure 3.7: 3-phase generator example: (a) Reference oscillator wave; (b) Phases of the 

generator 

Figure 3.6(b) shows the composition of a DFF cell. In each cell there are two latches 

connected that are enabled alternatively. When the enable signal is low, the first latch is 

refreshing its output with the input, while the second one is maintaining the output. When 

the enable signal is high, the first latch is disabled, and the output is maintained, while 

the second latch is enabled, and the output is refreshed with the output of the first latch. 

This way the DFF cell is only responsive to the low to high transition of the clock 

(oscillator wave), meaning that, only the value in this transition is stored in the DFF. 

Generating phases with this architecture is also beneficial for the jitter. The jitter 

from oscillator is transferred to the DFF chain without improvement. However, the jitter 

added is due to noise jitter and mismatch jitter, and there is no accumulation from one 

cell to the next one. This happens because each DFF output only acts as an enabler for 

the next one, being the CCO responsible for the timing [24]. 
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4 Single phase CCO-based ΣΔM with 
separated phase generator 

In this chapter a description of the proposed ΣΔ modulator architecture is presented. For 

the implementation of the structure, a MATLAB/Simulink® model was developed for all 

tests carried out. The data gathered from the CCO simulations in Spectre environment 

was used to model the oscillator in this architecture model. The main features of the 

proposed architecture are described in section 4.1 and the results of the simulations are 

present in section 4.2. 

4.1 Proposed Architecture Characteristics 

The proposed ΣΔ modulator architecture presented in Figure 4.1 was based on a K. Lee, 

Y. Yoon, and N. Sun work [4], with some variations. First, the multiple phases were not 

generated in the oscillator, but with a completely independent robust phase generator 

block [24]. This provided some freedom for the design of the oscillator with a single 

output phase. It was also opted for a second order loop with a low-pass filter and two 

different DAC blocks for a second order noise shaping. 

The oscillators were still arranged in pseudo-differential manner as the original 

work [4]. This way, the output was the difference of phase between the two CCOs, and 

there was no need for the central frequency of the CCO being fixed to a fraction of the 

sampling frequency. However, the central frequency could not be set too low in this 

architecture as has been clarified in the Phase Generator (3.2) section. The pseudo-

differential arrangement of the oscillators also reduced the even order distortions.  
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Figure 4.1: Proposed Architecture 

The second order loop (40dB per decade slope can be observed in Figure 4.2.) was 

achieved with the oscillators used as integrators and active low-pass filters implementing 

a moderate loop gain (20 dB). This way, it was possible to achieve a smaller input swing 

in the CCOs, thus reducing the linearity issues introduced by the oscillator. 

As for the number of phases in the phase generator, there was a tradeoff. With a 

higher number of phases, it was possible to have more quantization levels. However, the 

current-to-frequency gain of the CCOs (KCCO) dropped drastically, as detailed in section 

(3.2).  

 

Figure 4.2: Output spectrum in ideal conditions (only quantization noise) 
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4.1.1 DAC selection pattern 

In Figure 4.3(a) is visible a spectrum result of a simulation of the MATLAB® model in 

which a 3-bit quantizer (7-phase oscillator) was implemented. In this simulation, only the 

quantization noise is present because the feedback DAC components are ideal and have 

no mismatch problems or any kind of noise. However, considering process, voltage and 

temperature (PVT) variations that happen in the physical world and affects the 

components. Thus, leading to mismatches that degrade the linearity of the overall 

architecture. In Figure 4.3(b) are visible results of a classic 3-bit thermometer-coded DAC 

in a second-order ΣΔ ADC simulation. A lot of tones appear within the signal bandwidth, 

due to the data deterministic behavior of the DAC selection pattern. The tones generated 

by this selection pattern are added in the two summing nodes and have a negative impact 

on the SNDR. In this case the SNDR dropped about 13 dB from the ideal case. 

 
(a) 

 
(b) 

Figure 4.3: Thermometer DAC with 1% mismatch: (a) Output spectrum; (b) DAC cell 

selection pattern 
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To overcome the thermometer-coded DAC deterministic selection pattern, explicit 

dynamic element matching (DEM) can be used. So that, the DAC selection pattern 

becomes more random and less deterministic. Nevertheless, the proposed structure 

generates a natural rotation of selection of the DAC elements, visible in Figure 4.4(b) 

with a speed of approximately twice of the CCO center frequency [4]. This feature 

implements DEM scheme of clock averaging (CLA), thus eliminating the need for 

explicit DEM blocks. The CLA moves the influence of the DACs mismatches away from 

signal bandwidth, reducing the effects on the SNDR. This effect can be observed in Figure 

4.5, where a 25% mismatch was tested to really highlight the modulation.  The simulation 

results of this case, in Figure 4.4(a), prove that with mismatches of 1% in DAC elements, 

SNDR drops only 3 dB from the ideal case, instead of 13 dB in the previous example. 

 

(a) 

 
(b) 

Figure 4.4: Natural rotative DAC with 1% mismatch: (a) Output spectrum; (b) DAC cell 

selection pattern 
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Figure 4.5: Natural rotative DAC with 25% mismatch: Output spectrum 

4.2 Full architecture results 

Three models of the proposed architecture were developed in MATLAB/Simulink®. 

Between them, the only visible difference was the number of phases (7, 15 and 25) and 

DAC elements besides different parametrizations. Implementing three different 

resolutions for the ADC. For each resolution several tests were carried out: 

• With a linear approximation of the oscillator: 

• Active low-pass filter (20 dB) and 0% DAC mismatch; 

• Active low-pass filter (20 dB) and 1% DAC mismatch; 

• Passive low-pass filter and 0% DAC mismatch; 

• CCO tuning range seven times smaller than the implemented, active 

low-pass filter (20 dB) and 0% DAC mismatch; 

• With a polynomial approximation of the oscillator; 

• Active low-pass filter (20 dB) and 0% DAC mismatch; 

• Active low-pass filter (20 dB) and 1% DAC mismatch. 

A sampling frequency of 1 GHz was considered in every test, as well as bandwidth 

of 5 MHz, which corresponds to an OSR of 100. The maximum input signal amplitude in 

the simulations was 160 μA peak-to-peak in differential mode, equivalent to 80 μA to 

each CCO input. The input signal frequency was about 1 MHz. 

The CCO is modeled with an ideal VCO block from Simulink® and a Schmitt 

trigger to have square wave. The first order low-pass filter has time constant of 50 μs. 
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In Table 4.1 is present a description of the simulations made for each model 

implemented. 

Table 4.1: Description of simulation tests 

Test CCO approx. DAC Mismatch [%] Filter Gain [dB] 

1 (Ideal) Linear 0 20 

2 Linear 1 20 

3 Linear 0 0 

4 Linear (-tuning range) 0 20 

5 Polynomial (6th order) 0 20 

6 (C. Real) Polynomial (6th order) 1 20 

 

The first test, Test 1, was considered the test with ideal conditions and where the 

best results were achieved. The last test, Test 6, was the test with the closest conditions 

to a real circuit implementation, performed in this study. 

4.2.1 7-phase ADC (3-bit) 

In Figure 4.6 it is possible to observe the output spectrum of what is considered an ideal 

simulation. There was no mismatch in DAC elements, the CCO was completely linear 

with a KCCO of 7.2 THz/A which corresponds to KCCO per phase of 514.29 GHz/A. The 

low-pass filter had gain of 20 dB. These were the conditions, in which the best results 

were achieved. In the spectrum is clearly visible the peak in the input signal frequency 

(about 1 MHz). as well as 40 dB per decade slope. For this simulation, the SNR value 

was about 81.27 dB and the SNDR value of 80.79 dB.  

The second simulation only a 1% mismatch in the DAC elements was introduced, 

maintaining a linear CCO, and 20 dB of gain in the low-pass filter. In these conditions, 

as expected, the SNR and SNDR values dropped to 77.75 dB and 76.92 dB, respectively. 

In order to observe the influence of the gain in the filter, the third simulation had 

no gain (0 dB), maintaining the other ideal conditions, linear CCO and 0% mismatch in 

DAC elements. The output spectrum of this simulation is present in Figure 4.7 and there 

are some noticeable differences from the ideal case. First, there is a much higher noise 

floor at around -110 dB as opposed to the -130 dB of the ideal case. Second, the 40 dB 

per decade slope is lost and is closer to 20 dB per decade. For these reasons, the SNR and 

SNDR values dropped drastically to 59.51 dB and 58.84 dB, respectively. 
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Figure 4.6: Output spectrum of ADC with 7-phase generator (ideal test) 

 

Figure 4.7: Output spectrum of ADC with 7-phase generator (0 dB of filter gain) 
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A hypothetical CCO with a smaller but linear tuning range was also tested. With a 

reference KCCO (1 THz/A) about seven times smaller than the CCO implemented and 

maintaining all the ideal conditions of the first test, the architecture achieved a SNR value 

of 64.67 dB and a SNDR value of 63.83 dB.  

The effect of the non-linearities of the CCO tuning curve were also studied in the 

fifth simulation with results of 76.51 dB and 75.91 dB, respectively, SNR and SNDR.  

At last, a simulation with filter gain of 20 dB, a DAC mismatch of 1% and non-

linear KCCO was carried out. This was the simulation that was, theoretically, closer to a 

real implementation. Aside from the filter gain, all the other negative effects in previous 

simulations were considered in this simulation. In Figure 4.9 it is possible to observe the 

output spectrum of this simulation. The main difference to the ideal one (Figure 4.6) is in 

the lower frequencies due to an offset in the output code caused by the effects of non-

linearities in the CCO tuning curve. Figure 4.8 shows this offset, even though, all the 

scale of codes is used, the lower code values were less selected, causing a DC offset. The 

dynamic range is shown in Figure 4.10, with a top SNR of 74.19 dB and SNDR of 

73.74 dB. 

 

Figure 4.8: Output code of ADC with 7-phase generator (1% DAC mismatch, non-linear 

KCCO) 
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Figure 4.9: Output spectrum of ADC with 7-phase generator (1% DAC mismatch, non-

linear KCCO) 

 

Figure 4.10: Dynamic range of ADC with 7-phase generator (1% DAC mismatch, non-

linear KCCO) 
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The parameters used in the simulations described above are listed in Table 4.2. The 

DAC1 element current in the table corresponds to the current of each cell of the DAC 

array listed as DAC1 in Figure 4.1. The DAC2 element current was three times bigger 

than the current of the DAC1 in every test. The reference KCCO is relative to the relaxation 

oscillator. The gain per phase of the CCO is 14 times smaller (2×7 phases). 

Table 4.2: 7-phase ADC parameters and SNR results 

Test Reference KCCO 

[THz/A]. 

Mismatch 

[%] 

Filter Gain 

[dB] 

DAC1 element current 

[μA] 
SNR 

[dB] 

1  7.2 (linear) 0 20 4.25 81.27 

2 7.2 (linear) 1 20 4.25 77.75 

3 7.2 (linear) 0 0 3.75 59.51 

4 1 (linear) 0 20 4.25 64.67 

5 7.2 (non-linear) 0 20 4.75 76.51 

6 7 .2 (non-linear) 1 20 4.75 74.19 

 

4.2.2 15-phase ADC (4-bit) 

The tests made for the 7-phase ADC were repeated for 15-phase and 25-phase ADCs. 

First, the ideal test with a CCO with a linear KCCO of 7.2 THz/A equivalent to KCCO per 

phase of 240 GHz/A. A 20 dB gain in the low-pass filter and 0% mismatch in the DAC 

elements were also considered. Figure 4.11. shows the output spectrum of the ADC in 

this simulation. The result was similar to the 7-phase correspondent test, both visually 

and quantitively, with a SNR and SNDR values of 80.46 dB and 79 dB, respectively. 

 In the second test, with 1% mismatch in the DAC elements, a linear CCO, and a 

filter gain of 20 dB, the SNR value dropped to 78.62 dB, as the SNDR to 77.65 dB. 

The third simulation, with a passive filter, linear CCO tuning curve and without 

mismatch in the DAC elements, achieved a SNR value of 59 dB and a SNDR value of 

58.53 dB. In Figure 4.12. it is possible to understand the reasons of such a high drop. The 

40 dB per decade slope characteristic of the second order noise shaping was lost, and the 

noise floor was also higher than in the ideal case. 

With a CCO with a linear reference KCCO of 1 THz/A and the conditions of the first 

test, the model achieved values of 62.13 dB for the SNR and 61.63 dB for the SNDR. 

Considering a non-linear CCO tuning curve and the rest of the ideal conditions the 

results achieved were 78.27 dB and 74.98 dB, respectively, SNR and SNDR.  
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Figure 4.11: Output spectrum of ADC with 15-phase generator (ideal test) 

 

Figure 4.12: Output spectrum of ADC with 15-phase generator (0 dB of filter gain) 
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The final simulation was the closest to an actual circuit implementation, with all the 

effects considered, 1% mismatch in the DAC elements, non-linear CCO tuning curve and 

20 dB of gain filter. Figure 4.14 shows the output spectrum of the ADC. As in the 7-phase 

example, the lower frequencies had a high power relative to the noise floor. This effect 

was caused by the non-linear response of the CCO tuning curve that dislocated the output, 

generating a DC offset. This offset is clearly observable in Figure 4.13. The output codes 

used were between 2 to 14 for a maximum amplitude input, in a 0 to 15 scale. This led to 

a maximum SNR value of 77.21 dB and a SNDR value of 76.35 dB, as shown in dynamic 

range plot (Figure 4.15). 

The parameters used in the simulations described above are listed in Table 4.3. The 

DAC1 element current in the table corresponds to the current of each cell of the DAC 

array listed as DAC1 in Figure 4.1. The DAC2 element current is three times bigger than 

the current of the DAC1 in every test. The reference KCCO is relative to the relaxation 

oscillator. The gain per phase of the CCO is 30 times smaller (2×15 phases). 

 

Figure 4.13: Output code of ADC with 15-phase generator (1% DAC mismatch, non-linear 

KCCO) 
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Figure 4.14: Output spectrum of ADC with 15-phase generator (1% DAC mismatch, non-

linear KCCO) 

 

Figure 4.15: Dynamic range of ADC with 15-phase generator (1% DAC mismatch, non-

linear KCCO) 
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Table 4.3: 15-phase ADC parameters and SNR results 

Test Reference KCCO 

[THz/A]. 

Mismatch 

[%] 

Filter Gain 

[dB] 

DAC1 element current 

[μA] 
SNR 

[dB] 

1 7.2 (linear) 0 20 1.8 80.46 

2 7.2 (linear) 1 20 1.8 78.62 

3 7.2 (linear) 0 0 1.7 59 

4 1 (linear) 0 20 1.8 62.13 

5 7.2 (non-linear) 0 20 2.4 78.27 

6 7.2 (non-linear) 1 20 2.4 77.21 

 

4.2.3 25-phase ADC (4.7-bit) 

Like the previous resolutions, for the 25-phase ADC all the conditions were simulated. 

First, the ideal conditions simulation, CCO with a linear reference KCCO of 7.2 THz/A 

which corresponds to KCCO per phase of 144 GHz/A. The filter was active with 20 dB of 

gain and DAC elements had 0% mismatch. In these conditions, the SNR value was about 

80.39 dB and the SNDR 79.95 dB. The ADC output spectrum is visible in Figure 4.11. 

With 1% mismatch in DAC elements and maintaining, the linear CCO tuning curve 

and active filter, in the second simulation, the SNR and SNDR values were 77.88 dB and 

77.35 dB, respectively. 

The third simulation returned to the ideal conditions of the first simulation, but with 

a passive filter (0 dB). As in the previous resolutions, the 40 dB slope was not present 

and the noise floor was higher, as shown in Figure 4.17. SNR achieved a value of 64.6 dB 

and SNDR of 63.16 dB. 

With a linear CCO with a KCCO per phase of 20 GHz/A (equivalent reference KCCO 

of 1 THz/A) and the ideal conditions of the first simulation the SNR dropped to 60.88 dB 

as the SNDR to 60.7 dB. 

Taking into account the non-linearities of the CCO tuning curve with all the other 

ideal conditions of the first simulation, the test achieved values of 79.5 dB and 78 dB for 

SNR and SNDR, respectively. 

In order to have the closest result to a real circuit implementation of the architecture, 

all the effects were considered, a non-linear CCO with a reference KCCO of approximately 

7.2 THz/A and 1% mismatch in DAC elements. Also, the filter was active (20 dB gain). 

At lower frequencies high power signals could be found, as shown in Figure 4.19. This 

was due to a DC offset caused by the non-linear CCO. This effect can be observed in 
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Figure 4.18, where an example of the output is shown. The output codes used were 

between 3 and 25 in a 0-to-25 scale, for a maximum amplitude signal. The dynamic range 

is shown in Figure 4.20, with a top SNR of 77.72 dB and a SNDR of 75.83 dB. 

The parameters used in the simulations described above are listed in Table 4.4. The 

DAC1 element current in the table corresponds to the current of each cell of the DAC 

array listed as DAC1 in Figure 4.1. The DAC2 element current is three times bigger than 

the current of the DAC1 in every test. The reference KCCO is relative to the relaxation 

oscillator. The gain per phase of the CCO is 50 times smaller (2×25 phases). 

 

Figure 4.16: Output spectrum of ADC with 25-phase generator (ideal test) 
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Figure 4.17: Output spectrum of ADC with 25-phase generator (0 dB of filter gain) 

 

Figure 4.18: Output code of ADC with 25-phase generator (1% DAC mismatch, non-linear 

KCCO) 
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Figure 4.19: Output spectrum of ADC with 25-phase generator (1% DAC mismatch and 

non-linear KCCO) 

 

Figure 4.20: Dynamic range of ADC with 25-phase generator (1% DAC mismatch, non-

linear KCCO) 
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Table 4.4: 25-phase ADC parameters and SNR results 

Test Reference KCCO 

[THz/A]. 

Mismatch 

[%] 

Filter Gain 

[dB] 

DAC1 element current 

[μA] 
SNR 

[dB] 

1 7.2 (linear) 0 20 1.325 80.39 

2 7.2 (linear) 1 20 1.325 77.88 

3 7.2 (linear) 0 0 0.9 64.6 

4 1 (linear) 0 20 1.325 60.88 

5 7.2 (non-linear) 0 20 1.275 79.5 

6  7.2 (non-linear) 1 20 1.275 77.72 

 

4.3 Discussion and analysis of results 

Table 4.5 shows the results of all ADC resolutions tested in ideal conditions. CCO with 

a linear reference KCCO of 7.2 THz/A, active low-pass filter with 20 dB of gain and 0% 

mismatch. The results were very similar for every resolution. The 3-bit ADC (7-phase) 

achieved the best results with a difference of less than 0.5 dB between the SNR and 

SNDR. Meaning that the architecture did not generate a lot of distortion. The 4-bit ADC 

is the one that generated more distortion in ideal conditions, even though, the difference 

between SNR and SNDR did not exceed 1.5 dB. The effective number of bits (ENOB) 

oscillated less than 0.3 bits in all tests, with a top 13.13 bits in the 7-phase ADC. 

Table 4.5: First simulation results (ref. KCCO=7.2 THz/A linear, 20dB filter, 0% mismatch) 

Number 

of phases 

SNR 

[dB] 

SNDR 

[dB] 

ENOB 

[bits] 

7 81.27 80.79 13.13 

15 80.46 78 12.83 

25 80.39 79.95 12.99 

 

For the second test, in the same conditions of the first one, but with a mismatch in 

DAC elements of 1%, the results dropped slightly in general. However, the differences 

between the resolutions were not very substantial, as shown in Table 4.6. The best results 

were achieved in the 4-bit resolution ADC with a difference of approximately 1 dB 
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between SNR and SNDR. The ENOB varied less than 0.2 bits comparing all ADCs, with 

a top value of 12.61 bits in the 15-phase ADC. 

Table 4.6: Second simulation results (ref. KCCO=7.2 THz/A linear, 20dB filter, 1% mismatch) 

Number 

of phases 

SNR 

[dB] 

SNDR 

[dB] 

ENOB 

[bits] 

7 77.75 76.92 12.49 

15 78.62 77.65 12.61 

25 77.88 77.35 12.56 

 

In the third test, the ideal conditions of the first test were considered, in exception 

of the gain of the filter. The low-pass filter was passive. For the 3 and 4-bit resolution 

ADCs, the results were very similar. However, the 4.7-bit ADC scored the best results 

with a difference of approximately 5 dB in the SNR and SNDR value relative to the other 

resolution ADCs, as shown in Table 4.7. This led to almost one bit more of ENOB. This 

result can indicate that with a passive filter the ADCs with more resolution can perform 

better. Nevertheless, there were no improvement from the 3-bit to the 4-bit ADC test. 

This could be caused, by a better sizing of the DAC currents in the 25-phase ADC, since 

this simulation needed adjustments in the DAC currents. 

Table 4.7: Third simulation results (ref. KCCO=7.2 THz/A linear, 0dB filter, 0% mismatch) 

Number 

of phases 

SNR 

[dB] 

SNDR 

[dB] 

ENOB 

[bits] 

7 59.51 58.84 9.48 

15 59 58.53 9.43 

25 64.6 63.16 10.2 

 

For the forth simulation, all the ideal conditions of the first test were considered 

except for the CCO tuning range. The reference KCCO is 1 THz/A. In Table 4.8 is present 

the results of the simulations of the all the ADCs. The results got worst as the number of 

quantization levels increased. This is due to phase generator characteristic of dividing the 

frequency by twice the number of phases. Thus, the reference KCCO was transformed in a 

different KCCO per phase, 71.429 GHz/A, 33.333 GHz/A and 20 GHz/A for the 7, 15 and 

25-phase ADCs, respectively. This effect was more noticeable with smaller CCO tuning 
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ranges. For example, in the first table the differences were less significant, with higher 

KCCO (7.2 THz/A).  

Table 4.8: Fourth simulation results (ref. KCCO=1 THz/A linear, 20dB filter, 0% mismatch) 

Number 

of phases 

SNR 

[dB] 

SNDR 

[dB] 

ENOB 

[bits] 

7 64.67 63.83 10.31 

15 62.13 61.63 9.95 

25 60.88 60.7 9.79 

 

Table 4.9 shows the results of the fifth simulation for the different resolution ADCs. 

In this one, all the ideal conditions of the first simulation were considered, except for the 

CCO that had its tuning range approximated by a sixth order polynomial. This was done 

to represent the non-linearities of the oscillator. The performance of ADCs dropped 

relatively to the first simulation, in general. However, the 25-phase ADC has the best 

results. This indicated that with more quantization levels, the ADC was more robust to 

linearity problems. Even though, the differences between the resolutions did not exceed 

0.6 bits in terms of ENOB. 

Table 4.9: Fifth simulation results (ref. KCCO=7.2 THz/A non-linear, 20dB filter, 0% mismatch) 

Number 

of phases 

SNR 

[dB] 

SNDR 

[dB] 

ENOB 

[bits] 

7 76.51 75.91 12.32 

15 78.27 74.98 12.16 

25 79.5 78 12.67 

 

Finally, the closest simulation to a real circuit implementation performed in this 

study had a sixth order polynomial approximation of the CCO tuning curve, a 20 dB 

active low-pass filter and 1% mismatch in DAC elements. The 7-phase ADC performed 

worst under these conditions. The 15 and 25-phase ADCs had a similar performance. 

Even though, the 25-phase ADC performed better in the SNR domain, the 15-phase ADC 

achieved better results in the SNDR, leading to higher number of effective bits. 

Nevertheless, the ENOB variation was less than 0.5 bits, between all the different ADC 

resolutions. 
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Table 4.10: Last simulation results (ref. KCCO=7.2 THz/A non-linear, 20dB filter, 1% mismatch) 

Number 

of phases 

SNR 

[dB] 

SNDR 

[dB] 

ENOB 

[bits] 

7 74.19 73.74 11.96 

15 77.21 76.35 12.39 

25 77.72 75.83 12.3 
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5 Conclusions and future work 

In this chapter, a discussion and conclusions of the work achieved in the making of this 

dissertation is presented in 5.1. Furthermore, some future work is suggested in section 

5.2.  

5.1 Conclusions 

This dissertation, had as objectives, study the viability of a new approach to CCO-based 

ΣΔ ADCs, as well as the tradeoffs of the possible different configurations. 

The main difference of this oscillator-based ADC is the way the phases are 

generated, in a block completely separated from the oscillator. This feature allows more 

freedom for the oscillator design, since only a reference square wave is needed to feed 

the phase generator. Thus, a single-phase oscillator is suitable for this purpose. 

However, the phase generator has some drawbacks too. The frequency of the 

signals in the phases generated are inversely proportional to number of phases, for the 

same reference signal. Which means that, the reference oscillator used needs a wider 

tuning range to generate phases and maintain the performance.  

The CCO studied was a simple and modified relaxation oscillator to be controlled 

by an input current. With this oscillator, it was possible to achieve a wide tuning range, 

with KCCO of 7.2 THz/A and a central frequency of approximately 700 MHz at 75 μA of 
input current. The oscillator was also low power, with a power consumption of 222 μW. 
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The first conclusion for the proposed architecture is that, a real circuit 

implementation of it seems attainable under the right configurations. In section 4.3 is 

presented a summary of the all the results for all the simulations made. The first test for 

all resolutions was made with ideal conditions to have benchmark. This test achieved 

results of around 80 to 81 dB for the SNR for all the different resolutions. From these 

results a conclusion can be immediately understood. 7, 15 or 25-phase ADC all scored 

similar results. Meaning that, there was a tradeoff between quantization levels and the 

effective tuning range of each phase in the phase generator. This is, more quantization 

levels (more phases) translate into a better SNR. However, with more phases, the effective 

tuning range of each phase drops, what also causes the SNR to drop. In ideal conditions, 

the 7-phase ADC scored the best results, meaning that a small number of phases are 

preferable in these conditions. 

The worst results obtained were from the simulations with a passive low-pass filter 

and a hypothetical CCO with a smaller tuning range. These simulations scored all less 

than 65 dB SNR wise, which is a low value for a second order modulator. It is possible 

to conclude that this architecture hardly performs at reasonable conditions without an 

active filter, unless the effective tuning range of phases from the phase generator are much 

wider than the attained in this dissertation. A small tuning range of the oscillator is not 

beneficial either. The smaller the tuning range, the higher the filter gain has to be to 

compensate and maintain performance. 

This architecture is not significantly affected by the DAC elements mismatch, as 

proved in the second simulation with 1% mismatch. Of all resolutions tested, none exceed 

a 4 dB drop of SNR with the addition of mismatch. This is due to the fact that mismatch 

errors are modulated way from the signal bandwidth. 

The non-linearities of the reference oscillator tuning curve also affects the 

performance of the ADC. In all resolutions, the SNR results varied from around 76.5 dB 

to 79.5 dB. And the SNR increased as the number of phases increased, meaning that the 

proposed architecture is more resistant to non-linearities if it has more quantization levels. 

At last, some conclusions can be taken from the simulation closest to a real circuit 

implementation made in this work, with 1% mismatch in the DAC elements and non-

linear reference CCO. The SNR scores are 74.19, 77.21 and 77.72 dB, respectively, for 

the 7, 15 and 25-phase ADC. By analyzing the SNR values, the 25-phase ADC seems to 

be the best performer, followed, closely (by approx. 0.5 dB), by the 15-phase ADC. 

However, looking at their dynamic ranges in Figure 4.20 and Figure 4.15, respectively, 

the 15-phase one shows a much linear dynamic than the 25-phase ADC. For that, and 

accounting all the tests carried out in this dissertation, the 15-phase ADC is the best 
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candidate to real circuit implementation, having a nice balanced of the advantages and 

disadvantages of having average number of quantization levels, for being between the 

two extreme cases of 7 and 25-phase ADCs. 

5.2 Future Work 

The architecture proposed and studied can certainly be more explored. Either by 

complementing what has been studied in this dissertation or, for example, by innovating 

in areas like the oscillator or by increasing the order of loop. 

It would be very useful to see the influence of the phase noise in the performance 

of the architecture. This was not tested in the MATLAB/Simulink® model in this 

dissertation, what leads to other complementary work. The circuit implementation in 

Cadence software would be more accurate than translate data to a model. 

Is recommended to further optimize the oscillator, as well as designing its layout. 

In addition, other oscillators could be designed and tested.  
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Abstract—In this paper, the effects of non-linearities and 

phase noise in a voltage-controlled oscillator on the performance 

of VCO-based Continuous Time Delta-Sigma Modulator Analog-

to-Digital Converter are studied. A test circuit was implemented 

MATLAB/Simulink model and data extrapolated from two 

different 25-ring VCOs designed and simulated in Spectre 

environment. 

Keywords—sigma-delta modulator, voltage-controlled 

oscillator, VCO-based quantization, analog-to-digital converter, 

ring oscillator 

I. INTRODUCTION 

The world is becoming a “digital place”, in a way that, the 
signal processing and computational tasks are executed largely 
by digital circuits, which are simple, as single cells but they can 
be very powerful combined together to form more complex 
systems. On the other hand, contradicting, the opening 
statement of this section, the physical world is still analog and 
that is why the analog-to-digital converters (ADCs) are so 
important. 

Nowadays, intrinsic gain of the transistors is getting smaller 
and the design of high-gain analog circuits with lower power 
supplies are very challenging. The switching capacity is also 
increasing which makes it possible to increase timing 
resolution. Of course, with lower power supplies and the 
smaller sizes of transistors, the power consumption and 
occupied area by the circuits are reducing as well.  

In a typical delta-sigma (ΔΣ) modulator, the input voltage is 
sampled and quantized in voltage domain, thus, requiring 
analog circuits to process data, which could be hard to achieve, 
according with what was mentioned in the previous paragraph. 
Recently, a new approach has been widely explored where the 
use of voltage-controlled oscillators (VCOs) to transform the 
input voltage into timing information that can be quantized 
digitally. This is possible since the VCO output frequency is 
proportional to the input voltage of it. This way is possible to 
reduce the number of complex analog circuits in the processing 
chain and use more digital blocks. 

The paper is organized as follows: The overview of VCO-
based ΣΔ ADCs is presented in Section II. The tests conducted, 

and respective results are described in Section III. In Section 
IV is presented a discussion of the results and conclusions. 

II. OVERVIEW OF VCO-BASED SIGMA-DELTA ADCS 

A. Voltage-Controlled Oscillator 

A voltage-controlled oscillator (VCO) is a circuit that 
generates an oscillatory signal with a frequency controlled by 
an input voltage (Vctrl).  

There are two main types of voltage-controlled oscillators 
for integrated design, the LC oscillators and ring oscillators. In 
this chapter is shown the basics of each one as well as the most 
used option on VCO-based ΔΣ modulators.  

1) LC Oscillators 
The LC oscillators are commonly used in high frequency 

applications, typically with high quality factors. For lower 
frequencies, the inductors involved occupy larger areas than 
ring oscillators [1] which makes them not so appealing. 

2) Ring Oscillators 
In Fig. 1. is represented a typical ring oscillator, which 

consists in a series of inverters cascade connected. The 
oscillation is obtained if a phase shift of 180° in total is 
achieved to form a positive feedback. Each inverter, also called 
delay cell, has an intrinsic delay associated and the sum of all 
them is what make the circuit oscillate at a certain frequency. 
In this single-ended example an odd number of inverters has to 
be used to achieve oscillation. In a fully differential structure 
an even number of inverters can be used if the connection 
between two are inverted. The tuning is typically done by the 
voltage supply controlling the current of the inverters. 

The ring oscillator has a wide tuning range and occupies a 
very small area; however, phase noise and power consumption 
are typically higher than the LC oscillators. 

 
Fig. 1. Ring Oscillator (adapted from [2]) 



3) This work 
For this work two different ring oscillators were used, 

because they have wider tuning ranges and multiphase access 
(of each inverter) which is desirable for VCO-based ΔΣ 
modulator ADCs. Both were designed with cmos 65nm 
technology and the dimensions of the transistors can be 
consulted in Tables I. and II. 

Fig. 2. shows the first VCO topology [3] tested, a self-
biased with a tuning range smaller than the second one, but 
with lower phase noise and resistant to temperature variation. 
The original work was designed for high frequency (890 MHz) 
and for that reason some modifications to the original design 
has been made. Instead of using only four delay cells, the 
number of them was increased to 25. 

TABLE I.  TRANSISTORS’ SIZING USED IN SIMULATION OF THE SB VCO 

Device W/L 

[μm/μm] 

Device W/L 

[μm/μm] 

M1 36/1 N1 0.25/1 

M2_a, M2_b, M2_c 4/1 M3_a, M3_b, M3_c 20/1 

M4 90/1 N4 0.5/1 

M5, M6 2/1 M7, M8 2/1 

 

In Fig. 3. the second VCO structure [4] simulated in this 
work can be observed. It is a current starved 25-ring oscillator 
that has a very large tuning range and since it was used for the 
same purpose (VCO-based ΔΣM), few changes had to be 
made. 

TABLE II.  TRANSISTORS’ SIZING USED IN SIMULATION OF THE CS VCO 

Device W/L [μm/μm] Device W/L [μm/μm] 

M1_a, M1_b 9/1 M3_a, M3_b 3/1 

M2_a, M2_b 3/1 M4_a, M4_b 1/1 

B. ΔΣ Modulator ADC 

Sigma-delta modulators (Fig. 4.) are the most commonly 
used oversampling data converters. This kind of converters use 
a sampling frequency, fs, much higher than the Nyquist rate 
(twice de bandwidth of the modulator, fB), by a factor of 8 to 
512 times, usually. [5] This factor is called oversampling ratio 
(OSR) and is given by: 

 OSR  = fs / (2 × fB) (1) 

Over Nyquist rate converters, ΔΣ modulators are superior 
in the following aspects: 

� Relieve the requirements of analog circuitry, but are 
reliant on complex digital circuits, which is desirable for 
modern CMOS technologies, with less intrinsic gain and lower 
power supplies. 

� The high sample rate of the data converter shifts the 
image components far away from the bandwidth of the desired 
signal, thus, reducing the requirements of anti-aliasing filters. 

� The quantization noise power can be reduced by 
increasing the over sampling ratio (OSR) what increase the 
resolution of the ADC.  

C. VCO-based ΔΣ Modulator ADC 

The principle in this kind of modulators is to count the 
edges of the square wave generated by the VCO, since it 
produces a signal with a certain frequency depending on the 
input voltage (Vctrl). Counting the edges within a sampling 
period will provide an estimation of the frequency of the 
VCO’s signal and, consequently, and estimation of the Vctrl as 
well [6]. 

(a) 

 
(b) 

Fig. 2. Self-biased ring oscillator a) 25-ring oscillator b) delay cell 

(adapted from [3]) 

 
(a) 

 
(b) 

Fig. 3. Current Starved Ring Oscillator a) 25-ring oscillator b) delay cell 



To count the edges of the VCO signal, the phases of all 
inverters in the ring oscillator are stored in registers, so that, at 
the end of each sampling period a XOR operation is performed 
between the current phases of the oscillator and the previous 
ones, detecting the edges occurred. Adding the changes 
detected results in a quantized Vctrl, which corresponds to the 
input signal. 

Fig. 5. shows the structure of a VCO-based quantizer and 
the process of counting edges. 

In Fig. 6. is shown a block diagram and frequency-domain 
model correspondent which was used for every simulation 
conducted in this work with MATLAB. 

III. IMPACT OF VCO NON-LINEARITIES ON THE ADC 

PERFORMANCE 

The impact of non-linearities on the modulator are verified 
by various simulations with different VCOs. The goal is to test 
3 different voltage to frequency gains (KVCO), starting with a 
first gain, twice the first one and twice the second (×1, ×2 and 
×4). 

The first VCO was based on the one represented in Fig. 2., 
and the second one is based on the VCO present in Fig. 3. The 
third VCO has ideally twice the gain of the second VCO and 
was not dimensioned. 

On all tests conducted, a sinusoidal input signal with a 
frequency of 2 MHz was used. 

A. Non-Linear Tuning Curve 

The VCOs presented in this work are almost linear, 
however, all non-linearities had to be tested. The VCOs were 
dimensioned and tested and the voltage to frequency gain was 
extrapolated from simulation in Spectre environment and 
approximated by a polynomial equation of sixth order. 

1) KVCO ×1 
In Fig. 7. it is possible to verify that the KVCO of the first 

VCO is not linear, with a central frequency of 6.5 MHz and a 
voltage to frequency gain of 12.5 MHz/V approximation. The 
maximum relative error of the real tuning curve to the linear 

 
(a) 

 
(b) 

Fig. 4. ΔΣ Modulator a) block diagram b) linear z-domain model 

 
(a) 

 
(b) 

Fig. 5. VCO-based quantizer a) structure b) binary sequences (adapted 

from [6]) 

 
(a) 

 
(b) 

Fig. 6. VCO-based quantizer using the VCO frequency as output: a) block 

diagram b) linearized frequency-domain model (adapted from [6]) 



approximation is about 1%. 

This non-linearity has impact on the ADC performance and 
that can be observed in Fig.9. with the presence of more 
harmonics in the output spectrum of the ADC instead of only 
the first one like in Fig. 8. The achieved SNR is about 20.97 dB 
in the real case and 21.05 dB in the ideal one. 

2) KVCO ×2 
Fig.10. shows the non-linearity of the second VCO used, 

the central frequency is about 18 MHz and a voltage to 
frequency gain of 26.6 MHz/V. The maximum relative error of 
the real tuning curve to the linear approximation is about 2.8%. 

The Fig. 12. shows results similar to those obtained in the 
previous item, only this time there are less harmonics with high 
power. The achieved SNR is about 27.32 dB. 

The ideal case, presented in Fig. 11. scored a SNR value of 
27.46 dB. 

 
Fig. 7. Non-linearities of the first VCO (KVCO ×1) [3] 

 
Fig. 9. Output Spectrum of ADC (Real KVCO ×1) 

 
Fig. 8. Output Spectrum of ADC (Ideal KVCO ×1) 

 
Fig. 11. Output Spectrum of ADC (Ideal KVCO ×2) 

 
Fig. 10. Non-linearities of the second VCO (KVCO ×2) [4] 



3) KVCO ×4 
Fig. 13. shows the non-linearity of the third VCO used, 

which has ideally twice the KVCO of the second one, 53.2 
MHz/V while the central frequency of about 18 MHz. 

The Fig. 15. has represented the spectrum of the output of 
the ADC, which has results like the previous test but, the 
achieved SNR is about 32.58 dB. The ideal case has a SNR 
value of 33.59 and the power spectrum is present in Fig. 14. 

B. Phase Noise 

To see the impact of phase noise on the ADC performance, 
two tests with this addition were realized for every KVCO tested:  

• With voltage to frequency gain, KVCO, ideal 

• With non-linear KVCO 

In Fig, 16., Fig, 17. and Fig, 18. is showed the power 
spectrum of the output of ADC for the three KVCOs (×1, ×2 
and ×4), respectively. With the continuous blue line is 
represented the spectrum of the ADC correspondent to real 
tuning curve of the VCO. The dashed black line is representing 
the output spectrum of the ADC implemented with the linear 
approximations of the VCOs studied. The effect of the phase 
noise visible in those figures is the widening of the harmonics 
with noticeable power, reducing the SNR of the ADC. For 
example, in the previous linear cases, the fundamental 
harmonic was very sharp in the 2 MHz, which corresponds to 
the frequency of the input signal. And, in the non-linear cases 
the harmonics noticeable were also sharp. 

 For the KVCO ×1 the SNR achieved was about 13.02 dB in 
the ideal VCO implementation and 12.99 dB in the real one. 

The value of SNR obtained in the KVCO ×2 test, was about 
19.38 dB in the ideal implementation and 19.28 dB in the real 
tuning curve test. 

The last simulation (KVCO ×4) reveals that a SNR value of 
26.01 dB was achieved in the linear VCO and 25.50 dB in the 
real implementation. 

 
Fig. 13. Non-linearities of the second VCO (KVCO ×4) [4] 

 

Fig. 14. Output Spectrum of ADC (Ideal KVCO ×4) 

 
Fig. 15. Output Spectrum of ADC (Real KVCO ×4) 

 
Fig. 12. Output Spectrum of ADC (Real KVCO ×2) 



 

IV. DISCUSSION AND CONCLUSION 

Tables III., IV., V. and VI. shows a summary of the results 
obtained during the execution of the work proposed.  

TABLE III.  COMPARISON OF THE IDEAL TUNING CURVES 

Test KVCO (MHz/V) SNR (dB) 

KVCO ×1 12.5 21.05 

KVCO ×2 26.6 27.46 

KVCO ×4 53.2 33.59 

TABLE IV.  COMPARISON OF THE REAL TUNING CURVES 

Test KVCO (MHz/V) SNR (dB) 

KVCO ×1 12.5 20.97 

KVCO ×2 26.6 27.25 

KVCO ×4 53.2 32.58 

TABLE V.  COMPARISON OF THE IDEAL TUNING CURVES WITH PHASE 

NOISE ADDED 

Test KVCO (MHz/V) SNR (dB) 

KVCO ×1 12.5 13.02 

KVCO ×2 26.6 19.38 

KVCO ×4 53.2 26.01 

TABLE VI.  COMPARISON OF THE REAL TUNING CURVES WITH PHASE 

NOISE ADDED 

Test KVCO (MHz/V) SNR (dB) 

KVCO ×1 12.5 12.99 

KVCO ×2 26.6 19.28 

KVCO ×4 53.2 25.50 

 

The contributions of the non-linearities and phase noise 
have a negative impact in the performance of VCO-based ΔΣ 
ADCs. 

With higher voltage to frequency gain of the VCO, KVCO, 
the signal-to-noise ratio, SNR, is higher too resulting in a better 
final resolution of the converter.  

The phase noise has a similar behavior with ideal or non-
ideal KVCO, i.e.  the result was not significantly aggravated with 
a non-linear VCO. 
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