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Crude oil is one of the most important types of energy for the global economy, and hence it is very attractive to understand the
movement of crude oil prices. However, the sequences of crude oil prices usually show some characteristics of nonstationarity
and nonlinearity, making it very challenging for accurate forecasting crude oil prices. To cope with this issue, in this paper, we
propose a novel approach that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
and extreme gradient boosting (XGBOOST), so-called CEEMDAN-XGBOOST, for forecasting crude oil prices. Firstly, we use
CEEMDAN to decompose the nonstationary and nonlinear sequences of crude oil prices into several intrinsic mode functions
(IMFs) and one residue. Secondly, XGBOOST is used to predict each IMF and the residue individually. Finally, the corresponding
prediction results of each IMF and the residue are aggregated as the 	nal forecasting results. To demonstrate the performance of the
proposed approach, we conduct extensive experiments on the West Texas Intermediate (WTI) crude oil prices. �e experimental
results show that the proposed CEEMDAN-XGBOOST outperforms some state-of-the-art models in terms of several evaluation
metrics.

1. Introduction

As one of the most important types of energy that power the
global economy, crude oil has great impacts on every country,
every enterprise, and even every person. �erefore, it is a
crucial task for the governors, investors, and researchers to
forecast the crude oil prices accurately. However, the existing
research has shown that crude oil prices are a
ected by many
factors, such as supply and demand, interest rate, exchange
rate, speculation activities, international and political events,
climate, and so on [1, 2]. �erefore, the movement of crude
oil prices is irregular. For example, starting from about 11
USD/barrel inDecember 1998, theWTI crude oil prices grad-
ually reached the peak of 145.31 USD/barrel in July 2008, and
then the prices drastically declined to 30.28USD/barrel in the
next 	ve months because of the subprime mortgage crisis.
A
er that, the prices climbed to more than 113 USD/barrel
in April 2011, and, once again, they sharply dropped to about
26 USD/barrel in February 2016.�e movement of the crude

oil prices in the last decades has shown that the forecasting
task is very challenging, due to the characteristics of high
nonlinearity and nonstationarity of crude oil prices.

Many scholars have devoted e
orts to trying to forecast
crude oil prices accurately. �e most widely used approaches
to forecasting crude oil prices can be roughly divided into
two groups: statistical approaches and arti	cial intelligence
(AI) approaches. Recently, Miao et al. have explored the
factors of a
ecting crude oil prices based on the least absolute
shrinkage and selection operator (LASSO) model [1]. Ye et
al. proposed an approach integrating ratchet e
ect for linear
prediction of crude oil prices [3]. Morana put forward a
semiparametric generalized autoregressive conditional het-
eroskedasticity (GARCH) model to predict crude oil prices
at di
erent lag periods even without the conditional average
of historical crude oil prices [4]. Naser found that using the
dynamic model averaging (DMA) with empirical evidence is
better than linear models such as autoregressive (AR) model
and its variants [5]. Gong and Lin proposed several new
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heterogeneous autoregressive (HAR) models to forecast the
good and bad uncertainties in crude oil prices [6]. Wen et al.
also used HAR models with structural breaks to forecast the
volatility of crude oil futures [7].

Although the statistical approaches improve the accuracy
of forecasting crude oil prices to some extent, the assumption
of linearity of crude oil prices cannot be met according
to some recent research, and hence it limits the accuracy.
�erefore, a variety of AI approaches have been proposed
to capture the nonlinearity and nonstationarity of crude oil
prices in the last decades [8–11]. Chiroma et al. reviewed the
existing research associated with forecasting crude oil prices
and found that AI methodologies are attracting unprece-
dented interest from scholars in the domain of crude oil price
forecasting [8].Wang et al. proposed anAI system framework
that integrated arti	cial neural networks (ANN) and rule-
based expert system with text mining to forecast crude oil
prices, and it was shown that the proposed approach was
signi	cantly e
ective and practically feasible [9]. Barunik
and Malinska used neural networks to forecast the term
structure in crude oil futures prices [10]. Most recently,
Chen et al. have studied forecasting crude oil prices using
deep learning framework and have found that the random
walk deep belief networks (RW-DBN) model outperforms
the long short term memory (LSTM) and the random walk
LSTM (RW-LSTM) models in terms of forecasting accuracy
[11]. Other AI-methodologies, such as genetic algorithm
[12], compressive sensing [13], least square support vector
regression (LSSVR) [14], and cluster support vector machine
(ClusterSVM) [15], were also applied to forecasting crude
oil prices. Due to the extreme nonlinearity and nonstation-
arity, it is hard to achieve satisfactory results by forecasting
the original time series directly. An ideal approach is to
divide the tough task of forecasting original time series into
several subtasks, and each of them forecasts a relatively
simpler subsequence. And then the results of all subtasks
are accumulated as the 	nal result. Based on this idea, a
“decomposition and ensemble” framework was proposed and
widely applied to the analysis of time series, such as energy
forecasting [16, 17], fault diagnosis [18–20], and biosignal
analysis [21–23]. �is framework consists of three stages. In
the 	rst stage, the original time series was decomposed into
several components. Typical decomposition methodologies
include wavelet decomposition (WD), independent compo-
nent analysis (ICA) [24], variational mode decomposition
(VMD) [25], empirical mode decomposition (EMD) [2,
26] and its extension (ensemble EMD (EEMD)) [27, 28],
and complementary EEMD (CEEMD) [29]. In the second
stage, some statistical or AI-based methodologies are applied
to forecast each decomposed component individually. In
theory, any regression methods can be used to forecast the
results of each component. In the last stage, the predicted
results from all components are aggregated as the 	nal
results. Recently, various researchers have devoted e
orts
to forecasting crude oil prices following the framework of
“decomposition and ensemble.” Fan et al. put forward a novel
approach that integrates independent components analy-
sis (ICA) and support vector regression (SVR) to forecast
crude oil prices, and the experimental results veri	ed the

e
ectiveness of the proposed approach [24]. Yu et al. used
EMD to decompose the sequences of the crude oil prices
into several intrinsic mode functions (IMFs) at 	rst and
then used a three-layer feed-forward neural network (FNN)
model for predicting each IMF. Finally, the authors used
an adaptive linear neural network (ALNN) to combine all
the results of the IMFS as the 	nal forecasting output [2].
Yu et al. also used EEMD and extended extreme learning
machine (EELM) to forecast crude oil prices, following the
framework of ”decomposition and ensemble.” �e empiri-
cal results demonstrated the e
ectiveness and e�ciency of
the proposed approach [28]. Tang et al. further proposed
an improved approach integrating CEEMD and EELM for
forecasting crude oil prices, and the experimental results
demonstrated that the proposed approach outperformed all
the listed state-of-the-art benchmarks [29]. Li et al. used
EEMD to decompose raw crude oil prices into several com-
ponents and then used kernel and nonkernel sparse Bayesian
learning (SBL) to forecast each component, respectively [30,
31].

From the perspective of decomposition, although EMD
and EEMD are capable of improving the accuracy of fore-
casting crude oil prices, they still su
er “mode mixing”
and introducing new noise in the reconstructed signals,
respectively. To overcome these shortcomings, an extension
of EEMD, so-called complete EEMD with adaptive noise
(CEEMDAN), was proposed by Torres et al. [32]. Later, the
authors put forward an improved version of CEEMDAN to
obtain decomposed components with less noise and more
physical meaning [33]. �e CEEMDAN has succeeded in
wind speed forecasting [34], electricity load forecasting [35],
and fault diagnosis [36–38]. �erefore, CEEMDAN may
have the potential to forecast crude oil prices. As pointed
out above, any regression methods can be used to forecast
each decomposed component. A recently proposed machine
learning algorithm, extreme gradient boosting (XGBOOST),
can be used for both classi	cation and regression [39].
�e existing research has demonstrated the advantages of
XGBOOST in forecasting time series [40–42].

With the potential of CEEMDAN in decomposition and
XGBOOST in regression, in this paper, we aim at proposing
a novel approach that integrates CEEMDAN and XGBOOST,
namely, CEEMDAN-XGBOOST, to improve the accuracy of
forecasting crude oil prices, following the “decomposition
and ensemble” framework. Speci	cally, we 	rstly decompose
the raw crude oil price series into several components with
CEEMDAN. And then, for each component, XGBOOST
is applied to building a speci	c model to forecast the
component. Finally, all the predicted results from every
component are aggregated as the 	nal forecasting results.
�e main contributions of this paper are threefold: (1) We
propose a novel approach, so-called CEEMDAN-XGBOOST,
for forecasting crude oil prices, following the “decomposition
and ensemble” framework; (2) extensive experiments are
conducted on the publicly-accessed West Texas Intermediate
(WTI) to demonstrate the e
ectiveness of the proposed
approach in terms of several evaluation metrics; (3) we
further study the impacts of several parameter settings with
the proposed approach.
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(b) �e 	rst IMF decomposed by EMD from the above original sequence

Figure 1: An illustration of EMD.

�e remainder of this paper is organized as follows.
Section 2 describes CEEMDAN and XGBOOST. Section 3
formulates the proposed CEEMDAN-XGBOOST approach
in detail. Experimental results are reported and analyzed
in Section 4. We also discussed the impacts of parameter
settings in this section. Finally, Section 5 concludes this paper.

2. Preliminaries

2.1. EMD, EEMD and CEEMDAN. EMD was proposed by
Huang et al. in 1998, and it has been developed and applied
in many disciplines of science and engineering [26]. �e key
feature of EMD is to decompose a nonlinear, nonstationary
sequence into intrinsic mode functions (IMFs) in the spirit
of the Fourier series. In contrast to the Fourier series, they
are not simply sine or cosine functions, but rather functions
that represent the characteristics of the local oscillation
frequency of the original data. �ese IMFs need to satisfy two
conditions: (1) the number of local extrema and the number
of zero crossing must be equal or di
er at most by one and (2)
the curve of the “local mean” is de	ned as zero.

At 	rst, EMD	nds out the upper and the lower envelopes
which are computed by 	nding the local extrema of the orig-
inal sequence. �en, the local maxima (minima) are linked
by two cubic spines to construct the upper (lower) envelopes,
respectively. �e mean of these envelopes is considered as
the “local mean.” Meanwhile, the curve of this “local mean”
is de	ned as the 	rst residue, and the di
erence between
original sequence and the “local mean” is de	ned as the 	rst
IMF. An illustration of EMD is shown in Figure 1.

A
er the 	rst IMF is decomposed by EMD, there is still a
residue (the local mean, i.e., the yellow dot line in Figure 1(a))
between the IMF and the original data. Obviously, extrema
and high-frequency oscillations also exist in the residue.
And EMD decomposes the residue into another IMF and
one residue. If the variance of the new residue is not small
enough to satisfy the Cauchy criterion, EMD will repeat to

decompose new residue into another IMF and a new residue.
Finally, EMD decomposes original sequence into several
IMFs and one residue. �e di
erence between the IMF and
the residues is de	ned as

�� [�] = ��−1 [�] − ���� [�] , � = 2, . . . , �, (1)

where ��[�] is the k-th residue at the time t and K is the total
number of IMFs and residues.

Subsequently, Huang et al. thought that EMD could not
extract the local features from the mixed features of the
original sequence completely. One of the reasons for this
is the frequent appearance of the mode mixing. �e mode
mixing can be de	ned as the situation that similar pieces
of oscillations exist at the same corresponding position in
di
erent IMFs, which causes that a single IMF has lost
its physical meanings. What is more, if one IMF has this
problem, the following IMFs cannot avoid it either. To solve
this problem, Wu and Huang extended EMD to a new
version, namely, EEMD, that adds white noise to the original
time series and performs EMDmany times [27]. Given a time
series and corresponding noise, the new time series can be
expressed as

	� [�] = 	 [�] + 
� [�] , (2)

where 	[�] stands for the original data and 
�[�] is the i-th
white noise (i=1,2,. . .,N, and N is the times of performing
EMD).

�en, EEMD decomposes every 	�[�] into �����[�]. In
order to get the real k-th IMF, ����, EEMD calculates the

average of the �����[�]. In theory, because the mean of the
white noise is zero, the e
ect of the white noise would be
eliminated by computing the average of �����[�], as shown
in

���� = 1�
�∑
�=1
����� [�] . (3)
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However, Torres et al. found that, due to the limited
number of 	�[�] in empirical research, EEMD could not com-
pletely eliminate the in�uence of white noise in the end. For
this situation, Torres et al. put forward a new decomposition
technology, CEEMDAN, on the basis of EEMD [32].

CEEMDAN decomposes the original sequence into the
	rst IMF and residue, which is the same as EMD. �en,
CEEMDAN gets the second IMF and residue, as shown in

���2 = 1�
�∑
�=1

1 (�1 [�] + �1
1 (
� [�])) , (4)

�2 [�] = �1 [�] − ���2, (5)

where 
1(.) stands for the 	rst IMF decomposed from the
sequence and �� is used to set the signal-to-noise ratio (SNR)
at each stage.

In the same way, the k-th IMF and residue can be
calculated as

���� = 1�
�∑
�=1

1 (��−1 [�] + ��−1
�−1 (
� [�])) , (6)

�� [�] = ��−1 [�] − ����, (7)

Finally, CEEMDAN gets several IMFs and computes the
residue, as shown in

R [�] = x [�] − �∑
�=1

����. (8)

�e sequences decomposed by EMD, EEMD, and CEEM-
DAN satisfy (8). Although CEEMDAN can solve the prob-
lems that EEMD leaves, it still has two limitations: (1) the
residual noise that themodels contain and (2) the existence of
spurious modes. Aiming at dealing with these issues, Torres
et al. proposed a new algorithm to improve CEEMDAN [33].

Compared with the original CEEMDAN, the improved
version obtains the residues by calculating the local means.
For example, in order to get the 	rst residue shown in (9),

it would compute the local means of N realizations 	�[�] =	[�] + �0
1(
�[�])(i=1, 2,..., N).

�1 [�] = 1�
�∑
�=1

�(	� [�]) , (9)

whereM(.) is the local mean of the sequence.
�en, it can get the 	rst IMF shown in

���1 = 	 [�] − �1 [�] . (10)

For the k-th residue and IMF, they can be computed as
(11) and (12), respectively:

�� [�] = 1�
�∑
�=1

�(��−1 [�] + ��−1
k (
� [�])) , (11)

���� = ��−1 [�] − �� [�] . (12)

�e authors have demonstrated that the improved
CEEMDAN outperformed the original CEEMDAN in signal
decomposition [33]. In what follows, we will refer to the
improved version of CEEMDAN as CEEMDAN, unless
otherwise stated.WithCEEMDAN, the original sequence can
be decomposed into several IMFs and one residue, that is, the
tough task of forecasting the raw time series, can be divided
into forecasting several simpler subtasks.

2.2. XGBOOST. Boosting is the ensemble method that can
combine several weak learners into a strong learner as

�̂� = 0 (	�) = �∑
�=1

�� (	�) , (13)

where ��(.) is a weak learner and K is the number of weak
learners.

When it comes to the tree boosting, its learners are
decision trees which can be used for both regression and
classi	cation.

To a certain degree, XGBOOST is considered as tree
boost, and its core is the Newton boosting instead of Gradient
Boosting, which 	nds the optimal parameters by minimizing
the loss function (0), as shown in

� (0) = �∑
�=1

� (�̂�, ��) + �∑
�=1

Ω(��) , (14)

Ω(��) = �� + 12� ‖�‖2 , (15)

where Ω(��) is the complexity of the k-th tree model, n is
the sample size, T is the number of leaf nodes of the decision
trees, � is the weight of the leaf nodes, � controls the extent
of complexity penalty for tree structure on T, and � controls
the degree of the regularization of ��.

Since it is di�cult for the tree ensemble model to mini-
mize loss function in (14) and (15) with traditional methods
in Euclidean space, the model uses the additive manner [43].
It adds �� that improves the model and forms the new loss
function as

�� = �∑
�=1
� (��, �̂�(�−1) + �� (	�)) + Ω (��) , (16)

where �̂�(�) is the prediction of the i-th instance at the t-th
iteration and �� is the weaker learner at the t-th iteration.

�en, Newton boosting performs a Taylor second-order

expansion on the loss function �(��, �̂�(�−1) + ��(	�)) to obtain����(	�) + (1/2)ℎ��2� (	�), because the second-order approxi-
mation helps to minimize the loss function conveniently and
quickly [43].�e equations of ��, ℎ� and the new loss function
are de	ned, respectively, as

�� = !� (��, �̂�(�−1))�̂�(�−1) , (17)
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ℎ� = !2� (��, �̂�(�−1))�̂�(�−1) , (18)

� � = �∑
�=1

[� (��, �̂�(�−1)) + ���� (	�) + 12ℎ��2� (	�)]
+ Ω (��) .

(19)

Assume that the sample set �� in the leaf node j is de	ned
as ��={$ | %(	�) = &}, where q(	�) represents the tree structure
from the root to the leaf node j in the decision tree, (19) can
be transformed into the following formula, as show in

�̃(�) = �∑
�=1

[���� (	�) + 12ℎ��2� (	�)] + �� + 12�
	∑
�=1

�2�
= 	∑
�=1

[[(∑
�∈��

��)�� + 12 (∑
�∈��

ℎ� + 5)�2�]] + ��.
(20)

�e formula for estimating the weight of each leaf in the
decision tree is formulated as

�∗� = − ∑�∈�� ��∑�∈�� ℎ� + 5 , (21)

According to (21), as for the tree structure q, the loss
function at the leaf node j can be changed as

�̃(�) (%) = −12
	∑
�=1

(∑�∈�� ��)2∑�∈�� ℎ� + 5 + ��, (22)

�erefore, the equation of the information gain a
er
branching can be de	ned as

;5$<
= 12 [[[

(∑�∈��� ��)2∑�∈��� ℎ� + 5 + (∑�∈��� ��)2∑�∈��� ℎ� + 5 − (∑�∈�� ��)2∑�∈�� ℎ� + 5]]]− �,
(23)

where ��
 and ��� are the sample sets of the le
 and right leaf
node, respectively, a
er splitting the leaf node j.

XGBOOST branches each leaf node and constructs basic
learners by the criterion of maximizing the information gain.

With the help of Newton boosting, the XGBOOST
can deal with missing values by adaptively learning. To a
certain extent, XGBOOST is based on the multiple additive
regression tree (MART), but it can get better tree structure by
learning with Newton boosting. In addition, XGBOOST can
also subsample among columns, which reduces the relevance
of each weak learner [39].

3. The Proposed CEEMDAN-XGBOOST
Approach

From the existing literature, we can see that CEEMDAN has
advantages in time series decomposition, while XGBOOST

does well in regression. �erefore, in this paper, we inte-
grated these two methods and proposed a novel approach,
so-called CEEMDAN-XGBOOST, for forecasting crude oil
prices. �e proposed CEEMDAN-XGBOOST includes three
stages: decomposition, individual forecasting, and ensemble.
In the 	rst stage, CEEMDAN is used to decompose the raw
series of crude oil prices into k+1 components, including
k IMFs and one residue. Among the components, some
show high-frequency characteristics while the others show
low-frequency ones of the raw series. In the second stage,
for each component, a forecasting model is built using
XGBOOST, and then the built model is applied to forecast
each component and then get an individual result. Finally, all
the results from the components are aggregated as the 	nal
result. Although there exist a lot of methods to aggregate
the forecasting results from components, in the proposed
approach, we use the simplest way, i.e., addition, to sum-
marize the results of all components. �e �owchart of the
CEEMDAN-XGBOOST is shown in Figure 2.

From Figure 2, it can be seen that the proposed
CEEMDAN-XGBOOST based on the framework of “decom-
position and ensemble” is also a typical strategy of “divide
and conquer”; that is, the tough task of forecasting crude oil
prices from the raw series is divided into several subtasks of
forecasting from simpler components. Since the raw series
is extremely nonlinear and nonstationary while each decom-
posed component has a relatively simple form for forecasting,
the CEEMDAN-XGBOOST has the ability to achieve higher
accuracy of forecasting crude oil prices. In short, the advan-
tages of the proposed CEEMDAN-XGBOOST are threefold:(1) the challenging task of forecasting crude oil prices is
decomposed into several relatively simple subtasks; (2) for
forecasting each component, XGBOOST can build models
with di
erent parameters according to the characteristics of
the component; and (3) a simple operation, addition, is used
to aggregate the results from subtasks as the 	nal result.

4. Experiments and Analysis

4.1. Data Description. To demonstrate the performance of
the proposed CEEMDAN-XGBOOST, we use the crude
oil prices from the West Texas Intermediate (WTI) as
experimental data (the data can be downloaded from
https://www.eia.gov/dnav/pet/hist/RWTCD.htm). We use
the daily closing prices covering the period from January 2,
1986, to March 19, 2018, with 8123 observations in total for
empirical studies. Among the observations, the 	rst 6498
ones from January 2, 1986, to September 21, 2011, accounting
for 80% of the total observations, are used as training
samples, while the remaining 20% ones are for testing. �e
original crude oil prices are shown in Figure 3.

We perform multi-step-ahead forecasting in this paper.
For a given time series 	� (� = 1, 2, . . . , �), the m-step-ahead
forecasting for 	�+� can be formulated as	̂�+� = � (	�−(�−1), 	�−(�−2), . . . , 	�−1, 	�) , (24)

where 	̂�+� is the m-step-ahead predicted result at time t, f is
the forecasting model, 	� is the true value at time i, and l is
the lag order.
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Figure 3: �e original crude oil prices of WTI.

For SVR and FNN, we normalize each decomposed com-
ponent before building the model to forecast the component
individually. In detail, the normalization process can be
de	ned as

	�� = 	� − AB , (25)

where 	�� is the normalized series of crude oil prices series, 	�
is the data before normalization, A is the mean of 	�, and B is
the standard deviation of 	�. Meanwhile, since normalization
is not necessary for XGBOOST and ARIMA, for models with
these two algorithms, we build forecasting models from each
of the decomposed components directly.
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4.2. Evaluation Criteria. When we evaluate the accuracy of
the models, we focus on not only the numerical accuracy
but also the accuracy of forecasting direction. �erefore, we
select the root-mean-square error (RMSE) and the mean
absolute error (MAE) to evaluate the numerical accuracy of
the models. Besides, we use directional statistic (Dstat) as the
criterion for evaluating the accuracy of forecasting direction.
�e RMSE, MAE, and Dstat are de	ned as

RMSE = √ 1�
�∑
�=1

(�� − �̂�)2, (26)

MAE = 1� ( �∑
�=1

EEEE�� − �̂�EEEE) , (27)

Dstat = ∑��=2 G�� − 1 ,
G� = {{{

1, (�� − ��−1) (�̂� − �̂�−1) > 0
0, (�� − ��−1) (�̂� − �̂�−1) < 0,

(28)

where �� is the actual crude oil prices at the time t,�̂� is the
prediction, and N is the size of the test set.

In addition, we take the Wilcoxon signed rank test
(WSRT) for proving the signi	cant di
erences between the
forecasts of the selectedmodels [44].�eWSRT is a nonpara-
metric statistical hypothesis test that can be used to evaluate
whether the population mean ranks of two predictions from
di
erent models on the same sample di
er. Meanwhile, it is
a paired di
erence test which can be used as an alternative to
the paired Student t-test. �e null hypothesis of the WSRT
is whether the median of the loss di
erential series d(t) =
g(O�(t)) − g(O�(t)) is equal to zero or not, where O�(t) and O�(t)
are the error series of model a and model b respectively, and
g(.) is a loss function. If the p value of pairs of models is below
0.05, the test rejects the null hypothesis (there is a signi	cant
di
erence between the forecasts of this pair of models) under
the con	dence level of 95%. In this way, we can prove that
there is a signi	cant di
erence between the optimal model
and the others.

However, the criteria de	ned above are global. If some
singular points exist, the optimal model chosen by these
criteria may not be the best one. �us, we make the model
con	dence set (MCS) [31, 45] in order to choose the optimal
model convincingly.

In order to calculate the p-value of the statistics accurately,
the MCS performs bootstrap on the prediction series, which
can so
en the impact of the singular points. For the j-th
model, suppose that the size of a bootstrapped sample is
T, and the t-th bootstrapped sample has the loss functions
de	ned as

��,� = 1�
ℎ+	∑
�=ℎ+1

⌊�� − �̂�⌋ , (29)

Suppose that a set M0={mi, i = 1, 2, 3, . . . , n} that
contains n models, for any two models j and k, the relative
values of the loss between these two models can be de	ned as

G�,�,� = ��,� − ��,�, (30)

According to the above de	nitions, the set of superior
models can be de	ned as

�∗ ≡ {T� ∈ M0 : 
 (G�,�,�) ≤ 0, ∀T� ∈ M0} , (31)

where E(.) represents the average value.
�e MCS repeatedly performs the signi	cant test in

M0. At each time, the worst prediction model in the set is
eliminated. In the test, the hypothesis is the null hypothesis
of equal predictive ability (EPA), de	ned as

Z0 : 
 (G�,�,�) = 0, ∀T�, T� ∈ � ⊂ M0 (32)

�e MCS mainly depends on the equivalence test and
elimination criteria. �e speci	c process is as follows.

Step 1. AssumingM=�0, at the level of signi	cance �, use the
equivalence test to test the null hypothesisZ0,�.
Step 2. If it accepts the null hypothesis and then it de	nes�∗1−� = �, otherwise it eliminates the model which rejects
the null hypothesis from M according to the elimination
criteria. �e elimination will not stop until there are not any
models that reject the null hypothesis in the setM. In the end,
the models in�∗1−� are thought as surviving models.

Meanwhile, the MCS has two kinds of statistics that can
be de	ned as

�� = max
�,�∈�

EEEEE��,�EEEEE , (33)

��� = max
�,�∈M

�2�,�, (34)

��,� = G�,�√var (G�,�) , (35)

G�,� = 1�
ℎ+	∑
�=ℎ+1

G�,�,�, (36)

where T� and ��� stand for the range statistics and the
semiquadratic statistic, respectively, and both statistics are
based on the t-statistics as shown in (35)-(36). �ese two
statistics (T� and ���) are mainly to remove the model whose
p-value is less than the signi	cance level �. When the p-value
is greater than the signi	cance level�, themodels can survive.
�e larger the p-value, the more accurate the prediction of
the model.When the p-value is equal to 1, it indicates that the
model is the optimal forecasting model.

4.3. Parameter Settings. To test the performance of
XGBOOST and CEEMDAN-XGBOOST, we conduct
two groups of experiments: single models that forecast crude
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Table 1: �e ranges of the parameters for XGBOOST by grid search.

Parameter Description range

Booster Booster to use. {‘gblinear’, ‘gbtree’}
N estimators Number of boosted trees. {100,200,300,400,500}
Max depth Maximum tree depth for base learners. {3,4,5,6,7,8}
Min child weight Maximum delta step we allow each tree’s weight estimation to be. {1,2,3,4,5,6}
Gamma Minimum loss reduction required to make a further partition on a leaf node of the tree. {0.01, 0.05,0.1,0.2,0.3 }
Subsample Subsample ratio of the training instance. {0.6,0.7,0.8,0.9,1}
Colsample Subsample ratio of columns when constructing each tree. {0.6,0.7,0.8,0.9,1}
Reg alpha L1 regularization term on weights {0.01,0.05,0.1}
Reg lambda L2 regularization term on weights {0.01,0.05,0.1}
Learning rate Boosting learning rate {0.01,0.05,0.07,0.1,0.2}

oil prices with original sequence, and ensemble models that
forecast crude oil prices based on the “decomposition and
ensemble” framework.

For single models, we compare XGBOOST with one
statistical model, ARIMA, and two widely used AI-models,
SVR and FNN. Since the existing research has shown
that EEMD signi	cantly outperforms EMD in forecasting
crude oil prices [24, 31], in the experiments, we only
compare CEEMDAN with EEMD. �erefore, we com-
pare the proposed CEEMDAN-XGBOOST with EEMD-
SVR, EEMD-FNN, EEMD-XGBOOST, CEEMDAN-SVR,
and CEEMDAN-FNN.

For ARIMA, we use the Akaike information criterion
(AIC) [46] to select the parameters (p-d-q). For SVR, we
use RBF as kernel function and use grid search to opti-

mize C and gamma in the ranges of 2{0,1,2,3,4,5,6,7,8} and2{−9,−8,−7,−6,−5,−4,−3,−2,−1,0}, respectively. We use one hidden
layer with 20 nodes for FNN.We use a grid search to optimize
the parameters for XGBOOST; the search ranges of the
optimized parameters are shown in Table 1.

We set 0.02 and 0.05 as the standard deviation of the
added white noise and set 250 and 500 as the number
of realizations of EEMD and CEEMDAN, respectively. �e
decomposition results of the original crude oil prices by
EEMD and CEEMDAN are shown in Figures 4 and 5,
respectively.

It can be seen from Figure 4 that, among the components
decomposed byEEMD, the 	rst six IMFs show characteristics
of high frequency while the remaining six components show
characteristics of low frequency. However, regarding the
components by CEEMDAN, the 	rst seven ones show clear
high-frequency and the last four show low-frequency, as
shown in Figure 5.

�e experiments were conducted with Python 2.7 and
MATLAB 8.6 on a 64-bit Windows 7 with 3.4 GHz I7 CPU
and 32 GB memory. Speci	cally, we run FNN and MCS
with MATLAB, and, for the remaining work, we use Python.
Regarding XGBoost, we used a widely used Python pack-
age (https://xgboost.readthedocs.io/en/latest/python/) in the
experiments.

Table 2:�e RMSE, MAE, and Dstat by single models with horizon
= 1, 3, and 6.

Horizon Model RMSE MAE Dstat

1

XGBOOST 1.2640 0.9481 0.4827

SVR 1.2899 0.9651 0.4826

FNN 1.3439 0.9994 0.4837

ARIMA 1.2692 0.9520 0.4883

3

XGBOOST 2.0963 1.6159 0.4839

SVR 2.2444 1.7258 0.5080

FNN 2.1503 1.6512 0.4837

ARIMA 2.1056 1.6177 0.4901

6

XGBOOST 2.9269 2.2945 0.5158

SVR 3.1048 2.4308 0.5183

FNN 3.0803 2.4008 0.5028

ARIMA 2.9320 2.2912 0.5151

4.4. Experimental Results. In this subsection, we use a 	xed
value 6 as the lag order, andwe forecast crude oil prices with 1-
step-ahead, 3-step-ahead, and 6-step-ahead forecasting; that
is to say, the horizons for these three forecasting tasks are 1, 3,
and 6, respectively.

4.4.1. Experimental Results of Single Models. For single mod-
els, we compare XGBOOST with state-of-the-art SVR, FNN,
and ARIMA, and the results are shown in Table 2.

It can be seen from Table 2 that XGBOOST outperforms
other models in terms of RMSE and MAE with horizons 1
and 3. For horizon 6, XGBOOST achieves the best RMSE and
the second best MAE, which is slightly worse than that by
ARIMA. For horizon 1, FNNachieves theworst results among
the four models; however, for horizons 3 and 6, SVR achieves
the worst results. Regarding Dstat, none of the models can
always outperform others, and the best result of Dstat is
achieved by SVR with horizon 6. It can be found that the
RMSE and MAE values gradually increase with the increase
of horizon. However, the Dstat values do not show such
discipline. All the values of Dstat are around 0.5, i.e., from
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Figure 4: �e IMFs and residue of WTI crude oil prices by EEMD.

0.4826 to 0.5183, which are very similar to the results of
random guesses, showing that it is very di�cult to accurately
forecast the direction of the movement of crude oil prices
with raw crude oil prices directly.

To further verify the advantages of XGBOOST over other
models, we report the results by WSRT and MCS, as shown
in Tables 3 and 4, respectively. As for WSRT, the p-value
between XGBOOST and other models except ARIMA is
below 0.05, which means that there is a signi	cant di
erence
among the forecasting results of XGBOOST, SVR, and FNN
in population mean ranks. Besides, the results of MCS show
that the p-value of�� and��� of XGBOOST is always equal to
1.000 and prove that XGBOOST is the optimal model among

Table 3:Wilcoxon signed rank test between XGBOOST, SVR, FNN,
and ARIMA.

XGBOOST SVR FNN ARIMA

XGBOOST 1 4.0378e-06 2.2539e-35 5.7146e-01

SVR 4.0378e-06 1 4.6786e-33 0.7006

FNN 2.2539e-35 4.6786e-33 1 6.9095e-02

ARIMA 5.7146e-01 0.7006 6.9095e-02 1

all the models in terms of global errors and most local errors
of di
erent samples obtained by bootstrap methods in MCS.
According to MCS, the p-values of �� and ��� of SVR on
the horizon of 3 are greater than 0.2, so SVR becomes the
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Figure 5: �e IMFs and residue of WTI crude oil prices by CEEMDAN.

Table 4: MCS between XGBOOST, SVR, FNN, and ARIMA.

HORIZON=1 HORIZON=3 HORIZON=6�� ��� �� ��� �� ���
XGBOOST 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SVR 0.0004 0.0004 0.4132 0.4132 0.0200 0.0200

FNN 0.0002 0.0002 0.0248 0.0538 0.0016 0.0022

ARIMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

survival and the second best model on this horizon. When
it comes to ARIMA, ARIMA almost performs as good as
XGBOOST in terms of evaluation criteria of global errors
but it does not pass the MCS. It indicates that ARIMA does
not perform better than other models in most local errors of
di
erent samples.

4.4.2. Experimental Results of Ensemble Models. With EEMD
or CEEMDAN, the results of forecasting the crude oil prices
by XGBOOST, SVR, and FNN with horizons 1, 3, and 6, are
shown in Table 5.

It can be seen from Table 5 that the RMSE and MAE
values of the CEEMDAN-XGBOOST are the lowest ones
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Table 5: �e RMSE, MAE, and Dstat by the models with EEMD or
CEEMDAN.

Horizon Model RMSE MAE Dstat

1

CEEMDAN-XGBOOST 0.4151 0.3023 0.8783

EEMD-XGBOOST 0.9941 0.7685 0.7109

CEEMDAN-SVR 0.8477 0.7594 0.9054

EEMD-SVR 1.1796 0.9879 0.8727

CEEMDAN-FNN 1.2574 1.0118 0.7597

EEMD-FNN 2.6835 1.9932 0.7361

3

CEEMDAN-XGBOOST 0.8373 0.6187 0.6914

EEMD-XGBOOST 1.4007 1.0876 0.6320

CEEMDAN-SVR 1.2399 1.0156 0.7092

EEMD-SVR 1.2366 1.0275 0.7092

CEEMDAN-FNN 1.2520 0.9662 0.7061

EEMD-FNN 1.2046 0.8637 0.6959

6

CEEMDAN-XGBOOST 1.2882 0.9831 0.6196

EEMD-XGBOOST 1.7719 1.3765 0.6165

CEEMDAN-SVR 1.3453 1.0296 0.6683

EEMD-SVR 1.3730 1.1170 0.6485

CEEMDAN-FNN 1.8024 1.3647 0.6422

EEMD-FNN 2.7786 2.0495 0.6337

among those by all methods with each horizon. For example,
with horizon 1, the values of RMSE and MAE are 0.4151 and
0.3023,which are far less than the second values of RMSE and
MAE, i.e., 0.8477 and 0.7594, respectively. With the horizon
increases, the corresponding values of each model increase,
in terms of RMSE and MAE. However, the CEEMDAN-
XGBOOST still achieves the lowest values of RMSE andMAE
with each horizon. Regarding the values of Dstat, all the
values are far greater than those by random guesses, showing
that the “decomposition and ensemble” framework is e
ective
for directional forecasting. Speci	cally, the values of Dstat
are in the range between 0.6165 and 0.9054. �e best Dstat
values in all horizons are achieved by CEEMDAN-SVR or
EEMD-SVR, showing that, among the forecasters, SVR is the
best one for directional forecasting, although corresponding
values of RMSE and MAE are not the best. As for the
decomposition methods, when the forecasters are 	xed,
CEEMDAN outperforms EEMD in 8, 8, and 8 out of 9 cases
in terms of RMSE, MAE, and Dstat, respectively, showing
the advantages of CEEMDAN over EEMD. Regarding the
forecasters, when combined with CEEMDAN, XGBOOST is
always superior to other forecasters in terms of RMSE and
MAE. However, when combined with EEMD, XGBOOST
outperforms SVR and FNN with horizon 1, and FNN with
horizon 6 in terms of RMSE and MAE. With horizons 1
and 6, FNN achieves the worst results of RMSE and MAE.
�e results also show that good values of RMSE usually are
associated with good values of MAE. However, good values
of RMSE or MAE do not always mean good Dstat directly.

For the ensemble models, we also took aWilcoxon signed
rank test and an MCS test based on the errors of pairs of
models. We set 0.2 as the level of signi	cance in MCS, and
0.05 as the level of signi	cance in WSRT. �e results are
shown in Tables 6 and 7.

From these two tables, it can be seen that, regarding
the results of WSRT, the p-value between CEEMDAN-
XGBOOST and any other models except EEMD-FNN are
below 0.05, demonstrating that there is a signi	cant di
er-
ence on the population mean ranks between CEEMDAN-
XGBOOST and any other models except EEMD-FNN.What
is more, the MCS shows that the p-value of �� and ���
of CEEMDAN-XGBOOST is always equal to 1.000 and
demonstrates that CEEMDAN-XGBOOST is the optimal
model among all models in terms of global errors and local
errors.Meanwhile, the p-values of�� and��� of EEMD-FNN
are greater than othermodels except CEEMDAN-XGBOOST
and become the second best model with horizons 3 and 6
in MCS. Meanwhile, with the horizon 6, the CEEMDAN-
SVR is also the second best model. Besides, the p-values of�� and ��� of EEMD-SVR and CEEMDAN-SVR are up to
0.2 and they become the surviving models with horizon 6 in
MCS.

From the results of single models and ensemble models,
we can draw the following conclusions: (1) single models
usually cannot achieve satisfactory results, due to the non-
linearity and nonstationarity of raw crude oil prices. As
a single forecaster, XGBOOST can achieve slightly better
results than some state-of-the-art algorithms; (2) ensemble
models can signi	cantly improve the forecasting accuracy in
terms of several evaluation criteria, following the “decom-
position and ensemble” framework; (3) as a decomposition
method, CEEMDAN outperforms EEMD in most cases; (4)
the extensive experiments demonstrate that the proposed
CEEMDAN-XGBOOST is promising for forecasting crude
oil prices.

4.5. Discussion. In this subsection, we will study the impacts
of several parameters related to the proposed CEEMDAN-
XGBOOST.

4.5.1.	e Impact of the Number of Realizations in CEEMDAN.

In (2), it is shown that there are N realizations 	�[�] in
CEEMDAN. We explore how the number of realizations in
CEEMDAN can in�uence on the results of forecasting crude
oil prices by CEEMDAN-XGBOOST with horizon 1 and lag
6. And we set the number of realizations in CEEMDAN in
the range of {10,25,50,75,100,250,500,750,1000}. �e results
are shown in Figure 6.

It can be seen from Figure 6 that, for RMSE and MAE,
the bigger the number of realizations is, the more accurate
results the CEEMDAN-XGBOOST can achieve. When the
number of realizations is less than or equal to 500, the values
of both RMSE and MAE decrease with increasing of the
number of realizations. However, when the number is greater
than 500, these two values are increasing slightly. Regarding
Dstat, when the number increases from 10 to 25, the value of
Dstat increases rapidly, and then it increases slowly with the
number increasing from 25 to 500. A
er that, Dstat decreases
slightly. It is shown that the value of Dstat reaches the top
values with the number of realizations 500. �erefore, 500
is the best value for the number of realizations in terms of
RMSE, MAE, and Dstat.
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Table 6: Wilcoxon signed rank test between XGBOOST, SVR, and FNN with EEMD or CEEMDAN.

CEEMDAN-
XGBOOST

EEMD-
XGBOOST

CEEMDAN-
SVR

EEMD-
SVR

CEEMDAN-
FNN

EEMD-
FNN

CEEMDAN-XGBOOST 1 3.5544e-05 1.8847e-50 0. 0028 1.6039e-187 0.0726

EEMD-XGBOOST 3.5544e-05 1 4.5857e-07 0. 3604 8.2912e-82 0.0556

CEEMDAN-SVR 1.8847e-50 4.5857e-07 1 4.9296e-09 5.7753e-155 8.6135e-09

EEMD-SVR 0.0028 0. 3604 4.9296e-09 1 2.5385e-129 0.0007

CEEMDAN-FNN 1.6039e-187 8.2912e-82 5.7753e-155
2.5385e-

129
1 8.1427e-196

EEMD-FNN 0.0726 0.0556 8.6135e-09 0.0007 8.1427e-196 1

Table 7: MCS between XGBOOST, SVR, and FNN with EEMD or CEEMDAN.

HORIZON=1 HORIZON=3 HORIZON=6�� ��� �� ��� �� ���
CEEMDAN-XGBOOST 1 1 1 1 1 1

EEMD-XGBOOST 0 0 0 0 0 0.0030

CEEMDAN-SVR 0 0.0002 0.0124 0.0162 0. 8268 0.8092

EEMD-SVR 0 0 0.0008 0.004 0.7872 0.7926

CEEMDAN-FNN 0 0 0.0338 0.0532 0.2924 0.3866

EEMD-FNN 0 0.0002 0.4040 0.4040 0. 8268 0.8092

4.5.2. 	e Impact of the Lag Orders. In this section, we
explore how the number of lag orders impacts the prediction
accuracy of CEEMDAN-XGBOOST on the horizon of 1. In
this experiment, we set the number of lag orders from 1 to 10,
and the results are shown in Figure 7.

According to the empirical results shown in Figure 7, it
can be seen that as the lag order increases from 1 to 2, the
values of RMSE andMAEdecrease sharply while that of Dstat
increases drastically. A
er that, the values of RMSE of MAE
remain almost unchanged (or increase very slightly) with
the increasing of lag orders. However, for Dstat, the value
increases sharply from 1 to 2 and then decreases from 2 to
3. A
er the lag order increases from 3 to 5, the Dstat stays
almost stationary. Overall, when the value of lag order is up
to 5, it reaches a good tradeo
 among the values of RMSE,
MAE, and Dstat.

4.5.3. 	e Impact of the Noise Strength in CEEMDAN. Apart
from the number of realizations, the noise strength in
CEEMDAN, which stands for the standard deviation of the
white noise in CEEMDAN, also a
ects the performance of
CEEMDAN-XGBOOST. �us, we set the noise strength in
the set of {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07} to explore
how the noise strength in CEEMDAN a
ects the prediction
accuracy of CEEMDAN-XGBOOST on a 	xed horizon 1 and
a 	xed lag 6.

As shown in Figure 8, when the noise strength in CEEM-
DAN is equal to 0.05, the values of RMSE, MAE and Dstat
achieve the best results simultaneously. When the noise
strength is less than or equal to 0.05 except 0.03, the values
of RMSE, MAE and Dstat become better and better with the
increase of the noise strength. However, when the strength
is greater than 0.05, the values of RMSE, MAE and Dstat

become worse and worse. �e 	gure indicates that the noise
strength has a great impact on forecasting results, and an ideal
range for it is about 0.04-0.06.

5. Conclusions

In this paper, we propose a novelmodel, namely, CEEMDAN-
XGBOOST, to forecast crude oil prices. At 	rst, CEEMDAN-
XGBOOST decomposes the sequence of crude oil prices into
several IMFs and a residue with CEEMDAN. �en, it fore-
casts the IMFs and the residue with XGBOOST individually.
Finally, CEEMDAN-XGBOOST computes the sum of the
prediction of the IMFs and the residue as the 	nal forecasting
results. �e experimental results show that the proposed
CEEMDAN-XGBOOST signi	cantly outperforms the com-
pared methods in terms of RMSE and MAE. Although the
performance of the CEEMDAN-XGBOOST on forecasting
the direction of crude oil prices is not the best, theMCS shows
that the CEEMDAN-XGBOOST is still the optimal model.
Meanwhile, it is proved that the number of the realizations,
lag, and the noise strength for CEEMDAN are the vital
factors which have great impacts on the performance of the
CEEMDAN-XGBOOST.

In the future, we will study the performance of the
CEEMDAN-XGBOOST on forecasting crude oil prices with
di
erent periods. We will also apply the proposed approach
for forecasting other energy time series, such as wind speed,
electricity load, and carbon emissions prices.

Data Availability

�e data used to support the 	ndings of this study are
included within the article.
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