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In this paper, we study a mathematical model of cardiac tissue based on explicit

representation of individual cells. In this EMI model, the extracellular (E) space,

the cell membrane (M), and the intracellular (I) space are represented as separate

geometrical domains. This representation introduces modeling flexibility needed for

detailed representation of the properties of cardiac cells including their membrane. In

particular, we will show that the model allows ion channels to be non-uniformly distributed

along the membrane of the cell. Such features are difficult to include in classical

homogenized models like the monodomain and bidomain models frequently used in

computational analyses of cardiac electrophysiology. The EMI model is solved using

a finite difference method (FDM) and two variants of the finite element method (FEM).

We compare the three schemes numerically, reporting on CPU-efforts and convergence

rates. Finally, we illustrate the distinctive capabilities of the EMI model compared

to classical models by simulating monolayers of cardiac cells with heterogeneous

distributions of ionic channels along the cell membrane. Because of the detailed

representation of every cell, the computational problems that result from using the

EMI model are much larger than for the classical homogenized models, and thus

represent a computational challenge. However, our numerical simulations indicate

that the FDM scheme is optimal in the sense that the computational complexity

increases proportionally to the number of cardiac cells in the model. Moreover, we

present simulations, based on systems of equations involving ∼117 million unknowns,

representing up to ∼16,000 cells. We conclude that collections of cardiac cells can be

simulated using the EMI model, and that the EMI model enable greater modeling flexibility

than the classical monodomain and bidomain models.

Keywords: transmembrane potential, finite difference method, finite element method, cell modeling, conduction

velocity

1. INTRODUCTION

The pumping function of the heart is governed by an electrochemical wave traversing the entire
cardiac muscle resulting in the muscle’s synchronized contraction. This electrochemical wave has
been subject to intense study over many decades and mathematical models have played an essential
role in understanding its properties. However, these models are based on homogenization of the
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cardiac tissue, which imposes limitations on the level of detail
that can be studied by the models. For instance, the details of
the dynamics surrounding a single cell are difficult to study using
classical homogenizedmodels simply because the single cell is not
present in such models.

In this paper, we consider an emerging mathematical
modeling framework for representing and simulating excitable
cells in general and cardiac cells in particular. In this framework,
the extracellular space, the cell membranes, and the intracellular
spaces are explicitly represented as separate physical and
geometrical objects. The state variables are the extracellular,
membrane, and intracellular potentials defined over the
corresponding domains. We refer to this framework as the EMI
(Extracellular-Membrane-Intracellular) model. This approach
has been applied in several earlier papers (e.g., [1–7]), which
used the EMI framework (or related approaches) for detailed
simulations of a single cell or a small number of cells. Indeed,
the presentation here is very much motivated by the formulation
presented by Stinstra et al. [5] and by Agudelo-Toro and Neef
[4]. Furthermore, the EMI approach was used to study the effect
of the ephaptic coupling of neurons in Tveito et al. [8].

The EMI framework represents an alternative to the classical
and more common bidomain or monodomain models. These
latter models are based on homogenization of the cardiac tissue
and the extracellular space, the intracellular space, and the cell
membrane are all assumed to exist everywhere (e.g., [9–13]).
In the following, when we refer to homogenized models, we
will refer to models of the monodomain or bidomain type. In
contrast, the EMI approach avoids this full homogenization at
the tissue level. Note however, that homogenization is also used
in the EMI approach to formulate equations for the intracellular
domain and the extracellular domain.

The classical models (monodomain, bidomain) have been
successfully used to study the propagation of the electrochemical
wave in cardiac tissue (e.g., [14–16]), the initiation of excitation
waves (e.g., [17–21]), the development of cardiac arrhythmias
(e.g., [14, 17, 18]), the effect of defibrillation (e.g., [22–28]), and
the effect of various drugs (e.g., [29–32]).

Despite the many successful applications of the monodomain
and bidomain models, there are a number of motivating factors
for introducing a more explicit, more accurate, andmore detailed
framework for modeling cardiac tissue.We address some of these
factors in the following paragraphs.

1.1. Homogenized Models May Be
Insufficient to Represent Details of the
Remodeling of the Heart
Although, classical models represent the big picture of the
electrochemical wave traversing cardiac tissue well, they may
fail to reveal the finer details of cardiac conduction. For
example, it is well-established that local perturbations to the
conduction velocity may be arrhythmogenic; in particular,
slowed conduction will increase the risk of arrhythmias [33]. It is
therefore essential to understand how various remodelings of the
heart affect the conduction velocity. Individual perturbations of
the size and shape of the cardiac cells clearly affect the conduction

velocity (e.g., [34]), but such changes are very hard to represent
in a classical homogenized model, since a detailed representation
of the individual cells in the tissue is needed. Furthermore, local
density distributions of ion channels on the cell membrane will
affect local conduction properties and such effects are also very
hard, if even possible, to represent in the classical models.

1.2. Homogenized Models Are Unsuitable
for Addressing the Ephaptic Coupling of
Cardiac Cells
The electrical conduction of the heart is believed to depend
on direct cell-to-cell contact realized in terms of gap junctions
(e.g., [35–37]). These connections are reduced under heart
failure, resulting in impaired conduction velocity thatmay in turn
increase the probability of arrhythmias (e.g., [37, 38]). However,
even when conduction through gap junctions is significantly
reduced, electrical signals are still conducted (e.g., [39]). This
conduction is believed to rely on ephaptic coupling between
neighboring cells via the extracellular space. The effect depends
on the shape and size of the extracellular space and is thus not
directly amenable to analysis via the homogenized bidomain or
monodomain models.

1.3. Simulating Cell Monolayers is of
Increasing Significance
The number of cardiomyocytes in the human ventricles can be
estimated to be around 8 billion (e.g., [40]), and the number is
close to 4 million for the mouse heart (e.g., [41]). In both cases, a
homogenized model may be justified by the large number of cells
involved. However, for experimental setups with monolayers of
cardiac cells, the number of cells is much lower (hundreds or a
few thousands) and the validity of the homogenized continuum
approach becomes questionable. The EMI model, on the other
hand, is very well suited, since it represents every individual
cell. The ability to faithfully simulate monolayers of cardiac
cells has become very important since it has become possible
to simultaneously measure the transmembrane potential and
the intracellular calcium concentration (e.g., [42]). Therefore, at
least in principle, the inversion of spatial models of monolayers
may be applied to characterize properties of single cells using
monolayer experiments. This is particularly important because
of the development of human induced pluripotent stem cells
(hi-PSC). Based on skin samples, such cells can be used to
derive cardiac cells with certain properties identical to a patient’s
cardiac cells. Therefore, this technology is believed to have great
potential in the development of personalized drugs for rare
diseases (e.g., [43–45]).

1.4. Available Computational Power Allows
for Cell Size Resolution
Twenty-five years ago, the best mathematical model of cardiac
tissue was solved using 257 computational nodes [12, 46]. At that
time, an accurate representation of cardiac tissue in terms of the
representation of individual cells was inconceivable for reasons of
both storage and computing time. This has changed dramatically;
in recent computational studies, 29 million computational nodes
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were used to represent cardiac tissue [27, 47]. The computational
mesh size in these simulations was about 59 µm, which should
be compared with 100 µm, the typical length of a cardiac cell.
This means that current simulators of the electrophysiology of
the heart are, at least in principle, able to resolve features at the
individual cell level.

The main purpose of the present paper is to assess the
computational challenges of the EMI modeling framework.
We will show how the model’s complexity increases as the
number of cardiac cells in the simulations increases and how
the complexity of the membrane model affects the overall
CPU demands.Furthermore, we will demonstrate that the EMI
framework opens the possibility of simulating local properties of
the cell that are hard to represent in homogenized models.

We introduce an operator splitting scheme for the EMI
model and propose and compare three numerical schemes
for the discretization of the resulting partial differential
equations (PDEs): one finite difference-based (FDM) and two
finite element-based (FEM) schemes of various degrees of
complexity, computational cost, and accuracy. We compare
the three schemes numerically in terms of convergence
rates and computational cost. Moreover, to illustrate the
distinctive capabilities of the EMI model, we present new
results for simulating monolayers of cardiac cells with spatially
heterogeneous distributions of ionic channels across the cell
membrane.

Our results demonstrate that the EMI approach is
computationally feasible: We can solve systems relevant for
simulating monolayers of cardiac cells with sufficient resolution.
Moreover, we show, using numerical computations based on
the FDM code, that the computational effort per cell is bounded
independently of the number of cardiac cells, and thus that the
effort increases at most linearly with the number of cells.

1.5. Outline
In the next section, we will present the EMI model and three
numerical methods used to solve the model. Next, we will discuss
the numerical accuracy of the solutions, show convergence under
mesh refinements, and assess the methods’ CPU demands. To
illustrate the ability to model local properties of individual cells,
we present an example showing the difference in the conduction
velocity of cells with uniform and non-uniform distributions
of sodium channels. In the final sections, the results will be
summarized and discussed.

2. MODELS AND METHODS

In this section, we present the EMI model and numerical
methods for solving the corresponding set of equations.

2.1. The EMI Model
Wewill use the EMImodel to simulate collections of cardiac cells.
However, to present the model, it is sufficient to consider the case
of two coupled cells.

We assume that the complete computational domain consists
of intracellular spaces �k

i , with k = 1, 2 in the case of two
cells, that are connected by gap junctions Ŵ1,2 and surrounded

by a connected extracellular space �e. The membrane is defined
to be the intersection between each intracellular domain �k

i
and the extracellular domain and is denoted by Ŵk, while the
remaining boundary of the extracellular domain is denoted by
∂�e. Figure 1 illustrates a two-dimensional (2D) version of this
setup, showing two connected cells surrounded by extracellular
space. In our computations (except in the first simple test case
with an analytical solution) all cells are 3D and the cells can
be connected in one-, two-, or three-dimensional collections. In
one-dimensional strands of cells, the cell coupling is as illustrated
in Figure 1; for two and three-dimensional collections of cells,
the coupling in the y- and z-directions are similar to the x-
coupling illustrated in the figure.

For the case illustrated in Figure 1, the EMI model can be
formulated as follows: Find the extracellular potential ue defined
over �e, the intracellular potentials u

k
i defined over �k

i , and the

transmembrane potentials vk defined over Ŵk for k = 1, 2 and w
defined over Ŵ1,2 satisfying

∇ · σe∇ue = 0 in�e, (1)

∇ · σi∇uki = 0 in�k
i , (2)

ue = 0 at ∂�e, (3)

ne · σe∇ue = −nki · σi∇uki ≡ Ikm atŴk, (4)

uki − ue = vk atŴk, (5)

vkt =
1

Cm
(Ikm − Ikion) atŴk, (6)

n2i · σi∇u2i = −n1i · σi∇u1i ≡ I1,2 atŴ1,2, (7)

u1i − u2i = w atŴ1,2, (8)

wt =
1

C1,2
(I1,2 − Igap) atŴ1,2, (9)

for k = 1, 2. Here, ne is the normal pointing out from�e and n
k
i is

the (outward) normal pointing out from�k
i for k = 1, 2; σi and σe

are the intracellular and extracellular conductivities, respectively;
Ikion represents the ionic current density, which typically depends
on additional state variables such as ionic concentrations; and
Igap represents the gap junction current density. In terms of

units, the potentials ue, u
k
i , v

k, and w are given in mV; the

current densities Ikm, I
k
ion, I1,2, and Igap are given in µA/cm2; the

conductivities σi and σe are given in mS/cm; the capacitances Cm

and C1,2 are given in µF/cm2; length is given in cm; and time is
given in ms. In the following, we will refer to (1–9) as the EMI
model. For brevity, we will write ui in place of uki , v in place of vk,

Iion in place of Ikion and Ŵ in place of Ŵk for k = 1, 2 when context
allows.

2.2. Membrane Model
In our computations, we will consider both a passive and an
active model for the dynamics on the cell membrane between the
intracellular and extracellular spaces. In the passive model, Iion is
given by the linear model

Iion(v) =
1

Rm
(v− vrest), (10)
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FIGURE 1 | Illustration of an idealized computational domain: two idealized

cells �1
i
and �2

i
connected by a gap junction Ŵ1,2 and the surrounding

extracellular domain �e.

where Rm represents the resistance of the passive membrane (in
k�cm2) and vrest denotes the resting potential of the membrane.
In the active model, we let Iion be represented by the action
potential (AP) model of Grandi et al. [48]. In this case, Equation
(6) is replaced by a system of the form

vt =
1

Cm
(Im − Iion(v, s)), (11)

st = F(v, s), (12)

where v represents the membrane potential and s represents
a collection of additional state variables introduced in the
AP model. Furthermore, Iion represents the sum of the ionic
current densities across the membrane through a number of
different types of ion channels, pumps, and exchangers and F(v, s)
represents the ordinary differential equations (ODEs) describing
the dynamics of the additional state variables. The Grandi model
is implemented by defining a membrane potential v and a set
of state variables s for each of the membrane nodes of the
mesh. We let all state variables of the Grandi model, including
the intracellular ionic concentrations, be defined only on the
mesh nodes located on the cell membrane, and we allow the
value of these variables to vary for different membrane nodes
located on the same cell. The values of the state variables are
updated in each time step using an operator splitting scheme
described below. Intracellular and extracellular gradients of the
ionic concentrations are ignored (see comment in section 4).

Finally, we represent the gap junction between neighboring
cells by a passive membrane:

Igap(w) =
1

Rgap
w, (13)

where Rgap represents the resistance of the passive membrane (in
k�cm2). A discussion of the modeling of the gap-junctions is
given in Hogues et al. [1] where a boundary element method is
used to solve a model similar to the system (1–9).

2.3. Operator Splitting Scheme
The ionic current density Iion entering the EMI model through
(6) typically introduce a significant number of additional states

[e.g., as in (11)]. For this reason, we consider an operator splitting
approach to solve the EMI model defined by (1–9).

The system (1–9) is solved by first applying given initial
conditions for v and w. Then, for each time step n, we assume
that the solutions vn−1 and wn−1 are known for t = tn−1 on Ŵ
and Ŵ1,2 respectively. We then find the solutions at t = tn using a
two-step (first-order) operator splitting procedure, but note that
a three-step (second-order) operator splitting could equally well
be used (e.g., [11]).

In the first step, we update the solutions for the membrane
potential by solving a system of ODEs of the form (11) and (12)
over Ŵ with Im set equal to zero. In the following numerical
experiments, the ODE system (11) and (12) is solved by taking
m forward Euler steps of size 1t∗ = 1t/m for each global time
step, though any other suitable ODE scheme could be used.

In the second (PDE) step of the operator splitting procedure,
we solve the linear system arising from an implicit discretization
in time and space of (1–9) with I1ion and I2ion set to zero. For
the discretization in time of (6) and (9), we use an implicit
Euler scheme using the solution from the first (ODE) step of the
operator splitting scheme as the previous state.

When a linear model for Iion is considered, the first (ODE)
step of the splitting scheme is redundant and thus omitted, and
Ikion for k = 1, 2 is kept in the PDE step, altering the linear system
to be solved.

We propose and compare three different approaches for the
spatial discretization of the PDE step in this study, each presented
in the following sections. For the numerical experiments, the
finite difference method (FDM) was implemented directly in
MATLAB, while the finite element methods (FEMs) were
implemented using the FEniCS finite element library [49, 50].
All computations were run on a Dell PowerEdge R430 with
dual Intel Xeon processors (E5-2623 v4 2.60 GHz) and 12 x 32
GB RDIMM; each processor runs four kernels with two threads
each.

2.3.1. Finite Difference Method for Solving the EMI

PDEs
We first consider a finite difference scheme for solving the
PDE step of the EMI model as defined above. To simplify the
notation, we describe here the 2D case only; the extension to three
dimensions is immediate. The spatial discretization employed
here is taken from Tveito et al. [8].

Figure 2 shows the four different types of nodes used in the
computations. Nodes marked by × represent the extracellular
domain. In these nodes, we define a single unknown, ue.
Similarly, nodes marked by ◦ represent the intracellular domain
(either �1

i or �2
i ) and we define a single unknown ui for these

nodes. Nodes marked by⊗ represent the membrane between the
intracellular and the extracellular space (Ŵ = Ŵ1 ∪ Ŵ2). For these
nodes, we define three unknowns: ue, ui, and v, with v = ui − ue.
Similarly, nodes marked by • represent the membrane between
two cells and, for these nodes, we define the three unknowns u1i ,
u2i , and w, with w = u1i − u2i .

We use the notation u
n,j,k
e for the numerical solution of the

extracellular potential, ue, at the point (xj, yk) = (j1x, k1y) at
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FIGURE 2 | Sketch of the computational mesh used for the FDM. Nodes in �e are marked by ×, nodes in �i = �1
i
∪�2

i
are marked by ◦, nodes on the membrane

between the intracellular and the extracellular space (Ŵ = Ŵ1 ∪ Ŵ2) are marked by ⊗, and nodes on the membrane between two cells (Ŵ1,2) are marked by •.

time tn = n1t and use an analogous notation for the numerical
solution of the remaining variables.

We discretize (1) using the finite difference scheme

σ
j+1/2,k
e (u

n,j+1,k
e − u

n,j,k
e )− σ

j−1/2,k
e (u

n,j,k
e − u

n,j−1,k
e )

1x2

+
σ
j,k+1/2
e (u

n,j,k+1
e − u

n,j,k
e )− σ

j,k−1/2
e (u

n,j,k
e − u

n,j,k−1
e )

1y2
= 0,

(14)

where σ
j+1/2,k
e = σe((j + 1/2)1x, k1y). Equation (2) is

discretized similarly, with σe replaced by σi and ue replaced by ui.
On the membrane between the intracellular and extracellular

domains, there are three unknowns and three equations. The first
equation is given directly by (5) and the second equation is given
by a first-order finite difference discretization of (4). Finally, the
third equation is given by an implicit discretization of (6) of the
form

vn,j,k − vn−1/2,j,k

1t
=

1

Cm
I
n,j,k
m , (15)

where I
n,j,k
m is a discrete version of the term ne · σe∇ue from (4)

and vn−1/2,j,k is the solution of the membrane potential from the
first step of the operator splitting procedure.

Similarly, for the nodes on the membrane between the cells,
there are three unknowns and three equations. The first equation
is given directly by (8), the second is a first-order finite difference
discretization of (7), and the third is an implicit discretization of
(9) of the form

wn,j,k − wn−1,j,k

1t
=

1

C1,2

(

I
n,j,k
1,2 − Igap(w

n,j,k)
)

, (16)

where I
n,j,k
1,2 is a discrete version of the term n2i ·σi∇u2i from (7) and

Igap(w
n,j,k) is a linear function of wn,j,k given by (13). It is worth

mentioning here that if the gap junction dynamics is modeled
using a non-linear model, operator splitting can be applied as was
done for the membrane model.

Two special types of nodes require some special treatment.
The first type is the nodes on the corners of the membrane. For

these nodes, we define two flux terms I
n,j,k
m = ne · σe∇ue, one for

the normal derivative in the x direction and one for the normal
derivative in the y direction, and we use the mean of these two
terms in the equation of the form (15). Furthermore, in the flux
equality Equation (4), we also define two intracellular flux terms,
one for each direction, and let the sum of the two intracellular
flux terms equal the sum of the two extracellular flux terms.

The second special node type is the extracellular nodes located
next to a node on the membrane between two cells. In Figure 2,
these are the two extracellular nodes just above or below Ŵ1,2.
For these nodes, we define a no-flux boundary condition between
the extracellular node and the adjacent node on Ŵ1,2. This is
implemented by defining an extracellular potential for the node
on the end of Ŵ1,2 with a value equal to the extracellular potential
in the node just outside Ŵ1,2.

When considering a linear model for Iion, we skip the first step
of the operator splitting procedure and replace the equation of
the form (15) in the finite difference scheme by

vn,j,k − vn−1,j,k

1t
=

1

Cm

(

I
n,j,k
m − Iion(v

n,j,k)
)

. (17)

A major drawback of the finite difference discretization is
the fact that actual cell geometries are quite complex and
virtually impossible to handle with this method. However,
complex geometries can be resolved by the finite element
method. In the following, we shall propose two different FEM
formulations of the EMI Equations (1–9): the mortar finite
element formulation, where the primary unknowns are the
intra/extracellular potentials, and the H(div)-based finite element
formulation, where the currents are the primary unknowns in the
cells/tissue.

2.3.2. Mortar Finite Element Method for Solving the

EMI PDEs
Mortar finite element methods ([51]; see also [4] for the
application of the method in simulations of cell membranes)
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allow for the coupling of different types of variational problems
posed over non-overlapping domains by weakly (in an integral
sense) enforcing interface conditions on common boundaries.
For the EMI system, the Poisson problems (1) and (2) are coupled
by the conditions (4) and (5) and the conditions (7) and (8).

Let Ve and Vk
i be spaces of functions over �e and �k

i for
k = 1, 2, and let Q be a function space defined over Ŵ =

Ŵ1 ∪ Ŵ2 ∪ Ŵ1,2, to be precisely defined below. For any ψ ∈ Q,
we denote by ψ1, ψ2 and ψ1,2 the restriction of ψ to Ŵ1, Ŵ2, and
Ŵ1,2, respectively. With this notation, given (vk)n and wn at time
level n, at each time level n+ 1 of the temporal discretization, we
aim to find the membrane current density J ∈ Q, defined such
that Jk = Ikm and J1,2 = I1,2 and the extracellular and intracellular

potentials ue ∈ Ve and uii ∈ Vk
i such that:

∫

�1
i

σi∇u1i · ∇φ
1
i dx+

∫

Ŵ1

J1φ1i ds+

∫

Ŵ1,2

J1,2φ1i ds = 0 ∀φ1i ∈ V1
i ,

∫

�2
i

σi∇u2i · ∇φ
2
i dx+

∫

Ŵ2

J2φ2i ds−

∫

Ŵ1,2

J1,2φ2i ds = 0 ∀φ2i ∈ V2
i ,

∫

�e

σe∇ue · ∇φe dx−

∫

Ŵ1

J1φe ds−

∫

Ŵ2

J2φe ds = 0 ∀φe ∈ Ve,

∫

Ŵ1

(u1i − ue)ψ
1 ds−

1t

Cm

∫

Ŵ1

J1ψ1 ds =

∫

Ŵ1

(v1)nψ1 ds ∀ψ ∈ Q,

∫

Ŵ2

(u2i − ue)ψ
2 ds−

1t

Cm

∫

Ŵ2

J2ψ2 ds =

∫

Ŵ1

(v2)nψ2 ds ∀ψ ∈ Q,

∫

Ŵ1,2

(u1i − u2i )ψ
1,2 ds−

1t

C1,2

∫

Ŵ1,2

J1,2ψ1,2 ds =

∫

Ŵ1,2

wnψ1,2 ds ∀ψ ∈ Q.

(18)

Here, the first three equations of the variational problem are
obtained by multiplying (1) and (2) by test functions φe and
φki and integrating over the associated domains while using
conditions (4) and (7) in the integration by parts. The final three
equations are then weakly enforcing the constraints

uki−ue−
1t

Cm
Ikm = (vk)n on Ŵk

i , u1i−u2i−
1t

C1,2
I1,2 = wn on Ŵ1,2

(19)
which are obtained by a backward Euler discretization of (6) and
(9) (cf. Equations 15 and 16) while expanding the transmembrane
potentials of Ŵk

i and Ŵ1,2 at the (n + 1)th temporal level using
definitions (5) and (8), respectively. We note that the definitions
of the transmembrane potentials enter the variational problem
only via (19). Moreover, the membrane current density J can
be interpreted as the multiplier of the augmented Lagrangian
associated with these constraints.

System (18) is the linear part of the operator splitting
procedure described above. The well-posedness of the system
(18) was established in Belgacem [52] or Lamichhane [53] for
the stationary case, where it was shown that a unique solution
exists in the Sobolev spaces Ve = H1

0,∂�e
(�e), V

k
i = H1(�k

i ) and

Q = H−1/2(Ŵ).
To discuss the finite element discretization of the well-posed

problem (18), we denote by Te,h and T
k
i,h

simplicial meshes of the

domains �e and �k
i , respectively. Generally, the mortar finite

element approach allows the tessellations to be independent of
one another and the elements of Ŵh, the triangulation of Ŵ, are
defined in terms of facets of one of the sharing tessellations. For
simplicity, we opt here formeshes such that they share facets onŴ
(see Figure 3). In particular, the neighboring tessellations define
identical meshes Ŵh.

In the following, the discrete finite element subspaces of Ve,
Vk
i , and Q will be constructed from continuous piecewise linear

Lagrange elements. More precisely, we let

Ve,h =
{

v ∈ C(Te,h); v|K = P1(K)∀K ∈ Te,h

}

,

Vk
i,h =

{

v ∈ C(T k
i,h); v|K = P1(K)∀K ∈ T

k
i,h

}

,

Qh =
{

v ∈ C(Ŵh); v|K = P1(K)∀K ∈ Ŵh
}

and thus the space Qh is the trace space of the functions
in Ve,h and Vk

i,h
. We refer to Wohlmuth [54] and references

therein for proof of the numerical stability of this choice of
discretization. We also note that the choice of element for
the space Qh simplifies the implementation, however, dual
Lagrange multipliers (see [53, 54]), though more involved,
are more suitable if static condensation is employed to
solve the linear system arising from (18). Finally, in the
numerical experiments, the scheme was implemented using the
FEniCSii extension [55] of the FEniCS finite element library
[49, 50].

2.3.3. H(div)-Based Finite Element Method for Solving

the EMI PDEs
The mortar finite element formulation defined above
introduces separate function spaces for each of the intracellular
domains �k

i , which adds implementational complexity. As
an alternative approach, we also consider an H(div)-based
finite element method (e.g., [56]) for solving the PDE step
of the operator splitting scheme. This scheme relaxes the
continuity constraint for the potentials throughout the
domain � and introduces potential gradients as additional
variables with the appropriate normal continuity regularity
for the associated currents. Therefore, the interface
continuity conditions for the currents can be handled
seamlessly.
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FIGURE 3 | Schematic representation of finite element meshes considered with the mortar element method: (upper left) the tesselation Te,h of the extracellular

domain, (upper right and bottom left) the tessellations T 1
i,h and T 2

i,h of the intracellular domains, and (bottom right) the membrane discretization Ŵh. In our

implementation, Te,h and T k
i,h have identical facets on Ŵ and the facets define the finite element cells of Ŵh, see the location of the vertices of the 1D mesh depicted

by black circles.

To this end, we use the intracellular current density vector Ĵi
and the extracellular current density vector Ĵe as additional vector
fields defined over�i and�e, respectively:

Ĵi = −σi∇ui, Ĵe = −σe∇ue. (20)

We let Ĵ denote the extension of Ĵi and Ĵe to�, and assume that Ĵ is
in the space H(div,�), that is, Ĵ is a square-integrable vector field
with square-integrable divergence. Furthermore, denote by u the
extension of ui and ue to �, and analogously for σ . In addition,
we define v̂ as the extension of the transmembrane potential v and
the transcellular potential w and we let Î denote the extension of
Iion and Igap. Thus the variable u is defined over � while v̂ and Î

are defined over the whole interior membrane Ŵ̂ = Ŵ1∪Ŵ2∪Ŵ1,2.
Let ni denote the outward normal, from the intracellular

domains to the extracellular domain, on Ŵk for k = 1, 2 and from
�1

i to �2
i on Ŵ1,2 and, analogously, let ne denote the outward

normal from the extracellular to the intracellular domains. By the
flux continuity conditions (4) and (7), we require that Ĵi · ni =
−Ĵe · ne on Ŵk (k = 1, 2) and analogously on Ŵ1,2. Let v̂

n,∗

denote the membrane potential solution from the ODE step in
the nonlinear case or the membrane solution v̂n,∗ = v̂n−1

h
at the

previous time in the linear (no ODE) case.
With this notation and after an implicit Euler discretization in

time, our H(div)-based finite element scheme at each time step n
reads as follows: For given vn,∗, f n, and gn, find un

h
∈ Uh, Ĵ

n
h
∈ Sh

and v̂n
h
∈ Vh such that

−

∫

�

∇· Ĵnh φ dx =

∫

�

f nφ dx ∀φ ∈ Uh, (21)

∫

�

(

σ−1 Ĵnh · τ − ∇· τ unh

)

dx+

∫

Ŵ̂

τ · ni v̂
n
h ds

=

∫

�

gn · τ dx ∀ τ ∈ Sh, (22)

∫

Ŵ̂

(

Cmv̂
n
h +1t(−Ĵnh · ni + αÎ(v̂

n
h))

)

β ds

=

∫

Ŵ̂

Cmv̂
n,∗β ds ∀β ∈ Vh. (23)

In the case of a nonlinear Iion, we set α = 0 and treat the
non-linear term by operator splitting as outlined above.

In the numerical experiments, as for the mortar finite element
method described in section 2.3.2, we let Th denote a simplicial
mesh of � conforming to �k

i (k = 1, 2) and �e such that

Ŵ̂h, the restriction of Th to Ŵ̂, defines a conforming mesh
of Ŵ̂ (of one topological dimension lower). Relative to these
meshes, we define the spaces Sh as the lowest-order Raviart–
Thomas elements defined over Th and Uh as the space of
(discontinuous) piecewise constants defined over Th, and Vh as
the space of (discontinuous) piecewise constants defined over Ŵ̂h.
The Raviart–Thomas elements are, by definition, such that the
normal components of the vector fields are continuous across
cell facets (edges in 2D, faces in 3D) and thus the flux continuity
conditions (4) and (7) hold by construction [56].
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This mixed finite element combination is conforming and our
numerical experiments indicate that the element pairing is stable
and convergent. The scheme can also be compared to the schemes
discussed by Sacco [57]. Based on the interpolation properties
of the lowest-order finite element spaces as described above, we
expect to observe first-order convergence for u, Ĵ, and v̂ in the
respective L2 norms, and first-order convergence for Ĵ in the
H(div) norm. Higher-order convergence in the L2 norm of Ĵ can
be recovered by using the Brezzi–Douglas–Marini [58] H(div)
elements instead of the Raviart–Thomas family.

In the numerical experiments, this scheme was implemented
using the FEniCS finite element library [49, 50].

2.4. Optimal Solvers
A common problem in scientific computing is to solve a linear
PDE defined on a certain geometry. After applying some sort
of discretization characterized by a mesh parameter h, the
remaining problem is to solve a linear system of algebraic
equations. The linear solution process is usually said to be order
optimal provided that the number of floating point operations
(FLOPs) required to solve the problem grows linearly in the
number of unknowns as h decreases. For self-adjoint, linear
PDEs, optimal solvers are well understood (e.g., see the review
papers [59, 60] for the theory of saddle point problems). In
simulating cardiac tissue, optimal solvers exist for both the
monodomain model and the bidomain model (e.g., [11, 61, 62]).

Feynman [63] suggested an alternative, but related, definition
of order optimality: Suppose a numerical method is used to
simulate a small space–time volume of a physical process and the
mesh is refined to convergence. Then computational complexity
should only grow linearly as the space–time volume is increased.
For our application, this definition is very well suited; we consider
a single cell surrounded by an extracellular space, and we carry
out numerical simulations to find the mesh resolution in time
and space necessary to obtain convergence. Then we define a
numerical solution as being order optimal provided that the CPU
efforts only increase linearly in the number of biological cells in
the computation.

3. RESULTS

In this section, we present applications of the methods
introduced above. We start by assessing the accuracy of the
numerical methods for a very simple unitless test problem where
an analytical solution can be enforced using the method of
manufactured solutions. For non-linear membrane dynamics, we
explore convergence under mesh refinements. Next, we consider
the CPU efforts needed to solve the numerical problems arising
from the EMI model and we are particularly interested in the
CPU effort per physical cell to understand the scalability of the
EMI approach. For the FEM, we also show results for cylindrical
geometries. Finally, we investigate the effect of non-uniform
distributions of sodium channels along the cell membrane.

3.1. Model Parameters
In the first unitless test problem we consider a 2D domain
consisting of an extracellular domain and a single cell. In the

remaining simulations, we consider 3D domains consisting of
a number of connected cells and the surrounding extracellular
space. The coupled cells are organized as a single layer where
the cells are connected to each other in a grid in the x and y
directions by gap junctions. The shape and size of the cells and the
extracellular domain will be specified for each simulation below.
We primarily consider cells of the shape illustrated in Figure 4,
where each part of the intracellular domain,�O,�W,�E,�S, and
�N, is shaped as a rectangular cuboid.

The parameter values used in the simulations are given in
Table 1 unless otherwise specified. Moreover, we use the initial
condition w = 0 in all the simulations of connected cells.
When the Grandi model is used to model Iion, we mainly use
the default initial conditions of the Grandi model for v and the
remaining state variables. When a passive model is used for Iion,
we primarily use the initial condition v = vrest.

3.2. Numerical Verification and Accuracy
3.2.1. Linear Ionic Current: Method of Manufactured

Solutions
To evaluate the accuracy of the numerical methods, we construct
an analytical solution for a 2D single-cell version of the EMI

FIGURE 4 | Sketch of the 2D version of a domain in the case of a single cell.

Here, �i = �O ∪�W ∪�E ∪�S ∪�N.

TABLE 1 | Default parameter values used in the simulations.

Parameter Value References

Cm 1 µF/cm2 [64]

C1,2 1 µF/cm2

σi 5 mS/cm [65]

σe 20 mS/cm [7]

vrest −85 mV [66]

Rm 10 k�cm2 [64]

Rg 0.0015 k�cm2 [7]

1x, 1y, 1z 2 µm

1t (PDE part) 0.1 ms

1t∗ (ODE part) 0.001 ms

For the parameters used in the Grandi model, we refer to Grandi et al. [48].
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model with the passive model Iion = v. The analytical solution
of this simple example is constructed using the method of
manufactured solutions (e.g., [67]). We consider a single cell
surrounded by extracellular space:

∇ · σi∇ui = f , in�i, (24)

∇ · σe∇ue = g, in�e, (25)

ue = 0, at ∂�e, (26)

ne · σe∇ue = −ni · σi∇ui, atŴ, (27)

ui − ue = v, atŴ, (28)

Im = −ni · σi∇ui, atŴ, (29)

vt =
1

Cm
(Im − Iion), atŴ. (30)

For this case, we assume that the model is unitless with
parameters σi = σe = Cm = 1, and we define the domain � =

�i ∪�e = [0, 1]× [0, 1], where�i = [0.25, 0.75]× [0.25, 0.75].
We let

f = f (x, y, t) = −8π2 sin(2πx) sin(2πy)(1+ e−t), (31)

g = g(x, y, t) = −8π2 sin(2πx) sin(2πy) (32)

and the analytical solution of (24–30) is then given by

ui(x, y, t) = (1+ e−t) sin(2πx) sin(2πy), (33)

ue(x, y, t) = sin(2πx) sin(2πy), (34)

v(x, y, t) = e−t sin(2πx) sin(2πy). (35)

In the numerical experiments of this test case, we use
1t = 0.01/n, where for the FDM, n equals the number of
intervals in each direction of the spatial discretization of the
domain. In the FEM case, 2n2 is the number of triangles that
constitute the uniformly discretized mesh. We note that the
chosen time step criterion is not necessary for numerical stability
of any of the methods. Rather, it was selected to yield more stable
convergence rates. For this test case, the linear systems arising in
the experiments are solved by direct solvers (LU factorization),
and the errors are computed at time t = 0.1.

Table 2 shows the maximum error of the finite difference
method as the discretization parameters are refined. We observe
that the convergence rates of the intracellular and extracellular
potentials uh and the membrane potential vh are both close to
one, indicating that themaximum (L∞) error of the FDM isO(h).

In Table 3, we report the results obtained with the mortar
FEM. The error of the potentials uh is reported in the broken
H1 norm ‖u − uh‖1, which is natural for the problem [53], the
L2 norm ‖u − uh‖0 to enable comparison with the H(div) FEM,
and the supremum norm ‖u − uh‖∞ to allow for comparison
across different numerical methods. The error in the current
density Jh is measured in the L2 norm rather than the natural
but more involved H−1/2 norm. Finally, we report convergence
of the membrane potential difference ‖v − vh‖∞, where vh is
obtained from the definition ui,h − ue,h = vh using the computed
potentials. We note that the integral norms are evaluated by first
interpolating the error in the space of discontinuous fourth-order

TABLE 2 | Convergence of the finite difference method for the manufactured test

problem with convergence rates in parentheses.

n ‖u− uh‖∞ ‖v− vh‖∞

16 3.24E−01 (--) 1.21E−01 (--)

32 1.73E−01 (0.91) 7.24E−02 (0.75)

64 9.32E−02 (0.89) 3.98E−02 (0.86)

128 4.80E−02 (0.96) 2.09E−02 (0.93)

256 2.43E−02 (0.98) 1.07E−02 (0.96)

512 1.22E−02 (0.99) 5.44E−03 (0.98)

The convergence rates in row i are computed by r =
log(Ei/Ei−1)
log(hi/hi−1)

, where Ei is themaximum

error of u or v in row i and hi is the value of h = 1x = 1y = 1001t used in the simulation

in row i.

polynomials. The supremum norms are then computed using
linear polynomials.

Using piecewise linear elements, the observed convergence
rates in the integral norms (see the first three columns ofTable 3),
are 1.0 (optimal) and 1.73 (slightly suboptimal) for the broken
H1 norm and the L2 norm of potentials, respectively, while order
2 can be seen in the L2 norm of the current density. We note
that the suboptimal rate of convergence is due to the error being
dominated by the temporal discretization and decreasing the
time step restores the optimal quadratic convergence. Let us also
note that the quadratic convergence of the current density is
likely related to the fact that Im = 0 in the test case. The observed
order of convergence in the supremum norms is 1.59 and 1.56 for
uh and vh, respectively. However, the error here seems again to be
dominated by temporal discretization, since using 1t = 10−3/n
improves the rates toward 2.0.

Table 4 reports the errors and convergence rates for the
H(div)-based FEM. The error in the computed intracellular
and extracellular potentials uh and the error in the membrane
potential vh are reported in the L2 norm and in the supremum
norm. Furthermore, the error in the computed potential gradient
Ĵh is reported in the L2 and H(div) norms. We observe that
the convergence rate is one both for the error in the L2 norm
for uh and vh and for the H(div) and L2 norms for Ĵh. These
rates are in complete agreement with the theoretical expectations.
In addition, we observe that the convergence of the supremum
norm of uh and vh, computed after a projection onto continuous
piecewise linears, appears to be close to quadratic.

3.2.2. Nonlinear Ionic Current: Mesh Refinement
To investigate the accuracy of the numerical methods using the
Grandi AP model, we compare the solutions obtained from the
numerical methods using different spatial resolutions.

Figure 5 shows the solution of the membrane potential in a
single point on the membrane for the FDM and the H(div)-based
FEM for a number of resolutions. We consider the solution for
two connected cells; and the sizes of the cells and the domain used
in the simulations are given in Table 5.

In the upper panel of Figure 5, the solutions for different
resolutions are almost indistinguishable, but in the lower panel
we focus on a small part of the solution and a difference is
visible for the different resolutions of the FDM. The H(div) FEM
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TABLE 3 | Convergence of the mortar finite element method for the manufactured test problem, with convergence rates in parentheses.

n ‖u− uh‖1 ‖u− uh‖0 ‖J − Jh‖0 ‖u− uh‖∞ ‖v − vh‖∞

16 1.11E+00 (--) 2.85E−02 (--) 1.45E−01 (--) 6.36E−02 (--) 5.03E−02 (--)

32 5.59E−01 (0.98) 7.37E−03 (1.95) 4.01E−02 (1.86) 2.09E−02 (1.60) 1.82E−02 (1.47)

64 2.80E−01 (1.00) 1.90E−03 (1.96) 1.05E−02 (1.94) 6.73E−03 (1.64) 6.22E−03 (1.54)

128 1.40E−01 (1.00) 4.99E−04 (1.93) 2.65E−03 (1.98) 2.15E−03 (1.65) 2.08E−03 (1.58)

256 7.02E−02 (1.00) 1.38E−04 (1.86) 6.66E−04 (1.99) 6.93E−04 (1.63) 6.90E−04 (1.59)

512 3.51E−02 (1.00) 4.16E−05 (1.73) 1.66E−04 (2.00) 2.31E−04 (1.59) 2.34E−04 (1.56)

TABLE 4 | Convergence of the H(div) finite element method for the manufactured test problem, with convergence rates in parentheses.

n ‖u− uh‖0 ‖Ĵ − Ĵh‖0 ‖Ĵ − Ĵh‖div ‖v − vh‖0 ‖u− uh‖∞ ‖v − vh‖∞

16 8.41E−02 (--) 6.49E−01 (--) 6.62E+00 (--) 1.02E−01 (--) 2.73E−02 (--) 2.53E−03 (--)

32 4.21E−02 (1.00) 3.24E−01 (1.00) 3.32E+00 (0.99) 5.13E−02 (1.00) 6.87E−03 (1.99) 6.36E−04 (1.99)

64 2.11E−02 (1.00) 1.62E−01 (1.00) 1.66E+00 (1.00) 2.56E−02 (1.00) 1.72E−03 (2.00) 1.57E−04 (2.02)

128 1.05E−02 (1.00) 8.10E−02 (1.00) 8.31E−01 (1.00) 1.28E−02 (1.00) 4.30E−04 (2.00) 3.76E−05 (2.06)

256 5.27E−03 (1.00) 4.05E−02 (1.00) 4.16E−01 (1.00) 6.41E−03 (1.00) 1.08E−04 (2.00) 8.63E−06 (2.12)

512 2.63E−03 (1.00) 2.03E−02 (1.00) 2.08E−01 (1.00) 3.21E−03 (1.00) 2.69E−05 (2.00) 1.77E−06 (2.29)

solutions are very similar for different resolutions, indicating that
the method is more accurate than the FDM in this case as well.

3.3. CPU Requirements
As mentioned in the section 1, simulation of the
electrophysiology of cardiac tissue is usually based on
homogenized models such as the monodomain model or
the bidomain model. The motivation for this is certainly that
it requires considerably less computing power than the EMI
approach considered here. Therefore, it is very important to
understand the computational complexity of the EMI model to
appreciate the applications in which this approach can be used.

3.3.1. Finite Difference Method
Tables 7, 8 report the CPU times, number of iterations, and
system size for the FDM as the number of cells included in the
simulation is increased. In Table 7, we use the passive model (10)
for Iion, and in Table 8, we use the Grandi AP model. The linear
systems are solved using the BiCGStab method (see [68, 69])
with an incomplete LU preconditioner (e.g., [68]) and relative
tolerance of 10−5 for the true/unpreconditioned (l2) norm of the
residuum. The computations are performed usingMATLAB. The
last column of the tables reports the simulation time per cell
for a single time step and we observe that the simulation time
per physical cell appears to be bounded as the number of cells is
increased.

3.3.2. Finite Element Method
Because of the complexity of the mortar FEM, which introduces a
separate function space for the potential of each cell1 �k

i , we shall
focus on the H(div) FEM in the following.

1The space for intracellular potentials for the case considered with FDM in the

section 3.3.1 would be V1
i × V2

i × · · · × Vn
i where n = 16, 384.

Table 9 shows the CPU time, the number of iterations,
and the dimensions of the finite element spaces for a number
of simulations using the H(div) FEM described in section
2.3.3 with an increasing number of cells and a passive
membrane model. The linear systems are again solved using the
biconjugate gradient stabilized method with an incomplete LU
preconditioner and a convergence criterion as in the FDM case.
The linear solver and the preconditioner were provided by the
PETSc library [70], while the systemwas assembled using FEniCS
[49, 50].

Since the definition of the H(div)-based variational problem
(21) in FEniCS is not immediately obvious, we briefly comment
on some implementational aspects. Recall that the solution is
sought in the space Uh × Sh × Vh, where the functions in Vh

are defined over Ŵ̂h, the discretization of the cell mebranes Ŵ.
However, FEniCS (version 2017.1) does not currently support
mixed spaces with components defined over different meshes,
such as over Th and Ŵ̂h. To bypass this restriction, we
construct the space Vh over all the facets of Th and the excess
degrees of freedom are set to zero in the assembled linear
system. As illustrated above the construction yields the correct
numerical solution. However, the additional degrees of freedom
naturally affect the performance of the linear solvers, since they
increase the computational cost of the matrix–vector product
significantly. FEniCS support for mixed finite element spaces
with components defined over different meshes is currently
under development and we thus expect this issue to be resolved
in future FEniCS releases.

Comparing the results of Table 9 with those of the FDM
(see Table 7), we observe that the CPU times for the FEM
are considerably larger (by a factor of ∼70). While the longer
solution times for the FEM are expected due to the larger linear
systems stemming from themethod (with factors of∼23 and∼14
for the system with or without the additional degrees of freedom

Frontiers in Physics | www.frontiersin.org 10 October 2017 | Volume 5 | Article 48

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tveito et al. Cell-Based Modeling of Cardiac Tissue

FIGURE 5 | Membrane potential at the point (112, 24, 16 µm) for the finite difference and the finite element methods for two connected cells for some different values

of 1x = 1y = 1z. The upper panel shows the solution from t = 0 ms to t = 10 ms. In the lower panel, we zoom in on the peak to observe a difference between the

solutions. Note that the scaling of the y axis is different for the two plots in the lower panel and that the FEM solutions for 1x = 4 µm and 1x = 2 µm are almost

indistinguishable in the lower right plot. The parameter values used in the simulations are given in Tables 1, 5, and we apply a 1-ms-long stimulus current of 120

µA/µF for the first 24 µm of the first cell.

TABLE 5 | The cell and domain sizes used in the simulations reported in Figure 5.

Domain Size

�O 36 × 16 × 16 µm

�W,�E 8 × 8 × 8 µm

�S,�N 20 × 8 × 8 µm

�i ∪�e 120 × 48 × 32 µm

The intracellular domain consists of two connected cells, where each cell is a composition

of the domains �O,�W,�E,�S, and �N (see Figure 4). Note that the geometry used

in the remaining 3D simulations is specified in Tables 6, 10.

TABLE 6 | Cell sizes used in the simulations reported in Figures 7–9 and

Tables 7–9.

Domain Size

�O 100 × 12 × 12 µm

�W,�E 4 × 8 × 8 µm

�S,�N 60 × 4 × 8 µm

The intracellular domain consists of a number of connected cells where each cell is

a composition of the domains �O,�W,�E,�S, and �N (see Figure 4). The size of

� = �i ∪ �e is Lx × Ly × Lz , where Lz = 20 µm and Lx and Ly depend on the number

of cells in the simulation. The minimal distance between the intracellular domain and the

boundary of the extracellular domain is 8 µm in both the x and y directions.

introduced in Vh, respectively), the results also point out that the
iterative solver does not perform as well as in the FDM case. More
efficient solution strategies for the system are currently being
investigated.

3.4. Cylindrical Geometry
The somewhat clunky geometry of the cells used above does
not reflect reality very well. Indeed, cardiac cells have cylindrical

TABLE 7 | CPU times for the finite difference method for a passive membrane

model.

Cells Grid points System size nit T (s) T/cell (s)

1 13,167 14,609 44 0.5 0.5

4 37,323 42,563 122 3.9 1.0

16 121,275 141,179 146 7.2 0.5

64 431,739 509,243 198 24.3 0.4

256 1,622,907 1,928,699 256 86.4 0.3

1,024 6,286,203 7,500,923 258 328.7 0.3

4,096 24,736,635 29,578,619 250 1,195.9 0.3

16,384 98,132,859 117,467,003 209 3,696.8 0.2

Here, nit is the number of iterations in the fourth time step of size 1t = 0.1 ms and T is

the solution time for the fourth time step. The parameters used in the computations are

given in Table 1 and the domain sizes are specified in Table 6. For the 25% of the cells

at the center of the domain, we use the initial condition v = 10 mV and, for the remaining

cells, we use the initial condition v = vrest.

shapes, but such shapes are inconvenient to address using
FDMs, and we therefore apply the FEM. Figure 6 shows the
membrane potential and surrounding extracellular potential for
a simulation of two connected cylinders using the parameters
given in Tables 1, 10. We note that the FEM is well suited for
handling cylindrical geometry, and we expect that the method
can also be used to handle the even more complex geometries
that will arise when the T-tubules of ventricular cells (e.g., [71])
are incorporated in the model.

3.5. Ion Channel Density Distribution
Affects Conduction Velocity
As mentioned in the section 1, it is difficult to represent
a non-uniform distribution of ion channels along the cell

Frontiers in Physics | www.frontiersin.org 11 October 2017 | Volume 5 | Article 48

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tveito et al. Cell-Based Modeling of Cardiac Tissue

TABLE 8 | CPU times for the finite difference method using the Grandi membrane model for Iion.

Cells Grid points System size nit TODE (s) TPDE (s) T (s) T/cell (s)

1 13,167 14,609 64 2.9 0.7 3.6 3.6

4 37,23 42,563 150 7.6 4.5 12.1 3.0

16 121,275 141,179 210 23.9 12.7 36.5 2.3

64 431,739 509,243 260 85.1 41.5 126.6 2.0

256 1,622,907 1,928,699 318 351.9 109.8 461.7 1.8

1,024 6,286,203 7,500,923 338 1,256.0 442.6 1698.6 1.7

4,096 24,736,635 29,578,619 322 4,512.8 1,515.8 6028.6 1.5

16,384 98,132,859 117,467,003 360 1,7594.6 6,171.9 23,766.5 1.5

Here, T = TODE + TPDE is the solution time for the fourth time step of size 1t = 0.1 ms, where TODE is the solution time for the first (ODE) part of the operator splitting procedure

and TPDE is the solution time for the second (PDE) part of the procedure. Furthermore, nit is the number of iterations needed to achieve convergence of the BiCGStab method used in

the PDE part of the procedure. The parameters used in the computations are given in Tables 1, 6. For the 25% of the cells at the center of the domain, we replace the default initial

conditions of the Grandi model with the values of the state variables obtained when the membrane potential first reached v = −10 mV during the upstroke of the AP in a single-cell

simulation of the model. For the remaining cells, we use the default initial conditions of the Grandi model.

TABLE 9 | CPU times for the H(div) finite element method for a passive membrane model.

Cells dim(Sh ) dim(Uh) dim(Vh|Ŵh ) dim(Mh ) nit T (s) T/cell (s)

1 137,752 66,960 3,216 342,464 74 6.1 6.1

4 399,136 194,880 12,320 993,152 220 49.8 12.5

16 1,317,184 645,120 48,192 3,279,488 458 337.6 21.1

64 4,734,400 2,323,200 190,592 11,792,000 637 1,684.8 26.3

Here, nit is the number of iterations in the fourth time step of size 1t = 0.1 ms and T is the solution time for the fourth time step. Furthermore, T/cell is the solution time per cell for

the fourth time step. The second to fifth columns give the dimensions of the various finite element spaces (see section 2.3.3). Note that Vh|Ŵh refers to the space Vh restricted to the

membrane Ŵh but that Vh is defined in the entire domain in the computations reported in the table. Note also that dim(Mh ) refers to the dimension of the total mixed space Uh×Sh×Vh.

The parameters used in the computations are given in Tables 1, 6. For the 25% of the cells at the center of the domain, we use the initial condition v = 10 mV and, for the remaining

cells, we use the initial condition v = vrest.

FIGURE 6 | Membrane potential and the surrounding extracellular potential of two connected cylinders at time t = 1 ms computed by the H(div) FEM. The parameters

used in the simulations are given in Tables 1, 10 and we apply a stimulus current of 120 µA/µF for the first half of the first cell in the x direction.

membrane using classical homogenized models. This is an
important shortcoming of the classical methods, because a non-
uniform distribution of sodium channels is believed to affect
the conduction velocity. In the EMI modeling framework, the
representation of non-uniform distributions of ion channels is
straightforward.

Figure 7 shows the solutions of two simulations of a collection
of 30 × 5 cells with different distributions of the sodium
channel conductance, gNa. In the left panel the value of gNa
is constant on the entire membrane, while, in the right panel,
gNa is zero over a large part of the membrane and only non-
zero on �W and �E, that is, near the ends of the cell in the x
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direction. The mean value of gNa over the cells is the same in
the two simulations. We observe that the conduction velocity
is increased for the case with a varying value of gNa compared
to the case with a constant value. The conduction velocities
reported in the figure are computed from the 10th and 20th
cells in the third row in the y direction, and are defined as the
distance between the cell centers divided by the time between
each of the two cell centers reaches a membrane potential of
v = 0 mV.

TABLE 10 | Cell and domain sizes used in the simulations of the two connected

cylinders in Figure 6.

Length of �O 100 µm

Radius of �O 10 µm

Length of �W and �E 4 µm

Radius of �W and �E 8 µm

Domain (�i ∪�e) 228 × 40 × 40 µm

The intracellular domain consists of two cells, where each cell is a composition of three

cylinders �W, �O, and �E.

Figure 8 shows a more detailed view of the two cells at the
center of the domain. Here, we observe that the conduction
velocity across the first part of the cell appears to be higher for
the case with a constant value of gNa than for the varying case,
but that the traveling wave moves faster across the gap junction
for the case with a varying gNa than for the constant case, leading
to an overall increased conduction velocity for the varying
case.

This effect is studied more closely in Figure 9, which shows
the activation times and conduction velocities along the length
of two cells in a similar pair of simulations. The gap junction
between the two cells is located at x = 548 µm, and
we observe that there is a delay of about 0.1 ms between
when the membrane on each side of the gap junction is
activated. The delay appears to be slightly longer for the
case with a constant gNa compared to the varying case. We
also observe that, overall, the wave uses less time to activate
the two cells for the case with a varying gNa than for the
constant case, consistent with the results of Figures 7, 8. In
addition, we observe that the shape of the activation curve
is different in the two cases. In the case with a constant gNa

FIGURE 7 | Intracellular potential at four points in time for a collection of cells with two different distributions of the sodium channel conductance. In the case of a

constant gNa, the value is gNa = 23 mS/µF on the entire membrane, and in the case of a varying gNa, the value is gNa = 783 mS/µF on �W and �E and zero

elsewhere. The solutions are obtained using the FDM and the parameters used in the simulations are given in Tables 1, 6, except that we use 1t = 0.01 ms. We

apply a 1-ms-long stimulus current of 120 µA/µF for the 2 × 2 cells in the lower left corner of the domain.
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FIGURE 8 | Intracellular potentials at four points in time for the two cells at the center of the domain from the simulation in Figure 7. The plots in the upper panel

show the solutions at the last point in time before the intracellular potential at the start of the first cell is first positive. Because the conduction velocity is different in the

two cases, this occurs at two different points in time, tc and tv, for the cases with a constant gNa and a varying gNa, respectively. The next plots show the solutions at

times 0.02, 0.06, and 0.2 ms after tc and tv.

FIGURE 9 | Activation times and conduction velocities along the length of two cells in a simulation of 10 × 1 cells with different distributions of gNa, similar to the

simulations shown in Figure 7. The blue line shows the points in time when the membrane nodes corresponding to each x-value along cells number five and six first

reach a membrane potential of 0 mV. The orange line shows the corresponding conduction velocity along the two cells, computed from a piecewise second order

polynomial approximation of the activation curves. The parameters used in the simulations are given in Tables 1, 6, except that we use 1t = 0.0005 ms. Note that the

values of the left y-axis (representing activation time) is different in the two plots, but that the scaling of the axis is the same in both plots.

distribution, the activation curve becomes steeper toward the
end of the cells, corresponding to a decreasing conduction
velocity along the cell lengths. For the varying case, however,

the activation curve flattens out toward the end of the cells,
corresponding to an increased conduction velocity toward the
cell ends.
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4. DISCUSSION

As described above, the classical models of cardiac tissue are
founded on homogenization of the tissue and the resulting
models therefore assume that the extracellular space, the cell
membrane, and the intracellular space exist everywhere. This
leads to tractable computing problems that have provided
insights into important applications such as the propagation
of an electrochemical wave, cardiac arrhythmias, the effect of
defibrillation, the onset of cardiac waves, and the effect of diverse
drugs. However, in some cases, it is of interest to see the dynamics
surrounding individual cells as part of the tissue, which is hard to
do using homogenized models. It is also of interest to be able to
change local properties of the tissue that are difficult to represent
in homogenized models.

In the present report, we focused on the computational
challenges of a different approach in which separate geometrical
domains for the extracellular space, the cell membrane, and the
intracellular domain represent the tissue; we refer to this as the
EMI model. Clearly, the computational problems arising from
the EMI model are much more challenging than for traditional
models, but we have shown that, for some applications, the more
detailed model is feasible. In particular, we have shown that
the EMI model is suitable for monolayers of cells. Furthermore,
we have demonstrated that the EMI framework allows the
representation of local properties of cells that are hard to
represent in classical homogenized models of cardiac tissue.

4.1. Membrane Dynamics
The dynamics of the cell membrane are absolutely critical for the
functioning of the cell and have been subject to intense studies
for centuries. A wide variety of models are available through the
open CellML library [72]. In our computations, we have used
the ventricular cell model by Grandi et al. [48]. That model
consists of a system of 39 ODEs defined on every computational
node of the cell membrane and is believed to provide an
accurate representation of the cell’s action potential. From a
computational point of view, we could have used numerous
other models (e.g., [73–80]) with comparable complexity of the
membrane computations. Common to all these models is that the
ion currents are represented using models where the ion channel
density must be specified. When the models are used as part of
a monodomain or bidomain model, the channel density is most
conveniently treated as a constant for each cell, but in the EMI
model, the ion channel density associated with any of the currents
can be specified as a function of space on the cell membrane.
We noted in Figure 7 that a non-uniform distribution of sodium
channels significantly affects the tissue’s conduction velocity.

4.2. Numerical Accuracy
The numerical accuracy of the discretizations considered
was assessed using a single-cell problem (24–30) and the
method of manufactured solutions. As seen in Tables 2–4,
all the discretizations provide converging numerical solutions.
However, taking the L∞ norms of the computed potentials
for comparison, there are considerable differences in the
convergence properties of the methods.

The convergence of the FDM discretization is linear and this
method is the least accurate. The first order convergence of the
FDM is to be expected, since all internal boundary conditions
are approximated using first-order finite differences. Compared
to the FDM, the mortar FEM yields solutions with considerably
smaller error and the observed rates are about 1.5. It should
be noted that, on a given grid, the methods lead to identical
numbers of unknowns. The H(div) FEM is the most accurate
among the methods considered with errors much smaller than
those of themortar FEM. As noted in section 3.3, the H(div) FEM
leads to larger linear systems than the other two methods do (see
Tables 7, 9). Finally, let us note that the manufactured solution
employed was particularly simple and thus the numerical results
obtained may not be universally valid.

4.3. CPU Requirements
The CPU efforts needed to solve the system (1–9) using the
FDM or the FEM are given in Table 7 (FDM, passive membrane
dynamics), Table 8 (FDM, membrane dynamics given by the
Grandi model), and Table 9 (H(div) FEM, passive membrane
dynamics). We observe that, for the FDM, the CPU efforts per
cell seem to be bounded independently of the number of cardiac
cells. This result implies that the solver is optimal in the sense
defined above.When the Grandi model is used for the membrane
dynamics, the CPU efforts per time step per cell are around 1.5 s.
This enables us to simulate 16,384 cells, which defines a linear
system with over 117 million unknowns. Since the CPU efforts
per cell seem to be bounded independent of the number of cells,
the CPU efforts will not explode as more cells are added to the
computations. With proper parallelization strategies, it should be
possible to simulate huge numbers of cells. In fact, the mouse
heart, with around 4 million cells, may be within reach; with a
computer that is 1,000 times faster (for large problems) than the
one we used, it would require about one week to perform 100
time steps for 4 million cardiac cells.

We observe from Tables 8, 9 that the FDM method in the
current implementation is significantly faster than the FEM code
even though the FDM code is implemented in Matlab. It has
proven to be difficult to derive optimal preconditioners to be used
for the FEM, but we hope to be able to improve this part of the
code in the future.

4.4. Cell Geometry
In the present report, we have used very simple geometries to
represent the cells. We have assumed that the geometries are
simple rectangular cuboids or have cylindrical shapes. However,
real cardiac cells have muchmore complex geometries and future
work will investigate the effect of the geometry on the solutions.
Of particular importance is the effect of T-tubules in ventricular
cells and how they change during illness (e.g., [71, 81]). The
diameter of the T-tubules ranges from 20 to 450 nm (see [82])
and therefore a very fine computational mesh would be needed
to represent these invaginations. Presently, we have run the FDM
code with spatial resolution of 5 nm (in the case of only three
coupled cells), so including T-tubules is within reach for the FDM
code but not for the FEM code.
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4.5. Intracellular Calcium Dynamics
The focus of the present report has been to show that it
is possible to simulate the electrical potential of cardiac cells
based on explicit representation of the cells. We have focused
on models that represent the membrane dynamics in terms
of interchange over the cell membrane and we have ignored
the spatial gradients of the ionic concentrations away from
the cell membrane. Certainly, this is a major simplification;
the intracellular concentration of calcium is essential and can
be modeled using partial differential equations defined in the
intracellular domain, see e.g. [83–86]. In Nivala et al. [83], a
model based on Calcium released units (CRUs) is presented and
the number of CRUs for a single cell used in the computations
is typically ∼20,000. In our model, a cardiac cell with a volume
of 30 pL and a typical mesh length of 1 µm would consist
of 30,000 computational blocks within each cell. A reasonable
representation of the CRUs in the EMI model is therefore within
reach.

4.6. Conduction Velocity
As mentioned above, the conduction velocity is essential for the
stability of the electrochemical wave underpinning the rhythmic
contraction of the cardiac muscle. In numerical computations,
the distribution of ion channels is usually assumed to be constant,
but experimental evidence suggests that the ion channel density is
non-uniform along the cell membrane. For instance, the density
of sodium channels is believed to be much higher closer to the
intercalated discs separating individual cells (e.g., [87]). The
difference between uniform and non-uniform distributions of
sodium channels was addressed in Figures 7–9. We observed
that the conduction velocity was significantly lower in the case
of a constant distribution of the sodium channels compared to
the case of a non-uniform distribution. Interestingly, we also
observed (Figure 9) that for the uniform case, the conduction
velocity decreased along the cell, whereas it increased in the case
of non-uniform distribution. Again, such effects are difficult to

observe in the classical models (monodomain, bidomain). This
effect deserves closer scrutiny and the EMI model provides a
suitable framework for such studies.

5. CONCLUSION

Local properties of cells and cell membranes are difficult to
represent in standard (bidomain, monodomain) models of
excitable tissue. In this paper, we have demonstrated that a more
accurate model and method can be used. In our approach, every
cell is represented in terms of its surrounding extracellular space,
the cell membrane, and the intracellular space. The extracellular
and intracellular spaces are represented using a mesh of length
of 2 µm and the membrane is represented as the intersection
of the extracellular and intracellular meshes. We have seen that,
with a finite difference method using a very simple geometry, the
computations are quite efficient and the computational demands
increase linearly in the number of physical cells. We have
solved for up to 16,384 cells using this method. More complex
geometries must be represented using a method allowing flexible
grids and, in the present paper, we have shown the results

for two variants of the finite element method. Although, the
solution process of the finite element equations is much more
time-consuming, the results indicate that more complex cell
geometries can, in fact, be handled.
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