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Introduction

Until recently, the combination of genetic risk factors in conjunc-
tion with environmental influence was believed to cause complex 
non-Mendelian diseases. Over recent years, a paradigm shift has 
occurred and an increasing number of studies have focused on a 
search for epigenetic differences and their contribution to disease 
risk; however, despite the promise of epigenetic etiology in con-
ferring disease risk, the success of the first round of epigenomic 
studies in psychiatric disease has been limited.1 In the first epig-
enomic profiling studies performed in major psychosis, Mill et 
al. found moderate fold changes in prefrontal cortex DNA meth-
ylation. In the WDR18 glutamate receptor subunit gene, an 8% 
DNA methylation difference was detected between males with 
schizophrenia and controls, while female patients with bipolar 
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performed �uorescence activated cell sorting (FACS) of neuronal nuclei and Illumina HM450 DNA methylation pro�ling 

in post mortem frontal cortex of 29 major depression subjects and 29 matched controls. We identify genomic features 

and ontologies enriched for cell type speci�c epigenetic variation. Using the top cell epigenotype speci�c (CETS) marks, 

we generated a publically available R package, “CETS,” located at http://psychiatry.igm.jhmi.edu/kaminsky/software.htm 

that is capable of quantifying neuronal proportions and generating in silico neuronal pro�les capable of removing cell 

type heterogeneity bias from DNA methylation data. We demonstrate a signi�cant overlap in major depression DNA 

methylation associations between FACS separated and CETS model generated neuronal pro�les relative to bulk pro�les. 

CETS derived neuronal proportions correlated signi�cantly with age in the frontal cortex and cerebellum and accounted 

for epigenetic variation between brain regions. CETS based control of cellular heterogeneity will enable more robust 

hypothesis testing in the brain.

A cell epigenotype speci�c model  
for the correction of brain cellular heterogeneity 

bias and its application to age, brain region  
and major depression

Jerry Guintivano,1 Martin J. Aryee2,3,4 and Zachary A. Kaminsky1,*

1The Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA;  
2Division of Biostatistics; Department of Oncology; Johns Hopkins University School of Medicine; Baltimore, MD USA; 3Molecular Pathology Unit;  

Massachusetts General Hospital; Charlestown, MA USA; 4Department of Pathology; Harvard Medical School; Boston, MA USA

Keywords: DNA methylation, neurons, glia, fluorescence activated cell sorting, epigenetics, cellular heterogeneity,  
microarray, age, brain region

Abbreviations: CETS, cell epigenotype specific; CGI, CpG island; CHARM, comprehensive high-throughput arrays for relative 
methylation; DMR, differentially methylated region; FACS, fluorescence activated cell sorting; GO, gene ontology;  
HM27, Illumina Infinium Human Methylation 27; HM450, Illumina Infinium Human Methylation450 Beadchip;  

LCM, laser capture microdisection; MDD, major depressive disorder; tDMR, tissue-specific differentially methylated region;  
TSS, transcription start site; UTR, untranslated region

disorder were 6% more methylated than controls at the RPL39 
gene.2 No significant differences were found in an analysis of 50 
loci in the temporal cortex of schizophrenia affected individuals.3 
A recent methylome profiling study in major depressive disorder 
(MDD) did not identify any significant loci after correction for 
multiple testing; however, it successfully validated 60% of the 
top nominally significant differences.4 In the above studies, the 
brain samples interrogated consisted of “bulk” brain tissue prepa-
rations representing cellularly heterogeneous mixes of neuronal 
and non-neuronal cell types.

Cellular heterogeneity in the nervous system is important 
because DNA methylation has long been established as a dis-
tinguishing feature of differing cell types.5-8 Recent DNA meth-
ylation microarray profiling studies using the comprehensive 
high-throughput arrays for relative methylation (CHARM) 
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cerebral cortex.18 Glutamatergic and dopaminergic neurons are 
implicated in schizophrenia,19,20 while serotonergic systems are 
involved in MDD;21 however, the relative proportions of these 
neuronal subtypes are small relative to the cellular architecture in 
the CNS regions investigated. If psychiatric disease relevant epi-
mutations are occurring within specific subtypes, decreases in the 
observed effect sizes may be expected if sampling is performed 
from bulk tissue.

In this paper, we present the generation of cell epigenotype 
specific (CETS) maps in the cortex and introduce a new bioin-
formatics model capable of quantifying the proportion of neu-
rons to glia based on DNA methylation measures across multiple 
CETS markers. Furthermore, we provide a technique for trans-
forming existing DNA methylation data sets derived from bulk 
tissue preparations generated on Illumina microarrays to remove 
cell-type heterogeneity bias from DNA methylation profiles. We 
demonstrate the application of these techniques to the analysis 
of DNA methylation differences in MDD, with age, and across 
brain regions.

Results

Identification of CETS markers. Following FACS based isola-
tion of neuronal and non-neuronal nuclei (Fig. S1), a paired t-test 
between neuronal and glial DNA methylation samples per locus 
identified 32.3% of loci (n = 112,331 out of 347,536 trimmed 
loci) exhibited a DNA methylation change greater than 5% and 
were significantly different between neurons and glia after FDR 
based correction for multiple testing (Fig. 1A). While, on aver-
age, the effect size of all FDR significant cell type specific dif-
ferences is quite small (0.067%), over 14% (n = 37,399) and 1%  
(n = 2,693) of significant loci exhibit DNA methylation dif-
ferences greater than 20 and 50%, respectively. An example of 

technique9 identified tissue-specific differentially methylated 
regions (tDMRs) in CpG island adjacent regions called CpG 
island shores.10 DNA methylation in shores is capable of distin-
guishing bulk brain regions, as well as pluripotent stem cells from 
differentiated cells.10,11 Other tDMRs were identified as being 
responsible for myeloid vs. lymphoid cell fate decisions from 
hematopoietic stem cell progenitors.12 Tissue heterogeneity could 
therefore confound epigenetic studies in two ways.

First, heterogeneity of measurements is brought about by dif-
fering ratios of cellular subtypes in the individuals tested. This 
issue is of particular importance in psychiatric diseases where the 
morphology of various brain regions is changed. MRI imaging 
studies identified a reduced hippocampal volume in females with 
depression13 while smaller inferior frontal gyri of the dorsolat-
eral prefrontal cortices were correlated with increased lifetime 
manic episodes in bipolar patients.14 Using an optical dissector, 
Cotter et al. demonstrated that neuronal but not oligodendrog-
lial density was decreased in cortical layers 1 and 5 in bipolar and 
depression patients,15 while Urnova et al. found a reduction of 
oligodendroglial cells in schizophrenia, bipolar, and depression 
patients.16 Alternate reports suggest that neuronal inflammation 
may elevate levels of activated microglia,17 which could in turn 
skew observed levels of cell type specific epigenetic patterns. In 
this way, a large proportion of disease-implicated loci identified 
in epigenomic studies may be simply a consequence of morpho-
logical abnormalities of disease or other facets of disease state 
such as inflammation or neurodegeneration.

The second way cellular heterogeneity may confound psychi-
atric epigenetic studies is a dilution of observed disease effects by 
alternate cell types not exhibiting the disease effect. Using an iso-
tropic fractionation method, Azevedo et al. determined that the 
human CNS contains approximately equal numbers of neurons 
and glia as a whole, but a ratio of 3.76/1 glia to neurons in the 

Figure 1. CETS model generation. (A) Volcano plot of DNA methylation vs. -log of FDR signi�cance for neuronal vs. glial DNA methylation pro�les. 

Almost the entire microarray identi�es FDR signi�cant changes across cell types. Red spots represent loci signi�cant at a nominal p value of 0.05 in a 

comparison of MDD vs. control individuals that are excluded from CETS model generation. Green boxes represent top 10,000 CETS markers.  

(B) Scatterplot of DNA methylation as obtained by HM450 microarrays (x-axis) and by independent pyrosequencing assays (y-axis) at �ve loci within 

the top 1,000 CETS markers. (C) Heat map depicting the in silico virtual gradient of neuronal to glial DNA methylation at the top 10,000 CETS markers 

generated across our sample of 58 individuals. Yellow and red denote β values of methylated and unmethyated DNA, respectively. Linear modeling 

F-statistic for each neuronal proportion is overlaid (blue). Blue dashed line depicts the model prediction of 43%.
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involved in neuron differentiation (GO:0048667), axonogenesis 
(GO:0007409), axon guidance (GO:0007411), dendritic spine 
(GO:0043197), synapse (GO:0045202) and post synaptic den-
sity (GO:0014069). The full list of over-represented GO catego-
ries can be viewed in Table S1.

A model for quantifying neuronal and glial proportions 
from methylation data. Using the top 10,000 CETS markers, 
corresponding roughly to the top 5th percentile of CETS loci, 
we developed a method capable of quantifying the proportions 
of neurons and glia based on generalized and disease non-spe-
cific cell type epigenetic markers as a proxy for cellular propor-
tions. Mean neuronal and glial DNA methylation profiles were 
used to generate an in silico gradient of DNA methylation mixes 
from 100% glia to 100% neurons at our top CETS markers  
(Fig. 1C). To quantify the neuronal proportion, we fit a linear 
slope model of the observed DNA methylation in bulk tissue at the 
top 10,000 CETS loci to the predicted values for each neuronal 
percentage of the in silico gradient. The proportion of neurons, 
N, is determined by the in silico gradient percentage correspond-
ing to the best fit (largest F-statistic). The p value of the linear 
model at the optimal neuronal proportion is taken as a measure 
of model performance for a given sample after Bonferroni correc-
tion for multiple testing.

Model performance was evaluated using a number of metrics. 
A reconstitution experiment was performed by mixing neuron 
and glial derived DNA from a single individual in 10 percent 
increments from 0–100% for a total of 11 mixes and followed 
by microarray hybridization (Fig. S3). The accuracy of mixed 
proportions was confirmed by comparing the Euclidean distance 
between arrays and the expected proportion of DNA methylation 
difference between mixes (R2 = 1, p = 4.9 × 10-13). CETS model 
predictions of proportions of neurons to non-neurons matched 
the empirical mixes to a high degree of accuracy (R2 = 0.99,  
p = 2.7 × 10-11) (Fig. 2A). As an independent measure, we cor-
related the CETS model generated neuronal proportions against 
the ratio of a neuronal-nuclei specific nuclear protein, NeuN, 
positive: NeuN negative cell counts as determined by FACS in 
20 bulk samples and observed a significant correlation (R2 = 0.6, 
p = 4.2 × 10-5) (Fig. 2B). We next downloaded data generated in a 
recent analysis of human prefrontal cortex DNA methylation and 
gene expression across the lifespan (n = 100)24 and compared the 
mean gene expression at probes representative of RBFOX3, which 
encodes the NeuN protein, with neuronal proportions predicted 
using Illumina Infinium Human Methylation 27 (HM27) 
microarray loci and observed a significant correlation (R2 = 0.17, 
p = 3 × 10-5) (Fig. 2C).

We next sought to compare the performance of the CETS 
algorithm to that of a recently published quadratic programming 
based algorithm for quantification of cell type proportion from 
DNA methylation data in blood.25 Across the three test data sets 
above, the quadratic algorithm performed similarly to the CETS 
algorithm in evaluating the proper proportion of mixes (R2 = 1, 
p = 2.1 × 10-13), FACS based neuronal percentages in bulk tis-
sue (R2 = 0.59, p = 8.1 × 10-5), and NeuN expression (R2 = 0.17, 
p = 1.9 × 10-5). A major difference between the two algorithms 
was identified in regards to the robustness of neuronal prediction 

cell type specific epigenetic differences detected is depicted in  
Figure S2. We observed a significant over-representation of loci 
exhibiting cell type specific change in the same direction as 
previously identified differentially methylated regions (DMRs) 
unique to both neurons and non-neurons22 at 2,262 overlapping 
loci from the top 25th percentile of cell type specific differences 
in our study (Fisher’s OR = 4.6, p value = 1.1 × 10-7).

In order to generate CETS markers independent of the effects 
of disease status and various medication influences, we selected 
CpGs significantly different between neurons and non-neurons 
after FDR based correction for multiple testing that were not 
significant in a separate case-control analysis of the MDD phe-
notype in either neurons or non-neurons at a raw significance 
threshold of 5%, resulting in the exclusion of 21,290 loci. We 
performed independent validation of five loci located within the 
top 10,000 CETS markers and obtained a significant correlation 
with microarray values (R2 = 0.95, p = 2.2 × 10-16) (Fig. 1B).

Genomic features associated with neuronal and glial DNA 
methylation differences. DNA methylation differences distin-
guishing between neurons and non-neurons were evaluated at 
CpG positions associated with various gene regulatory features. 
For each analysis, the distribution of the absolute cell type spe-
cific difference within a specific category was compared with that 
of all CpG loci not falling within that category. CpG islands 
(CGI) exhibited significantly less cell type specific differences 
(Wilcoxon Rank Sum test, CGI = 0.040 ± 1.1 × 10-6, non-CGI 
= 0.085 ± 7.2 × 10-7, Bonferroni p < 1 × 10-220), while CGI shores 
exhibited significantly more (Wilcoxon Rank Sum test, CGI 
shore = 0.075 ± 1.9 × 10-6, non-CGI shore = 0.07 ± 6 × 10-7,  
Bonferroni p = 1.7 × 10-211). CpG loci within 5' untranslated 
regions (UTR), first exons (Wilcoxon Rank Sum test, first exon = 
0.035 ± 2.0 × 10-6, non-first exon = 0.066 ± 2.6 × 10-7, Bonferroni 
p < 1 × 10-220), and upstream of transcription start sites (TSS) 
(TSS = 0.047 ± 6.1 × 10-7, non-TSS = 0.07 ± 3.7 × 10-7, Bonferroni 
p < 1 × 10-220) exhibited significantly lower cell type specific 
DNA methylation differences. Conversely, CpGs located within 
3'UTRs (Wilcoxon Rank Sum test, 3'UTR = 0.087 ± 5.7 × 10-6, 
non-3'UTR = 0.062 ± 2.5 × 10-7, Bonferroni p < 1 × 10-220), gene 
bodies (Wilcoxon Rank Sum test, gene body = 0.082 ± 6.7 × 10-7, 
non-gene body = 0.05 ± 3.5 × 10-7, Bonferroni p < 1 × 10-220), 
and enhancer sequences (Wilcoxon Rank Sum test, enhancers =  
0.10 + 2.6 × 10-6, non-enhancers = 0.062 + 5.4 × 10-7,  
p < 1 × 10-220) exhibited significantly higher DNA methylation 
differences between neurons and non-neurons.

Gene ontology analysis of top CETS markers. We selected 
a stringent set of the top 1,000 CETS markers maximizing the 
DNA methylation difference between neurons and glia, cor-
responding roughly to those loci with a FDR p value less than 
the lower 0.5th percentile of p values within the CETS marker 
group. The average DNA methylation difference in this group 
was 56 ± 9.8 × 10-5%. Molecular function of genes associ-
ated with the top 1,000 CETS markers was investigated using 
the g.Profiler analysis suite.23 A number of significantly over- 
represented gene ontology (GO) categories dealing with neuron 
development and function were identified such as central ner-
vous system development (GO:0007417), cell morphogenesis 
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effects by multiplying DNA methylation values at random probes 
by a range of percentages from 10–100% at a range of randomly 
selected probes within half of the reconstitution data set, leaving 
the other half untouched (Fig. S4A and B). Five iterations were 
performed at each level for a total of 500 comparisons. Quadratic 
neuronal predictions were found to be highly influenced by the 
proportion of probes affected by the batch effect (R2 = 0.99,  
p = 2.2 × 10-16) (Fig. S4C). In the CETS model, the predicted 
neuronal proportions across all permutations were virtually iden-
tical to the original predictions without in silico induced batch 
effects (mean R2 > 1 – 1.9 × 10-6) (Fig. S4C).

As the algorithm uses the relative proportions of DNA meth-
ylation across CETS markers, the input data required is not 
limited to data generated on the Illumina Infinium Human 
Methylation450 Beadchip (HM450) platform. We performed 
100 permutations of randomly selected loci within the CETS 
marker set and determined that numerous combinations of 
CETS markers of different sizes within the top 10,000 CETS set 
are capable of accurately determining the correct proportions of 
mixed neuronal and non-neuronal input DNA (Table 1; Fig. S5). 
To confirm this, we applied CETS model quantification to DNA 
methylation profiles of three NeuN positive and negative pre-
frontal cortical samples profiled by Iwamoto et al. on Affymetrix 
Human Promoter 1.0R arrays.22 The ratio of methyl-enriched to 
non-enriched signals at 3,841 probes overlapping with the top 
10,000 CETS marker locations were used for quantification 
and generated predictions of 100% and 0% neuronal propor-
tions for all NeuN positive and negative samples, respectively  
(AUC = 1). These analyses suggest that while the neuronal 
proportion prediction accuracy is optimized with large sets of 
CETS markers, the performance of the algorithm in subset of 
these markers is adequate to generate accurate predictions and 
is dependent only on relative methylation as opposed to absolute 
methylation signals.

Transformation of bulk tissue profiles to reduce cell type 
heterogeneity bias. We generated an algorithm capable of 

to batch effects within a given microarray experiment. This was 
tested by generating in silico batch effects at random proportions 
of probes within the top 10,000 CETS markers and predicting 
neuronal proportion using both algorithms. We inserted batch 

Figure 2. CETS model validation. (A) Scatter plot of predicted neuronal proportions vs. empirical mixes of neuronal and glial DNA in increments of 

10%. (B) Scatter plot of predicted neuronal proportion vs. FACS based estimate in 20 bulk tissue samples. (C) Scatter plot of predicted neuronal pro-

portion vs. NeuN gene (RBFOX3) expression [2log(fold change)] in 100 bulk brain tissue samples evaluated on Illumina HM27 microarrays and custom gene 

expression platforms.24

Table 1. Random probe combination performance

# Probes Mean R2 Standard deviation

5 0.93 1.0 × 10-1

10 0.98 1.2 × 10-2

25 0.99 9.7 × 10-3

50 0.99 4.6 × 10-3

75 0.99 3.6 × 10-3

100 0.99 2.5 × 10-3

200 0.99 2.1 × 10-3

300 0.99 1.6 × 10-3

400 0.99 1.4 × 10-3

500 0.99 1.3 × 10-3

600 0.99 1.3 × 10-3

700 0.99 1.1 × 10-3

800 0.99 9.5 × 10-4

900 0.99 8.2 × 10-4

1,000 0.99 8.6 × 10-4

2,000 0.99 6.1 × 10-4

3,000 0.99 5.3 × 10-4

4,000 0.99 4.6 × 10-4

5,000 0.99 3.5 × 10-4

6,000 0.99 3.0 × 10-4

7,000 0.99 2.6 × 10-4

8,000 0.99 1.5 × 10-4

9,000 0.99 1.3 × 10-4

10,000 0.99 NA
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(R = 0.57, p = 5.2 × 10-10). These analyses demonstrate the efficacy 
of the model for identifying cell type specific DNA methylation 
associations in data generated from bulk tissue hybridizations, 
although the cell type responsible for the signal will remain to 
be determined.

A comparison of FACS based vs. CETS model transformed 
MDD DNA methylation associations. CETS based quantifica-
tion was applied to a data set investigating DNA methylation 
associations in MDD data from the Stanley Medical Research 
Institute (SMRI).4 Smoothed DNA methylation levels derived 
from the CHARM package at 8,130 probes overlapping the top 
10,000 CETS loci were used for quantification of neuronal propor-
tions. A significantly higher proportion of neurons were observed 
in the MDD group (mean proportion controls = 0.51 ± 0.0034,  
mean proportion depression = 0.55 ± 0.0028, Wilcoxon rank 
sum p = 0.05) (Fig. 4A). A re-analysis of CHARM data was per-
formed following incorporation of neuronal proportion informa-
tion. CHARM data was transformed by taking the residuals of 
a linear model of probe fold change information and neuronal 
proportion for each locus, followed by DMR identification and 
quantification using the CHARM package standard functions. 
Of the 420 DMRs originally identified as significant below a 
nominal p value of 0.05, 33% were identified as nominally sig-
nificant in the CETS model corrected data. While the original 
analysis did not return any hits significant after correction for 
multiple testing, CETS modeled data identified three DMRs 
located proximal to the LASS2, PCTK1 and FAM20B genes. A 
total of 77 DMRs adjacent to genes exhibited a trend toward sig-
nificant association to MDD at a significance level below 10%. 
A full list of nominally significant DMRs generated in the CETS 
modeled data appears in Table S2.

We cross-referenced nominally significant DMRs from both 
analyses with FDR significant cell type specific DNA methylation 
differences generated on the HM450 microarrays above. A sig-
nificant correlation was observed between nominally significant 
DMRs from the non-corrected CHARM data and overlapping 
loci with FDR significant cell type specific DNA methylation 
differences from our FACS based experiments above (R2 = 0.33, 
p = 2.2 × 10-16) (Fig. 4B), suggesting a portion of the identified 
DMRs are resultant from the differences in neuronal proportion 
between groups. Conversely, DMRs identified in CETS model 
transformed data did not demonstrate a relationship to cell type 
specific differences (R2 = 0.006, p = 0.07) (Fig. 4C).

Independently, we generated MDD specific DNA methyla-
tion associations in our FACS sorted neuronal and non-neuronal 
nuclear fractions within the Caucasian population of the NICHD 
sample. No loci exhibited significance after correction for multiple 
testing in either comparison. To assess the replicability of MDD 
associations across cohorts, the direction of DNA methylation 
change between MDD and controls was compared at nominally 
significant DMRs identified from the SMRI CHARM analyses 
and NICHD analyses. DMRs identified in the CETS modeled 
SMRI data exhibited a significantly higher proportion of DNA 
methylation changes in the same direction as the NICHD neuro-
nal data set as compared with the non-transformed CHARM data 
(CETS modeled overlap = 92%, non-modeled overlap = 36%,  

transforming bulk tissue derived DNA methylation profiles to 
an expected neuronal or glial profile in order to reduce cell type 
heterogeneity confounding and improve the power to detect cell 
type specific differences. The method uses the estimated neu-
ronal proportions generated in the above section to determine 
the amount of reference neuronal or glial signal to subtract from 
each data point. If a data point at a given locus is not signifi-
cant at an FDR level of 5%, no transformation is performed. 
While the quantification algorithm presented above is appli-
cable to data generated on multiple microarray platforms, this 
algorithm is applicable only to Illumina HM450 or HM27 plat-
forms since the relationship between neuronal proportion and 
effect on methylation estimates is assumed to be known a priori 
based on the Illumina HM450 reference profiles. We evaluated 
the algorithm’s capability to recober the neuronal profiles in the 
empirically mixed sample by correlating the 100% neuron DNA 
methylation profile to the bioinformatically generated neuronal 
profile for each 10% mix (Table 2 and Fig. 3A and B). The model 
accounted for over 93% of the variance across the spectrum of 
potential neuron to glia ratios (Table 2 and Fig. 3A and B).

Identification of phenotype associations using transformed 
data. The ability of transformed neuronal profiles to identify 
cell type specific disease associations was investigated in 20 bulk 
tissue preparations hybridized to the HM450 microarray and 
compared with FACS isolated neuronal cell preparations. Each 
sample was assigned to one of two groups, followed by statisti-
cal comparison of the mean neuronal proportion per group and 
a spot-wise t-test based association to the group classifier in the 
non-transformed bulk tissue and the CETS model transformed 
cell type specific profile. The degree of overlap observed between 
loci achieving a nominal significance of 5% in the FACS sepa-
rated neurons was compared between the transformed and non-
transformed bulk tissue data by Fisher’s exact test. We randomly 
permuted group assignments and iterated the test 100 times. 
We observed that the larger the difference in neuronal propor-
tion between groups, the CETS model derived neuronal profile 
identifies significantly higher overlap with neuron specific group 
associations as compared with the bulk derived data (R = 0.48, 
p = 4.7 × 10-7) (Fig. 3C). Similarly, evaluating significance with 
a linear model incorporating neuronal proportion as a covari-
ate generates significantly higher overlap than that of bulk data  

Table 2. Comparison of FACS based vs. bioinformatically transformed 

neuronal profile

% Neuron DNA % Glia DNA R non-transformed R transformed

10 90 -0.46 0.98

20 80 -0.42 0.98

30 70 -0.32 0.97

40 60 -0.18 0.97

50 50 0.03 0.97

60 40 0.29 0.97

70 30 0.62 0.97

80 20 0.88 0.98

90 10 0.98 0.99
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Fisher’s OR = 17.3, p = 0.0053). Similarly in non-neuronal nuclei, 
a significantly higher agreement between NICHD and SMRI 
CETS modeled data was observed (CETS modeled overlap = 
39%, non-modeled overlap = 11%, Fisher’s OR = 5.1, p = 3 × 10-4).  
While the degree of MDD specific DNA methylation associa-
tions identified in each cohort was not high, these analyses sug-
gest that the CETS model transformation leads to a higher cross 
cohort agreement and that removal off cellular heterogeneity 
based confounds can improve the potential for cross cohort repli-
cation of disease specific findings.

Model based comparison of different brain regions and 
age. Using the CETS model, we quantified neuronal propor-
tion across 506 individuals and across four brain regions using 
DNA methylation profiles generated on Illumina HM27 bead-
chip microarrays by Gibbs et al.26 We observed significant varia-
tion in neuronal proportion across brain regions relative to the 
frontal cortex. Frontal cortex was significantly different from 
pons (neuronal proportion pons = 0.093 ± 0.00029, frontal cor-
tex = 0.31 ± 0.00076, p = 1.6 × 10-33) and cerebellum (neuro-
nal proportion cerebellum = 0.44 ± 0.00062, frontal cortex =  
0.31 ± 0.00076, p = 7.5 × 10-32), while the temporal cortex was 
not significantly different (neuronal proportion temporal cortex 
= 0.32 ± 0.00082, frontal cortex = 0.31 ± 0.00076, p = 0.12) 
(Fig. 5A). The degree of difference is consistent with hierarchical 
clustering of DNA methylation data presented by Gibbs et al. We 
observe a significant correlation between the relative Euclidean 
distance of between microarrays and the distance between 
neuronal proportions (Spearman’s Rho = 0.69, p = 2.2 × 10-16)  
(Fig. 5B). We performed spot-wise t-tests across tissues and 
observed highly significant FDR corrected differences similar to 
that of our neuron vs. non-neuron comparison in Figure 1A with 
FDR p values ranging as low as 3.1 × 10-126 (Fig. 5C). Correcting 
for neuronal proportion results in no FDR significant differences. 
Cumulatively, this data suggests that a majority of variation in 
DNA methylation previously reported between brain regions is 
due to differing proportions of neuronal to non-neuronal cells.

We next investigated the relationship between predicted neu-
ronal proportion and age per brain region. No correlations were 
observed in the pons (Spearman’s Rho = -0.11, p = 0.21) or tem-
poral cortex (Spearman’s Rho = 0.078, p = 0.38), while neuronal 

Figure 3. Transformation of bulk tissue derived data to in silico neuro-

nal and non-neuronal pro�les. (A) Heat Maps of raw non-transformed, 

transformed neuronal, and transformed glial DNA methylation values 

at the top 10,000 CETS markers across the empirically mixed sample 

range. (B) Scatter plots of the raw 100% neuronal vs. the transformed 

neuronal DNA methylation pro�le at the top 10,000 CETS markers 

across the empirically mixed sample range with the blue line depicting 

the line of best �t. Red lines represent the line of best �t for the correla-

tion between 100% neuronal vs. non-transformed DNA methylation 

pro�le across the empirically mixed sample range. (C) Scatter plots 

of the -log of the p values generated from 100 iterations of randomly 

shu�ing 20 bulk tissue samples. The -log(p value) of a Fisher’s exact 

test evaluating the degree of overlap between FACS derived neuronal 

pro�les and the transformed and non-transformed bulk tissues in each 

of the 100 pair wise comparisons (y-axis) is plotted as a function of the 

-log(p value) of a test evaluating the group-wise neuronal proportion 

di�erences (x-axis) for each of the 100 random comparisons.
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previously in FAC sorted neuronal and non-neuronal nuclear 
populations using Affymetrix tiling microarrays;22 however, the 
relatively small sample size of three individuals for this study calls 
into question the generalizability of these markers for neuronal 
quantification in the population. Our results confirm and expand 
upon the original findings by Iwamoto et al. and allow us to define 
more generalizable cell type specific DNA methylation differences 
between neurons and glia that are independent of psychiatric phe-
notype. The cohort investigated in our study is significantly larger 
and derives from both healthy control brains and those with a psy-
chiatric disease. The inclusion of MDD cases in the sample allowed 
for the refinement of a more robust set of CETS markers through 
exclusion of disease associated loci that may exhibit variation in 
DNA methylation due to disease or medication status.

proportion was found to increase with age in the frontal cortex 
(Spearman’s Rho = 0.2, p = 0.021) and cerebellum (Spearman’s 
Rho = 0.53, p = 2.9 × 10-10) (Fig. 6).

Discussion

We have generated a novel set of bioinformatics tools designed to 
identify and correct for cellular heterogeneity based bias in genome-
scale DNA methylation studies in the brain. Recently, techniques 
have been developed for the bioinformatics adjustment of cell 
subfraction heterogeneity in peripheral blood cells based on DNA 
methylation proxies for FACS sorted cell types;25 however, to our 
knowledge, our study represents the first attempt to generate such 
a model in brain. DNA methylation profiling has been performed 

Figure 4. Identi�cation and correction of cell heterogeneity in MDD. (A) Boxplots of the proportion of CETS model predicted neuronal proportions 

for control and MDD cases. (B) Scatterplot of the log2 fold change (M value) between MDD and controls in non-corrected CHARM data (x-axis) vs. the 

percentage of DNA methylation di�erence in FACS separated neuronal and glial nuclei (y-axis) at overlapping loci between the CHARM and HM450 mi-

croarray platforms. (C) Scatterplot of the M value between MDD and controls in CETS model corrected CHARM data (x-axis) vs. the percentage of DNA 

methylation di�erence in FACS separated neuronal and glial nuclei (y-axis) at overlapping loci between the CHARM and HM450 microarray platforms.

Figure 5. Brain region speci�c epigenetic variation is a function of neuronal proportion. (A) Boxplots of the CETS model predicted neuronal propor-

tion (y-axis) in Pons (green), frontal cortex (FCTX, blue), temporal cortex (TCTX, red), and cerebellum (CER, black) (x-axis). (B) A plot of the neuronal 

proportion (y-axis) vs. euclidean distance of each array (x-axis). Color coding is the same as in A. (C) Volcano plots depicting the -log FDR signi�cance 

of FCTX vs. pons (green), TCTX (red), and CER (black).
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predicted neuronal proportion to the average gene expression of 
the RBFOX3 gene, which encodes the NeuN protein, demon-
strated the weakest correlation. The strength of the correlation 
may have been affected by variation of factors know to affect gene 
expression measurements such as brain pH34 and post mortem 
interval.35 Importantly, we observed an average predicted propor-
tion of 32.2% neurons to non-neurons in the NICHD cortical 
population and 31.1% and 32.1% in the frontal and temporal 
cortical samples from the Gibbs et al. study. These values are 
similar to the published 32.4% and 27% gray matter and total 
cortical neuronal content, respectively, as determined by Azevedo 
et al. using isotropic fractionation.18

The approach designed for quantifying neuronal proportions 
was enabled by the large DNA methylation difference and small 
variance between neuronal and non-neuronal DNA methylation 
profiles at top CETS loci. The technique measures neuronal pro-
portions by determining the best match to a gradient of DNA 
methylation profiles for each sample and as such, variation within 
an individual sample will be tested equally across the in silico gra-
dient, allowing for an even chance of proper neuronal prediction 
per sample. These features make the predictions robust to batch 
effects, as demonstrated above. Importantly, we modeled batch 
effects by induced systematic increases in detected DNA meth-
ylation values across randomized proportions of probes across the 
CETS marker set and demonstrated that prediction values are 
independent of these factors and out-perform quadratic program-
ming alternatives. The design of the CETS algorithm also makes 
it applicable across multiple experimental platforms that contain 
overlapping data points with the top CETS loci, as evidenced by 
our perfect classification of NeuN positive and negative samples 
from Iwamoto et al.22 This feature makes CETS applicable not 
only to data generated on tiling arrays but also next generation 
sequencing platforms. The performance of a given platform may 
vary depending on the distribution of overlaps with top CETS 
loci; however, the neuronal proportions calculated will remain 
relative across a given experiment, allowing for the quantification 
of cellular heterogeneity bias.

Enriched GO categories within the top CETS markers appear 
to be related to cell fate commitment and generation of neurons. 
These results are consistent with the interpretation that DNA 
methylation marks capable of distinguishing neurons from non-
neurons also define their cellular identity. We identified enriched 
neuronal vs. non-neuronal DNA methylation differences in spe-
cific genomic categories, including CGI shores, gene bodies, and 
3'UTRs. Conversely, CGIs and promoters exhibited significantly 
less cell type specific differences. These findings are consistent with 
previous reports identifying DNA methylation variation at CGI 
shores as important regulators of tissue identity.10 Gene body meth-
ylation, specifically at exonic sequences, has been shown to direct 
alternative transcriptional splicing.27,28 Neuronal cell fate determi-
nation is largely influenced by alternative splicing mechanisms dur-
ing neuronal development,29 while in mature neurons alternative 
splicing variation contributes to a number of key neuronal func-
tions including axonal guidance, synaptic vesicle release,30,36 syn-
aptic remodeling, and long-term potentiation,31 among others.29,32 
Cell type specific DNA methylation differences in these regions 
may be related to the GO categories identified in the top CETS loci 
such as axon guidance, dendritic spine, and postsynaptic density.

We validated the neuronal proportion quantification algo-
rithm using multiple metrics. The technique performed best in 
the reconstitution experiment. The second method was a com-
parison to FACS based measurements of neuronal proportion in 
a set of 20 bulk tissue samples run on the microarrays. In general, 
FACS based quantification of cortical neuronal populations is a 
well-accepted technique and has been found to be more accurate 
than fluorescent microscopy quantifications using a Neubauer 
chamber.33 A possible source of higher variation relative to the 
reconstitution experiments was that microarrays and FACS based 
quantification were run on the same individual, but on different 
preparations of the bulk tissue such that variation in the cellu-
lar composition of the sectioned tissue per individual may have 
added to the experimental noise. A second possibility is that vari-
ation was induced at the level of selection of FACS gate param-
eters used to define the neuronal population. The comparison of 

Figure 6. Variation of neuronal proportion by age. CETS model predicted neuronal proportion (y-axis) vs. age in years (x-axis) for frontal cortex (A), 

cerebellum (B), and cerebellum excluding outlier neuronal predictions (C). Outliers were those predictions located beyond the 9th and 91st percentile 

of the predicted neuronal distribution.
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After isolation of Purkinje neurons through laser capture micro-
disection, ~8% (5 out of 60) candidates validated, corroborating 
our interpretation that a majority of age related associations may 
be due to cell heterogeneity and may be corrected through CETS 
model transformation.

DNA methylation at the CETS markers should be robust to 
age related variation in order to accurately quantify neuronal 
proportions over a range of ages. The age of the samples used to 
generate the CETS loci in our study ranged from 13 to 79 y old 
and did not demonstrate age related variation of neuronal or non-
neuronal profiles at the CETS loci. The CETS model is therefore 
appropriate to evaluate neuronal proportion in brain samples 
above these ages, such as the study by Gibbs et al.39 The perfor-
mance of CETS based quantification of neuronal proportions in 
samples from younger ages will depend on the relative conserva-
tion of epigenetic patterns at CETS markers during development. 
As highlighted in the Numata et al. study, DNA methylation in 
the prefrontal cortex varies at different developmental time peri-
ods and exhibits rapid changes both prenatally and in the early 
postnatal years, specifically in neural developmental genes.24 
Despite this, an analysis of the Numata et al. data demonstrated 
a significant correlation at the 521 CETS markers present on the 
HM27 array between the mean DNA methylation profiles of 44 
samples less than 13 y old, including 29 prenatal samples, to the 
remaining 56 samples ranging from 13 to 78 y old (R = 0.95, 
p = 2.2 × 10-16). While, neuronal proportion quantification in 
samples younger than age 13 should be interpreted with caution, 
these analyses suggest that at least a portion of CETS patterns 
vary only minimally over earlier age ranges and may be appropri-
ate for neuronal quantification in younger samples. Future stud-
ies will be necessary to refine specific CETS markers robust to 
early developmental changes and enable reliable quantification of 
neuronal proportions in younger samples.

The accuracy of CETS model prediction of neuronal to 
non-neuronal proportion in non-cortical brain regions will be 
influenced by the conservation of neuron specific epigenetic 
marks across regions. Prediction of cerebellar neuronal content 
was lower than the ~77% reported by Azevedo et al.,18 which 
is explained by the fact that primarily granule neurons in the 
cerebellum express NeuN, while Purkinje cells do not.40,41 The 
above correlation between age and cerebellar neuronal propor-
tion above is therefore most likely reflective of age related changes 
in ratios of undetected neuronal cell types. This interpretation 
is consistent with observations that Purkinje neuron levels and 
ratios of stelate and basket neurons relative to granule neurons 
have been observed to decrease with age in mice.42-44

Future studies targeting distinct brain regions or cell types 
within a brain region will be necessary to refine CETS models. 
Importantly, neuronal content predictions were demonstrated 
to adequately account for the observed degree of DNA methyla-
tion variation across brain regions. Numerous previous studies 
report large scale DNA methylation differences between brain 
regions.26,45,46 On both the global and locus specific scale, our 
analyses demonstrate both a strong correlation between brain 
region specific DNA methylation differences and cellular pro-
portion, and a drastic reduction in locus specific differences 

The technique allows for the correction of cell heterogeneity 
bias through either a transformation or an adjustment approach, 
depending on the platform used. For Illumina platforms con-
taining the same probes, the method can generate a transformed 
neuronal and glial profile that is independent of bias due to dif-
fering neuron to glia proportions. Regardless of platform, neu-
ronal proportion information can be included as a covariate in 
a linear model, an approach that appears more robust and is 
recommended in most situations. Our permutation analysis of 
pair-wise differences suggests that both methods perform well 
at generating cell type specific findings when the proportion of 
neurons is unequal between the groups being tested; however, 
the distinction of whether the identified phenotype associa-
tions are resultant from neuronal or non-neuronal cells cannot 
be determined. However, a comparison of the pair-wise analysis 
output from neuronal proportion corrected to non-corrected data 
may indicate the presence of cell type specific associations and 
may direct future analyses such as laser capture microdisection 
(LCM) experiments.

We provide a proof of principle analysis of recently published 
MDD specific DNA methylation profiling data generated in 
the SMRI cohort using the CHARM algorithm. These analy-
ses demonstrated that a large portion of the originally identified 
DMRs was positively correlated with cell type specific DNA 
methylation differences. This observation is expected, as the pro-
portions of neurons to non-neurons were significantly different 
between MDD and controls. Application of CETS model cor-
rection identified novel DMRs that did not correlate with cell 
type specific epigenetic differences and are therefore more likely 
to be associated with MDD independent of cell type heteroge-
neity. Importantly, a number of the originally identified DMRs 
remained significant after CETS model correction and portion of 
these that had previously not survived multiple correction testing 
now passed genome-wide significance. Among these genes were 
LASS2, which was validated and discussed in the original study,4 
FAM20B and PCTK1. Epigenetic variation at PCTK1 could be 
important for MDD, as overexpression of this gene in rats has 
been demonstrated to result in impaired spatial working memory 
and cognitive function.36 The degree of overlap across the results 
generated in the CETS modeled SMRI data and the FAC sorted 
NICHD data was higher than the overlap with non-corrected 
data, suggesting that the statistical removal of neuronal to non-
neuronal heterogeneity in this sample improved the replicability 
of identified findings across cohorts and may thus be more rel-
evant to the disease phenotype in the population.

A number of reports have identified correlation of DNA meth-
ylation in the brain at numerous loci with age.24,37,38 Recently, 
Horvath et al. identified an age related co-methylation module 
in brain and blood38 using many of the same samples investi-
gated above. Our analysis identified positive correlations between 
CETS model predicted neuronal proportion and age in both the 
frontal cortex and cerebellum, suggesting that a portion of these 
findings may be due to variation in cellular content over the 
course of aging. A recent study incorporating the samples from 
Gibbs et al. identified a series of genes where expression levels 
correlated with age in both the frontal cortex and cerebellum.39 
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Tissue and Cell Lysis Buffer (MasterPure DNA Purification Kit, 
Epicenter Biotechnologies) until DNA extraction. All genomic 
DNA from nuclei was isolated with the MasterPure DNA 
Purification Kit (Epicenter Biotechnologies) according to the 
manufacturer’s instructions.

Illumina microarray analysis. Samples quality assessment 
and microarray analysis were conducted at The Sidney Kimmel 
Cancer Center Microarray Core Facility at Johns Hopkins 
University, supported by NIH grant P30 CA006973 entitled 
Regional Oncology Research Center.

Genomic DNA quality assessment. Genomic DNA quality was 
assessed by low concentration agarose gel (0.6%) electrophoresis 
and spectrometry of OD260/280 and OD 260/230 ratio.

Sodium bisulfite conversion. DNA bisulfite conversion was 
performed using EZ DNA Methylation Kit (Zymo Research) 
by following manufacturer’s manual with modifications for 
Illumina Infinium Methylation Assay. Briefly, 0.5–1.0 μg of 
genomic DNA was first mixed with 5 μl of M-Dilution Buffer 
and incubate at 37°C for 15 min and then mixed with 100 μl of 
CT Conversion Reagent prepared as instructed in the kit’s man-
ual. Mixtures were incubated in a thermocycler with 16 thermal 
cycles at 95°C for 30 sec and 50°C for 1 h. Bisulfite-converted 
DNA samples were loaded onto 96-column plates provided in the 
kit for desulphonation and purification. Concentration of eluted 
DNA was measured using Nanodrop-1000 spectrometer.

Infinium chip assay. Bisulfite-converted DNA was analyzed 
using Illumina’s Infinium Human Methylation450 Beadchip Kit 
(WG-314-1001) by following manufacturer’s manual. Beadchip 
contains 485,577 CpG loci in human genome. Briefly, 4 μl of 
bisulfite-converted DNA was added to a 0.8 ml 96-well storage 
plate (Thermo Scientific), denatured in 0.014 N sodium hydrox-
ide, neutralized and amplified with kit-provided reagents and 
buffer at 37°C for 20–24 h. Samples were fragmented using kit-
provided reagents and buffer at 37°C for one hour and precipitated 
by adding 2-propanol. Re-suspended samples were denatured in 
a 96-well plate heat block at 95°C for 20 min. Twelve microliters 
of each sample were loaded onto a 12-sample chip and the chips 
were assembled into hybridization chamber as instructed in the 
manual. After incubation at 48°C for 16–20 h, chips were briefly 
washed and then assembled and placed in a fluid flow-through 
station for primer-extension and staining procedures. Polymer-
coated chips were image-processed in Illumina’s iScan scanner.

Data acquisition. Data were extracted using Methylation 
Module of GenomeStudio v1.0 Software. Raw microarray sig-
nal intensity data was first corrected on Illumina probe type, 
followed by individual methyl and non-methyl channel quantile 
normalization using the Limma package in R/Bioconductor. 
Methylation status of each CpG site was then calculated as  
β value based on following definition:

identified between brain regions after adjusting for neuronal to 
non-neuronal proportions per individual. Together, these find-
ings suggest that the extreme differences between neurons and 
non-neurons are the primary driver of the brain region epigenetic 
differences identified and that a majority of the previously identi-
fied epigenetic variation between brain regions may be largely 
due to differences in neuron to non-neuron ratios. Control of this 
detectable heterogeneity will allow for the identification of more 
subtle epigenetic changes in future studies.

We have generated a publically available R package called 
“CETS” capable of performing the above analyses in DNA meth-
ylation data sets (http://psychiatry.igm.jhmi.edu/kaminsky/soft-
ware.htm). This tool will not only allow for the generation of novel 
data independent of cell heterogeneity based bias, but also allowing 
for a re-analysis of existing data sets. Application of CETS model-
ing to genome-wide DNA methylation data may lead to new level 
of understanding of epigenetic regulation in the brain and holds 
the potential to identify to novel discoveries related to the epigen-
etic basis of neurological and psychiatric phenotypes.

Materials and Methods

Sample. Post mortem cortical tissue from MDD (n = 29) and 
matched control (n = 29) samples were obtained from the 
NICHD Brain Bank of Developmental Disorders. Demographic 
information appears in Table 3.

Isolation of neuronal and non-neuronal nuclei by fluores-
cence activated cell sorting (FACS). Neuronal nuclei were iso-
lated from prefrontal cortical tissue as described previously.47 
Briefly, 250–750 mg of frozen tissue was homogenized in lysis 
buffer (0.32 M sucrose, 5 mM calcium chloride, 3 mM mag-
nesium acetate, 0.1 mM EDTA, 10 mM dithiothreitol, 0.1% 
Triton X-100) and nuclei were isolated via sucrose cushion ultra-
centrifugation (1.8 M sucrose, 3 mM magnesium acetate, 1 mM 
dithiothreitol, 10 mM TRIS-HCl, pH 8). Ultracentrifugation 
was performed at 25,000 rpm for 2.5 h at 4°C (Beckman, 
L-90K ultracentrifuge, SW32 rotor). For nuclei immnofluo-
rescence staining, anti-NeuN (Ms) and anti-Ms IgG antibod-
ies were incubated together at room temperature before nuclei 
were added and incubated further in the dark at 4°C for 45–60 
min before Fluorescence Activated Cell Sorting (FACS). FACS 
was performed at the Johns Hopkins Flow Cytometry Core 
Facility (FACSAria II, BD Biosciences). The sorting primary 
gate was set to properly capture nuclei based on size and den-
sity, while secondary gates were set based on fluorescence sig-
nals. Immunonegative (NeuN-) nuclei were counted, collected, 
and processed in parallel with the fraction of neuronal (NeuN+) 
nuclei. All nuclei were sorted with an efficiency of greater than 
90%. After FACS, nuclei were pelleted and frozen at -80°C in 

Table 3. Sample demographics

Cohort Diagnosis Sample size Age (years) Sex (M:F) PMI (hours)

NICHD CON 29 32.6 ± 16.1 14:15 16.31 ± 4.96

MDD 29 32.5 ± 15.9 14:15 18.1 ± 1.09
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Public data processing. DNA methylation data generated by 
Iwamoto et al.,22 used to validate CETS model prediction was 
downloaded from GEO accession GSE15014. Raw Cel files were 
processed using the AffyTiling package in R to obtain quantile 
normalized M values representative of methylation enriched and 
depleted samples per replicate. Neuronal proportion prediction 
was performed using the CETS package inputing the mean ratio 
of methylated to unmethylated signals per replicate at 3,841 
probes overlapping the top 10,000 CETS markers. DNA meth-
ylation β value data generated by Gibbs et al.26 used for brain 
region specific analysis was downloaded from GEO accession 
GSE15745.

Statistical analysis. All statistical tests were performed in R 
(www.r-project.org). Using an Anderson-Darling test from the 
nortest package, all distributions derived from microarray data 
rejected the null hypothesis of normality and were subsequently 
evaluated with non-parametric tests. All statistical tests per-
formed were two tailed and a p < 0.05 is considered significant. 
Unless otherwise specified, ± denotes the standard error of the 
mean. CETS model predictions of bulk DNA neuronal propor-
tions excluded neuronal and non-neuronal DNA methylation 
profiles of the same sample for in silico matrix generation as 

β value = (signal intensity of methylation-detection probe)/
(signal intensity of methylation-detection probe + signal intensity 
of non-methylation-detection probe + 100).

Pyrosequencing validation of microarray targets. Validation 
of microarray results was performed using sodium bisulfite pyro-
sequencing on genomic DNA from sorted nuclei. Target genes 
(A2BP1, PRMD16, S100B, SH3TC2 and TRIM2) were chosen 
from the top 1,000 CETS loci. Bisulfite conversion was performed 
using EZ DNA Methylation Gold Kit (Zymo Research) according 
to the manufacturer’s instructions. Two primer sets were designed 
to amplify each locus interrogated on the array for each of the five 
genes. Primer sequences and their respective microarray IDs can 
be found in Table 4. Nested PCR amplifications were performed 
with a standard PCR protocol in 25 ml volume reactions con-
taining 3–4 μl of sodium-bisulfite-treated DNA, 0.2 μM prim-
ers, and master mix containing Taq DNA polymerase (Sigma 
Aldrich). After agarose gel electrophoresis to ensure successful 
amplification and specificity, PCR amplicons were processed for 
pyrosequencing analysis according to the manufacturer’s standard 
protocol (Qiagen). All pyrosequencing was performed using a 
PyroMark MD system (QIAGEN) with Pyro Q-CpGt 1.0.9 soft-
ware (QIAGEN) for CpG methylation quantification.

Table 4. Primers for validation experiments

Gene Probe ID Primer name Primer sequence 5'-3'

PRMD16 cg14217558 PRMD_F_out GAA TAA GGG GTT AAA TGT TGA GTA A

PRMD_R_out TAA AAA AAA ACT AAA ATA AAA ACA CCC CTA

PRMD_F_in TTA TAG ATT TAT TTA TTT TTT TAG TTT TTA TTA ATT GG

PRMD_R_in biotin-AAC CTA CAC CTT CCA AAC TAA CAA TA

PRMD_Pyro1 TGT ATA GGT TAG AGT AAG TTA

S100B cg18433784 S100B_F_out TTT TAG GGT GAT ATT AAT ATT TAT GTA ATA

S100B_R_out CCT AAT ACA ACC CAC TAC AAA C

S100B_F_in biotin-TAG TTT ATG TGT AAT TTT GGT TTT TAG TA

S100B_R_in ACC AAA CCT ACA CAC AAA ACT AC

S100B_Pyro1 AAACTACATTAACCAAACAACCCC

TRIM2 cg22471112 TRIM_F_out GGT AGT GAT TTA AAT TTT TTA ATT TGG A

TRIM_R_out AAA ATA TAA ACA ACT AAT CAA CAC AAA C

TRIM_F_in biotin-GGG TTG TAA AGA TGA TAA TTT AGT TTT TAT

TRIM_R_in ACC AAT AAT CAA CCT CTT TAA ACT CTA T

TRIM_Pyro1 TAC TTA AAA TAT TAT ATT TCA TTC C

SH3TC2 cg01965939 SH3_F_out GTA GAA GTA GTT ATT TAT GTG TGT ATT A

SH3_R_out TAT AAA CCT ACA AAC TAA ACT AAA CTA C

SH3_F_in biotin-TTA GAA GAG TGT TGT AAG GGA TAG T

SH3_R_in CTC CCT AAA CCT CCT ACT ATA AC

SH3_Pyro1 AAC TAC ATT ATA CAT TAA ACA AAC CT

A2BP1 cg00480381 A2B_F_out TGA GAA TTA AAT TAA TGA AGA GTA TTT G

A2B_R_out CCT CTA AAA CTC AAC ACA TCA ATA

A2B_F_in biotin-TTA TGT TAG GTA AGT TGT TTT TAA AAT AGA T

A2B_R_in AAA CTA AAA ACC AAA TCC CTT CTA TCA

A2B_Pyro1 AAC TCT TAA TAT AAA AAT TTT CTT CCC A
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