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A Cell Outage Management Framework for Dense
Heterogeneous Networks

Oluwakayode Onireti, Member, IEEE, Ahmed Zoha, Member, IEEE, Jessica Moysen, Member, IEEE,

Ali Imran, Member, IEEE, Lorenza Giupponi, Senior Member, IEEE, Muhammad Ali

Imran, Senior Member, IEEE and Adnan Abu-Dayya, Senior Member, IEEE

Abstract—In this paper, we present a novel cell outage manage-
ment (COM) framework for heterogeneous networks (HetNets)
with split control and data planes -a candidate architecture
for meeting future capacity, quality of service and energy
efficiency demands. In such architecture, the control and data
functionalities are not necessarily handled by the same node. The
control base stations (BSs) manage the transmission of control
information and user equipment (UE) mobility, while the data
BSs handle UE data. An implication of this split architecture is
that, an outage to a BS in one plane has to be compensated by
other BSs in the same plane. Our COM framework addresses
this challenge by incorporating two distinct cell outage detection
(COD) algorithms to cope with the idiosyncrasies of both the
data and control planes. The COD algorithm for control cells
leverages the relatively larger number of UEs in the control cell
to gather large scale minimize drive testing (MDT) reports data,
and detects outage by applying machine learning and anomaly
detection techniques. To improve outage detection accuracy, we
also investigate and compare the performance of two anomaly
detecting algorithms, i.e. k− nearest neighbor and local outlier
factor based anomaly detector, within the control COD. On
the other hand, for data cells COD, we propose a heuristic
grey-prediction based approach, which can work with the small
number of UEs in the data cell, by exploiting the fact that the
control BS manages UE-data BS connectivity, by receiving a
periodic update of the received signal reference power (RSRP)
statistic between the UEs and data BSs in its coverage. The
detection accuracy of the heuristic data COD algorithm is
further improved by exploiting the Fourier series of residual
error that is inherent to grey prediction model. Our COM
framework integrates these two COD algorithms with a cell
outage compensation (COC) algorithm which can be applied
to both planes. Our COC solution utilizes an actor critic (AC)
based reinforcement learning (RL) algorithm, which optimizes
the capacity and coverage of the identified outage zone in a
plane, by adjusting the antenna gain and transmission power of
the surrounding BSs in that plane. The simulation results show
that the proposed framework can detect both data and control
cell outage, and also compensate for the detected outage in a
reliable manner.

Index Terms—Self-organizing network, self-healing, cell outage
management, cell outage detection, cell outage compensation,
heterogeneous cellular network.
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I. INTRODUCTION

RECENTLY, extensive research and standardization ef-

forts have been channeled towards the definition of

the paradigm of self-organizing network (SON), which aim

at achieving a substantial reduction in capital and opera-

tional expenditures (CAPEX & OPEX) by reducing human

involvement in network operational tasks, while optimizing

the network coverage, capacity and quality of service [1], [2].

SONs aim to replace the manual operational processes that

have been executed in legacy cellular networks since their

conception, such as configuration, post-deployment optimiza-

tion and troubleshooting, with autonomous functions called

SON functions, such as self-configuration, self-optimization

and self-healing [1]–[3]. The main task within self-healing

functionality is autonomous cell outage detection and its

compensation. Traditionally cell outages have been detected

manually. In some cases, cell outage can be detected by the

manual analysis of fault alarms at operations and maintenance

center (OMC), while other detections require site visits or

drive testing. This is an expensive process. In addition, it may

take hours or days for the cell outage to be detected, thus

resulting in pronounced reduction in capacity and quality of

service, and coverage gap [4], [5]. Once detected, the outage is

compensated in ad-hoc and manual fashions, making the whole

process extremely inefficient and unreliable. With increasing

scale of networks, automatic detection and compensation of

cell outage has become a necessity, and, it has been included in

recent 3GPP releases [6]. Therefore, the SON paradigm aims

to replace these manual tasks with an autonomous process

referred to cell outage management (COM) [7]–[12]. COM

can be further subdivided into cell outage detection (COD) and

cell outage compensation (COC). COD aims to autonomously

detect outage cells, i.e. cells that are not operating properly

due to possible failures, e.g. external failure such as power

supply or network connectivity, or even misconfiguration [4]–

[6], [13]. On the other hand, COC refers to the automatic

mitigation of the degradation effect of the outage by appro-

priately adjusting suitable radio parameters, such as the pilot

power, antenna tilt and azimuth of the surrounding cells. The

degree of compensation is usually dictated by the operators

policies, which also specify the level of performance that must

be satisfied in the outage region [9].

A few algorithms have already been proposed in literature,

e.g in [4], [13]–[18] and [8]–[11], for COD and COC, re-

spectively. The COD problem has been addressed in [4] by
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leveraging the neighbor cell list (NCL) reports to construct

a visibility graph, whose topology changes are used to detect

cells that are experiencing outage. In [13] a weighted combina-

tion of three hypothesis, which was based on the distribution

of channel quality indicator (CQI), time correlation of CQI

differential and registration request frequency, was used in

detecting cell outage. Just recently interest has emerged in

applying methods from the machine learning domain such as

clustering algorithms [16] as well as Bayesian networks [18]

to automate the detection of faulty cell behavior. Coluccia

et al. [17] analyzed the variations in the traffic profiles for

3G cellular systems to detect real world traffic anomalies.

In terms of COC, the authors in [8], [9] investigated the

effectiveness of control parameters such as the reference signal

power, antenna tilt, scheduling parameters and the uplink target

received power level in mitigating the effect of cell outage.

In [10], the authors proposed an autonomic particle swarm

compensation algorithm with fast convergence speed, which

is a key requirement in COC.

All these works have focused on the traditional homoge-

neous deployments, where only macro cells are deployed.

However, future cellular deployments are expected to be

heterogeneous and extremely dense. In this context, macro

cells will provide the user equipment (UE) with ubiquitous

experience, while dense small cell deployments operating in

bandwidths with heterogeneous characteristics will facilitate

high data rate transmissions to a reduced number of UEs.

At the same time, conventional heterogeneous deployments

pose a number of challenges in terms of network management

and energy consumption, as a result of the increased number

of cells [19]. In order to mitigate these challenges, a new

heterogenous network (HetNet) architecture with split control

and data planes has been recently proposed as a candidate

architecture for 5G [20]–[27]. In such architecture, the control

and data planes are separated and are not necessarily handled

by the same node. Consequently, this gives the network opera-

tor more flexibility, since the small/data cells can be activated

on demand to deliver UE-specific data only when and where

needed, while the macro/control cells manage UEs connectiv-

ity and mobility [24]. Thus, the separated plane architecture

allows for improved mobility management performance, since

the radio resource control (RRC) layers of the UEs and other

control messaging, such as paging, will be handled by the

control cells. In addition, the energy consumption is improved,

since the proposed architecture also leads to longer data cell

sleep periods, due to their on demand activation. Note that

contrarily to the newly proposed HetNet architecture, the RRC

layers of all UEs in the conventional HetNet are handled by

their serving cell, which could be either a small or macro cell.

Only recently, [5] proposed a cooperative COD scheme for

small cells in a conventional HetNet, while [28] proposed a

COD scheme for detecting both macro cell and small cell

outages in a conventional HetNet. However, accurate small cell

outage detection with [28] requires fairly large number of UEs

in each small cell, which therefore limits its usage. Further-

more, COC solutions for HetNets have been proposed in [29],

[30]. In [29], handover to macro is proposed as a solution for

an outage caused by a small cell, while a collaborative resource

allocation approach is proposed for UEs that cannot be served

by the macro cell in [30]. Though individual COC and COD

algorithms have been presented in literature for conventional

deployments, a complete COM framework, particularly for

HetNet with split control and data plane, is still missing.

The main difference in the COM framework in HetNets with

split control and data planes and the conventional HetNet is

in their architecture. In the traditional HetNet, control and

data functionalities are provided to the UE by the same node,

whereas these functionalities are provided by separate nodes in

the split architecture. Hence, in the conventional architecture

outage to a node can be compensated by any other node,

whereas in the split architecture an outage to a node can

only be compensated by another node that provides the same

functionalities. In this paper, we propose a complete COM

framework, composed of concrete solutions for COD and

COC, for a HetNet with separated control and data plane

functionalities, and with different spectrum resources allocated

to each plane.

Our framework has two distinct COD algorithms to cope

with the peculiarities of data and control cells. Since control

cells tend to have a large number of UEs, we exploit large

scale collection of minimization of drive test (MDT) reports,

introduced by 3GPP in [31], and we apply machine learning

based anomaly detection schemes for control COD. Control

COD thus can be implemented at the OMC level. In control

COD solution, we compare the performance of two anomaly

detecting algorithms, i.e., k-nearest neighbor anomaly detector

(k-NNAD) and local outlier factor anomaly detector (LOFAD),

to find the best. However, the same COD scheme cannot be

applied for data cells, as the number of users will not be large

enough to constitute reliable training models for underlying

anomaly detection techniques. Hence, we propose a heuristic

data COD scheme, which works despite of small number of

UEs in the data cell, by exploiting a grey-prediction model

(GM) for detecting data cell outage.

Once the outage is properly detected, we need to implement

an online automatic COC scheme to continue serving the

UEs in the outage area. Considering the acute dynamics

of the always varying wireless environment in general, and

the high variability in terms of load fluctuations, in dense

wireless deployments, we propose an actor critic (AC) based

reinforcement learning (RL) algorithm, which allows to learn

online, through interactions with the surrounding environment,

the best possible policy to compensate the outage. The solution

is based on optimizing the coverage and capacity of the

identified outage zone, by adjusting the gains of the antennas

through electrical tilt, and downlink transmission power of the

surrounding BSs in that plane. The proposed COC algorithm

can be applied independently in each plane, as different

spectrum resources are allocated to each plane.

The main contribution of this paper can be summarized

as follows: 1) We propose a novel COM framework for

the HetNet with split control and data plane, 2) We design,

evaluate and compare novel COD solutions for detecting

control and data cell outages in the split architecture and 3) We

define an AC-RL algorithm, which can be used for both the

control and data COC in the split architecture. The remainder
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of this paper is organized as follows. In Section II, we present

the system architecture, which includes description of the

split architecture, system model and COM framework. In

Section III, we propose a low dimensional embedding of MDT

measurement for control COD. In Section IV, we introduce

a heuristic based data COD scheme. Section V presents an

AC based RL algorithm for both control and data COC. In

Section VI, we present extensive simulations to substantiate

the performance of our proposed COM framework for HetNets

with separated control and data planes. Finally, Section VII

concludes this paper.

II. SYSTEM ARCHITECTURE

A. Split Architecture

We consider the new paradigm of HetNets architecture

where the data and control/signaling planes are decoupled

at the air interface, as recently proposed in [20]–[24]. The

control plane provides ubiquitous network access and is made

up of macro base station (BS)s, which we refer to as control

BSs. On the other hand, data plane supports high data rate

transmission and is composed of the small BSs, which we

call data BSs. The control plane handles UE connectivity

as well as different radio-specific functions, which primarily

cover: 1) RRC connection management, 2) system information

broadcast and synchronization, 3) configuration and measure-

ment reporting, and 4) cell handover and network controlled

mobility. In contrast, the data plane handles UE specific data,

and its functionalities are unicast and synchronization [23],

[24]. Consequently, UEs requiring high data rate transmission

are connected to both the control and data BSs, while low rate

UEs are connected to just the control BS.

B. System Model

We consider that the control and data BSs are operated on

separate frequency carriers, so that there is no interference be-

tween the two planes. We assume that the HetNet is composed

of a set of M macro BSs/control BSs and F small BSs/data

BSs, where M=|M| control BSs form a regular hexagonal

network layout with inter-site distance D and provides cover-

age over the entire network. We denote the transmission power

vector of control BS m∈M by pm = (pm1 , . . . , p
m
R ), where

pmr is the downlink transmission power of resource blocks

(RB) r and the maximum transmission power of each control

BS, Pm
max, is such that

∑R
r=1 p

m
r ≤ Pm

max. The F=|F| data BSs

are randomly distributed. Similarly, we denote the transmission

power vector of data BS f∈F by pf = (pf1 , . . . , p
f
R), where

pfr is the downlink transmission power of RB r and the

maximum transmission power of each data BS, P fmax, is such

that
∑R
r=1 p

f
r ≤ P f

max. We also consider that Um and Uf UEs

are provided with service by the M control BSs and F data

BSs, respectively. The multi user resource assignment to the

R RBs in a plane is carried out by a fractional frequency

reuse (FFR) scheduler and each of the UEs in the plane is

assigned a CQI value. The FFR scheme, at the beginning

of each subframe divides each cell into two regions, and

assigns a certain group of RBs to the inner region and another,

orthogonal, to the outer region, at the border of the cell. The

inner regions of all the cells in the scenario are covered by

the same spectrum (f ), while the outer regions are assigned

orthogonal RBs such as {f1, . . . , f7}, as it is shown in Fig.

1 (FFR1). The latter also represents the amount of bandwidth

reserved for the outage zone during COC (FFR2 in Fig. 1).

C. COM Framework

In the HetNet architecture described earlier in Section II-B,

outage can occur to a BS in either the control or data plane,

i.e, control or data BS outage, thus leading to a degradation

in system performance. In order to alleviate the effect of such

outage, the BS in outage has to first be detected. This can be

achieved by monitoring deviations from the key performance

indicator (KPI) measurement report of the fault free network.

Thereafter, the parameters of BSs neighboring the outage BS

in a given plane, can be adjusted according to the operators

policy so as to compensate for the outage situation. Hence,

we propose a COM framework, which primarily consists of

the COD and COC stages.
1) COD: As mentioned earlier, active high data rate UEs

are served by both the data and control BS, while the low rate

UEs are served by only the control BS. This implies that all

UEs maintain connectivity with the control BS. Furthermore,

as a result of the split of the control and data planes, the

control and data cell outages are independent of each other,

hence, the detection of a cell outage in each plane is exe-

cuted independently of the other. As shown in Fig. 1, our

framework has two distinct COD algorithms to cope with the

idiosyncrasies of the control and data cell. The control cell

tend to have large number of users, so a large scale data

collection and machine learning is used for the control COD.

Consequently, our control COD scheme is based on the MDT

functionality, where all UEs report their MDT measurements,

which include reference signal received power (RSRP) of the

serving and neighboring cells, to the OMC vis respective BS.

A normal network profile is built based on the measurements

in a non-outage scenario. The control COD is then performed

at the OMC, by using anomaly detection algorithms, such as

k-NNAD and LOFAD, on the actual network profile.
However, this approach is not applicable for data COD,

where UE statistics are sparse, due to the small number of UEs

connected to each data BS. The control BS knows the location

of every data BS in its coverage and it can passively monitor

the RSRP measurements of every UE-data BS association

within its coverage. Consequently, a heuristic scheme, which

can effectively leverage on the small number of reports and

the fact that the control BS can monitor the UE-data BS

association, is used for the data COD. The data COD is

executed at the control BS and is triggered when the control

BS detects irregularities in UE-data BS associations, while the

actual detection is performed by using a GM algorithm.
2) COC: After the control or data cell outage has been

detected by the OMC or by the control BS, respectively, an

AC-RL COC scheme is implemented independently in both

planes, as shown in Fig. 1. Note that no inter-plane interference

is experienced since both planes are operated on separate

carrier frequencies and, hence, the COC implementation in

one plane has no impact on the other plane.
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Fig. 1: An overview of COM framework

III. CONTROL COD VIA LOW-DIMENSIONAL EMBEDDING

OF MDT MEASUREMENT

The main idea behind our control COD framework is to use

the MDT reports acquired from a fault-free operating scenario

to profile the behavior of the network. The goal is to use the

learned profile to address the control cell outage autonomously.

The proposed control COD framework adopts a four step based

approach: 1) measurement, 2) profiling, 3) detection and 4)

localization. Each step is further elaborated in the following

subsections.

A. Measurement

The MDT reporting schemes have been defined in LTE

Release 10 [31], [32]. The release proposes to construct a

data base of MDT reports from the network using Immediate

or Logged MDT reporting configuration. In this study, the

UEs are configured to report the cell identification and radio-

measurement data to the target control BS, based on imme-

diate MDT configuration procedure as shown in Fig. 2. The

signaling flow of the MDT reporting procedure consists of:

1) configuration, 2) measurement, 3) reporting and 4) storing

phase. The UE is first configured to perform measurements

periodically, as well as whenever an A2 event (i.e., serving

cell becomes worst than a threshold) occurs. Subsequently, the

UE performs measurements as specified in Table I and further

report them to the control BS. The control BS, after retrieving

these measurements, further appends time and wide-band CQI

to these measurements and forward them to trace collection

RRC Configuration Phase

 Measurement Report

 Measurement Report

 Trace Record

Storing Data in Trace Record

Storing Data in Trace Record

Measurement

Measurement

Configuration

Reporting and Storing

Phase

UE
Control BS TCE

Fig. 2: Immediate MDT Signaling Flow

entity (TCE). TCE collects and stores the trace reports, which

are subsequently processed to construct a MDT database. The

trace record obtained from the reference scenario (i.e., fault-

free) acts as a benchmark data and is used by the anomaly

detection models to learn the network profile. These models

are then employed to autonomously detect outage situations.

B. Profiling

In the profiling phase, the trace records are processed to

extract the feature vector O corresponding to each MDT

measurement. The measurements including reference signal
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Measurement Description

Location Longitude and latitude information
Serving cell information E-UTRAN cell global identification (ECGI)
RSRP Reference signal received power (RSRP) in dBm
RSRQ Reference signal received quality (RSRQ) in dB
Neighboring cell information Three strongest intra-LTE RSRP, RSRP information

TABLE I: MDT Reported Measurements

received power and quality of the serving, as well as of the

three strongest neighboring cells and the CQI are concatenated

into a feature vector, O, which is expressed as follows:

O = [RSRPS , RSRPn1, RSRPn2, RSRPn3, RSRQS ,

RSRQn1, RSRQn2, RSRQn3, CQI], (1)

where the subscript S and n denotes the serving and neigh-

boring cells, respectively. The observation vector, O, is a

9-dimensional vector of numerical features that corresponds

to one network measurement. To reduce the complexity of

storage, processing and analysis this 9−dimensional vector is

embedded to three dimensions in the Euclidean space using the

multi-dimensional scaling (MDS) method [33]. MDS provides

a low dimensional embedding of the target measurement

vectors O while preserving the pairwise distances amongst

them. Given a t × t dissimilarity matrix ∆
X of the MDT

dataset, MDS attempts to find t data points ψ1, . . . , ψt in

m dimensions, such that ∆
Ψ is similar to ∆

X. Classical

MDS (CMDS) operates in Euclidean space and minimizes the

following objective function

min
ψ

t
∑

i=1

t
∑

j=1

(

φ
(X)
ij − φ

(Ψ)
ij

)2

, (2)

where φ
(X)
ij = ‖xi − xj‖2 and φ

(Ψ)
ij = ‖ψi − ψj‖2. Equation

(2) can be reduced to a simplified form by representing ∆
X

in terms of a kernel matrix using

X
T
X = −1

2
H∆

X
H, (3)

where H = I − 1
t ee

T and e is a column vector of all 1’s.

Hence (2) can be rewritten as

min
ψ

t
∑

i=1

t
∑

j=1

(

xTi xj − ψTi ψj
)2
. (4)

As shown in [33], that Ψ can be obtained by solving

Ψ =
√
ΛV

T , where V and Λ are the matrices of top

m eigenvectors and the corresponding eigenvalues of X
T
X,

respectively. The m dimensional embedding of the data points

are the rows of
√
ΛV

T , whereas the value of m is chosen

to be 3 in our case. The pre-processing of the network

observation O
e using the MDS method has several advantages.

In literature, the MDS technique has been widely used as a

dimensionality reduction method [33]–[35] to transform high-

dimensional data into meaningful representation of reduced

dimensionality. One of the problems with high-dimensional

datasets is that in many cases not all the measured variables

are “critical” for understanding the underlying phenomena. As

shown in literature, that dimensionality reduction is a critical

pre-processing step for the analysis of real-world datasets,

since it mitigates the curse of dimensionality and other unde-

sired properties of high-dimensional spaces [36]. MDS aims to

achieve an optimal spatial configuration in a low dimensional

space, such that distances in the new configuration (i.e., φ
(Ψ)
ij )

are close in value to the observed distances (i.e., φ
(X)
ij ).

The spatial configurations help reveal a hidden structure that

are not obvious from raw data matrices, allowing to explore

the interrelationships of high-dimensional spaces. Given the

growing complexity of the networks, particularly in case of

SON, it is challenging to identify few measurements that

accurately capture the behavior of the system. The MDS pre-

processing of the network measurements allows to achieve a

reduced representation that corresponds to intrinsic dimension-

ality of data. Consequently, the low-dimensional representation

of network measurements facilitates data modelling and allows

the anomaly detection algorithms to obtain better estimation of

data density. As a result, the anomalous network measurements

can be detected with higher accuracy, as discussed below.

Moreover, unlike other dimensionality reduction methods such

as principal component analysis (PCA) or linear discriminant

analysis, MDS does not make an assumption of linear rela-

tionships between the variables, and hence applicable to wide

variety of data.

In addition to network measurements, each MDT report is

tagged with the location and time information as listed in

Table I, which is used in conjunction with RSRP values to

estimate the dominance or the coverage area of each target

control BS in the network. The dominance map estimation

is further used to autonomously localize the position of the

outage control BS.

The next step after the pre-processing is to develop a

reference database, DM , by storing the embedded measure-

ments that represent the normal operation of the network. As

shown in Fig. 3, this reference database is used by a state

of the art anomaly detection algorithm to learn the “normal”

network profile. The goal of this algorithm is to define an

anomaly detection rule that can differentiate between normal

and abnormal MDT measurements by computing a threshold

‘ϕ’ based on a dissimilarity measure ‘D’. Thus, it can be

treated as a binary classification problem which can formally

be expressed as follows:

f(xi) =

{

Normal, if D(xi,DM ) ≤ ϕ
Anomalous, if D(xi,DM ) > ϕ

(5)

Two state-of-the-art anomaly detection algorithms: k-NNAD

and LOFAD are examined in our study. Anomalies, depending

on their position in the MDS space, can be categorized as local

or global anomalies. Local anomalies are localized to a small

spatial region (i.e. local density) or a neighbourhood, whereas

global anomalies are bounded to the entire dataset (i.e. global

densities). k-NNAD computes a global dissimilarity measure

Dk−NNAD, which assigns a score to the test observation xi
based on its distance from the kth nearest training point

in the MDS space. On the other hand, LOFAD, instead of

the distance measure, compares the local density of xi to

its k neighbours and correspondingly assigns a score. The

correct profiling of the network behaviour is dependent on the
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Fig. 3: An overview of profiling and detection phases in control COD framework

accuracy of the anomaly detection models. The two anomaly

detection algorithms are briefly summarized as follows:

1) k-NNAD: Let xi be the test instance, and k be the kth

neighbor in the DM . To label xi as normal or abnormal, the

k-NNAD computes a Dk-NNAD as

Dk-NNAD(xi, k,DM ) =
1

Ntr

Ntr
∑

i=1

I(dt ≤ di), (6)

where Ntr = |DM |, dt is the distance of xi from its kth near-

est neighbor, di is the distance between i and its kth nearest

training object in DM , and I(.) is an indicator function. The

indicator function is activated as soon the condition dt ≤ di
is fulfilled. The expression in (6) represents a global density-

based anomaly detection score as proposed in [37]. The test

measurement is marked as anomalous if it receives a score

greater than the ϕ value.

2) LOFAD: The LOFAD [38] tries to compare the local

density, ρ, of the object to that of its k neighbors. It constructs

a local neighborhood of an instance xi and defines its distance

to the kth nearest neighbor NN(xi, k):

db(xi, k) = d(xi, NN(xi, k)) (7)

The db(xi, k) is used to construct a neighborhood N (xi, k)
by including all those points, which fulfills the criteria:

d(xi, xj) ≤ db(xi, k). Formally, reachability distance dr is

defined to estimate the ρ(xi, k) as follows:

dr(xi, k) = max{db(xj , k), d(xj , xi)} (8)

Algorithm 1 Model Selection using CV Method

1: Split the target dataset DM into K chunks.

2: for l = 1, 2, . . . ,K : do

3: Set Dval to be the lth chunk of data.

4: Set Dtrain to be the other K − 1 chunks.

5: Fit each model of Dtrain and evaluate its performance

on Dval.

6: end for

7: Model Selection: Select the model with a average highest

detection score.

and ρ can be defined as

ρ(xi, k) =
|N (xi, k)|

∑

xj∈N (xi,k)
dr(xi, xj , k)

(9)

The dr(xi, xj , k) ensures that instances that lie farther away

from xi have less impact on ρ(xi, k). Finally the D can be

calculated by comparing the ρ of xi to its N (xi, k), formally

defined as:

DLOFAD(xi, k;Dtrain) =

∑

xj∈N (xi,k)
ρ(xj ,k)
ρ(xi,k)

|N (xi, k)|
(10)

DLOFAD represents a local density-estimation score, a value

close to 1 means xi has the same density as its neighbors.

On the other hand, a significantly high DLOFAD score is an

indication of anomaly.

The parameter selection for k-NNAD and LOFAD is per-

formed using a cross-validation (CV) method, as described

in Algorithm 1. The DM is divided into training Dtrain and

validation dataset Dval using K-folds approach, where the



7

value of K is chosen to be 10 in our framework. To select

the optimal model, each target detector is trained for different

values of k and the model achieving the average highest

detection score is selected.

As shown in Fig. 3, the control COD during the profiling

phase calculates the reference z-score for each target control

BS in the network using the benchmark data. The z-score is

calculated as follows: zb =
|Nb−µn|

σn
, where Nb is the number

of MDT reports labeled as anomalies by the anomaly detection

model for the target control BS b, and variables µn and σn
are the mean and standard deviation anomaly scores of the

neighboring cells. In the profiling phase, we also estimate

the so called dominance area, i.e., for each cell, we define

the area where its signal is the strongest. To do this, we

exploit the location information tagged with each measurement

report, which will then allow us to associate a cell and the

corresponding z-scores as shown in Fig. 3. The calculation

of the dominance area along with the corresponding reference

z-score for each control BS in the network, would allow us

to detect an outage control cell situation autonomously in the

detection phase, as discussed in the following subsection.

C. Detection and Localization Phase

In the detection phase, the test measurements are pre-

processed in a similar fashion as in the profiling phase.

The embedded representation V
e is classified as normal or

anomalous by the anomaly detection models. Subsequently,

the geo-location of each report is correlated with the estimated

dominance maps (i.e., profiled during the profiling phase)

to establish its correct cell association. This is because as

soon as the control cell outage situation is triggered in the

network, the malfunctioning control BS becomes no longer

available. Consequently, the dominance or the coverage area

of the neighboring cells increases, to serve the affected area.

Therefore, if only E-UTRAN cell global identification (ECGI)

information is utilized to localize the outage control cell,

the anomalous MDT reports within the target area, would

erroneously be associated to its neighboring cells. The label

assigned by the anomaly detection model to each measurement

in conjunction with its estimated cell-ID is used to calculate

the test z-score in the outage scenario. Finally, the control

cell outage situation is detected and localized by observing

the change in the z-score obtained for each control BS in the

outage scenario compared to the reference scenario.

IV. DATA COD VIA HEURISTIC APPROACH

Contrarily to the control COD, which is performed at the

OMC, the data COD is performed at each control BS. Hence,

establishing the normal state of the control BS is a pre-

requisite for data COD. The data COD process is organized

into the trigger and detection phases, as illustrated in Fig. 4.

All UEs associated with the data BS report their RSPP statistic

to their serving control BS, which is later used in the detection

process.

Reports RSRP statistic 

between UE and Data 

BS to Control BSUE

Monitor UE-Data BS 

Association

RSRP Database with UE-

Data BS Association  

Are 

Association 

Normal?

Predict RSRP of all UE associated 

with the suspected outage cell using 

GM/GMF

i1/(i1+i2) > µ

Control BS

L: no. of UE attached to the suspected outage cell

vu: Predicted RSRP of UE u to suspected outage cell

ru:  RSRP of UE u serving cell after trigger

ovu: RSRP of u to suspected outage cell before trigger

ivu: Inverse predicted RSRP of u to serving cell 

i1-i2: Counters initialized to zero
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YES

Trigger Phase
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i2 = i2+1

ovu > ivu

YES

NO

YES

NO

NO

NO YES

Wait N

Fig. 4: Data cell outage detection flowchart

A. Outage Trigger Phase

The control BS receives a periodic update of the RSRP of

the link between each UE and its associated data BS and stores

this value in a database. As mentioned earlier in Section II-A,

the control BS is responsible for managing UE connectivity, as

well as radio specific functions, such as: 1) RRC connection,

2) configuration and measurement reporting, 3) cell handover

and network controlled mobility. Consequently, the control BS

is aware of any change in UE-data BS association, as a result

of handover or radio link failure. The control BS is also aware

of any state change in the UE, such as a change from active to

idle state, idle to detached state and viceversa. Furthermore,

the conditions for data BS to enter the sleep mode is known

to the control BS. For example, the data BS could be allowed

to enter the sleep mode if the number of active UEs is lower

than a certain predefined threshold during the last scheduling

time interval.

In the outage trigger phase, the control BS monitors the UE-

data BS association and triggers the outage detection when it

discovers irregularities in UE-data BS association. Irregulari-

ties in UE-data BS association occur when all UEs attached

to a particular data BS change their association without any of

the following: 1) prior handover initiation process, 2) change

in state of all the UEs, 3) radio link failure notification from

all the UEs, 4) the data BS going into sleeping mode.

B. Outage Detection Phase

Once the outage detection phase is triggered, the control BS

can detect outage of the data BS by predicting the RSRP of all

the UEs that were associated with it prior to the outage. We

utilize the GM, which has been extensively used in handover,
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positioning and general forecasting algorithms [39]–[43], as

prediction model.
1) GM Approach: In grey system theory, GM(n̄, m̄) de-

notes a grey model, where n̄ is the order of the differential

equation and m̄ is the number of variables. Here we focus

on GM(1, 1), which is a widely used time series forecasting

model. According to [39], the GM(1, 1) model can only be

used on positive data sequences. Note that the RSRP values

are always positive, hence, the grey model can be used to

predict the next RSRP value from data points obtained in the

database.
The three basic operations in grey prediction are: 1) the

accumulated generating operation (AGO), 2) the inverse accu-

mulated generating operation (IAGO), 3) grey modelling. By

using AGO, an irregular raw data can be transformed into a

regular data, which can be used to construct a model in grey

differential equation. The non-negative RSRP data sequence

of UE u prior to the outage is denoted as

r(0)u =
(

r(0)u (1) , r(0)u (2) , r(0)u (3) , . . . , r(0)u (n)
)

, ∀n ≥ 4. (11)

When the sequence given in (11) is subject to AGO, the

following sequence, r
(1)
u is obtained as

r(1)u =
(

r(1)u (1) , r(1)u (2) , r(1)u (3) , . . . , r(1)u (n)
)

, ∀n ≥ 4 (12)

where

r(1)u (c) =

c
∑

i=1

r(0)u (i), c = 1, 2, 3, . . . , n, (13)

which results in the grey differential equation given as

dr
(1)
u (t)

dt
+ ar(1)u (t) = b. (14)

The coefficients, a and b, can be obtained by using least square

method, as shown in (15):

[a, b]T =
(

BTB
)−1

BTY, (15)

where

Y =
[

r(0)u (2) , r(0)u (3) , . . . , r(0)u (n)
]T

,

B =













−h(1)(2) 1
−h(1)(3) 1

. .

. .
−h(1)(n) 1













, (16)

and h(1)(c) = αr
(1)
u (c)+(1− α) r(1)u (c− 1) , c = 2, 3, . . . , n,

α is the weighting factor.
Once a and b in (14) are obtained, the grey differential

equation can be used to predict the value of ru at time instant

c+ 1. The solution of r
(1)
u (t) at time c+1, i.e. the AGO grey

prediction model is expressed as

r̂(1)u (c+ 1) =

[

r(0)u (1)− b

a

]

e−ac +
b

a
, c = 0, 1, . . . (17)

Consequently, the prediction value of the benchmark RSRP

data at time (c+ 1) can be calculated by an IAGO as

r̂(0)u (c+ 1) =

[

r(0)u (1)− b

a

]

e−ac (1− ea) (18)

2) GM Modification Using Fourier Series of Residual Error

(GMF): According to [42] grey model prediction accuracy can

be improved by the Fourier series of error residuals. Consider

the uth UE RSRP sequence, r
(0)
u in (11) and its predicted

values obtained from (18), then the error of the sequence r
(0)
u

can be expressed as

ξ(0)u =
(

ξ(0)u (2), ξ(0)u (3), . . . , ξ(0)u (n)
)

, (19)

where

ξ(0)u (c) = r(0)u (c)− r̂(0)u (c), ∀c = 2, 3, . . . , n. (20)

The error residuals given in (20) can be re-expressed in Fourier

series in the following approximation

ξ(0)u (c) ≈ 1

2
a0+

J
∑

i=1

[

ai cos

(

2πi

T
c

)

+bi sin

(

2πi

T
c

)]

, (21)

∀ c = 2, 3, . . . , n, where T = n−1 and J = ⌊n−1
2 ⌋−1. Note

that the expression in (21) can further be re-expressed as

ξ(0)u ≈ QC, (22)

where

Q=

[

0.5 cos

(

2
2π
T

)

sin

(

2
2π
T

)

cos

(

2
2π2

T

)

sin

(

2
2π2

T

)

. . . cos

(

2
2πV
T

)

sin

(

2
2πV
T

)

0.5 cos

(

3
2π
T

)

sin

(

3
2π
T

)

cos

(

3
2π2

T

)

sin

(

3
2π2

T

)

. . . cos

(

3
2πV
T

)

sin

(

3
2πV
T

)

. . . . . . . . . . . . . . . . . . . . . . . .

0.5 cos

(

n2π
T

)

sin

(

n2π
T

)

cos

(

n2π2

T

)

sin

(

n2π2

T

)

. . . cos
(

n2πV
T

)

sin

(

n2πV
T

)

]

and C =
[

a0 a1 b1 a2 b2 . . . an bn
]T

(23)

Hence, C can be obtained by using the least square method to

solve (22) as

C =
(

QTQ
)−1

QT ξ(0)u . (24)

The Fourier series correction is thus given according to [42]

as

ˆ̂r(0)u (c) = r̂(0)u (c)− ξ̂(0)u (c), ∀ c = 2, 3, . . . , n+ 1. (25)

C. Outage Decision

Consider that the outage of data BS d, which has L UEs

attached prior to the outage trigger, is to be detected. Firstly,

we define counters i1 and i2 and initialize their values to zero.

The RSRP of the L UEs that were previously attached to

data BS, d, are predicted according to (18) or (25). Then, for

each UE the control BS compares its predicted RSRP value,

vu = r̂
(0)
u (c + 1) ≈ ˆ̂r

(0)
u (c + 1), with the RSRP after the

trigger, ru = r
(0)
u (c+1). If afterwards outage is triggered, the

UE, u, is served by the control BS for data transmission and

vu = r̂
(0)
u (c+1) ≈ ˆ̂r

(0)
u (c+1) > ru−∆, where ∆ is the data

cell range expansion offset, the counter, i1, is incremented by

1, since the UE should be associated with data BS, d, based

on the prediction. Otherwise, the counter, i2 is incremented

by 1. On the other hand, if another data BS is serving UE u,

after the outage trigger and vu ≈ r̂(0)u (c+ 1) ≈ ˆ̂r
(0)
u (c+ 1) >

ru, the counter, i1, is incremented by 1, otherwise an inverse

prediction is performed on the RSRP to the serving data BS.

The inverse prediction checks the RSRP to the data BS d and

the RSRP to the serving data BS after the trigger, i.e. data BS

d̄, at the point just before the trigger. The control BS waits

for the prediction window size, N , and performs an inverse
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prediction on the RSRP of each of the UEs associated with

data BS d̄ to obtain the predicted RSRP prior to the trigger

decision, ivu. Thus, if the RSRP of the uth UE to the serving

data BS (d) before trigger, ovu, is such that ovu > ivu the

counter i1 is incremented by 1 otherwise, the counter i2 is

incremented by 1. The data cell outage is declared if the ratio
i1

i1+i2
> µ, where µ is a system predefined threshold.

V. REINFORCEMENT LEARNING BASED CELL OUTAGE

COMPENSATION

In this section, we provide a complete solution for COC. We

consider, that the network has the capability to detect both

data and control outages, through the solutions proposed in

previous sections. We provide a solution capable of recovering

both data and control outages. In particular, we consider an

outage of a control BS in the control plane or data BS in the

data plane. Hence, we optimize the coverage and capacity at

the identified outage zone, by adjusting the gain of the antenna

through the electrical tilt and the downlink transmission power

of the surrounding control/data BS in the control/data plane.

To implement this approach, we propose a RL scheme, which

has the capability of making online decisions at each con-

trol/data BS, and of adapting to the evolution of the scenario,

determined by factors like the UE mobility, shadowing and

decisions made by the surrounding control/data BSs to the

problem being solved.

A. Reinforcement Learning

The RL aims to learn from interactions to achieve a certain

goal. The learner or decision maker is called agent, and it in-

teracts continuously with the so called environment. The agent

selects actions and the environment responds to those actions

and evolves into new situations. In particular, the environment

responds to the actions through rewards, numerical values,

which the agent tries to maximize over time. The agent has

to exploit what it already knows in order to obtain a reward,

but it also has to explore in order to take better actions in the

future. We assume that the environment is the wireless cellular

scenario, with all its realistic characteristics, in terms of UEs

mobility and activity patterns, and channel variations, while

the agents are the control/data BSs.

Let S be the set of possible states of the environment

S = {s1, s2, . . . , sn}, and A be a set of possible actions

A = {a1, a2, . . . , aq} that each agent may choose. The inter-

actions between the multi-agent system and the environment

at each time instant t consist of the following sequence.

• control/data BS i senses the state sit = s ∈ S .

• Based on s, control/data BS i selects an action ait = a ∈
A.

• As a result, the environment makes a transition to the

new state sit+1 = v ∈ S.

• The transition to the state v generates a reward rit = r ∈
R.

• The reward r is fed back to the control/data BS and the

process is repeated.

In the following we remove the notation indicating the specific

agent i, for the sake of simplicity. At each time step, the agent

implements a mapping from states to probabilities of selecting

each possible action. This mapping is the agent’s policy. The

objective of each learning process is to find an optimal policy

π∗(s) ∈ A for each s, to maximize some cumulative measure

of the reward r received over time. Almost all RL algorithms

are based on estimating the so called value function, which is

a function of the states estimating how good it is for an agent

to be in a given state. The quantification of this is defined

based on the expected future rewards. Of course, the rewards

that an agent can expect to receive in the future depend on

what actions it will take. As a result, the value of a state s
under a policy π, and denoted Vπ(s), is the expected return

when starting in s and following π thereafter.

Vπ(s) = E

{

∞
∑

t=0

γtr(st, π(s))|st = s

}

(26)

where E stands for the expectation operator and 0 ≤ γ < 1
is a discount factor. Considering the extreme complexity of

the dynamics of the complete wireless cellular environments,

where the UEs move around the scenario according to random

mobility models, the channel is affected by path loss, fading

and shadowing, and the activity of UEs is again determined by

random processes, we are not able to rely on a model of the

environment’s dynamic to solve this maximization problem.

A solution is then to take advantage of the theory of RL

and in particular of the so called temporal difference (TD)

learning approaches. These kinds of methods are able to learn

directly from experience, without a model of the environment’s

dynamics. Among the literature of TD learning schemes, we

select the AC approach to adjust the downlink transmission

power levels of the control/data BSs surrounding the outage

zone, as it is one of the most representative TD schemes and it

is not computationally complex. TD learning schemes can be

proven to converge to optimal solutions, in stationary scenarios

with only one decision maker, even though in practice they

have been shown to provide successful results also in multi

agent scenarios [44]. The proof of convergence of the learning

algorithm is guaranteed by the Bellman optimality criterion

[45]. Our solution is proposed for a multi-agent system where

each agent self adapts based on an AC algorithm and the

performances of each control/data BS is affected by the actions

of the others in terms of inter cell interference.

B. Actor Critic (AC)

AC method is a TD method that has a separate memory

structure to represent the policy independently of the value

function. The policy structure is known as the actor, since it

is used to select the actions, while the estimated value function

is known as the critic. The critic learns and critiques whatever

policy is currently being followed by the actor and takes the

form of a TD error δ, which is used to determine if at was

a good action or not. δ is a scalar signal, which is the output

of the critic and drives the learning procedure. After each

action selection, the critic evaluates the new state to determine

whether things have gone better or worse than expected, as it

is defined by the TD error:

δt = rt + γVt(st+1)− Vt(st) (27)
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where V is the current value function implemented by the

critic, to evaluate the action at taken in st. If the TD error is

positive, it suggests that the tendency to select at should be

strengthened for the future, whereas if the TD error is negative,

it suggests the tendency should be weakened. We identify this

tendency with a preference function P (st, at), which indicates

the tendency or preference to select a certain action in a certain

state. Then the strengthening or weakening described above

can be implemented by increasing or decreasing P (st, at) by

P (st, at)← P (st, at) + β δt (28)

where β is a positive learning parameter. This is the most

simple implementation of a AC algorithm. The variation that

we consider for implementation, is to add different weights

to different actions, for example based on the probability of

selecting action at in state st, i.e. π(st, at), which results in

the following update rule:

P (st, at)← P (st, at) + β δt(1− π(st, at)) (29)

In this implementation, AC directly implements the Boltzmann

exploration method to select actions as follows:

π(st, at) =
eP (st,at)

∑

at∈A e
P (st,at)/τ

(30)

This means the probability to select an action a in state s
at time t depends on the temperature parameter τ , and on

the preference values P (st, at) at time t. In this kind of

exploration, actions that seem more promising, because of

higher preference values, have a higher probability of being

selected.

1) AC-RL for COC: In order to design the AC algorithm

to implement the automatic transmission power and antenna

tilt adjustment for the COC, while mitigating the generated

interference and improving the capacity of the zone, we need

to define the state and action spaces and the reward function.

• State: The state is defined based on the result of the

scheduling scheme, which defines: (1) the allocation of

UEs to RBs (i.e, RB1, RB2, ..., RBR to the N UEs in

the plane), (2) the values of CQI of each UE in the

corresponding RB.

• Actions: The set of eligible actions are:

– The finite set of downlink transmission power levels,

which can be allocated to the RBs assigned to the

UEs. The selected values are: 0 to 23 dBm per RB

for data BS and 0 to 46dBm per RB for control BS;

each with 0.5 dBm granularity.

– The finite set of available tilt values, which can be

assigned to the gain of the vertical plane of the

antenna model. Those values range from 0 to 15◦

with 0.5◦ granularity.

• Reward: The reward function is defined based on the

signal to interference and noise ratio (SINR) of the UEs

as follows:

r(st, at) =

{

1 , if SINR ≥ −6
0 , otherwise

,

TABLE II: Simulation Parameters.

Parameter Value

Tx Power Control BS 46 dBm
Tx Power Data BS 23 dBm
Path loss model Friis spectrum propagation
Mobility model pedestrian, speed 3 kmph, 60 kmph
UE distribution Uniform random distribution
Scheduler FFR
Shadow Fading Log-normal, std = 2-10dB
AMC model 4-QAM, 16-QAM, 64 QAM
Macro cell layout radius:500 m
Bandwidth per plane 5 MHz
No. of RBs 25; RBs per RBG:2
Antenna gain (Normal Scenario) 18 dBi
Antenna gain (Outage Scenario) -50 dBi
MDT reporting interval 240 ms
Minimal sensible signal strength -107.5 dBm
Detection threshold µ 0.5
Detection window size N 10
Grey weighting factor α 0.5
SINR threshold -6 dB
Actions (Control BS power) 0− 46 dBm per RB:

Granularity 0.5 dBm
Actions (Data BS power) 0− 23 dBm per RB:

Granularity 0.5 dBm
Actions (tilt) 0

◦ − 15
◦: Granularity 0.5◦

Parameters τ, β, γ 0.1, 0.5, 0.98
Simulation time 10 minutes

where the threshold is set in order to support the lowest

modulation and coding scheme (MCS) [9] for long term

evolution (LTE).

In order to mitigate the inter-cell interference that the ad-

justment of the neighboring control/data BS power level

may generate in the outage zone, frequency bandwidth B =
{f1, . . . , f7} is reserved for the UEs moving in the outage

zone while f serves UEs in each of neighbouring cells to the

outage BS, as illustrated in Fig. 1 (FFR2).

The learning algorithm is executed every 1 ms, which is

also the smallest scheduling time interval in LTE. Hence, the

solution of the learning algorithm can be applied when allo-

cating UEs every time scheduling is performed. The execution

of the learning algorithm at TTI resolution increases the speed

with which the fault and the outage are recovered. However,

it is possible to execute the algorithm less often, to reduce

the computational complexity, but this will increase the time

the system suffers from the outage generated by the fault. In

practice, the operator implementing the algorithm can set the

frequency of execution to the preferred value based on trading

off the implementation criteria considered more important. We

recommend that the learning algorithm must be executed with

a low periodicity during the emergency situation, to speed

up the recovery when many users have seen their quality off

experience (QoE) compromised, and with a higher periodicity

when the outage is about to be fully recovered. The CQI is

obtained from the spectral efficiency (η) provided in [46]. A

high level vision of the COC algorithm is illustrated in Fig. 1.

VI. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Scenario

In this section, we demonstrate the performance of our

HetNet COM framework by presenting simulation results for
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Fig. 5: (a) SINR plot of reference scenario (b) SINR plot of control cell outage scenario where antenna gain of cell 11 is attenuated to
−50 dBi (c) MDT measurements in the embedded space classified into normal and anomalous categories by k-NNAD

the COD and COC algorithms. We consider a HetNet archi-

tecture where the control and data BSs operate on separate

frequency carriers. Each operation mode occupies 5 MHz of

channel bandwidth. The scenario that we set up consists of 27
macro/control BSs with Um = 20 UEs per control BS, and

FB = 5 femtocell blocks per control BS, each one with l = 40
apartments, t = 1 floor, d = 0.2 small/data BS deployment

ratio as per [47], and c = 0.5 data BS activation ratio, which

results in 20 data BSs per control BS. Also, there are Uf UEs

per data BS in the scenario. The principle of UE association is

such that each UE associates with a control BS for signalling

transmission. Furthermore, each UE associates with a data BS

for data transmission if its RSRP from the data BS exceeds that

of the control BS, otherwise, it associates with a control BS for

both data and control signalling transmission. The parameters

used in the simulations, for the cellular scenario, control and

data COD algorithms, and the COC algorithm, are given in

Table II.

B. COD

We simulate the reference scenario to profile the normal

network operation, in which all UEs are configured to report

the MDT measurements on the control plane. In addition, UEs

that are associated with the data cells are also configured to

periodically report their RSRP statistics (in the data plane)

to their serving control BS. A control cell outage scenario is

simulated by attenuating the antenna gain of control BS 11 in

the network to −50 dBi for a duration of three minutes. The

total simulation run time was 10 minutes for each scenario.

Likewise, for the data cell outage, we focus of on control

BS 10 and attenuate the antenna gain of data BS 11 within

its coverage to −50 dBi. The respective SINR plots of the

reference and outage scenario in the control plane is shown

in Fig. 5. The collected measurements are processed by our

proposed control and data COD frameworks, as shown in

Figs. 3 and 4, respectively.

1) Control COD: Local and global anomaly detection ap-

proaches, namely LOFAD and k-NNAD, have been compared

to select the final model for profiling the network behaviour.

The receiver operating characteristic (ROC) curves [48] plot

the true positive rate or detection rate (DR) (i.e., a percentage

of anomalous measurements correctly classified as anomalies)

against the false positive rate (FPR) (i.e., a percentage of

normal cell measurements classified as anomalies). The ROC

curves are generated by plotting the DR against FPR by

varying the ϕ for each model until a DR value reaches 100%.

To access the performance of the target algorithms, a standard

performance metric named as area under ROC (AUC) curve

is employed. To select the optimal model for each anomaly

detector, a parameter search (i.e. k = 1, 2, ...30) is performed

using Algorithm 1. The final values of k are found to be 20
and 8 for k-NNAD and LOFAD, respectively.

It has been observed that measurements that conform to

the normal behavior of network operations, when projected to

an embedded space group themselves into a large cluster. On

the other hand, when the measurements belonging to outage

control cell scenario are projected to the embedded space, they

lie far from the dense cluster of normal measurements, as

depicted in Fig. 5c. The reason is that MDS embedding of the

measurements maximize the variance between the data points

and consequently dissimilar points are projected far from each

other. This embedded representation of measurements reveals

a hidden structure of data. In particular, this is helpful for the

density based anomaly detection models as employed in this

study, to learn an effective anomaly detection rule. Since, such

models assume that anomalous data lie in low density regions,

the embedded representation of the data aids in establishing a

boundary between high and low density regions. Consequently,

an effective anomaly detection rule can be learned. k-NNAD

based global profiling technique, which relies on the global

density estimation procedures, outperforms local density es-

timation method LOFAD, since the anomalous measurements

obtained from the outage scenario largely act as global anoma-

lies. Moreover, some of the normal measurements also form

small micro clusters. This is due to exceptionally good RSRP

values reported by the mobile terminals while they are in

close proximity to the serving control BS. However, LOFAD

treats them as local anomalies. Additionally, the measurements

obtained from the cell edges show similarity with data samples

that correspond to the outage scenario. Hence, in the embedded

space they are projected close to the samples that corresponds

to abnormal measurements. From a classification perspective,

the target models wrongly classify such measurements as

belonging to an outage control cell scenario. However, from a
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Fig. 6: ROC Curve of k-NNAD based profiling technique

SON perspective, identification of such abnormality indicates

a weak coverage problem and can be used to trigger automated

actions for coverage optimization. Similarly, some of the UE

generated measurements, as a result of radio link failure, are

also treated as anomalies. Fig. 6 shows that k-NNAD achieves

80% DR, which is 15% higher than LOFAD at a false alarm

rate of 10%. As shown in Table III, the AUC value achieved by

k-NNAD and LOFAD are 0.91 and 0.85, respectively, which

shows the superiority of global anomaly detection methods

over local approaches for profiling the network behavior.

We use k-NNAD as our target model to calculate the z-

score for each control BS, separately, for reference and control

cell outage scenarios, as shown in Fig. 7. It can be observed

that even the cells which are not in outage receive a z-score,

since a fraction of the UE reported measurements, belonging

to their dominance areas, are identified as anomalies due to

the reasons discussed earlier. Therefore, to classify a cell as in

outage, each control BS must collect a minimum number of

anomalous reports (i.e., Nb) to achieve a significantly higher

z-score compared to the rest of cells. We collect approximately

4800 measurements in one minute from each cell, since our

scenario is characterized by 20 uniformly distributed UEs that

send reports with a periodicity of 240 ms.

The z-scores shown in Fig. 7 for each control cell, are

normalized by the total number of measurements obtained

every minute. It can be observed that the outage cell (i.e.,

control cell 11) achieves a highest percentage z-score of 0.449
(Nb = 3520, with mean and standard deviation values of

neighboring cells as 500 and 140, respectively), which is above

our heuristically set threshold of 0.3. The test z-score of the

outage cell deviates significantly from its reference z-score of

0.09, and it can be detected easily. Likewise, the delay value

can increase or decrease depending on the UE density in the

target cell.

2) Data COD: Fig. 8 illustrates the performance of our

data COD framework in terms of the DR. In Fig. 8a, we

compare the performance of the GM and GMF, which are

obtained from (18) and (25), respectively, with the cooperative

Fig. 7: Cell Dominance areas versus z-scores for Localization of
control cell outage

[t] Model Approach AUC score
k-NNAD Global 0.91
LOFAD Local 0.85

TABLE III: Performance of target anomaly detection models for
control COD

COD approach of [5], by plotting their DR against the data cell

UE density, Uf , and for shadowing fading standard deviation

of, σ = 2 and 10dB. For the cooperative COD scheme, we

consider the coopeartive range as the coverage area of each

control BS. We observe that the proposed schemes, which

are also independent of the cooperative range, outperform

the cooperative COD scheme of [5]. We observe that the

GMF scheme outperforms the GM as expected, since the

former utilizes the prediction error in the later to improve

its performance. Fig. 8a clearly shows that increasing the

UE density increases the DR. This is due to the fact that

increasing UE density enables a better spatial correlation.

Fig. 8b depicts the DR for various data BS power levels

and a data cell UE density of Uf = 3(/100m × 100m).
The result shows that low data BS transmission power results

in degradation of the DR, while increasing the transmission

power leads to an improvement in the DR. This is because

when the data BS transmission power increases, it becomes

easier to distinguish between the predicted RSRP statistics of

the outage case and normal case. We also observe in Figs.

8a and 8b that the DR becomes lower with larger shadowing

fading standard deviation σ. This is because a high σ means a

severe shadowing fading, which leads to a more random RSRP

statistics.

Figs. 9a and 9b investigate the impact of the predefined

threshold µ and prediction window sizeN , respectively, on the

DR. We observe in Fig. 9a that the highest DR is obtained by

setting µ = 0.5. This setting implies that the RSRP prediction

of more than half of the UEs that were associated with the

data BS whose outage is being detected, i.e. d, must indicate

the existence of an outage, before d can be declared to be in

outage. The stepwise shaped plot is obtained since the number

of UEs must be an integer value. We also observe that there

is not much degradation in DR until µ > 0.67, which implies

more than two-third of UEs that were associated with d must

indicate the existence of an outage. In Fig. 9b, we observe

that increasing the prediction window size above the required

minimal (N = 4) leads to an increase in DR up to a point

where any further increase in N has no impact on the DR.

Fig. 9b further shows that increasing N has more impact on
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Fig. 9: Effect of data COD algorithm parameters on DR

the DR for larger shadow fading standard deviation, σ. This is

because of the lower randomness in RSRP statistics when σ is

low; hence a low value of N is required to obtain the highest

attainable DR, which is the contrary for higher σ where a

higher value of N is required.

C. COC

Here we consider that outage occurs when a data BS 11
in control BS 10 fails to provide service to its associated

UEs. We assume that the data COD framework in the previous

subsection has already detected the problem and we therefore

focus on the COC solution. Here, the neighboring cells are in

charge of adjusting their power transmission, and antenna tilt

in order to fill the coverage gap. We start by analyzing the

behavior of a UE attached to the faulty data BS. We observe

that once the COC algorithm is operational, the UE gets

associated to one of the neighboring data BSs, which we refer

to as the compensating cell. The CQI associated to the UE in

this moment is zero. The scheduling scheme is implemented to

minimize the interference generated from compensating cells,

by reserving a certain resource block group (RBG) to the UE.

This information is shared with neighbor data BSs through

the X2 interface. We refer to the AC algorithm in Section V,

where both the Tx power and antenna tilt are adjusted, as the

AC(p+θ).

Fig. 10, depicts the time evolution of the SINR of the UE

from the instant in which the data cell outage is detected and

the COC algorithm starts working, till when it is recovered

and correctly associated to the compensating cell. We show

the behavior of the algorithm for both pedestrian (3 kmph)

and vehicular (60 kmph) scenarios. We observe that in both

cases the COC algorithm takes advantage of its capability of

making online decisions, properly adapting to the evolution

of the environment, even when it is varying quickly, as it

happens in vehicular settings. We assume that the UE is

recovered when its SINR is above the threshold, which is set

to −6 dB as explained in Section V-B1. The behavior followed

by the AC(p+θ) scheme is such that, during the first part of
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Fig. 10: Time evolution of the average SINR of UE 13, which is
recovered from outage by the COC solution based on AC.

the simulation, it learns the proper policy to recover the UE

from outage through interactions with the environment. After

approximately 450−500 msec, for the pedestrian and vehicular

cases, respectively, the UE SINR reaches the threshold, and

maintains higher values during the rest of the simulation.

Since the correct policy has been learnt, it can be maintained

independently of the variations in the scenario, such as UE

mobility, random data BS activity factor, etc. Fig. 10 further

shows that the performance in the high mobility (vehicular) is

worse compared to the pedestrian case, hence, a slightly longer

time is required to recover from outage in the high mobility

Fig. 11 shows the performances of our COC framework

in terms of SINR, RSRQ and RSRP of the UEs, represented

by means of the cumulative distribution function (CDF), and

compared to the case where no COC scheme is implemented,

i.e. NO COC in the figures, and to the state of the art

benchmark, discussed in [49] and based on fuzzy logic theory.

Fig. 11a represents the CDF of the SINR of the UEs in the

scenario, after convergence of the learning approach. It shows

that the proposed AC(p+θ) scheme performs better than both

the NO COC option and the fuzzy logic scheme. Fig. 11b

shows the CDF of the RSRQ of the UEs in the scenario, after

convergence of the learning approach. Here, again we observe

that the AC(p+θ) scheme provides better results than the Fuzzy

Logic approach and the NO COC scheme. Finally, Fig. 11c

shows that the proposed AC(p+θ) provides better results also

in terms of RSRP than the fuzzy logic based and the NO COC

schemes.

D. COM Framework Cost:

Here we give some insight on the cost associated with

implementing the proposed COM framework. The cost metric

encompasses the complexity in analysis, processing, storage

and signaling overhead. A large part of the cost associated

with our proposed COM framework lies in the control COD,

as it requires large number users and measurement reports

to achieve a high DR. This cost has been substantially re-

duced in our control COD solution by employing a MDS

method, which embeds each network measurement from a 9-

dimensional feature vector into three dimensions in Euclidean

space. Furthermore, the data COD solution in our framework

is implemented in a fully distributed fashion at each control

BS, thus significantly reducing the implementation cost of

the framework. COC solutions on the other hand are im-

plemented in semi-distributed fashion by dividing the system

into clusters, where each cluster contains the outage cell and

its neighbors, thereby reducing the signaling overhead and

processing cost of the framework.

VII. CONCLUSION

In this paper, we have presented a novel cell outage man-

agement (COM) framework for HetNets with split control and

data planes. Two distinct cell outage detection (COD) algo-

rithms have been proposed taking into account expected large

number of UEs in the control cells and small number of UEs

in the data cells. For control COD, we have utilized the large

scale data gathering of MDT reports, as recently standardized

by 3GPP in release 10. The solution exploits multidimensional

scaling techniques to reduce the complexity of data process-

ing while retaining pertinent information to develop train-

ing models to reliably apply anomaly detection techniques.

Furthermore, within the control COD, we have compared

the performance of two anomaly detecting algorithms, i.e.,

k-NNAD and LOFAD. We found out that k-NNAD, which is

a global anomaly detection model, achieved a higher detection

accuracy of up to 94% compared to LOFAD, which adopts

a local approach for classifying abnormal measurement. On

the other hand, for data cell outage, we have utilized a

heuristic grey-prediction approach, which can reliably work

despite of the small number of UEs in the data cells by

exploiting the information stemming from the fact that the

control BS manages the UE connectivity to the data BS within

its coverage. The simulation results have shown that both

control and data COD schemes can detect control and data

cell outages, respectively, in a reliable manner. In addition,

we have proposed an AC based RL algorithm, which can be

applied for both the control and data cell outage compensation

(COC). The proposed COC algorithm solution was based on

optimizing the coverage and capacity of the identified outage

zone, by adjusting the gains of the antennas through electrical

tilt, and downlink transmission power of the surrounding BSs

in that plane. Simulation results have shown that the AC-RL

algorithm can recover all UEs from outage within a very short

time.
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