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Abstract
Moving a brain–computer interface (BCI) system from a laboratory demonstration to real-life
applications still poses severe challenges to the BCI community. This study aims to integrate a
mobile and wireless electroencephalogram (EEG) system and a signal-processing platform
based on a cell phone into a truly wearable and wireless online BCI. Its practicality and
implications in a routine BCI are demonstrated through the realization and testing of a
steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested
online signal processing methods in both time and frequency domains for detecting SSVEPs.
The results of this study showed that the performance of the proposed cell-phone-based
platform was comparable, in terms of the information transfer rate, with other BCI systems
using bulky commercial EEG systems and personal computers. To the best of our knowledge,
this study is the first to demonstrate a truly portable, cost-effective and miniature
cell-phone-based platform for online BCIs.

1. Introduction

Brain–computer interface (BCI) systems acquire
electroencephalography (EEG) signals from the human
brain and translate them into digital commands which can
be recognized and processed on a computer or computers
using advanced algorithms [1]. They can also provide a new
interface for the users who have motor disabilities to control
assistive devices such as wheelchairs.

Although EEG-based BCIs have already been studied for
several decades, moving a BCI system from a laboratory
demonstration to real-life applications still poses severe
challenges to the BCI community [2]. To design a practical
BCI system, the following issues need to be addressed
[3–6]: (1) ease of use, (2) robustness of system performance
and (3) low-cost hardware and software. In real-life
applications, BCI systems should not use bulky, expensive,
wired EEG acquisition devices and signal processing platforms
[7]. Using these devices will not only cause discomfort and
inconvenience for the users, but also affect their ability to
perform routine tasks in real life. Recently, with advances
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in the biomedical sciences and electronic technologies, the
development of a mobile and online BCI has been put on the
agenda [8].

Several studies have demonstrated the use of portable
devices for BCIs [7, 9]. Lin et al [7] proposed a portable BCI
system that can acquire and analyze EEG signals with a custom
DSP module for real-time cognitive-state monitoring. Shyu
et al [9] proposed a system to combine an EEG acquisition
circuit with an FPGA-based real-time signal processer.
Recently, with advances in integrated circuit technology,
cell phones combined with DSP [10] and built-in Bluetooth
function have become very popular in the consumer market.
Compared with the PC-based or customized platforms, the
ubiquity, mobility and processing power of cell phones make
them a potentially vital tool for creating online and portable
BCIs that need real-time data transmission, signal processing
and feedback presentation in real-world environments.

Although the EEG-based BCI technology using PCs
and the Bluetooth transmission of bio-signals have been
well established in previous studies, the feasibility of a
portable cell-phone-based BCI, which supports biomedical
signal acquisition and online signal processing, has never
been explored. This portable system emphasizes usability

1741-2560/11/025018+05$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1741-2560/8/2/025018
mailto:jung@sccn.ucsd.edu
http://stacks.iop.org/JNE/8/025018


J. Neural Eng. 8 (2011) 025018 Y-T Wang et al

Figure 1. Diagram of the proposed system.

‘on-the-go’ and the freedom that cell phones enable. If a
cell-phone-based BCI proves to be feasible, many current
BCI demonstrations (e.g. gaming, text messaging, etc)
can be realized on cell phones in practice and numerous
new applications might emerge. This study integrates a
portable, wireless, low-cost EEG system and a cell-phone-
based signal processing platform into a truly wearable
online BCI. The system consists of a four-channel bio-signal
acquisition/amplification module, a wireless transmission
module and a Bluetooth-enabled cell phone. The goals of
this study are to demonstrate the practicality of the proposed
system by specifically answering the following questions: (1)
Is the quality of the EEG data collected by the custom wireless
data acquisition device adequate for routine BCI use? (2) Is it
feasible to implement time- and/or frequency-domain signal-
processing algorithms (e.g. EEG power spectrum estimation
and EEG spatial filtering approaches) on a regular cell phone
in real time?

To address these technical issues, a steady-state visual
evoked potential (SSVEP)-based BCI, which has recognized
advantages of ease of use, little user training and high
information transfer rate (ITR), was employed as a test
paradigm. SSVEP is the electrical response of the brain
to the flickering visual stimulus at a repetition rate higher
than 6 Hz [11], which is characterized by an increase in
amplitude at the stimulus frequency. We adopted the widely
used frequency-coding approach to build an online BCI
[2, 4, 12–15] on a cell phone. In an SSVEP BCI, the
attended frequency-coded targets of the user are recognized
by detecting the dominant frequency of the SSVEP. To this
end, several signal-processing methods have been proposed
and demonstrated [16]. Among them, power spectrum density
(PSD) estimation (e.g. fast Fourier transform (FFT)) is most
widely used in online SSVEP BCIs [4, 12, 16]. Recently, a
canonical correlation analysis (CCA) method was proposed
and implemented in an online multi-channel SSVEP BCI,
achieving an ITR of 58 bits min−1 [17]. To explore the

plausibility of an online cell-phone-based BCI platform, this
study implemented and tested both single-channel FFT and
multi-channel CCA methods for processing SSVEPs induced
by attended targets.

2. Method

2.1. System hardware diagram

A typical VEP-based BCI using frequency coding consists of
three parts: a visual stimulator, an EEG recording device and a
signal-processing unit [16]. Figure 1 depicts the basic scheme
of the proposed mobile and wireless BCI system. This study
adapts a mobile and wireless EEG headband which is described
in [8] as the EEG recording device and a Bluetooth-enabled
cell phone as a signal-processing platform.

The visual stimulator comprises a 21 inch CRT monitor
(140 Hz refresh rate, 800 × 600 screen resolution) with a
4 × 3 stimulus matrix constituting a virtual telephone keypad
which includes digits 0–9, BACKSPACE and ENTER. The
stimulus frequencies ranged from 9 to 11.75 Hz with an
interval of 0.25 Hz between two consecutive digits. In
general, this cannot be implemented with a fixed rate of
black/white flickering pattern due to a limited refresh rate
of a LCD screen. Wang et al [18] recently developed a new
method that approximates target frequencies of an SSVEP BCI
with variable black/white reversing intervals. For example,
presentation of an 11 Hz target stimulus on a screen refreshed
at 60 Hz can be realized with 11 cycle black/white alternating
patterns lasting (3 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2) frames
in a second. Based on this approach, any stimulus frequency
up to half of the refresh rate of the screen can be realized. The
stimulus program was developed in Microsoft Visual C++
using the Microsoft DirectX 9.0 framework.

The EEG acquisition unit is a four-channel, wearable
bio-signal acquisition unit [5]. EEG signals were amplified
(8000×) by instrumentation amplifiers, band-pass filtered
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(0.01–50 Hz), and digitized by analog-to-digital converters
(ADC) with a 12 bit resolution. To reduce the number of wires
for high-density recordings, the power, clocks and measured
signals were daisy-chained from one node to another with
bit-serial outputs. That is, adjacent nodes (electrodes) are
connected together to (1) share the power, reference voltage
and ADC clocks and (2) daisy chain the digital outputs. Next,
TI MSP430 was used as a controller to digitize EEG signals
using ADC via serial peripheral interface with a sampling rate
of 128 Hz. The digitized EEG signals were then transmitted to
a data receiver such as a cell phone via a Bluetooth module. In
this study, Bluetooth module BM0203 was used. The whole
circuit was integrated into a light-weight headband.

2.2. System software design

The signal-processing unit was realized using a Nokia N97
(Nokia Inc.) cell phone. A J2ME program developed in
Borland JBuilder2005 and Wireless Development Kit 2.2 were
installed to perform online procedures including (1) displaying
EEG signals in time-domain, frequency-domain and CCA-
domain on the LCD screen of the cell phone, (2) band-pass
filtering, (3) estimating the dominant frequencies of the VEP
using FFT or CCA, (4) delivering auditory feedback to the
user and (5) dialing a phone call. The resolution of the
3.5 inch touch screen of the phone is 640 × 360 pixels.

When the program is launched, the connection with the
EEG acquisition unit is automatically established in just a
few seconds. The EEG raw data are transferred, plotted and
updated every second on the screen. Since the sampling rate
is 128 Hz, the screen displays about 4 s of data at any given
time. Users can choose the format of the display between
time-domain and frequency-domain. Under the frequency-
domain display mode, the power spectral densities of four-
channel EEG will be plotted on the screen and updated every
second. An auditory and visual feedback is presented to the
user once the dominant frequency of the SSVEP is detected
by the program. For example, when number 1 is detected by
the system, the digit ‘1’ is shown at the bottom of the screen
and ‘ONE’ would be said at the same time.

Software operation and user interface include several
functions. First, the program initiates a connection with the
EEG acquisition unit. Second, four channels of raw EEG
data are band-pass filtered at 8–20 Hz, and then plotted on the
screen every second. Third, the display can be switched to the
power spectrum display or time-domain display by pressing a
button at any time. Figure 1 includes a screen shot of the cell
phone, which plots the EEG power across frequency bins of
interest. Fourth, an FFT or CCA mode can be selected. In the
FFT mode, a 512 point FFT is applied to the EEG data using
a 4 s moving window advancing at 1 s steps for each channel.
In the CCA mode, it uses all four channels of the EEG with
a 2 s moving window advancing at 1 s steps continuously.
The maximum window length is 8 s. Detailed procedures
and parameters of the CCA method can be found in [17]. To
improve the reliability, a target is detected only when the same
dominant frequency is detected in two consecutive windows
(at time k and k + 1 s, k � 4 in the FFT mode, and �2 in the

CCA mode). The subjects were instructed to shift their gaze
to the next target once they heard the auditory feedback.

2.3. BCI experiment design

Ten volunteers with normal or corrected to normal vision
participated in this experiment. All participants were asked to
read and sign an informed consent form before participating
in the study. The experiments were conducted in a typical
office room without any electromagnetic shielding. Subjects
were seated in a comfortable chair at a distance of about 60 cm
from the screen. Four electrodes on the EEG headband were
placed 2 cm apart, surrounding a midline occipital (Oz) site,
all referred to a forehead midline electrode (the sensor array
is shown in figure 1).

The FFT- and CCA-based approaches were tested
separately. All subjects participated in the experiments during
which the cell phone used FFT to detect frequencies of
SSVEPs, and four subjects were selected to do a comparison
study between using FFT and CCA for SSVEP detection. At
the beginning of the experiment, each subject was asked to
gaze at some specific digits to confirm the wireless connection
between the EEG headband and the cell phone. In the FFT
mode, the channel with the highest signal-to-noise ratio, which
is based on the power spectra of the EEG data, was selected
for online target (digit) detection. Four of ten subjects who
showed better performance (i.e. a higher ITR in the FFT mode)
were selected to further test the CCA-based SSVEP BCI. The
test session began after a couple of short practice sessions.
The task was to input a ten digit phone number, 123 456 7890,
followed by the ENTER key to dial the number. Incorrect key
detection could be erased by using the BACKSPACE key.
In the CCA mode, the same task was repeated six times,
leading to 11 × 6 selections for each subject. The EEGs
in the CCA experiments were saved with feedback codes
for an offline comparison study between FFT and CCA. The
percentage accuracy and ITR [1] were used to evaluate the
BCI performance.

3. Results

Tables 1 and 2 show results of the SSVEP BCI using FFT
and CCA, respectively. In the FFT mode, all subjects
completed the phone-dialing task with an average accuracy
of 95.9 ± 7.4% and an average time of 88.9 s. Seven of ten
subjects successfully inputted 11 targets without any errors.
The average ITR was 28.47 ± 7.8 bits min−1, which was
comparable to other VEP BCIs implemented on a high-end
personal computer [4]. Table 2 shows the results of the SSVEP
BCI using online CCA on the cell phone. CCA achieved an
averaged ITR of 45.82 ± 2.49 bits min−1, which is higher
than that of the FFT-based online BCI of the four participants
(34.22 bits min−1). Applying FFT to the EEG data recorded
during the experiments using the online CCA resulted in an
averaged putative ITR of 24.46 bits min−1, using the channel
with the highest accuracy for each subject (cf right columns of
table 2).
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Table 1. FFT-based online test results of the SSVEP BCI in ten
subjects.

Input Time Accuracy ITR (bits
Subject length (s) (%) min−1)

s1 11 72 100 32.86
s2 11 72 100 32.86
s3 19 164 78.9 14.67
s4 11 73 100 32.4
s5 17 131 82.4 17.6
s6 11 67 100 35.31
s7 11 72 100 32.86
s8 13 93 92.3 20.41
s9 11 79 100 29.95
s10 11 66 100 35.85

Mean 12.6 88.9 95.9 28.47

Table 2. CCA-based test results (ITR) of the SSVEP BCI in four
subjects. In each row, the bold value highlights the maximum ITR
of single channel FFT.

Putative ITR from offline
FFT

Online Online Offline
Subject CCA FFT FFT Ch1 Ch2 Ch3 Ch4

s1 44.79 32.86 36.68 36.68 33.58 32.48 29.77
s2 46.25 32.86 26.49 26.49 10.51 5.91 9.29
s6 49.05 35.31 19.43 19.43 3.03 3.15 1.92
s10 43.18 35.85 15.24 2.2 8.46 15.24 4.21

Mean 45.82 34.22 24.46 21.2 13.9 14.2 11.3

4. Discussions and conclusions

This study designed, developed and evaluated a portable, cost-
effective and miniature cell-phone-based online BCI platform
for communication in daily life. A mobile, lightweight,
wireless and battery-powered EEG headband was used to
acquire and transmit EEG data of unconstrained subjects
in real-world environments. The acquired EEG data were
received by a regular cell phone through Bluetooth. Advances
in mobile phone technology have allowed phones to become a
convenient platform for real-time processing of the EEG. The
cell-phone-based platform propels the mobility, convenience
and usability of online BCIs.

The practicality and implications of the proposed BCI
platform were demonstrated through the high accuracy and
ITR of an online SSVEP-based BCI. To explore the capacity
of the cell-phone platform, two experiments were carried out
using an online single-channel FFT and a multi-channel CCA
algorithm. The mean ITR of the CCA mode was higher than
that of the FFT approach (∼45 bits min−1 versus 34 bits min−1)
in the four participants. An offline analysis, which applied FFT
to the EEG data recorded during the online CCA-based BCI
experiments, showed that the target selection was less accurate
using FFT than CCA, which in turn resulted in a lower ITR
(table 2). The decline in accuracy and ITR in offline FFT
analysis could be attributed to a lack of sufficient data for FFT
to obtain accurate results. In other words, FFT, in general,
required more data (longer window) than CCA to accurately
estimate the dominant frequencies in SSVEPs (6 s versus 4 s).

Further, the multi-channel CCA approach eliminated the need
for manually selecting the ‘best’ channel prior to FFT analysis.

Despite this successful demonstration of a cell-phone-
based BCI, there is room for improvement. Future directions
include (1) the use of dry EEG electrodes over the scalp
locations covered with hairs to avoid skin preparation and the
use of conductive gels, and (2) the use of higher density EEG
signals to enhance the performance of the BCI [17]. However,
high-density EEG might increase the computational need in
BCIs. With advances in cell phone technology, more powerful
onboard processors can be expected in the foreseeable future,
enabling the implementation of more sophisticated algorithms
for online EEG processing.

Notably, in this study, the cell phone was programmed to
assess the wearer’s SSVEPs for making a phone call, but it
can actually be programmed to realize other BCI applications.
For example, the current system can be easily converted to
realize a motor imagery-based BCI by detecting EEG power
perturbation of mu/beta rhythms over the sensorimotor areas.
In essence, this study is just a demonstration of a cell-phone-
based platform technology that can enable and/or facilitate
numerous BCI applications in real-world environments.
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