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An extracellular neuroreceptor interaction network <p>A network of Zebrafish extracellular neuroreceptor interactions are revealed using AVEXIS, a highly stringent interaction assay.</p>

Abstract

Background: The vast number of precise intercellular connections within vertebrate nervous

systems is only partly explained by the comparatively few known extracellular guidance cues. Large

families of neural orphan receptor proteins have been identified and are likely to contribute to

these recognition processes but due to the technical difficulty in identifying novel extracellular

interactions of membrane-embedded proteins, their ligands remain unknown.

Results: To identify novel neural recognition signals, we performed a large systematic protein

interaction screen using an assay capable of detecting low affinity extracellular protein interactions

between the ectodomains of 150 zebrafish receptor proteins containing leucine-rich-repeat and/or

immunoglobulin superfamily domains. We screened 7,592 interactions to construct a network of

34 cell surface receptor-ligand pairs that included orphan receptor subfamilies such as the Lrrtms,

Lrrns and Elfns but also novel ligands for known receptors such as Robos and Unc5b. A quantitative

biochemical analysis of a subnetwork involving the Unc5b and three Flrt receptors revealed a

surprising quantitative variation in receptor binding strengths. Paired spatiotemporal gene

expression patterns revealed dynamic neural receptor recognition maps within the developing

nervous system, providing biological support for the network and revealing likely functions.

Conclusions: This integrated interaction and expression network provides a rich source of novel

neural recognition pathways and highlights the importance of quantitative systematic extracellular

protein interaction screens to mechanistically explain neural wiring patterns.

Background
Identifying the vast number of precise intercellular connec-

tions that ultimately account for higher cognitive functions in

vertebrate nervous systems, and explaining how they

develop, remains one of the main challenges facing neuro-

science [1]. Receptor proteins displayed on the surface of neu-

rons are known to relay extracellular recognition events to

elicit appropriate cellular responses such as axon guidance,

neuron migration and synapse formation, but in comparison

to the complex cellular networks that they regulate, relatively

few extracellular recognition receptor interactions have been

identified [2,3]. Comparative genome analysis and large-

scale gene expression studies, however, reveal that verte-

brates contain large families of neurally expressed receptor
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proteins that are expanded relative to invertebrates [4]. These

genes are likely to account for the increased complexity of

vertebrate nervous systems and two major families are the

leucine-rich repeat (LRR) and extracellular immunoglobulin

superfamily (IgSF). The neuronal roles of some proteins con-

taining IgSF domains have been well documented (see [5] for

a review) but the functions of LRR family members are less

well characterized.

The cell surface LRR proteins cluster phylogenetically into

separate subfamilies with characteristic domain structures

(Figure 1a) [6,7]. Even within subfamilies, these genes have

discrete and dynamic expression patterns in the developing

vertebrate brain and functional analysis also suggests that

they have roles in neurodevelopment. For example, genes

from the Lrrn subfamily have roles in long-term memory for-

mation [8] and retinal development [9]. Over-expression

and/or knockdown of representative members of other sub-

families in neuronal cultures have been shown to have effects

on axon outgrowth [10-13], synapse formation [14-16] and

axon fasciculation [17]. Nogo receptor 1 (NgR1) and LINGO-

1, both members of LRR subfamilies, together with either

neurotrophin receptor p75 or TROY, form a receptor complex

for myelin components and are responsible for the inhibition

of axon regeneration in lesioned mammalian central nervous

systems [18]. In addition, genes encoding several LRR pro-

teins have been implicated in neurological disorders, includ-

ing LRRTM1 in schizophrenia [19], LRRTM3 in Alzheimer's

disease [20], SLITRK1 in Tourette's syndrome [21] and LGI1

in epilepsy [22].

Despite this involvement in neurological diseases, very little

is known about their function and especially their extracellu-

lar binding partners. Indeed, of the approximately 20 paralo-

gous subfamilies of membrane-tethered vertebrate LRR-

domain-containing receptors [7], extracellular binding part-

ners have been identified for just five: the Lingo, Lrrc4, Flrt,

Amigo and NgR subfamilies. One explanation for this dispar-

ity is that membrane-embedded receptor proteins are exper-

imentally intractable: they are generally of low abundance

and their amphipathic nature makes them difficult to solubi-

lise since they usually contain both large hydrophilic glycans

and at least one hydrophobic transmembrane region. Interac-

tions between receptor proteins are also characterised by

extremely low interaction strengths, often having half-lives of

fractions of a second when measured in their monomeric

state [23]. The fleeting nature of these interactions is neces-

sary to permit facile independent motility of migrating cells

or growth cones when many receptor proteins arrayed on

apposing cell membranes interact. These properties, how-

ever, make identifying novel extracellular recognition events

mediated through cell surface proteins technically challeng-

ing.

The aim of this study was to identify novel receptor interac-

tions that are involved in neural cellular recognition events,

focussing in particular on the LRR and also IgSF receptor

families. Furthermore, by identifying when and where each

gene of an interacting pair is expressed during neural devel-

opment, we could construct dynamic maps of the neural

intercellular recognition program. Using a recombinant pro-

tein library of 150 neural receptor ectodomains and a highly

stringent interaction assay suitable to detect low affinity

extracellular interactions, we identified extracellular binding

partners for orphan receptor families - such as the Lrrtms,

Lrrns and Elfns - and novel partners for well-characterised

receptors, including Unc5b. Paired spatiotemporal gene

expression patterns of all genes within the network revealed

when and where these interactions might occur during neural

development. This neuroreceptor interaction network with

integrated gene expression data provides a useful resource to

mechanistically explain how complex cellular neural net-

works develop.

Results
A protein interaction network of leucine-rich repeat 

neuroreceptors

To identify extracellular receptor interactions involved in

neural recognition processes, we initially focused on the

zebrafish LRR family since they represent a large group of

receptor proteins expressed in the nervous system, many of

which are 'orphan' receptors. We first identified members of

this family by performing a comprehensive bioinformatics

search of the zebrafish genome. Orthologues for each of the

known type I membrane-tethered and glycophosphatidyli-

nositol-linked mammalian subfamilies [7] were identified

and at least one representative was successfully cloned by RT-

PCR, with the one exception of the Lrig subfamily (Figure 1a;

see Additional data file 4 for a comprehensive list). In total,

ectodomain expression constructs were made for 53 genes,

which accounts for the vast majority (approximately 80%) of

this class of LRR neuroreceptors in the zebrafish genome. To

identify novel interactions, we used the AVEXIS (for AVidity-

based EXtracellular Interaction Screen) assay developed in

our laboratory, which is able to detect very low affinity extra-

cellular interactions (t1/2 ≤ 0.1 s) and can be scaled to screen

thousands of binding events with a very low false positive rate

[24]. This assay requires that each ectodomain is expressed as

a monomeric biotinylated bait as well as a multimerized,

enzyme-tagged prey (Additional data file 1). In total, 49 baits

and 52 preys were expressed at sufficient levels and were then

normalized prior to screening [24]. The biotinylated mono-

mers were arrayed onto streptavidin-coated microtitre plates,

and binary interactions identified by probing these arrays

with the prey ectodomains. A primary screen between the

LRR receptors of 49 × 52 = 2,548 interaction tests was per-

formed and all positive interactions were then re-tested in

both bait-prey orientations in a validation screen using fresh

protein preparations. Seventeen interactions between 12 pro-

teins were identified and classified into two confidence cate-

gories (Figure 1b; see Materials and methods for full details).
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Figure 1 (see legend on next page)
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Essentially all of the interactions in the LRR neuroreceptor

network (Figure 2) were novel, with only the homophilic

Flrt1a interaction having been previously described [25]. The

network contained the first reported extracellular interac-

tions for the Lrrtm and Lrrn orphan receptor subfamilies.

Interacting receptor pairs were often found to involve several

members of a subfamily, suggesting that the interacting bind-

ing face is conserved between related proteins. For example,

all four Lrrtm subfamily members were able to form both

homo- and heterotypic interactions between themselves, and

Lrrn1 interacted with two out of four members of the Netrin-

G1 ligand/Lrrc4 subfamily [14]. We also identified interac-

tions between LRR proteins, which could not be clustered

into subfamilies such as the Islr2-Vasn interaction.

LRR neuroreceptors have binding partners within the 

IgSF

Since the IgSF is a well documented receptor family for LRR

domains [26,27], we next systematically screened the LRR

proteins against a large library of 97 bait ectodomains belong-

ing to the zebrafish IgSF (see Additional data file 5 for a com-

prehensive list). In total, 52 × 97 = 5,044 interactions were

screened and positive interactions were subsequently

retested using independent protein preparations in both bait-

prey orientations. A further 17 interactions involving nine

IgSF proteins were added to our neuroreceptor interaction

network and similarly placed into two confidence categories

(Figure 1c).

All interactions within the LRR-IgSF network except one [28]

were previously unknown. The systematic nature of the

screen revealed novel extracellular interactions for well

described axon guidance receptors. For example, we identi-

fied novel LRR-domain-containing transmembrane ligands

for the receptors Robo2 and 3, which we have shown bind to

zebrafish Slit proteins (see Materials and methods) demon-

strating that they were functionally active. Robo2 interacted

with Lrrc24 and Lrrtm1, and Robo3 with Elfn1, suggesting

that the Robo receptors are able to respond to local mem-

brane-tethered signals in addition to secreted ligands such as

Slit. Similarly, Unc5b, a known receptor for Netrin [29,30],

interacted with three out of the four Flrt-family homologs [31]

(Figure 2). Other IgSF-LRR receptor interactions were found

for the Lrrtm1 protein, which interacted with three out of four

fibroblast growth factor receptor homologs in the screen

(Fgfr4, Fgfrl1a and Fgfrl1b), and novel binding partners for

both the axon guidance receptor Boc, and the myelin-associ-

ated glycoprotein Mag.

The leucine-rich repeat receptor family and its interactions in zebrafishFigure 1 (see previous page)

The leucine-rich repeat receptor family and its interactions in zebrafish. (a) Zebrafish LRR proteins were phylogenetically clustered into subfamilies using 
MegAlign (DNASTAR, Madison, WI, USA), and are shown as a phylogenetic tree, together with a schematic representation of their protein architecture. 
All the proteins shown were included in the protein-protein interaction screen. Protein domain abbreviations: LRR = leucine-rich repeat; LRRNT = 
leucine-rich repeat amino-terminal domain; LRRCT = leucine-rich repeat carboxy-terminal domain; IG = immunoglobulin superfamily domain; FN = 
fibronectin type III domain; TIR = Toll/interleukin-1 receptor homology domain; TM = transmembrane region; GPI = glycophosphatidylinositol anchor. (b) 

A binding grid showing all tested reciprocal interactions between the extracellular LRR proteins using AVEXIS. The baits are vertically ordered in 
correspondence to the tree shown in (a) and numbered as described in Additional data file 4. The preys are similarly ordered horizontally such that 
homophilic interactions are on the diagonal from top left to bottom right. Interactions identified by a red square were positive in both screens; blue 
squares were detected only once, but reciprocated. Baits 7, 8, 26 and 50 and prey 43 were expressed below the threshold required for the assay and were 
therefore not included in the screen. (c) A binding grid showing the interaction screen between the zebrafish LRR and IgSF receptor families. The 97 IgSF 
proteins are ordered horizontally according to their phylogenetic relationships and numbered as described in Additional data file 5; the 52 LRR proteins 
are similarly arranged vertically. Red and yellow squares indicate high and lower confidence interactions, respectively, as detailed in Additional data file 6.

The extracellular LRR and IgSF neuroreceptor interaction networkFigure 2

The extracellular LRR and IgSF neuroreceptor interaction network. 
Receptors belonging to the same paralogous subfamily are grouped and 
shaded within the network, and interactions classified according to 
confidence: thick lines = interaction detected in the primary screen and 
independent of bait/prey orientation; thin line = other detected 
interactions, including those that are orientation dependent - see Materials 
and methods and Additional data file 6 for full details. An orange line 
indicates that the interactions were validated using an independent 
technique, either surface plasmon resonance (Figure 3) or a bead-binding 
assay (Additional data file 2). IgSF-receptors = blue nodes, LRR-receptors 
= red nodes.
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Interaction strengths between related neuroreceptors 

quantitatively vary

One notable feature of our network is that nearly half (48%)

of the receptors have more than one heterophilic binding

partner (Figure 2). In all cases, each receptor combination

had compatible expression patterns, with its multiple binding

partners expressed in overlapping territories (see below),

raising the possibility of binding competition at the cell sur-

face. In an attempt to resolve this problem, we asked to what

extent the strengths of interactions between shared receptors

might vary. We selected a subnetwork of interactions involv-

ing Unc5b and the Flrt paralogs and determined their relative

interaction strengths using monomeric proteins and surface

plasmon resonance. The ectodomain of Unc5b was expressed

as a secreted Cd4d3+4-6His-tagged protein using mamma-

lian cells, purified and eluted as a monodisperse peak using

gel filtration (data not shown). The equilibrium dissociation

constant (KD) was calculated by injecting dilutions of mono-

meric purified Unc5b over each of the three biotinylated Flrt

baits immobilized on a streptavidin-coated sensor chip; the

reference-subtracted binding responses at equilibrium were

plotted against the injected Unc5b concentration (Figure 3a).

As expected, the KDs were in the micromolar range, but varied

considerably from the relatively strong approximately 4 μM

(Flrt1b) interaction where saturable binding was evident,

through approximately 14 μM (Flrt3) to the very weak Flrt1a

interaction, the KD of which could not be estimated reliably

using the injected concentrations of Unc5b protein, but was

in excess of 50 μM. A kinetic analysis of the interactions was

consistent with the equilibrium binding data, with off rate

constants (koff) varying from 0.6 s-1 (t1/2 = 1.2 s) for Flrt1b to ≥
7.0 s-1 (t1/2 ≤ 0.1 s) for Flrt1a (Figure 3b). These measurements

show that interactions between neuroreceptors within our

network have a low affinity and vary considerably in their

binding strength, even between proteins belonging to the

same paralogous family.

Paired receptor gene expression patterns reveal 

dynamic cellular neural recognition maps

The binding network of IgSF and LRR receptors (Figure 2) is

a static representation of possible extracellular protein inter-

actions and does not reflect the spatial and temporal ordering

of recognition events used in the developing nervous system.

To reveal when and where these binding events might occur,

we determined the expression patterns of all the receptor

genes within the network at four stages of zebrafish embry-

Interaction strengths between Unc5b and Flrt paralogs are surprisingly heterogeneousFigure 3

Interaction strengths between Unc5b and Flrt paralogs are surprisingly heterogeneous. (a) Equilibrium binding analysis of Unc5b and three Flrt paralogs. 
Different concentrations of purified, monomeric Unc5b-Cd4d3+4-6H were injected over streptavidin-coated flow cells upon which biotinylated baits - 
Flrt1a (1018 RU), Flrt1b (984 RU), Flrt3 (1027 RU) - and control Cd4d3+4 were immobilized. The amount of bound Unc5b was calculated by subtracting 
responses in the control flow cells from those in the Flrt-immobilized cells once equilibrium had been reached. Equilibrium dissociation constants (KDs) 
were obtained by fitting a non-linear binding curve to the data. To facilitate comparison, the binding responses were normalized by using the predicted 
Rmax from the fit to the data. (b) Kinetic analysis of the Unc5b-Flrt interactions. Off-rate constants (koff) were calculated by globally fitting a first order 
decay curve to the dissociation phase of three concentrations of Unc5b; half-lives (t1/2) were calculated as t1/2 = ln2/koff. Shown are the normalized, 
averaged values (error bars = ± 1 standard deviation, n = 3). On-rate constants (kon) were calculated in the same way using an association model and were 
> 1 × 105 M-1s-1 in all cases.
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onic development (Additional data file 7 and see Materials

and methods for details of an online database of paired stage

and orientation-matched images) using mostly two-color flu-

orescent in situ hybridization to directly compare the expres-

sion of each gene encoding an interacting receptor pair within

the same embryo.

The expression pattern of each gene encoding an interacting

pair was summarized by plotting a grid of time-resolved tis-

sues within the central and peripheral nervous systems, high-

lighting where each pair was spatiotemporally congruous

(Figure 4). All heterophilic receptor pairs had compatible

local tissue expression, usually at several different stages of

development, providing independent biological support for

the interaction network. All interacting receptor pairs were

compatibly expressed within the central nervous system

between the 24 and 48 hours post-fertilization stages, coin-

ciding with an active period of neural development, including

neuron migration and pioneering axonal outgrowth. In con-

trast, fewer of the interacting pairs were compatibly

expressed in the sensory systems, such as the retina, and

especially the acoustic and olfactory systems. Several recep-

tors were also expressed in other tissues, although these were,

in general, not spatially compatible with their binding part-

Genes encoding interacting receptors show compatible spatiotemporal expressionFigure 4

Genes encoding interacting receptors show compatible spatiotemporal expression. Genes encoding interacting receptors are paired (gene 1, gene 2) and 
listed vertically; homophilic interactions were treated separately below. The expression in anatomically distinct regions of the nervous system at different 
stages of embryonic development is indicated by appropriate shading within the grid. Expression key: gene 1 only = gold; gene 2 only = blue; co-expression 
= pink; no expression = grey; hatched = both expressed at the same stage outside the nervous system but not in identical or neighboring tissues; cross = 
expression not determined for one of the two genes. Stages: S = 14 to 19 somites; P = Prim5; Lp = Long-pec; L = Larval (4 to 5 days post-fertilization). 
CNS = central nervous system.
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ners in the network. This suggests the existence of additional

binding partners for these receptors outside of the developing

nervous system.

While such a summary provides a useful low resolution over-

view, further functional insights can be gained by correlating

the detailed expression patterns of interacting receptors to

known neurobiologies: we provide three examples. Firstly,

the Lrrtm family of receptors - which all interacted with each

other - showed a complex pattern within the developing brain

(Additional data file 7) but, most remarkably, were also

expressed in a largely mutually exclusive pattern within the

retina (Figure 5a-c). This receptor family could therefore be a

source of intercellular molecular recognition cues required

for directing the connectivity of the many cellular subtypes

within the retina [32]. In our second example, the gene

encoding the Vasn protein was expressed in the specialized

glial cells that make up the floor plate of the spinal cord (Fig-

ure 5d, e). Its receptor, encoded by the islr2 gene, was

expressed by head and spinal neurons (Figure 5d, e), includ-

ing motoneurons whose axons are known to directly contact

the floor plate as they innervate ipsilateral muscle fields [33].

In our last example, the expression patterns of the genes

encoding the interacting receptors Flrt1b and Unc5b were

consistent with a role in regulating retinotectal mapping:

unc5b was restricted to the dorsal region of the developing

retina from mid-somitogenesis stages whereas its binding

partner, flrt1b, was expressed in the tectum (Figure 5f).

Unc5b-Flrt1b and Flrt1b homophilic interactions could also

be involved in neural recognition within the olfactory system

since flrt1b was expressed in the olfactory epithelium, and

unc5b and flrt1b were co-expressed in the olfactory bulb at 24

hours post-fertilization (Figure 5g-i). Overall, we frequently

observed overlapping or directly abutting expression for

interacting neuroreceptors within the developing nervous

system (for examples, see Additional data file 3). Therefore,

in addition to providing starting points to identify novel sign-

aling pathways for known neurobiologies, the receptor inter-

action network coupled with the developmental gene

expression patterns is a useful resource to also identify new

potential cellular interactions on the basis that they compati-

bly express interacting receptors.

Discussion
This study represents the first step towards mapping an

extracellular interaction network between neural receptor

proteins, a resource that will be necessary to understand the

intercellular recognition processes that ultimately underlie

brain development and function. The importance of under-

standing these processes is becoming increasingly apparent

as neurological disorders are more frequently being viewed as

a product of abnormal brain development [34]. Significantly,

we have described here binding partners for three orphan

LRR receptor subfamilies, including the Lrrtms, which have

been implicated in neurological diseases, including schizo-

phrenia. While the LRR and IgSF are both large families of

neurally expressed receptors, there are several other families

of cell surface proteins that contribute to neural recognition

processes. A comprehensive extracellular network of interac-

tions within the developing nervous system will require the

addition of these protein families to our protein library. Cru-

cially, however, we have shown that the systematic screening

approach using the AVEXIS method has the scalability and

sensitivity to detect transient interactions that are not gener-

ally detected by other high throughput protein binding

assays. Beyond identifying extracellular binding partners for

orphan receptor families, this systematic unbiased method

can identify additional binding partners for receptors that

already have identified ligands.

Currently, our protein library contains approximately 80% of

the zebrafish neural LRR receptors, providing a high density

coverage for this family of receptors, which are known to be

important for synaptic target selection [35]. We have shown

that LRR receptor proteins are able to form both homophilic

and heterophilic interactions within the family but also inter-

act with receptors from the IgSF. Despite this large scale

approach, we did not identify binding partners for all LRR

subfamilies; indeed, both the Slitrk and Lrrc3 subfamilies still

have no documented extracellular binding partner. LRR

receptors are also known to bind other protein families such

as the Netrin-G [14] and tumor necrosis factor-receptor fam-

ily [36] and the future inclusion of these receptor families into

our interaction screens is likely to reveal further binding part-

ners for these subfamilies.

The AVEXIS assay was developed and implemented at a high

stringency threshold to effectively eliminate false positives so

as to produce high-quality datasets [24]. Using this strin-

gency, approximately 0.5% of unique interactions screened -

calculated using just one bait-prey orientation - are positive.

Although difficult to directly compare due to the ascertain-

ment biases inherent in selecting proteins restricted to a par-

ticular subcellular localization (such as the plasma

membrane) or screening within protein families previously

demonstrated to interact, this interaction frequency lies

between large-scale binary yeast-two-hybrid assays (approxi-

mately 0.01%) [37] and the LUMIER assay (approximately

8%) [38]. The paucity of zebrafish protein interaction data

makes a false negative rate difficult to assess, but by using the

closest mammalian orthologue, the main class of false nega-

tives comprised homophilic interactions. This is most likely

due to prey-prey associations [24], although it should be

noted that AVEXIS is able to detect some homophilic interac-

tions and further work is required to determine the biochem-

ical and/or structural reasons for this difference. A

complementary scalable assay dedicated to identifying

homophilic receptor interactions has been developed and

could be used to specifically detect this class of interactions

[39]. AVEXIS may also not be generally suitable to detect

interactions between ectodomains that interact in cis to form
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Two-color wholemount in situ hybridization of interacting neuroreceptorsFigure 5

Two-color wholemount in situ hybridization of interacting neuroreceptors. (a-c) Single optical sections showing largely non-overlapping expression of the 
Lrrtm genes within the inner nuclear and ganglion cell layers of 4 days post-fertilization zebrafish retinae. Note that the confluent yellow staining within the 
lens represents background auto-fluorescence in both channels.  (d-e) Neuron-glia interactions. (d) Dorsal view of the head region of a 32 hour post-
fertilization (hpf) zebrafish embryo: vasn (red) is expressed in the most ventral part of the spinal cord in the medial floor plate cells (FP). islr2 (green) is 
expressed in fore-, mid- and hindbrain neurons; note that the midbrain neurons are in direct contact with the floor plate (arrows). (e) Lateral view of the 
developing spinal cord of a 24 hpf zebrafish embryo showing discrete cells within the spinal cord (SC) that are directly adjacent but dorsal to the floor 
plate. (f-i) Dorsal views of a 24 hpf zebrafish embryo showing expression of unc5b (green) and its interacting partner flrt1b (red). (f) unc5b is expressed in 
the dorsal retina (arrows) and the ear (arrowheads), flrt1b in the dorsal regions of the lateral midbrain and mid-hindbrain boundary; expression is also 
detectable in the vestibulo-acoustic ganglion (asterisks). (g-i) Higher magnification of the forebrain showing that unc5b is also expressed in the medial part 
of the olfactory bulb (g) where it overlaps with the flrt1b staining (h) in the olfactory bulb (OB) and olfactory epithelium (OE) (i). Scale bars: 50 μm (a-c); 
80 μm (d); 40 μm (e); and 50 μm (f-i).
GCL = retinal ganglion cell layer; INL = inner nuclear layer; IPL = inner plexiform layer;  L = lens; OB = olfactory bulb; OE = olfactory epithelium.
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co-receptor complexes since no interaction between NgR1

and Lingo1 ectodomains was detected [40]. During the prep-

aration of this manuscript, an independent study reported the

Flrt3-Unc5b interaction in Xenopus and demonstrated its

role in cell adhesion processes during early embryogenesis

[28].

The systematic nature of our screening approach revealed

that many receptors have multiple binding partners with

compatible expression patterns, raising the possibility of

binding competition at the cell surface. While parameters

such as abundance, local clustering and accessibility will also

influence binding in vivo, the intrinsic binding affinity of a

ligand for its receptor is important for resolving and measur-

ing these effects. The finding that the three Flrt paralogs have

different binding affinities for the Unc5b receptor, spanning

at least an order of magnitude, was surprising and is likely to

influence their ability to initiate signaling in vivo. Quantita-

tive measurements of adhesion receptors in the immune sys-

tem have shown that solution interaction strengths weaker

than approximately 50 μM are unlikely to be high enough to

support spontaneous interactions at physiological surface

densities, highlighting the functional relevance of these meas-

urements [41].

Conclusions
We have initially focused on two large families of neural

receptor proteins - LRR and IgSF - as a starting point to begin

a systematic approach to identify all extracellular recognition

events required in the development of the vertebrate nervous

system. In principle, this approach could be applied to other

receptor families and secreted ligands. We anticipate that

these networks of recognition receptors interpreted in the

context of their corresponding gene expression patterns will

provide a valuable new resource for neurobiology and will

stimulate further research into the functional role of these

interactions.

Materials and methods
Zebrafish husbandry

Zebrafish were maintained on a 14/10 hour light/dark cycle at

28.5°C according to UK Home Office and local institutional

regulations, and staged according to Kimmel [42]. Embryos

used for in situ hybridization were the progeny of a WIK/alb

outcross; alb/alb embryos were used where endogenous pig-

ment obscured staining signals.

Gene cloning and ectodomain library construction

The entire predicted extracellular and transmembrane

regions of cell surface LRR-domain-containing genes were

amplified by RT-PCR from mixed-stage zebrafish cDNA using

oligonucleotides designed from automated gene predictions

of the zebrafish genome [43]. PCR products were either

cloned or used as further templates to amplify predicted ecto-

domains, which were ligated into a mammalian expression

vector based on pTT3 [44]. The protein library was produced

as previously described [24].

Interaction screen

Interactions were identified using the AVEXIS procedure as

described [24]. Each plate contained both negative and posi-

tive controls as shown in Additional data file 1. Negative con-

trols were the plate prey presented to the baits rat Cd4d3+4

(well H7), Cd200R (H8) and Cd200 (H9). Positive controls

were Cd200R prey and Cd200 bait (H10) and the Cd200 bait

diluted 1:10 (H11) and 1:100 (H12). Fifty-two LRR prey pro-

teins were systematically screened against 49 LRR and 97

IgSF ectodomain bait proteins derived from membrane-

bound receptors [24]. The vast majority of the LRRs and 28

of the IgSF proteins (indicated in Additional data file 5) were

initially screened in both bait-prey orientations. Protein pairs

that showed positive interactions in the first-pass screen were

re-expressed and systematically re-screened in the same

matrix-style manner as both baits and preys in an independ-

ent validation screen. Interactions that were positive in the

first screen and could be detected in a reciprocal fashion were

considered as high confidence interactions. Other interac-

tions, such as those that were dependent upon the bait-prey

orientation, were regarded as lower confidence interactions.

Full details of the screening results are shown in Additional

data file 6 and the protein interactions from this publication

have been submitted to the International Molecular

Exchange Consortium (IMEx) [45] through IntAct (pmid:

17145710) and assigned the identifier IM-11659. Expected

interactions, including those between the zebrafish Robo and

Slit orthologs, were detected in subsequent and ongoing

interaction screens showing that the recombinant proteins

are functionally active and full details are available at IntAct:

Robo1-Slit1b, 2, 3 (EBI-2268920, EBI-2269164, EBI-

2269173), Robo2-Slit2 (EBI-2269141) and Robo3-Slit1b, 2

(EBI-2269026, EBI-2268001).

Fluorescent bead binding

The extracellular regions of rat Cd200, Lrrn1, Vasn, Robo2,

Lrrtm1, Unc5b and Flrt3 used in the AVEXIS screening were

cloned into a pTT3-based expression vector to produce a chi-

meric construct that contained the transmembrane domains

of the rat Cd200R and the green fluorescent protein in the

cytoplasmic region. HEK293E cells were transfected with

these constructs, harvested 2 to 3 days later, washed three

times in phosphate-buffered saline/1% bovine serum albu-

min, vortexed and approximately 5 × 105 cells aliquoted into

each well of a flat-bottomed 96-well microtitre plate. Interac-

tions were then detected using a modified version of the fluo-

rescent bead binding experiments described in [46]. Cells

were then presented to biotinylated bait proteins immobi-

lised around streptavidin-coated Nile Red fluorescent 0.4 to

0.6 μm microbeads (Spherotech Inc., Lake Forest, IL, USA) at

a ratio of approximately 120 beads per cell. After incubating

for an hour on ice the cells and beads were resuspended in
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250 μl of phosphate-buffered saline/1% bovine serum albu-

min and analyzed for binding events using a BD LSR II flow

cytometer and the data were analysed using FlowJo v7.5.3

software (Tree Star, Inc., Ashland, OR, USA).

Protein purification and BIAcore analysis

Protein purification and BIAcore analysis were performed as

described [24]. Briefly, the ectodomain of Unc5b was pro-

duced in mammalian cells as a Cd4d3+4-6His-tagged protein

and purified on a 1 ml His-Trap column (GE Healthcare,

Amersham, Bucks, UK). Protein aggregates, which are known

to influence kinetic experiments, were removed by gel filtra-

tion using a 125 ml Superose6 column prior to BIAcore anal-

ysis. The indicated amounts of the Flrt-Cd4d3+4-bio baits

were immobilized onto a streptavidin-coated sensor chip and

approximate molar equivalents of Cd4d3+4-bio were used as

a reference. All binding studies were performed in HBS-EP

buffer (GE Healthcare, Amersham, Bucks, UK) at zebrafish

physiological temperature (28°C). Flow rates of 100 μl min-1

were used for kinetic studies to minimize rebinding effects

and data were collected at the maximum rate of 10 Hz. Equi-

librium dissociation and both on and off rate constants were

calculated using the appropriate fitting model in the BIAeval-

uation software.

In situ hybridization

Fluorescent two-color wholemount in situ hybridizations

were essentially carried out as described [47]. RNA probes

were prepared from a template amplified from the protein

expression constructs encoding the entire ectodomain frag-

ments. To facilitate comparison, single color images of the

gene expression patterns at several stages of development

were stage and orientation-matched and are presented in an

online database at [48]. Expression data are also publicly

available at [49].

Microscopy

Fluorescently labeled zebrafish embryos were mounted in

Vectashield mounting medium (Vector Laboratories, Burlin-

game, CA, USA) and images were captured either on a Leica

SP5 confocal microscope or a Zeiss Axioplan2 compound

microscope fitted with a Volocity OptiGrid structured light

device (Improvision, Coventry, UK).
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AVEXIS: avidity-based extracellular interaction screen; IgSF:

immunoglobulin superfamily; LRR: leucine-rich repeat.
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Additional data files
The following additional data are available with the online

version of this paper: a figure showing an outline of the

AVEXIS procedure (Additional data file 1); a figure showing

validation of interactions using a fluorescent bead-based

assay (Additional data file 2); a figure showing that interact-

ing neuroreceptors display both complementary and overlap-

ping expression patterns in the developing brain (Additional

data file 3); a table listing the zebrafish LRR genes cloned and

used to produce recombinant ectodomains (Additional data

file 4); a table listing the 97 zebrafish IgSF ectodomain baits

(Additional data file 5); a table classifying the neuroreceptor

interactions using AVEXIS (Additional data file 6); a table

listing the spatiotemporal expression of each gene within the

interaction network (Additional data file 7).

Additional data file 1Outline of the AVEXIS procedure(a) The entire ectodomain of each LRR receptor was expressed in mammalian cells as both a bait and a prey. The bait proteins were biotinylated monomers, each containing a carboxy-terminal tag of the rat CD4 domains 3 and 4 and an enzymatically biotinylatable sequence. The prey also contained the rat CD4 tag but was followed by a pentamerization sequence derived from rat cartilage oligo-meric matrix protein (5°) and the beta-lactamase enzyme. The expression levels of both bait and prey were measured and normal-ized. (b) The library of bait proteins was arrayed on a streptavidin-coated 96-well microtiter plate and a normalized prey protein added. After a brief wash, binding was determined by adding the colorimetric beta-lactamase substrate, nitrocefin: positive wells turned red. (c) Actual screening plates showing the Islr2/Slit-like2 interaction detected in a reciprocal fashion. The left panel shows Islr2 as the bait protein and Slit-like2 as the prey; the right panel shows the interaction in the reciprocal orientation.Click here for fileAdditional data file 2Validation of interactions using a fluorescent bead-based assayInteractions identified using AVEXIS were validated by immobiliz-ing the biotinylated bait protein around a Nile Red fluorescent bead (shown on the y-axis) and presenting them to cells transfected with the extracellular regions of cell surface receptor proteins expressed as a TM-GFP chimera (x-axis). The percentage of events counted in each of the quadrants (Q1 to Q4) is shown. (a,b) Controls showing positive staining of rat Cd200-TM-GFP with rat Cd200R-coated beads (a) but not Cd4d3+4-coated beads (b). (c-f) Examples of interactions Lrrc4a-Lrrn1 (c), Islr2-Vasn (d), Lrrtm1-Robo2 (e) and Mag-Flrt3 (f) showing beads associating with transfected cells. Interactions were called as positive when beads preferentially asso-ciated with GFP-positive transfected cells (Q2:Q1 was greater than 1).Click here for fileAdditional data file 3Interacting neuroreceptors display both complementary and over-lapping expression patterns in the developing brain(a-c) Dorsal view of the zebrafish midbrain at 24 hours post-ferti-lization showing the nlrr1 gene (a) is expressed throughout the neuroepithelium of the midbrain, whereas its receptor, ngl2 (b), is restricted to two lateral midbrain domains that directly abut the nlrr1 expression domain (c). (d-f) A single optical section through the brain of a 4 days post-fertilization (dpf) zebrafish larva showing that robo2 (d) and lrrtm1 (e) are expressed in restricted patterns within all brain regions. The merge (f), shows largely non-overlap-ping, adjacent expression, particularly in a forebrain nucleus (arrowheads) and the hindbrain (arrows). (g-i) Dorsal view of the forebrain and partial midbrain of a 32 hours post-fertilization zebrafish larva showing that lingo1a (g) and lingo1b (h) are expressed in partially overlapping domains in the telencephalon (i). (j) Lateral view of a 4 dpf zebrafish larva showing robo3 expres-sion in green and elfn1 expression in red. Both genes are expressed in the habenula nucleus in the dorsal forebrain (arrowhead). (k-m) Dorsal view of the forebrain region of a 5 dpf zebrafish larva show-ing that robo3 is expressed symmetrically in both habenula nuclei (k), whereas elfn1 (l,m) is expressed asymmetrically with higher expression levels in the left nucleus (lHB). All images are two-color wholemount in situ hybridizations with anterior left; cartoons depicting the interacting receptor-ligand pairs are shown in the left panels. Scale bar: 50 μm (a-c,d-f,g-j,k-m); 93 μm (j).Click here for fileAdditional data file 4Zebrafish LRR genes cloned and used to produce recombinant ectodomainsEach gene is numbered according to its phylogenetic relationship as shown in Figure 1a and therefore clustered into LRR subfamilies as indicated. Listed for each gene are a systematic name with a cssl:d0 prefix, the current official ZFIN nomenclature, a proposed new nomenclature where appropriate (and used throughput this paper), GenBank accession number, the final carboxy-terminal amino acid of the ectodomain at which the truncation was made (the truncation site, 'Trunc.') and the closest human BLASTP match together with the percentage sequence identity.Click here for fileAdditional data file 5The 97 zebrafish IgSF ectodomain baitsEach IgSF ectodomain is numbered in the order of its phylogenetic relationship and corresponds to the numbers in the LRR-IgSF binding grid (Figure 1c). Each gene is given a systematic identifier, the cssl:d prefix, which is listed together with the current official ZFIN nomenclature (note identical gene names indicate splice var-iants), GenBank accession number and the closest human BLASP match, together with the percentage sequence identity. Twenty-eight proteins indicated by asterisks were also produced as prey proteins and, therefore, screened in both bait-prey orientations. One protein, Sc:d805 (number 28 in the table), interacted with > 50% of the library as both a prey and a bait and was therefore excluded from subsequent analysis.Click here for fileAdditional data file 6Classification of the neuroreceptor interactions using AVEXISInteractions were classified into 12 groups (A to L) according to their behavior in the interaction screen using AVEXIS as taken from [24]; according to this scheme, no class B interactions were categorized. Interactions were considered as high confidence if they were positive in the primary screen and could be detected in both bait-prey orientations in either the primary or validation screens (classes A, C, D, E, F). IntAct accession numbers for both bait-prey orientations are provided where applicable.Click here for fileAdditional data file 7Spatiotemporal expression of each gene within the interaction net-workThe expression pattern of each neuroreceptor was determined by wholemount in situ hybridization at the indicated stages during zebrafish development. Images are freely available at [49]or inte-grated with the interaction network at [48].Click here for file
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