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Abstract

Autonomous vehicles admit consideration of novel traffic behaviors such as reservation-based
intersection controls and dynamic lane reversal. We present a cell transmission model for-
mulation for dynamic lane reversal. For deterministic demand, we formulate the dynamic
lane reversal control problem for a single link as an integer program and derive theoreti-
cal results. In reality, demand is not known perfectly at arbitrary times in the future. To
address stochastic demand, we present a Markov decision process formulation. Due to the
large state size, the Markov decision process is intractable. However, based on theoretical
results from the integer program, we derive an effective heuristic. We demonstrate significant
improvements over a fixed lane configuration both on a single bottleneck link with varying
demands, and on the downtown Austin network.

Keywords: dynamic lane reversal, autonomous vehicles, cell transmission model, dy-
namic traffic assignment

1 Introduction

The computer precision of autonomous vehicles (AVs) admits consideration of novel traffic
behaviors such as reservation-based intersection control [1,2], which uses wireless communi-
cations and highly specified vehicle trajectories to increase intersection utilization and reduce
delays [3,4]. Similar communication and behavior protocols may be used to implement lane
reversal, in which lane direction changes in response to traffic conditions. Use of lane reversal
and other capacity improvements may be particularly important for AVs because induced
demand and empty repositioning trips may increase traffic congestion [5].

Lane reversal has already been explored through contraflow lanes. Most literature per-
tains to evacuation (see, for instance, [6–8]), because of the costs associated with reversing
lanes for human drivers, but several papers study contraflow for daily operations. Zhou et
al. [9] use machine learning on queue length and total delay for scheduling the lane reversal.
Xue & Dong [10] similarly applied neural networks on fuzzy pattern clustering to contraflow
for a bottleneck tunnel. Meng et al. [11] use a bi-level optimization to address the driver re-
sponse to contraflow lanes through user equilibrium (UE) behavior. As demonstrated by the
Braess [12] and Daganzo [13] paradoxes, consideration of UE routing behavior is important
as it can adversely affect potential network improvements. Therefore, our results include
solving dynamic traffic assignment (DTA) on a city network.

The primary constraint on existing work on contraflow lanes for daily operations is com-
munication with and ensuring safety of human drivers. Reversing a lane with human drivers
therefore often requires significant time and cannot be performed frequently. Furthermore,
it is impractical to perform on every road segment (link), and, where it is used, the lane
is reversed on the entire link. Partial lane reversal could increase flow by adding tempo-
rary turning bays. Consequently, a more frequent dynamic lane reversal (DLR) for AVs,
controlled by a lane manager agent per link in communication with AVs on the link, could
result in significant improvements over contraflow lanes.
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Our work is primarily motivated by the greater communications available for AVs due
to the frequency of lane reversals we propose for DLR. We assume that lane direction can
be changed at very small intervals of space-time, such as a few hundred feet of space and
6 second time steps. Such frequent reversals of lane direction can be used to optimize lane
direction for small variations in demand over time. Contraflow lanes are typically reversed
for the duration of a peak period, whereas DLR could change lane direction many times
within a peak period to reduce queueing and spillback. However, such small space-time
intervals for DLR cannot be safely implemented with human vehicles. The more precise and
greater bandwidth AV communications are necessary.

In this paper, we assume that lane manager agents exist that can communicate the
direction of each lane at space and time intervals to all vehicles on the link. Hausknecht et
al. [14] suggest using AV intersection controllers as a lane manager to specify the direction
of lanes for the entire link at different times. With some changes the intersection controllers
could communicate lane direction at space intervals as well, and we also assume that AVs
could be forced to obey these policies. Therefore, rather than study an enabling protocol,
we focus on the potential benefits.

Hausknecht et al. [14] found that DLR improved capacity on a micro-simulation of a
small network and used optimization techniques on the lane reversal problem for static traffic
assignment (STA). A natural extension is how to model DLR and construct optimal lane
direction policies for city networks with dynamic demand and more realistic flow models.
Computational tractability becomes a major concern. As noted by Hausknecht et al. [14],
even for a static flow model, STA becomes a subproblem to finding the DLR policy, forming
a bi-level optimization problem. As the number of lanes is integer, the top level involves
integer programming (IP), a potentially NP-hard problem. Dynamic demand also introduces
stochasticity from the perspective of the lane manager because future conditions may not
be known perfectly. Therefore, finding the optimal DLR policy could require impractical
computational resources. However, a heuristic that yields consistent improvements over
current fixed lane configurations would be valuable.

This paper incorporates DLR into the cell transmission model (CTM) and studies optimal
policies for DLR. We consider two types of information availability for finding the optimal
DLR policy. First, when future demand is known, we study DLR in the context of IPs and
present theoretical results and motivating examples. When future demand is stochastic, we
formulate DLR as a Markov decision process (MDP) and present a saturation-based heuristic
for computational tractability that appears to perform well on a variety of demands for a
single bottleneck link. We then solve DTA on a city network using this heuristic, and
demonstrate significant improvements in system efficiency.

The remainder of this paper is organized as follows: Section 2 discusses previous work on
autonomous vehicles. Section 3 presents a CTM for DLR. Section 4 studies DLR under the
perfect information scenario, and Section 5 considers stochastic demand. Section 6 discusses
results on a city network, and we present our conclusions in Section 7.

3



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

2 Literature review

Because lane reversal at small time intervals cannot be safely implemented with human
drivers, DLR has only been previously studied by Hausknecht et al. [14] in the context of
AVs. Furthermore, reversing lanes at multiple spatial intervals within links has never been
studied. Therefore, we begin by reviewing proposed intersection technologies for AVs that
could be used to enable DLR. Then, we discuss flow models for AVs to justify the use of
CTM.

2.1 Technology for dynamic lane reversal

The precision and communications potential of AVs have been used to propose several new
traffic behaviors such as DLR. A primary topic of study is improving intersection efficiency,
and the communications required for the proposed intersection controller can be adapted to
the requirements of DLR.

Dresner & Stone [1, 2] introduced reservation-based intersection control, in which AVs
communicate with an intersection manager to request intersection passage. The intersection
manager simulates requests on a grid of space-time tiles, which are accepted only if they
do not conflict with other requests. Fajardo et al. [3] and Li et al. [4] demonstrated that
reservations can reduce delays beyond optimized signals. Therefore, when AVs are a suffi-
ciently high proportion of vehicular demand, reservations are likely to be used in place of
signals [15].

The seminal DLR paper of Hausknecht et al. [14] observed that the intersection manager
could be used to control lane usage by restricting AVs from entering certain lanes. This could
enforce DLR by ensuring that AVs do not enter a lane in the wrong direction. Therefore, the
reservation protocol is sufficient for implementing lane reversal where lanes have the same
direction for each link.

In this paper, we consider lane reversal at multiple spatial intervals within a link. This can
also be handled by a modification to the intersection manager. In the reservation protocol,
AVs communicate with the intersection manager well before reaching the intersection to
request a reservation. These longer-range communications can be used to establish lane
direction at small space-time intervals and require AVs to switch lanes to comply with lane
reversals.

2.2 Flow models for autonomous vehicles

DTA [16] admits a variety of analytical and simulation-based flow models. Many current
simulation-based DTA models approximately solve the hydrodynamic theory of traffic flow
[17,18], which is tractable for large-scale modeling. This paper builds from the CTM [19,20],
which is a finite differences approximation to the hydrodynamic theory. The hydrodynamic
theory can also be solved through link-based methods such as the link transmission model [21]
or through an analytical Lax-Hopf method [22]. However, CTM is used because the space-
time intervals of the approximation can be aligned with the intervals for DLR.
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One significant question is whether the hydrodynamic theory is appropriate for modeling
AV flow. AVs admit new technologies such as adaptive cruise control [23], which may behave
differently from humans due to computer precision and reaction times. Microsimulation
studies have shown that AVs are likely to increase capacity [24,25] and stability [26] due to
reduced following headways. Nevertheless, AV behavior is still bound by the constraints of
non-compressible fluid flow, such as conservation of flow. Therefore, modeling AV traffic flow
by the hydrodynamic theory (possibly with a different fundamental diagram) is a reasonable
assumption. Levin & Boyles [27] developed a multiclass CTM for modeling shared human and
AV links, and also developed a car-following model that predicted a triangular fundamental
diagram based on reduced reaction times. Due to the Courant-Friedrich-Lewy [28] condition,
if the backwards wave speed is less than free flow speed, CTM can model AV traffic flow.
The modifications we make to model DLR are orthogonal to the capacity and backwards
wave speed parameters of CTM.

3 Cell transmission model

The original CTM was developed by Daganzo [19, 20] as a discrete approximation to the
hydrodynamic theory of traffic flow [17,18]. In this section, we modify the CTM to include a
varying number of lanes in space and time. In this paper, we make the following assumptions
to ensure safe and realistic behavior:

1. Vehicles can change lanes at most once per time step. For a typical time step of 6
seconds with free flow speed of 30 miles per hour, the corresponding cell length is
264 feet. That interval in space and time should be sufficient for one lane change.
Lane changing may cause disruptions to the traffic stream because increases in den-
sity from forcing vehicles to merge may reduce flow. This is modeled by scaling the
fundamental diagram with the change in the numbers of lanes. When the number of
lanes is reduced, the relative congestion increases, resulting in reductions in capacity
and possibly maximum flow as per the new fundamental diagram.

2. The lane manager can specify the direction of each lane per cell and time step. Changes
in lane direction are subject to constraints on jam density and lane changing.

3. All vehicles are autonomous and obey lane direction specified by the lane manager.
(We do not admit human drivers because lanes cannot be safely reversed at small time
and spatial intervals with human drivers.)

4. All lanes traveling in the same direction are contiguous. This simplifies lane changing
and turning movement behavior.

5. DLR can be used for arterials and highway links that have a parallel, opposite direction
link of the same length and free flow speed.

5
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Figure 1: Illustration of paired CTM links [a, b] and [b, a]

3.1 Flow model

Consider a pair of links [a, b] and [b, a] from a to b and from a to b, respectively with
contiguous lanes and identical free flow speed v and backwards wave speed w, so that DLR
is possible and cells align. (For links without a parallel, opposite direction link, the number
of lanes may be assumed to be fixed and follow the original CTM). Let C be the set of cells
in [a, b]. We assume that because [a, b] and [b, a] have contiguous lanes, every cell i ∈ C has

a parallel cell
←−
i of the same length in the opposite direction. Link [a, b] has cells 1 through

|C|.
←−
|C| refers to the first cell of link [b, a], and

←−
1 refers to the last cell. Figure 1 illustrates

this notation. The cell length is v∆t, the distance a vehicle can travel in a time step of ∆t

at free flow speed v.
Assumptions 2 and 4 simplify defining the direction of each lane at each time step to

specifying the number of lanes in each direction in space and time. This also opens the
possibility for preventing use of a lane in any direction over some interval in spacetime. This
could be used to clear a lane to reduce the congestion caused by a later lane reversal. We
define a lane policy L to be a specification of the number of lanes for each space-time interval,
denoted Li(t) for cell i and time t or L(x, t) at position x ∈ R. L(x, t) is used in Section 3 to
verify that CTM with lane reversals is consistent with conservation of flow. In Section 3.2 we
describe constraints on lane policies to follow the above assumptions. We use a trapezoidal
fundamental diagram for link flow:

Ψ(k, x, t) = min{vk,QL(x, t), w (KL(x, t)− k)} (1)

where Q is the cell capacity per lane per time step, K is jam density per lane, and w is
the backwards wave speed. As with Daganzo [19] we specify the cell transition flows, then
demonstrate that they satisfy conservation of flow: ∂q

∂x
= −∂k

∂t
. Cell occupancy ni(t) is

determined by transition flows yi(t, L), which depend on the lane policy L:

ni(t+ 1) = ni(t)− yi(t, L) + yi−1(t, L) (2)

with
yi(t, L) = min {Si(t, L), Ri+1(t, L)} (3)

where
Si(t, L) = min {ni(t), QLi(t)} (4)

6
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is the sending flow and

Ri(t, L) = min
{

QLi(t),
w

v
(NLi(t)− ni(t))

}

(5)

is the receiving flow, where N is the maximum number of vehicles that can fit in 1 lane of
cell i. Since the links are interchangeable, equations (2) and (3) define cell evolution for cells

1 through |C| as well as cells
←−
|C| through

←−
1 .

Let ∆t be the time step and choose cell length such that v∆t = 1. If units are chosen
so that ∆t = 1, cell length is 1, v = 1, x = i, K = N , and k(x, t) = ni(t). This cell length
satisfies the Courant-Friedrich-Lewy condition [28] for stability of these difference equations
when w ≤ v.

Then, as with Daganzo [19],

q(x, t) = min
{

ni(t), QLi(t), QLi+1(t),
w

v
(NLi+1(t)− ni+1(t))

}

= yi(t, L) (6)

which results in ∂q(x,t)
∂x

= yi+1(t)− yi(t). Since
∂k(x,t)

∂t
= ni(t+ 1)− ni(t) is the rate of change

in cell occupancy with respect to time, flow conservation ∂q

∂x
= −∂k

∂t
is yi+1(t) − yi(t) =

ni(t)− ni(t+ 1), which is the cell propagation function of equation (2).

3.2 Constraints

In line with the aforementioned assumptions, the number of lanes per cell and time step must
satisfy constraints for safety. These constraints admit lane reversals at each cell-time, and
we later consider lane reversals at time intervals of 6 seconds. Therefore, we require that
all vehicles are AVs because human drivers cannot safely navigate through such frequent
changes in lane direction.

First, for all i ∈ C and for all t the total number of lanes across a cell and its opposite is
limited by the maximum number of lanes available, ℓ:

Li(t) + L←−
i
(t) ≤ ℓ (7)

We do not require equality because it may be desirable to empty a lane before reversing its
direction.

Assumption 1 requires that if n←−
i
(t) > 0 then

|Li(t+ 1)− Li(t)| ≤ 1 (8)

|L←−
i
(t+ 1)− L←−

i
(t)| ≤ 1 (9)

so that vehicles in cell i at time t that remain in i at t+ 1 cannot be forced to change lanes
more than once. Also,

|Li+1(t+ 1)− Li(t)| ≤ 1 (10)

|L←−−
i+1

(t+ 1)− L←−
i
(t)| ≤ 1 (11)

7
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so vehicles moving from cell i at time t to cell i+1 at time t+1 do not have to change lanes
more than once.

When the lane direction changes, the number of vehicles in a cell could potentially exceed
the jam density, which results in the following requirement:

NLi(t) ≥ ni(t) (12)

so that the available physical space in the cell (which changes based on its number of lanes)
is sufficient to hold all vehicles in the cell.

3.3 Feasibility

The additional constraints require an analysis of feasibility. Because the initial conditions
could potentially force a violation of constraint (12), a sufficient condition for feasibility is
that constraints (7) through (12) are initially satisfied. This is easily achievable for DTA
models that start with empty links at t = 0 and load flow onto links in subsequent time
steps. Proposition 1 shows that if the initial cell occupancies are feasible, then there exists
a solution to DLR feasible for all time steps.

Proposition 1. Let LT be the set of policies satisfying constraints (7) through (12) for
0 ≤ t ≤ T . If for all cells i, Li(0)+L←−

i
(0) ≤ ℓ, |Li+1(0)−Li(0)| ≤ 1, |L←−−

i+1
(0)−L←−

i
(0)| ≤ 1,

NLi(0) ≥ ni(0), and NL←−
i
(0) ≥ n←−

i
(0), then LT 6= ∅.

Proof. A fixed lane policy is a policy L such that for all i ∈ C and for all t, Li(t) = Li(0).
Any fixed lane policy satisfies constraints (8) and inductively satisfies constraints (7), (10),
and (12) if Li(0) + L←−

i
(0) ≤ ℓ, |Li+1(0)− Li(0)| ≤ 1, and NLi(0) ≥ ni(0), respectively.

A fixed lane policy can be used to provide a lower bound on the value of the optimal
DLR policy. However, näıve policies can perform worse than fixed lane policies.

4 Method for deterministic demand

In this section we study the optimal DLR policy for a single link when sending and receiving
flows at the upstream and downstream ends are known. Although this level of knowledge may
seem unrealistic, this is useful for developing theory about the DLR problem. Furthermore,
the lane manager may be able to communicate with other lane and intersection managers
across the city to acquire sending and receiving flows for a limited time horizon. Section 5
studies DLR policies for a single link with stochastic demand and downstream supply. Overall
this paper focuses on policies from a single link perspective for computational tractability,
which is nevertheless demonstrated to improve total system travel time on a city network in
Section 6.

8
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Figure 2: Example of bottleneck lane configuration

4.1 Motivation

We first motivate the discussion with a demonstration of the challenges in finding an optimal
DLR policy. A näıve approach might consider the objective of maximizing flow on a per
time step basis, i.e. at t, choose lanes to max

∑

i∈C

(

yi(t) + y←−
i
(t)

)

. This objective is favor-

able because it exhibits the optimal substructure characteristic for constructing a dynamic
programming algorithm. However, if we consider two parallel but opposite directional links
with capacity 1200vph per lane, with 4 lanes between them, 4 cells, and 4800vph demand in
each direction, the lane configuration shown in Figure 2, maximizes flow initially but results
in a bottleneck in the middle of the link. Therefore, an optimal policy must consider future
evolution of flows.

4.2 Integer program

Because näıve methods for DLR policies may reduce flow, we formulate the DLR problem
for a single link as an IP. We then analyze this IP to derive some theoretical results about
the solution that inspire our heuristic in Section 5. To be consistent with the cell notation,

let cells 0 and
←−−−−
|C|+ 1 be source cells connected to cells 1 and

←−
|C|, respectively. Because we

assume demand and supply for the pair of links under consideration are deterministic in this
section, we model the upstream and downstream links as point queues on source and sink
cells. (This assumption is relaxed in Section 5.) Let the number of vehicles entering the

queues on 0 and
←−−−−
|C|+ 1 at time t be given by d0(t) and d←−−−

|C|+1
(t). Then the queues of vehicles

waiting to enter the link at time T are
T
∑

t=0

(

d0(t)− y|C|(t, L)
)

and
T
∑

t=0

(

d←−−−
|C|+1

(t)− y←−
0
(t, L)

)

,

the differences between upstream demand and vehicles that entered the pair of links.
For the downstream ends, let cells |C|+1 and

←−
0 be sink cells connected to cells |C| and

←−
1 with receiving flows are R|C|+1(t) and R←−

0
(t). Denote by y0(t) flow entering cell 1 and by

y←−−−
|C|+1

(t) flow entering cell
←−
|C|. In the following IP, we consider the objective of maximizing

the link throughput. Let L∗ be an optimal solution to the following:

9
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max Z(L) =
T
∑

t=0

αt
(

y|C|(t, L) + y←−
1
(t, L)

)

(13)

s.t. yi(t, L) = min {Si(t, L), Ri+1(t, L)} ∀i,
←−
i ∈ C, ∀t ∈ [0, T ]

Si(t, L) = min {ni(t), QLi(t)} ∀i,
←−
i ∈ C, ∀t ∈ [0, T ]

Ri(t, L) = min
{

QLi(t),
w

v
(NLi(t)− ni(t))

}

∀i,
←−
i ∈ C, ∀t ∈ [0, T ]

Li(t) + L←−
i
(t) ≤ ℓ ∀i ∈ C, ∀t ∈ [0, T ]

|Li(t)− Li(t+ 1)| ≤ 1 ∀i ∈ C, ∀t ∈ [0, T ]

|Li(t)− Li+1(t+ 1)| ≤ 1 ∀i ∈ C, ∀t ∈ [0, T ]

Li(t) ∈ Z+ ∀i ∈ C, ∀t ∈ [0, T ]

yi(t, L) ≥ 0 ∀i,
←−
i ∈ C, ∀t ∈ [0, T ]

where α ∈ (0, 1] is a discount factor to discourage delayed throughput. α < 1 penalizes
delaying throughput to later time steps. α < 1 is necessary for analyses for which T → ∞,
as α = 1 would result in Z(L)→∞ as T →∞.

Cell transition flows and vehicle movement may be specified for the single link under
consideration because it is assumed that vehicles will move forward if possible. However, if
multiple links were to be considered, the IP would have to include vehicle route choice.

Z(L) as defined in the IP (13) maximizes discounted flow through the single link under
consideration. This IP does not directly apply to traffic networks because of queue spillback.
However, the DLR policy problem for a single link is sufficiently complex to require heuristics
when used with DTA. Solving the IP for a network would introduce additional complexity
in the form of route choice and intersection conflicts. Therefore, we restrict our attention to
flow on a single link. In Section 6.3, we show that the single link heuristic yields significant
improvements for a city network.

Proposition 2. The IP (13) has at least one feasible solution if for all cells i, Li(0) +
L←−

i
(0) ≤ ℓ, |Li+1(0) − Li(0)| ≤ 1, |L←−−

i+1
(0) − L←−

i
(0)| ≤ 1, NLi(0) ≥ ni(0), and NL←−

i
(0) ≥

n←−
i
(0).

Proof. From Proposition 1, there exists a solution satisfying the DLR constraints on the
number of lanes at each cell-time for t ≥ 0. The feasibility of flow propagation constraints
follows from CTM.

Although solving the IP (13) yields the optimal DLR policy for a single link, it is not
sufficient for network analyses. The single-link model does not consider queue spillback
effects because demand waiting to enter the link is modeled as point queues. Furthermore,
solving this IP for every link in a city network is not tractable, especially when UE route
choice is taken into consideration. Therefore, the remainder of this section develops structure
and intuition about the single-link IP. This structure is used to construct an effective heuristic
in Section 5.

10



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝐿𝑖 𝑡  

𝐿𝑖 𝑡  

Figure 3: Flow through a single cell

𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝑦𝑖+1 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝐿𝑖 
𝐿𝑖  𝐿𝑖+1 

𝐿𝑖+1 

Figure 4: Flow between a pair of cells

4.3 Bottlenecks

This section further explores the creation of bottlenecks on the links by allowing y0(t) +
y←−−−
|C|+1

(t) > Qℓ demand to enter in one time step. As seen in Section 4.1, bottlenecks can

adversely affect the objective of maximizing total discounted flow through the link. In
Proposition 3, we prove that creating a bottleneck is not necessary for optimality.

The total flow between any pair of parallel opposing cells is limited to Qℓbecause only
ℓ lanes are available at a single cell (see Figures 3 and 4). Specifically, for all L ∈ LT and
i ∈ C, yi(t, L) + y←−

i
(t, L) ≤ Qℓ and yi(t, L) + y←−−

i+1
(t, L) ≤ Qℓ. This yields a general result

about bottlenecks:

Proposition 3. Suppose that there exists an i ∈ C, j ≥ i, t such that yi(t, L
∗)+y←−

j
(t, L∗) ≥

Qℓ. Then there exists an L′ ∈ LT with Z(L′) ≥ Z(L∗) and yi(t, L
′) + y←−

j
(t, L′) ≤ Qℓ.

Proof. By induction on j − i. The proof is split into two cases: whether the difference be-
tween i and j is even or odd.

Basis: j = i: because yi(t, L) + y←−
i
(t, L) ≤ Qℓ, flow through cell i is limited to Qℓ, thereby

limiting the future reward. j = i+ 1: because yi(t, L) + y←−−
i+1

(t, L) ≤ Qℓ, flow through cell i
is limited to Qℓ, thereby limiting the future reward.

Inductive step: Suppose j − i = n + 1 (with n + 1 ≥ 2). If yi(t, L
∗) + y←−

j
(t, L∗) > Qℓ,

then such an L′ exists by the inductive hypothesis applied at i + 1,
←−−−
j − 1, t + 1 (with

(j − 1)− (i+ 1) = n− 1).

Proposition 3 notes that if in L∗, two cells i and j at some time t have yi(t, L
∗) +

y←−
j
(t, L∗) > Qℓ, then some alternate policy L′ with yi(t, L

′)+ y←−
j
(t, L′) ≤ Qℓ is also optimal.

11
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Note that this applies for flow entering in opposite directions at the time step, or for flow
entering and flow already on the link. This allows restrictions to be placed on the solution.
For instance, in a pair of links with 4 lanes total, if it is optimal to assign 3 lanes to one
direction in one time step and entering flow exceeds 2Q, then it is optimal to assign 3 lanes
to succeeding cells in succeeding time steps to allow that flow to reach the end of the link.

4.4 Partial lane reversal

A major modeling decision in the above formulation is deciding lane direction at the cell
level, as opposed to the entire link. From Proposition 3, L1(t) + L←−

|C|
(t) > ℓ is not necessary

for optimality. However, the opposite, where L1(t) + L←−
|C|
(t) < ℓ, could be beneficial to add

additional turning lanes for exiting vehicles. To prevent queue spillback for one turning
movement from interfering with another until vehicles exit, additional turning lanes longer
than one cell could also improve flow. Although lane reversals to improve short-term flow
at the end of the link may not be optimal in the long term, a discount factor of α < 1
encourages giving preference to exiting flow due to the total discount of at least α|C| from
the minimum time required to traverse the link. Proposition 4 demonstrates that under
certain conditions, a partial lane reversal on cell |C| will improve the total discounted flow

through the link. Symmetric conditions apply to cell
←−
1 . These conditions are likely to occur

at some time step for many networks.

Proposition 4. If

(i) L∗|C|(t) ≤ L∗|C|(t− 1)

(ii)
t
∑

t′=0

d←−−−
|C|+1

(t)−
t−1
∑

t′=0

y←−−−
|C|+1

(t, L∗) ≤ Q
(

L∗←−
|C|
(t)− 1

)

(iii) n←−
|C|
(t) ≤ Q

(

L∗←−
|C|
(t)− 1

)

(iv) n|C|(t, L
∗) ≥ R|C|+1(t) > QL∗|C|(t)

(v) α < 1

then there exists an L′ ∈ LT with Z(L′) > Z(L∗).

Proof. Construct L′ as follows: L′i(t) = L∗i (t) and L′←−
i
(t) = L∗←−

i
(t) for all i ∈ C and t′ ∈ [0, t],

except that L′←−
|C|
(t) = L∗←−

|C|
(t)− 1 and L′|C|(t) = L∗|C|(t)+ 1. L′ is feasible because of condition

(i). Because of conditions (ii) and (iii) removing a lane from
←−
|C| does not restrict flow. Then

for all i ∈ C and t′ ∈ [0, t], yi(t
′, L′) ≥ yi(t

′, L∗) and y←−
i
(t′, L′) ≥ y←−

i
(t′, L∗). Furthermore,

because of condition (iv), y|C|(t, L
′) > y|C|(t, L

∗). From condition (v), Z(L′) > Z(L∗).

12
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Condition (i) in Proposition 4 ensures feasibility of adding a lane to |C|. Conditions (ii)

and (iii) state that the numbers of vehicles in cells
←−−−−
|C|+ 1 and

←−
|C| are sufficiently small

that removing a lane from
←−
|C| will not obstruct flow. Finally, condition (iv) states that the

number of vehicles in |C| and the receiving flow on |C| + 1 are greater than the capacity
allocation from L∗, and thus adding a lane to |C| will result in y|C|(t, L

′) > y|C|(t, L
∗) when

moving flow later is discounted in accordance with condition (v). Condition (v) is necessary
because it rewards reducing delays, and adding a temporary extra turning lane is designed
to reduce delays. With α = 1, there might be no difference in objective from providing an
extra turning lane instead of forcing some vehicles to wait until the next time step.

4.5 Stability

Because the objective function in the IP (13) maximizes discounted flow through the link,
the optimal solution without a discount has a superstable property: if any policy prevents
queues from growing to infinity as T → ∞, then L∗ is such a policy. First, we bound the
queue lengths when L∗ is used. Let d(L) be the sum of the queue lengths at the end of the
time horizon, T , for policy L ∈ LT . Then

d(L) =
T
∑

t=0

(

(

d0(t)− y|C|(t, L)
)

+
(

d←−−−
|C|+1

(t)− y←−
1
(t, L)

))

(14)

Proposition 5. Let T ≥ 0, L ∈ LT , and α = 1. Then d(L) ≥ d(L∗).

Proof. From the objective function with α = 1,

T
∑

t=0

((

y|C|(t, L
∗)
)

+
(

y←−
1
(t, L∗)

))

≥
T
∑

t=0

((

y|C|(t, L)
)

+
(

y←−
1
(t, L)

))

(15)

Therefore

d(L∗) =
T
∑

t=0

(

(

d0(t)− y|C|(t, L
∗)
)

+
(

d←−−−
|C|+1

(t)− y←−
1
(t, L∗)

))

≤
T
∑

t=0

(

(

d0(t)− y|C|(t, L)
)

+
(

d←−−−
|C|+1

(t)− y←−
1
(t, L)

))

= d(L) (16)

Denote by (LT ) = (LT : LT ∈ LT , T ∈ Z+) a sequence of feasible policies where every
T ∈ Z+ is mapped to a policy LT ∈ LT . Similarly, denote by (L∗T ) a sequence of optimal
policies to the IP (13). For any sequence of policies (LT ), the resulting remaining queue
lengths also form a sequence (d(LT )). Obviously, (d(LT )) is bounded below as d(LT ) ≥ 0

13
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for any LT ∈ LT . However (d(LT )) may not be bounded above (and if it is bounded,
the sequence may not converge). Nevertheless, we can use such sequences to establish the
superstability of (L∗T ).

Proposition 6. Let α = 1, and suppose that there exists a sequence of feasible policies (LT )
and a ζ ∈ R+ such that (d(LT )) is bounded by ζ (i.e. for all T ∈ Z+, d(LT ) ≤ ζ). Then
(d(L∗T )) is also bounded by ζ.

Proof. For any T ∈ Z+, d(L∗T ) ≤ d(LT ) by Proposition 5. Since d(LT ) ≤ ζ, d(L∗T ) ≤ ζ.

Proposition 6 states the superstable property: if some sequence of feasible policies (LT )
results in bounded queue lengths, then (L∗T ) also has bounded queue lengths. However,
these stability results require that α = 1, i.e. that delaying exiting flow has no effect on the
objective, as long as flow exits before T . This is due to the relationship between the queue
length and the objective function. When a discount is used, equation (15) becomes

T
∑

t=0

((

αty|C|(t, L
∗)
)

+
(

αty←−
1
(t, L∗)

))

≥
T
∑

t=0

((

αty|C|(t, L)
)

+
(

αty←−
1
(t, L)

))

(17)

which only yields

T
∑

t=0

(

(

d−1(t)− αty|C|(t, L
∗)
)

+
(

d←−−−
|C|+1

(t)− αty←−
1
(t, L∗)

))

≤
T
∑

t=0

(

(

d−1(t)− αty|C|(t, L)
)

+
(

d←−−−
|C|+1

(t)− αty←−
1
(t, L)

))

(18)

Equation (18) shows how a policy L∗ for α < 1 may not be optimal for bounding queue
length. As a counterexample, consider a scenario in which the policy may shift lanes to cells

0 through |C| to allow more vehicles on the link to exit, or shift lanes to cells
←−
|C| through

←−
0 to allow more queued vehicles to enter (and exit |C| time steps later). For sufficiently
small α, the optimal policy will prioritize vehicles already on the link because they can exit

sooner, although this may result in a longer queue for entering cell
←−
|C| at the end of the time

horizon.
Although α = 1 is necessary for superstability to hold, α < 1 does not necessarily prevent

the optimal policy from bounding queues for some demand scenarios. However, L∗ cannot
be guaranteed to bound queues if α < 1. The choice of discount factor is similar to the
capacity-delay tradeoff for traffic signals, where longer cycle lengths increase both capacity
and delay. As α increases, the optimal policy prioritizes capacity more than delay. α = 1
maximizes capacity but also removes any penalty for delaying vehicles. On the other hand,
as discussed in Section 4.4, α < 1 is a necessary condition for adding extra turning lanes to
increase the objective function in some scenarios.

The stability discussion also demonstrates some weaknesses of the IP approach. Besides
requiring perfect information about demand, the IP also is solved for a fixed, finite time

14
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horizon. The solution results in a policy optimized for a specific demand scenario. Because
it is an IP, minor changes to the demand could result in major changes to the optimal policy.
In the next section, we study DLR with stochastic demand as a Markov decision process.
The resulting heuristic policy is more robust and tractable than the solution to this IP.

5 Stochastic demand

Although perfect information about demand yields ideal scenarios and corresponding theo-
retical results, in reality acquiring perfect information for arbitrary time horizons (such as
the entire AM peak) requires knowledge of both vehicle route choice and departure times.
Changes in either would potentially require solving the entire model again for some subin-
terval of time. Therefore, developing a DLR policy for stochastic supply and demand is also
valuable. From the perspective of the link manager at time t, we assume that the change in
demand d0(t), d←−−−|C|+1

(t) and supply R|C|+1(t), R←−0 (t) for the next time step are known, but

future demand and supply are given by stochastic processes. In general, upstream sending
flow at t + 1 is not independent of upstream sending flow at t because vehicles that do not
enter at t will wait for the next time step. Similarly, if downstream receiving flows are lim-
ited by congestion at time t, there is a higher probability they will be limited by congestion
at time t + 1. Since all vehicles are in communication with the link manager, we assume
that for all i ∈ C, ni(t) and n←−

i
(t) are deterministic. Therefore, we consider the following

infinite-horizon Markov decision process (MDP) with state space S, control space U, and
one-step rewards g(t):

• The state at time t is the cell occupancies and number of lanes. Therefore, the state
space is

S= [0, Nℓ]2|C| × Z
2
+ × [0, ℓ]2|C| (19)

The integer 2|C|-vectors of [0, Nℓ]2|C| are the possible combinations of cell occupancies
because Nℓ is the maximum occupancy of any single cell, and there are |C| cells in
each direction. Z2

+ is the possible lengths of the queues of vehicles waiting to enter the
links. The integer 2|C|-vectors of [0, ℓ]2|C| are the possible lane configurations.

• The control is how many lanes are assigned to each cell. Therefore,

U⊂ [0, ℓ]2|C| (20)

The control space is limited by constraints (7) through (12) to ensure that vehicles do
not change lanes more than once per time step, and that each cell has enough lanes
that vehicles in the cell have sufficient physical space.

• The one-step rewards are given by the objective function to the IP:

g(t) = y|C|(t, L) + y←−
1
(t, L) (21)

where transition flows y|C|(t, L) and y←−
1
(t, L) are determined by equation (3).
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• The state transitions are determined by entering demand and transition flows. Entering
demand is d0(t) and d←−−−

|C|+1
(t). Transition flows are described by equation (3) for CTM.

The transition flows are affected by the number of lanes assigned to each cell.

• The objective is to find a policy L∗ of lane assignments that maximizes the long-run
expected reward.

With a countable state space and finite action space, the MDP has an optimal stationary
policy. Unfortunately, solving this MDP is fairly difficult. Due to the simulation-based CTM
state, solving it analytically encounters similar issues to solving CTM DTA analytically.
Computational methods for solving MDPs, based on dynamic programming, are polynomial
in the state space. However, the state space is computationally intractable due to the curse
of dimensionality. A typical 0.5 mile, 4 lane pair of links with free flow speed 30 miles per
hour and jam density 120 vehicles per mile has 10 cells in each direction, and each cell
could contain up to 24 vehicles. This alone results in a state space of 4.01× 1027 elements.
Choosing out of 5 possible lane configurations (0 through 4) per cell in one direction results
in a further orthogonal 9.8× 106 possibilities.

Based on this complexity, it would be ideal to derive theoretical results for the MDP
similar to the analyses in Section 4. Propositions 2 and 5 can be extended to the MDP
with similar proofs. However, Proposition 3 does not have a direct counterpart in the
stochastic case. Consider a pair of links with 2 lanes in each direction, 900 vph capacity
per lane, expected 900 vph demand in each direction, time step of ∆t, and α = 1. If, due
to randomness, 3600∆t demand in direction 1 appears at time t, based on expected future
demand assigning 3 lanes to direction 1 at time t is a maximum throughput policy. If at
times t+1 through t+5, 3600∆t demand also appears in direction 2, to maximize throughput
a bottleneck on the link should be created in direction 1 as the potential reward in direction
2 is greater.

5.1 Heuristic algorithm

Therefore, instead of attempting to solve this MDP computationally, we use the structure
developed in Section 4 to inspire a saturation-based heuristic. Hausknecht et al. [14] briefly
discuss a theorem on DLR with respect to saturation, but it assumes stationary, constant flow
and does not include downstream receiving flow limitations. We extend it to the stochastic
demand, CTM model to determine expected saturation levels for two links [a, b] and [b, a].
At time t, we first determine the number of lanes per cell, then propagate flow.

To simplify the possible actions, we choose two modes of control. First, all but the last

cell is assigned the same number of lanes, formally cells 1 through |C| − 1 and cells
←−
|C|

through
←−
2 . Although Proposition 3 may not hold in its most general sense, allowing more

than Qℓ of flow to enter in one time step still cannot increase the reward. Furthermore, we
add the restriction that each direction must always have at least one lane, even if no flow
is presently using it. This prevents flow in one direction from being completely obstructed
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due to high demand in the other direction. In most practical scenarios, it is unlikely for one
direction to have completely zero demand.

5.1.1 Overall lane direction

Inspired by Theorem 1 of Hausknecht et al. [14], this heuristic estimates the difference be-
tween demand and capacity for each direction. If demand exceeds capacity in one direction,
and the other direction has unused capacity, then it may be beneficial to reverse one lane.
Since the number of lanes is integer, we choose to reverse a lane only if shifting Q capacity
from one direction to the other is expected to improve flow. Formally, define δγ(t) as the sat-
uration estimation for direction γ ∈ {1, 2}, where the direction index is assigned arbitrarily.
δγ(t) > 0 and δγ(t) < 0 indicate over- and under-saturation, respectively. To avoid confusion
with Li(t), let lγ(t) represent the number of lanes in direction γ. The initial condition is
l1(t− 1) + l2(t− 1) = ℓ. Set

δ1(t) = min















∑

1≤i≤|C|

ni(t) +
∑

0≤t′≤T

E[S−1(t+ t′)],

∑

0≤t′≤T

E[R|C|+1(t+ t′)]















−Ql1(t− 1)T (22)

and

δ2(t) = min















∑

1≤i≤|C|

n←−
i
(t) +

∑

0≤t′≤T

E[S←−−−
|C|+1

(t+ t′)],

∑

0≤t′≤T

E[R←−
−1
(t+ t′)]















−Ql2(t− 1)T (23)

T defines how far ahead into the future the heuristic considers when estimating saturation.
A low value of T will not allow all vehicles to exit, and will result in the heuristic being highly
reactive to specific realizations of supply and demand. Therefore we recommend T be at
least the number of cells in the link. On the other hand, a high value of T might prevent
the heuristic from reacting optimally to dynamic congestion.

The minimum term in δγ(t) is the possible expected throughput of the link, accounting
for expected upstream sending flow and constraints of expected downstream receiving flow.
The subtracted term is the maximum throughput possible over T using lanes lγ(t− 1).

If δ1(t) > (Q+ δ2(t))
+ and lane constraints (7) through (12) allow it, set l1(t) = l1(t −

1) + 1, where (·)+ = max{0, ·}. Similarly, if δ2(t) > (Q+ δ1(t))
+ and lane constraints (7)

through (12) allow it, set l2(t) = l2(t − 1) + 1. These two conditions cannot both be true
because if δ1(t) > (Q+ δ2(t))

+ then δ2(t) < δ1(t), and vice versa.

5.1.2 Additional turning bays

In addition, the last cell can be assigned extra turning lanes to allow more flow to exit,
based on Proposition 4. We refer to the number of lanes at the start and end cells of
direction 1 as l11(t) and l

|C|
1 (t), respectively. For direction 2, the number of lanes at the

17
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start and end cells are l
←−
|C|
2 (t) and l

←−
1
2 (t), respectively. Initially, set l11(t) = l

|C|
1 (t) = l1(t) and

l
←−
|C|
2 (t) = l

←−
1
2 (t) = l2(t). For direction 1, if l + 1(t) ≤ l1(t− 1) (to satisfy at most 1 additional

lane per time step), set

δ′11 = min
{

n|C|(t), Q (l1(t) + 1) , R|C|+1(t)
}

−min
{

n|C|(t), Ql1(t), R|C|+1(t)
}

(24)

and
δ′21 = min

{

S←−−−
|C|+1

(t), Ql2(t)
}

−min
{

S←−−−
|C|+1

(t), Q (l2(t)− 1)
}

(25)

δ′11 is the difference in flow for the cases of l
|C|
1 (t) = l1(t) + 1 and l

|C|
1 (t) = l1(t), and δ′21

is similarly the difference in flow for the cases of l
←−
|C|
2 (t) = l2(t) − 1 and l

←−
|C|
2 (t) = l2(t). If

the improvement is sufficient, i.e. if δ′11 > 0 and δ′11 > δ′21, then set l
|C|
1 (t) = l1(t) + 1 and

l
←−
|C|
2 (t) = l2(t)− 1. An analogous operation is performed for direction 2.

5.1.3 Simulation algorithm

This heuristic is part of the Simulate procedure in Algorithm 1. Every time step, we use
the above heuristic to determine the number of lanes in each direction for each pair of parallel
cells using equations (22) through (25). Then, we calculate transition flows using equations
(3) through (5), and propagate flow according to equation (2). We repeat this each time
step until all vehicles have exited. The simulation is illustrated in Figure 5. DLR adds the
step of deciding lane directions before propagating flow. The remainder of the simulation is
the same in conventional CTM.

5.2 Demonstration

To demonstrate the effectiveness of the above heuristic, we performed a suite of tests on a
single pair of links with varying combinations of stationary demand. Each link was 0.4 miles
long, had 2 lanes, 1200 vph capacity, 30 mph free flow speed, 15 mph backwards wave speed,
and arrivals were Poisson each time step based on demand. A time step of 6 seconds was
used for CTM (as used by [29]), and the lookahead parameter T was set to 40 time steps.
Due to randomness in the demand, each scenario was simulated 100 times for 1 hour, and
average results are presented. Figure 6 graphs the difference in throughput between DLR
and a fixed lane configuration of 2 lanes in each direction.

Figure 6 demonstrates that in asymmetric demand scenarios where the total demand is
less than the total link capacity including lanes in both directions, the DLR heuristic tends
to improve over the fixed base lane configuration. Although this is not surprising, these
results are important for several reasons.

First, although contraflow lanes would achieve similar results in some of the demand
scenarios considered, they are difficult to implement due to human drivers. When AV inter-
section controllers are in use, DLR may be implemented on every link, and this demonstrates
some of the benefits of doing so.
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Figure 5: CTM simulation with DLR

Second, this heuristic responds particularly well to scenarios in which one direction is
slightly oversaturated and the other is slightly undersaturated, but reversing a lane would
not improve the total flow. For example, consider a link with 4 lanes, with 1200vph capacity
per lane, and with demand of 2700vph in one direction and 1500vph in the other. With 2
lanes in each direction, 300vph of demand will not be served, but this is also true for a 3–1 lane
configuration. DLR allows frequent changing between 2–2 and 3–1 configurations, allowing
that additional 300vph to use the link. The proposed heuristic switches automatically based
on the queues of vehicles waiting to enter.

Finally, this DLR heuristic was not observed to perform significantly worse than a fixed
lane configuration. In several demand scenarios the average throughput of DLR was slightly
worse than that of fixed lanes. However, the decrease was two orders of magnitude less than
the potential improvement. Overall, these results suggest that while this heuristic may not
be the optimal policy for DLR, in many cases it improves over a fixed lane configuration,
and it will probably not be much worse. Therefore, this heuristic is worth consideration on
larger networks.

6 Dynamic lane reversal on networks

Although the heuristic developed in Section 5 proved effective on single link bottlenecks with
stationary demand, the ultimate goal is to apply DLR to larger networks with the additional
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Figure 6: Change in total throughput from DLR heuristic
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variables of intersection constraints and UE routing. Therefore, we incorporate the heuristic
into DTA, presented in Figure 1.

6.1 Determining expected sending and receiving flows

The saturation definitions in equations (22) and (23) use expected demand, which depends
on traveler route choice. To determine this endogenously, each link stores expected sending
and receiving flows per assignment interval (AST). In DTA, ASTs are used to reduce the
computational complexity of routing demand. Typically, each iteration a single shortest
path is found for every origin-destination-AST (ODT) tuple. For DLR, we also use ASTs as
the aggregation level for expected sending and receiving flows because it corresponds to the
path assignment aggregation. Because changes in route choice affect expected sending and
receiving flows, each iteration, the expected values per link are updated based on average
observations from the simulation. Average upstream sending flows for link [a, b] are calculated
as the average number of vehicles wanting to enter [a, b]. (For general networks, this requires
disaggregation of sending flows of upstream links by destination link). Receiving flows are
more difficult to calculate because of intersection constraints on crossing flow. Instead, we
used the average exiting flow as the expected receiving flow for the heuristic. For congested
links this is an accurate measure because exiting flow is bounded by receiving flows. For
uncongested links, DLR is not necessary anyways.

6.2 Algorithm description

The first step of the algorithm is to determine which links can be paired for DLR. We paired
together any links [a, b] and [b, a] with the same length and free flow speed. In practice, some
pairs of opposite and parallel links are separated by a median or divider. We assume that for
AVs, such dividers are not necessary for safety purposes. We also did not have specific data
on which pairs of links had dividers or not. However, if such dividers are used in practice,
they would prevent DLR from being applied.

For the first iteration, expected sending and receiving flows are not known, so a partial
demand initialization [30] is used to both improve convergence and provide initial inputs to
DLR. DLR is embedded in the simulation step of DTA, as illustrated by Figure 5. Every
time step, lane assignments are chosen using the heuristic in Section 5. After each simula-
tion, expected sending and receiving flows are recorded. This definition of DLR uses values
from only the last iteration. However, because the number of vehicles moved continuously
decreases through MSA, the change in the DLR policy gradually decreases as well.

6.3 City network results

To demonstrate the tractability and effectiveness of our proposed heuristic, we tested it on
the downtown Austin network, shown in Figure 7, which has 62836 trips over 2 hours, 171
zones, 546 intersections, and 1247 links in the AM peak. CTM was used with a time step of
6 seconds and an AST duration of 15 minutes. DLR was implemented on all pairs of parallel
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Algorithm 1 Dynamic lane reversal in dynamic traffic assignment

1: procedure Initialization

2: for each link [a, b] do
3: if there exists a link [b, a] with the same free flow speed and length then

4: Pair [a, b] and [b, a] together for DLR
5: end if

6: end for

7: for m = 1 to M do

8: Add 1
M

of unassigned vehicles to the network
9: Path-generation(1)
10: Simulate

11: end for

12: end procedure

13:

14: procedure Method of successive averages

15: for m = 1 to M do

16: Path-generation( 1
m
)

17: Simulate

18: end for

19: end procedure

20:

21: procedure Path-generation(λ)
22: for each ODT (r, s, t), find shortest path π∗rst do

23: for each vehicle v traveling from r to s departing within t do

24: Assign v to π∗rst with probability λ

25: end for

26: end for

27: end procedure

28:

29: procedure Simulate

30: for t = 0 to ∞ do

31: for each link [a, b] do
32: if [a, b] is paired with [b, a] then
33: Determine lane assignment for [a, b] and [b, a]
34: end if

35: Propagate flow through [a, b]
36: Update expected sending and receiving flows
37: end for

38: end for

39: end procedure
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Table 1: Total system travel time

Scenario TSTT (hr)
Fixed lanes 8420.966

DLR heuristic 6588.828

and opposite direction links with the same speed and length. As much of the network is a
downtown grid, DLR was implemented on most links in the network. Because DLR is most
applicable when all vehicles are AVs, the reservation control model of Levin & Boyles [31]
for DTA with first-come-first-serve priority was used for intersections.

The demand is completely deterministic. However, because route choice changes through
the process of solving for dynamic user equilibrium, determining the demand for individual
links in the network would require forward simulation. Due to the computational cost of
simulating many possible lane direction scenarios, it is easier to model link-specific demand
as a random variable.

To demonstrate our DLR heuristic, we solved DTA for two scenarios: current (fixed) lane
configuration, and DLR. We then compared the travel times at UE for both scenarios. Both
scenarios were solved to the same cost gap of 2% of total system travel time.

Convergence of DTA with DLR is demonstrated in Figure 8. The partial demand ini-
tialization resulted in a relatively small initial gap. Around 4%–5%, the cost gap percent
oscillated, which was probably due in part to DLR. However, after iteration 9 the cost gap
steadily decreased, suggesting it found a local equilibrium. With the addition of DLR, DTA
required 8.16 minutes to solve on an Intel Xeon CPU at 3.07 GHz. This makes it tractable
for study on large city networks.

Our heuristic was developed for a single link, and the results in Section 5.2 show its
effectiveness. However, the network level introduces route choice and queue spillback, neither
of which are considered in our analysis of DLR policy for single link flow. The results
presented here could be further improved by including network effects.

Table 1 shows the total system travel time (TSTT) for both fixed lanes and when the
DLR heuristic was used. The DLR heuristic resulted in an improvement of 21.8% over fixed
lanes. This demonstrates the potential benefits of using DLR during peak hour demand. As
this is the AM peak, most of the demand is headed towards the downtown region, shown
in Figure 2. The extra capacity afforded by DLR helps alleviate the congestion caused by
the asymmetric use of right-of-way. On average, distance traveled by the same vehicle was
observed to decrease by 23.9% when DLR was used. This suggests that greater capacity on
shorter distance routes increased their utility in UE routing.

Figure 9 shows the average improvement in travel time from DLR for vehicles at different
departure times. Vehicles departing later receive the greatest benefit because those vehicles
experience a more congested network, and DLR alleviates much of the congestion. Over-
all, these results demonstrate that the DLR heuristic is effective at improving efficiency in
congested large city networks.
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Figure 7: Downtown Austin network. Highlighted links are paired for DLR.
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Figure 8: Convergence of dynamic lane reversal on downtown Austin
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Figure 9: Average reduction in travel time at different assignment intervals
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Figure 10: Average reduction in travel time from DLR with respect to vehicle miles traveled

This particular test network contains both freeways on the east and west boundaries
and a detailed downtown region. (Some links in downtown are two-way, while others are
one-way and do not have a counterpart for DLR). Vehicles traveling shorter distances are
more likely to take arterials or the downtown grid, whereas vehicles traveling longer distances
are more likely to take freeways and downtown roads due to the geometry of the network.
Figure 10 demonstrates that vehicles traveling between 1-2 miles and 5+ miles in the fixed
lane configuration experienced similar reductions in travel times. This suggests that this
DLR heuristic is more effective for arterials than restricted access freeways because vehicles
traveling longer distances have a greater potential for reductions in travel time. This is likely
due to the limited number of lanes on exit ramps; DLR would not be able to add extra lane
capacity to these ramps. As with the VISTA DTA simulator [29], the queueing model allows
queues for these ramps to block entire cells. However, regardless of the distance, vehicles
experienced average reductions in travel time, which suggests this heuristic consistently
improves over the fixed lane configuration.

Figure 11 shows which DLR-enabled links actually have lane directions changed at 30 and
60 minutes into the demand. DLR was used on surprisingly few links considering the travel
time reduction of 21.8%. The network was more congested after 60 minutes, so more links
had reversed lanes. The links that DLR was used on were mainly arterials, and were mostly
on the boundaries of the network. This allowed greater flow on the bridges in the south part
of the city, and on other arterials, so vehicles could enter the downtown grid faster. The
downtown grid did not have much DLR used because vehicles use the local streets there in
both directions.

These results show that DLR can be significantly effective when used only on a few
links. In terms of practical implementation, DLR could require significant infrastructure
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Figure 11: Links with DLR active around 30 minutes (left) and 60 minutes (right)

modifications in terms of installing lane manager hardware and modifying roadway geometry
so that lane reversal is feasible. These modifications might only need to be made on a small
set of carefully chosen links to achieve considerable benefits.

Of course, the fact that DLR was only used on such few links also indicates that greater
improvement may be possible with a better DLR policy. The heuristic used here made
lane direction decisions at an individual link level, and a policy considering network-level
flows would likely result in further reductions in congestion. Therefore, these results warrant
further study and optimization of DLR policies.

7 Conclusions

This paper developed a cell transmission model with variable number of lanes in space and
time consistent with the hydrodynamic theory of traffic flow to model dynamic lane reversal.
Focusing on a single link, the scenarios of known and stochastic demand were considered.
When demand is known, we demonstrated that a solution algorithm should consider future
demand and receiving flows and formulated dynamic lane reversal as an integer program.
We derived theoretical results about the optimal solution(s), noting that using lane reversals
to create a bottleneck on a link is never necessary for optimality when demand is known,
and proving that the optimal solution will stabilize queues if they can be stabilized.

Because demand is often not known perfectly at arbitrary times in the future, we for-
mulated the dynamic lane reversal problem with stochastic demand as a Markov decision
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process. The Markov decision process was analytically difficult to solve because it is built
on a simulation-based dynamic traffic assignment model, and the curse of dimensionality led
to computational intractability. Nevertheless, we developed a heuristic based on saturation
estimates that was demonstrated to work well on a single bottleneck link at various com-
binations of stationary demand. We then presented an algorithm for using the heuristic in
dynamic traffic assignment, and tested it on a city network. This converged to an equilibrium
and resulted in a 21.8% reduction in total system travel time.

While our proposed heuristic improves significantly over the current fixed lane configu-
ration, it may not be the optimal dynamic lane reversal policy. Therefore better solutions
to the single link and network-wide dynamic lane reversal problem could further improve
traffic. Also, dynamic lane reversal for networks should account for UE routing behavior
and queue spillback. In short, the model presented here was an initial foray into dynamic
lane reversal in dynamic traffic assignment. Many possibilities for greater improvements and
further research exist.
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[12] P.-D. D. D. Braess, “Über ein paradoxon aus der verkehrsplanung,” Un-
ternehmensforschung, vol. 12, no. 1, pp. 258–268, 1968.

[13] C. F. Daganzo, “Queue spillovers in transportation networks with a route choice,”
Transportation Science, vol. 32, no. 1, pp. 3–11, 1998.

[14] M. Hausknecht, T.-C. Au, P. Stone, D. Fajardo, and T. Waller, “Dynamic lane rever-
sal in traffic management,” in Intelligent Transportation Systems (ITSC), 2011 14th
International IEEE Conference on, pp. 1929–1934, IEEE, 2011.

[15] K. M. Dresner and P. Stone, “Sharing the road: Autonomous vehicles meet human
drivers.,” in IJCAI, vol. 7, pp. 1263–1268, 2007.

[16] Y.-C. Chiu, J. Bottom, M. Mahut, A. Paz, R. Balakrishna, T. Waller, and J. Hicks,
“Dynamic traffic assignment: A primer,” Transportation Research E-Circular, no. E-
C153, 2011.

[17] M. J. Lighthill and G. B. Whitham, “On kinematic waves. ii. a theory of traffic flow on
long crowded roads,” in Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 229, pp. 317–345, The Royal Society, 1955.

29



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[18] P. I. Richards, “Shock waves on the highway,” Operations research, vol. 4, no. 1, pp. 42–
51, 1956.

[19] C. F. Daganzo, “The cell transmission model: A dynamic representation of highway traf-
fic consistent with the hydrodynamic theory,” Transportation Research Part B: Method-
ological, vol. 28, no. 4, pp. 269–287, 1994.

[20] C. F. Daganzo, “The cell transmission model, part ii: network traffic,” Transportation
Research Part B: Methodological, vol. 29, no. 2, pp. 79–93, 1995.

[21] I. Yperman, S. Logghe, and B. Immers, “The link transmission model: An efficient
implementation of the kinematic wave theory in traffic networks,” in Proceedings of the
10th EWGT Meeting, 2005.
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