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Abstract: In a recent study by Kier, Cheng and Testa, simulations were carried out to

monitor and quantify the emergence of a collective phenomenon, namely percolation, in a

many-particle system modeled by cellular automata (CA). In the present study, the same set-

up was used to monitor the counterpart to collective behavior, namely the behavior of

individual particles, as modeled by occupied cells in the CA simulations. As in the previous

study, the input variables were the concentration of occupied cells and their joining and

breaking probabilities. The first monitored attribute was the valence configuration (state) of

the occupied cells, namely the percent of occupied cells in configuration Fi (%Fi), where i =

number of occupied cells joined to that cell. The second monitored attribute was a functional

one, namely the probability (in %) of a occupied cell in configuration Fi to move during one

iteration (%Mi).

First, this study succeeded in quantifying the expected, strong direct influences of the initial

conditions on the configuration and movement of occupied cells. Statistical analyses

unveiled correlations between initial conditions and cell configurations and movements. In

particular, the distribution of configurations (%Fi) varied with concentration with a

kinematic-like regularity amenable to mathematical modeling. However, another result also
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emerged from the work, such that the joining, breaking and concentration factors not only

influenced the movement of occupied cells, they also modified each other's influence

(Figure 1). These indirect influences have been demonstrated quite clearly, and some partial

statistical descriptions were established. Thus, constraints at the level of ingredients

(dissolvence) have been characterized as a counterpart to the emergence of a collective

behavior (percolation) in very simple CA simulations.

Keywords: Cellular automata, Dynamic simulations, Emergent properties, Dissolvence,

Percolation

Introduction

Cellular automata are dynamical computational systems that are discrete in space, time and

configuration and whose behavior is determined completely by rules governing local relationships. As

an approach to the modeling of emergent properties of complex systems, cellular automata have the

great interest of being visually informative of the progress of dynamic events [1]. From the early

development by von Neumann [2] a variety of applications ranging from gas phenomena to biological

applications have been reported [3]. We view cellular automata as an opportunity to advance our

understanding of the dynamic behavior of probabilistic systems and have embarked upon a series of

studies with this goal in mind.

In a recent study, a dynamic model of the percolation process in a many-particle system was created

using cellular automata [4]. Percolation is a phenomenon associated with ingredients in a system

reaching a critical state of association so that information may be transmitted across or through the

system without interruption. Percolation is both a structural feature of the entire system and a process

found throughout chemistry (as in the case of polymer and gel formation [5-8]) and biology (as in self-

assembly of virus molecules and agglutination phenomena [9]). In cellular automata, percolation is

reached when a single cluster is formed which traverses the entire system, allowing an uninterrupted

flow of information across the system.

Our study [4] showed the ability of cellular automata to model the dynamic events leading to the

emergence of percolation. The concentrations of occupied cells in a grid were determined for the onset

and for the 50% probability of percolation occurring. The valence configuration of the occupied cells

(i.e., their being joined to 0, 1, 2, 3 or 4 occupied cells) at various concentrations was analyzed to

reveal a pattern of diversity. The Shannon information content for each concentration correlated very

closely with the concentration of divalent cells.

This study reinforced our belief in the ability of cellular automata to model the emergence of

properties of a higher order of complexity from an ensemble of systems of lower order. Furthermore,

there arose from such studies the possibility of simulating another process, coexisting with emergence.

That is the process we have called dissolvence [10-12], a counterpoint to the process of emergence in

the formation of a complex system. When the coupling of ingredients M forms a system M+1 of higher
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level, these ingredients experience constraints such as a decline in their choices, options, and

independence. In other words, there is a reduction in the number of formal and functional states

accessible to them, as they become engaged in the transactions that create the higher system M+1 and

its emergent properties [1, 12-14]. This is seen in the reduction of the property space of atoms when

they merge to form molecules, of amino acids when they form proteins, and in biomacromolecules

when they form aggregates such as molecular machines or membranes. For reasons of parity with

emergence, the word dissolvence has been proposed to describe such a phenomenon [10].

This aspect of the dynamic simulation of emergence has been largely ignored in physical, chemical

and biological systems, indeed in almost all of the studies of dynamic processes. Recent computational

studies have shown how the incorporation of amino acids into peptides is accompanied by constraints

on their property space, a poorly recognized phenomenon of potential biological and pharmacological

significance [15, 16]. An understanding of the process called dissolvence could lead to better

prediction of future events and rational molecular design.

Figure 1. Schematic representation of the known and postulated influences of initial
conditions on occupied cell configuration (patterns of association) and occupied cell
movement (probability to move). The expected, direct influence of initial conditions on
occupied cell configuration and movement are represented as full arrows. The postulated,
unpredictable constraints imposed on occupied cells should be detectable as indirect
influences, namely initial conditions modulating each other's influence (broken arrows).
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These considerations led us to revisit our cellular automata simulations of the percolation process

[4], using the same setup, for a possible identification of dissolvence in the behavior of individual

particles in a many-particle system. In such simulations, dissolvence should appear in the form of

constraints on the individual cells, not predictable from the initial conditions (i.e., from concentration

of occupied cells and particularly from the rules of joining and breaking). To this end, we have

examined in this study the influence of initial conditions on two attributes of individual, occupied cells,

namely their form and function (Figure 1). The attribute of form was taken as the valence configuration

of occupied cells. The functional attribute was the probability of movement experienced by the

occupied cells at each iteration. The expected, direct influence of concentration and rules on the

configuration and movement of occupied cells are represented as full arrows in Figure 1. In contrast,

there is no way to predict if and how the concentration in occupied cells should modulate the influence

of the joining and breaking rules, and how the latter should modulate the influence of concentration.

Such indirect effects are depicted as broken arrows in Figure 1. We reasoned that should these indirect

effects be characterized, they would represent unpredictable constraints experienced by the occupied

cells.

The first objective of this study was to quantify the expected, strong direct influences of the initial

conditions on the configuration and movement of occupied cells. The second objective was to find

correlations between initial conditions and output. The ultimate objective was the search for indirect

(and unpredictable) constraints suggestive of additional influences. All three objectives have been met,

and most notably the third one. In other words, constraints (dissolvence) at the level of ingredients

(individual particles) have been characterized in simulations of a many-particle system evolving toward

an emergent property (in this case percolation).

Methods

The model

Our model is composed of a grid of cells. Each cell has four adjoining neighbors and four extended

neighbors beyond these. These eight cells make up an extended von Neumann neighborhood. Each cell

can be empty or occupied. At each iteration, an occupied cell having an empty extended von Neumann

neighborhood will move by one cell either up, down, right or left. When its extended von Neumann

neighborhood is not empty, an occupied cell may break away from a neighboring cell or move to join

another occupied cell. These movements are governed by probabilistic rules of breaking and joining

(see next paragraph) set at the beginning of the dynamics to reflect a relationship among the ingredients

in the system.

The rules

Two parameters were adopted in our model to govern the probabilities of occupied cells moving and
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interacting. The breaking probability, PB, is the probability for an occupied cell to break away from a

cluster. The value for PB lies from zero to one. The second parameter is the joining parameter J, which

describes the movement of an occupied cell toward or away from another occupied cell from which it

is separated by one empty cell. J is a positive real number. When J = 1, it indicates that the occupied

cell has a neutral probability of movement toward or away from the other occupied cell. When J > 1, it

indicates that the occupied cell has a greater probability of movement toward (i.e. joining) the other

occupied cell, whereas the opposite is true when J < 1.

These rules are applied uniformly to each occupied cell in turn, selected randomly, until all occupied

cells have computed their movement. This is one iteration of time. The initial state of the system is

random hence it does not determine subsequent configurations at any iteration. The same set of rules

do not yield the same configurations except in some average sense. The configurations after many

iterations reach a collective organization that possesses a relative constancy in appearance and in

reportable attributes of occupied cells. These are the emergent characteristics of many-particle complex

systems which are explored here.

Study design and cell properties monitored

The study was made using 3025 cells in a 55×55 grid. The grid was the surface of a torus to

eliminate boundary conditions. Cells in varying number were filled, the number of occupied cells

ranging from 100 (concentration C = 100/3025 = 0.03306) to 2500 (C = 0.8264). These occupied cells

moved randomly and interacted according to rules to join another occupied cell (joining parameter J),

or break from another joined occupied cell (breaking probability PB). Nine sets of the J and PB
parameters (Table 1), combined with a range of concentrations were employed to discover the

influence of these conditions on occupied cell behavior and attributes monitored individually. Thus,

Set 3 corresponds to a condition of high affinity between occupied cells (low breaking and high joining

probabilities), whereas the opposite condition is true of Set 7. Set 5 corresponds to a medium affinity

(intermediate breaking and joining probabilities). Extreme cases are explored with, e.g., Set 1 (low

breaking and low joining) and Set 9 (high breaking and high joining).

Table 1. Joining and Breaking Parameters, and the Emergence of Percolation.

Parameter set Joining parameter J Breaking probability PB C50%
a)

1 0.50 0.25 0.503
2 1.50 0.25 0.488
3 3.00 0.25 0.476
4 0.50 0.50 0.546
5 1.50 0.50 0.530
6 3.00 0.50 0.519
7 0.50 0.75 0.573
8 1.50 0.75 0.559
9 3.00 0.75 0.558

a) Concentration of occupied cells corresponding to a 50% probability of percolation [4].
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The first attribute monitored was a contextual one, namely the configuration of an occupied cell (Fi;

i = 0, 1, 2, 3, 4), also called state, where i = number of occupied cells joined to that cell. The percent of

occupied cells in configuration Fi is expressed as %Fi. The second attribute was a functional one,

namely the probability (in %) of a occupied cell in configuration Fi to move during one iteration

(%Mi).

Two studies were carried out which differed in design and objective. The first study (Study A)

aimed at recording the average percent of occupied cells in each of the five configurations Fi (%Fi), as

influenced by the concentration and the joining and breaking parameters. Here, the number of occupied

cells in each configuration (F0, F1, F2, F3, F4) was counted after each iteration and averaged over 100

iterations. The results (%Fi) were not influenced by the number of iterations preceding the 100

monitored ones, and they remained consistent (within 1-2%) after a larger number of iterations.

The second study (Study B) aimed at recording the movements of a single occupied cell at each

iteration, as influenced by the concentration and the joining and breaking parameters. Here, a single,

selected occupied cell (i.e., a particle) was monitored during ten runs of 3000 iterations each. At each

iteration, the program recorded a) the configuration (Fi) of this occupied cell before computing its

movement, and b) whether it had moved or not. At the end of the 10 runs of 3000 iterations, the

program reported the number of times the occupied cell had been in each configuration Fi (%Fi), and

the number of times it had moved when in configuration F0, F1, F2, F3 and F4 (%Mi). It was found

that for the same set of conditions (concentration, PB and J), %Fi was similar (within 1-2 %) whether it

was determined in Study A (where all occupied cells were monitored over 100 iterations) or in Study B

(where a single occupied cell was monitored over 10 runs of 3000 iterations each).

Programs

The cellular automata simulations were run using the program DING-HAO as described [17 - 21].

Kinetic and statistical calculations were run with the programs Kinetica 2.0 (Innaphase, Champs-sur-

Marne, France) and an MS Excell Add-In [22], respectively.

Results and Discussion

Study A: Average percent of occupied cells in each configuration (%Fi)

Descriptive approach

In a first approach, it was necessary to examine whether and how the distribution of configurations

would be influenced by the concentration and the joining and breaking probabilities. The simulations

were run for all nine sets of joining and breaking probability (Table 1), at four concentrations: C =

0.0826 (250 occupied cells/3025 cells), C = 0.1653 (500 occupied cells/3025 cells), C = 0.3306 (1000

occupied cells/3025 cells) and C = 0.6612 (2000 occupied cells/3025 cells).
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The results (Figure 2) clearly indicate a decrease in %F0 (Figure 2A) with increasing concentration,

but an increase in %F3 (Figure 2D) and %F4 (Figure 2E). The percent of F1 cells (Figure 2B) showed a

tendency to decrease with concentration, except at low concentrations. In contrast, the percent of F2
cells increased with concentration (Figure 2C), except at high concentrations. These trends confirm for

an extended set of conditions the observations previously published [4]. The highest affinity between

occupied cells (high J and low PB, Set 3) corresponds to the lowest %F0 and highest %F4 values,

whereas the opposite is true for the lowest affinity between occupied cells (low J and high PB, Set 7).

A median affinity (Set 5) yielded intermediate %F0 and %F4 values.

Figure 2A. Distribution of occupied F0 cells (%F0 cells) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;   ¹ = Set 9.
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Figure 2B. Distribution of occupied F1 cells (%F1 cells) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows: ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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Figure 2C. Distribution of occupied F2 cells (%F2 cells) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows: ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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Figure 2D. Distribution of occupied F3 cells (%F3 cells) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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Figure 2E. Distribution of occupied F4 cells (%F4 cells) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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regular increase with concentration comparable to %F4, with the exception of Set 3 (low affinity)

where part of a bell-shaped relation was apparent.

Correlations between initial conditions and configuration of occupied cells

In the above interpretion, Figures 2A-2E confirm that the percent of F0, F1, F2, F3 and F4 varied in

a understandable and predictable manner with concentration and with the joining and breaking

probabilities. Because such a conclusion is a qualitative one, we searched for some quantitative

insights.

In a first approach, we examined how some %Fi values were correlated with concentration (C),

joining (J) and breaking (PB). Some significant correlations were found, as reported in equation 1

(which contains all 36 points in Fig. 2A) and equation 2 (which contains all 36 points in Fig. 2D):

%F0 = 41.0(±5.2) C2 − 60.3(±5.2) C − 2.91(±1.01) J + 7.33(±1.01) PB +  27.2(±1.0) (1A)

%F0 = 1.74 C2− 2.55 C − 0.123 J + 0.310 PB (1B)

n = 36; r2 = 0.944; s = 5.96; F = 129.7

%F3 = 14.5(±0.6) C + 1.47(±0.64) J − 3.21(±0.64) PB + 15.5(±0.6) (2A)

%F3 = 0.944 C + 0.096 J − 0.209 PB (2B)

n = 36; r2 = 0.944; s = 3.82; F = 178.6

Here and below, each equation is presented in direct form (equations A), then in normalized for

(equations B) where the regression coefficients reflect the relative contribution of each independent

variable and the intercept is zero. In these and the following equations, the standard error of each

regression coefficient is given in parenthesis, r2 is the squared correlation coefficient, s the standard

error of the equation, and F is Fischer's test.

%F0 (Eq. 1) is an apparent parabolic function of concentration, whereas for %F3 the relation with

concentration is linear (Eq. 2). Eq. 1 also show that %F0 decreased with joining and increased with

breaking, whereas %F3 increased with joining and decreased with breaking. The multiple linear

regressions for %F1 (Fig. 2B), %F2 (Fig. 2C) and %F4 (Fig. 2E) were of lesser statistical significance

and are not reported. As seen in the corresponding Figures, the function relating conditions and output

appears much more complex for these configurations. Nevertheless, Eq. 1 and 2 show that a

statistically describable relation exists, at least in some cases, between configuration (%Fi) and initial

conditions (concentration, joining and breaking).
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Kinematic-like description

In another approach to find quantitative insights, simulations were run for 25 concentrations and

three sets of joining and breaking probabilities. The 25 selected concentrations were regularly

distributed between C = 0.03306 (100 occupied cells/3025 cells) and C = 0.826 (2500 occupied

cells/3025 cells). The three sets were Set 3 corresponding to the highest affinity (high joining and low

breaking), Set 7 corresponding to the lowest affinity (low joining and high breaking), and the

intermediate Set 5 (median joining and breaking).

Figure 3. Variations in the distribution of occupied cells as a function of concentration for Set
5 (J = 1.5; PB = 0.5; median inter-cell affinity).  ● = %F0;  � = %F1;  � = %F2;  { = %F3;
◆ = %F4.
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The results for Set 5 are presented in Figure 3. As concentration increased, %F0 decreased while

%F1, %F2, %F3 and %F4 increased. Then %F1 decreased, later %F2, and ultimately %F3. Obviously

only F4 occupied cells would be left at a concentration of 1.00. The results for Set 3 and Set 7 are

comparable, except that the maxima are shifted to lower concentrations for the higher affinity between

occupied cells (Set 3), and to higher concentrations for the lower affinity (Set 7). Such a profile can be

described by the compartmental model shown in Figure 4. In models of this type (which are common

in chemical kinetics and pharmacokinetics), the transfer from one compartment to the other is a time-

dependent process characterized by a rate constant ki,j having the dimension of t –1 (t = time).

Figure 4. Compartment model used to quantify the concentration-, joining- and breaking-
dependent "transfer" constants ki,j.

In Figure 4, the changes in %Fi in each compartment are concentration-dependent, and the "transfer"

constants ki,j will have the dimension of C−1 (C = concentration). Replacing time with concentration in

the common kinetic equations which describe the model in Figure 4 has yielded the following set of

equations:

−d[%F0]�d[C]   =   k0,1[%F0] (3A)

−d[%F1]�d[C]   =   k0,1[%F0]  −− k1,2[%F1] (3B)

−d[%F2]�d[C]   =   k1,2[%F1]  −− k2,3[%F2] (3C)

−d[%F3]�d[C]   =   k2,3[%F2]  −− k3,4[%F3] (3D)

−d[%F4]�d[C]   =   k3,4[%F3] (3E)

These equations were solved by the Kinetica 2.0 software for the three parameter sets, yielding the

values of ki,j shown in Table 2. For each set, the values decreased from k0,1 to k3,4. They also decreased

from Set 3 to Set 5 to Set 7. Far from being fortuitous or random, these changes were dependent upon

the joining and breaking parameters. In fact, the values of ki,j increased with increasing joining

probability, and decreased with increasing breaking probability (plots not shown). This can also be

seen using an "affinity" parameter (the ratio J/PB), with the result that k0,1, k1,2, k2,3 and k3,4 increase

�)� �)� �)� �)� �)�N���N��� N���N���
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linearly with J/PB (r2 > 0.99) (Figure 5). Adding an indicator variable IND (with value 1, 2, 3 and 4 for

k0,1, k1,2, k2,3 and k3,4, respectively) allowed the four linear equations to be merged into a single

multiple linear regression equation:

ki,j =  1.55(±0.31) J/PB  −  1.97(±0.31) IND  +  4.80(±0.30) (4A)

ki,j =   0.581 J/PB  −  0.735 IND (4B)

n = 12; r2 = 0.879; s = 1.03; F = 32.7

which offers a fair description of Figure 5.

Table 2. Calculated "transfer" constantsa) for the compartmental model in Figure 4 and equations 3.

Set 3 Set 5 Set 7
k0,1 11.07 ± 0.44 6.27 ± 0.11 4.47 ± 0.15
k1,2 8.23 ± 0.33 4.86 ± 0.09 4.09 ± 0.16
k2,3 5.19 ± 0.17 3.62 ± 0.08 3.10 ± 0.15
k3,4 2.91 ± 0.09 2.08 ± 0.06 1.74 ± 0.17

a) in concentration−1 ± SD

Figure 5. Influence of affinity (defined as J/PB) on the "transfer" constants
k0,1 (●), k1,2 ({),k2,3 (▲) and k3,4 (�).
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Conclusion of Study A

Our simulations show that in populations of particles modeled by cellular automata, the

configuration of occupied cells was influenced by the concentration and the probabilities of joining and

breaking. As concentration increased, occupied cells evolved toward higher configurations (F2 , F3 and

F4) with a kinematic-like regularity amenable to mathematical modeling. Thus, this first study

succeeded in quantifying the strong influences of concentration, joining and breaking on the

distribution of occupied cell configurations. In other words, correlations were found between initial

conditions and one of the outputs (namely occupied cell configuration). This demonstrates and

quantifies the direct constraints on occupied cell configuration (i.e., the solid arrows in Figure 1), but

does not reveal indirect constraints (i.e., the broken arrows in Figure 1) which would be suggestive of

additional (and unpredictable) influences of higher order.

Study B: Probability of a single occupied cell to move (%Mi)

In the second study, we followed and monitored a single occupied cell to measure its probability to

move at each iteration, as influenced by its current configuration (i.e., F0 to F4), as well as by

concentration and by the joining and breaking rules. At each iteration, the program recorded a) the

configuration (Fi) of this occupied cell just before it computed its move, and b) whether it had moved

or not. The monitoring of that single occupied cell was continued during 10 runs of 3000 iterations

each, although preliminary tests had shown that reproducible results (i.e., 1-2% variations) were also

obtained after 10 runs of 1000 or 2000 iterations each. At the end of the 30,000 iterations, the program

reported the number of times the occupied cell had been in each configuration Fi (%Fi), and the

number of times it had moved when in that configuration (%Mi).

Descriptive approach

The results are reported in Figures 6A-6D as plots of concentration versus %Mi. Since by definition

F0 occupied cells are unattached, the breaking probability does not apply and they would be expected

to move at each iteration. However, it is observed in Figure 6A that a low joining inhibited the

probability of an F0 occupied cell to move and attach itself to a once-removed occupied cell (thus

changing configuration). Indeed, F0 occupied cells showed a smaller than 100% probability to move

when J = 0.5 (Sets 1, 4 and 7). Furthermore, the magnitude of such an effect increased with increasing

concentration. For the other joining conditions (J = 1.5 and 3.0), F0 occupied cells moved at each

iteration.
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Figure 6A. Percent of moving F0 occupied cells (%M0) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9. In
Figure 6A, Sets 2, 3, 5, 6, 8 and 9 have all points at 100%.
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Figure 6B. Percent of moving F1occupied cells (%M1) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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Figure 6C. Percent of moving F2 occupied cells (%M2) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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Figure 6D. Percent of moving F3 occupied cells (%M3) as a function of predetermined
conditions. The joining probability (J) and breaking probability (PB) are as follows:  ▲ = Set 1;� = Set 2;  ✴ = Set 3;  ◆ = Set 4;  � = Set 5;  { = Set 6;  i = Set 7;  ● = Set 8;  ¹ = Set 9.
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Another way to look at these results, and one in line with the major objective of this work, is to

recognize that depending on its value, the joining parameter allows or forbids the concentration factor

to affect the movement of F0 occupied cells. In such a perspective, joining is seen to have a strong

influence on how concentration in turn influences the movement of F0 occupied cells. This indirect

effect on the movement of F0 occupied cells is precisely the type of unexpected constraint this study

was looking for.

F4 occupied cells cannot move, and indeed a 0% movement probability was always found. The

probability of occupied cells F1, F2 and F3 to move is shown in Figures 6B, 6C and 6D, respectively.

Although the individual probabilities decreased from F1 to F3, the three figures show a comparable

pattern. At the lower concentrations, the sets were clustered according to the breaking probability, such

that Sets 1, 2 and 3 (PB = 0.25) produced a low probability of moving, Sets 7, 8 and 9 (PB = 0.75) a

high probability of moving, and Sets 4, 5 and 6 (PB = 0.50) an intermediate probability of moving.

As concentration increased, the influence of the joining parameter became predominant. For sets

with a low joining (J = 0.5, Sets 1, 4 and 7), the probability to move decreased with increasing

concentration, whereas it increased when J = 1.5 (Sets 2, 5 and 8) and mostly when J = 3.0 (Sets 3, 6

and 9). These qualitative observations indicate that joining and breaking influence the constraints

imposed by concentration on the output. In other words, there is again qualitative evidence for the

indirect influences we searched for. Quantitative evidence is presented in the next section.

The converse indirect influence, namely that concentration influences the constraints imposed by

joining and breaking, can be seen when plotting %Mi as a function of J (Figures 7A-7D). As a rule,

%Mi increased with increasing J (see the positive slopes in Figures 7), with marked differences

between %M0 (Fig. 7A), %M1 (Fig. 7B), %M2 (Fig. 7C) and %M3 (Fig. 7D). Significantly, these

positive slopes themselves increased with increasing concentration. Indeed, the influence of joining on

%M1, %M2 and %M3 was practically constant at low concentrations, and strongly positive at high

concentrations. But because the effects were sometimes nonlinear, no statistical analysis was

performed.
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Figure 7A. Percent of moving F0 occupied cells (%M0) as a function of predetermined
conditions. The concentration (C) and breaking probability (PB) are as follows:  ▲ : C = 0.0826,
PB = 0.25; ◆ : C = 0.165, PB = 0.25; i : C = 0.33, PB = 0.25; ● : C = 0.661, PB = 0.25;� : C = 0.0826, PB = 0.50; ¹ : C = 0.165, PB = 0.50; � : C = 0.33, PB = 0.50; { : C = 0.661,

PB = 0.50;  ;�;� : C = 0.0826, PB = 0.75; ✴ : C = 0.165, PB = 0.75; + : C = 0.33, PB = 0.75;

• : C = 0.661, PB = 0.75. In Figure 7A, J = 1.5 and J = 3.0 have all points at 100%.
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Figure 7B. Percent of moving F1 occupied cells (%M1) as a function of predetermined
conditions. The concentration (C) and breaking probability (PB) are as follows:  ▲ : C = 0.0826,
PB = 0.25; ◆ : C = 0.165, PB = 0.25; i : C = 0.33, PB = 0.25; ● : C = 0.661, PB = 0.25;� : C = 0.0826, PB = 0.50; ¹ : C = 0.165, PB = 0.50; � : C = 0.33, PB = 0.50; { : C = 0.661,

PB = 0.50; ;; : C = 0.0826, PB = 0.75; ✴ : C = 0.165, PB = 0.75; + : C = 0.33, PB = 0.75;

• : C = 0.661, PB = 0.75.
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Figure 7C. Percent of moving F2 occupied cells (%M2) as a function of predetermined
conditions. The concentration (C) and breaking probability (PB) are as follows:  ▲ : C = 0.0826,
PB = 0.25; ◆ : C = 0.165, PB = 0.25; i : C = 0.33, PB = 0.25; ● : C = 0.661, PB = 0.25;� : C = 0.0826, PB = 0.50; ¹ : C = 0.165, PB = 0.50; � : C = 0.33, PB = 0.50; { : C = 0.661,

PB = 0.50; ;; : C = 0.0826, PB = 0.75; ✴ : C = 0.165, PB = 0.75; + : C = 0.33, PB = 0.75;

• : C = 0.661, PB = 0.75.
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Figure 7D. Percent of moving F3 occupied cells (%M3) as a function of predetermined
conditions. The concentration (C) and breaking probability (PB) are as follows:  ▲ : C = 0.0826,
PB = 0.25; ◆ : C = 0.165, PB = 0.25; i : C = 0.33, PB = 0.25; ● : C = 0.661, PB = 0.25;� : C = 0.0826, PB = 0.50; ¹ : C = 0.165, PB = 0.50; � : C = 0.33, PB = 0.50; { : C = 0.661,

PB = 0.50; ;; : C = 0.0826, PB = 0.75; ✴ : C = 0.165, PB = 0.75; + : C = 0.33, PB = 0.75;

• : C = 0.661, PB = 0.75.
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Correlations between initial conditions and movement probability

To extract more information from the data in Figures 6, we looked for some quantitative relations

between concentration, joining and breaking (initial conditions) and the output of the system, namely

the probability of F1, F2 and F3 to move as a function of concentration (Figure 6B-6D).

The 36 datapoints in Figures 6B (%M1), 6C (%M2) and 6D (%M3) were subjected to multiple

linear regression analysis. Good correlations exist for all three dependent variables, accounting for

more than 90% of the variance (Equations 5-7) :

%M1  =  8.81(±5.62)C + 7.64 (±1.21) J + 103.5 (±6.1) PB  −  13.7 (±4.2)     (5A)

%M1 =  0.082 C  +  0.331 J  +  0.892 PB (5B)

n = 36;  r2 = 0.912; s = 7.47; F = 110.1

%M2 = 7.70 (±5.14) C + 5.16 (±1.11) J + 107.5 (±5.6) PB − 32.9 (±3.9) (6A)

%M2 = 0.073 C  +  0.225 J  +  0.932 PB (6B)

n = 36;  r2 = 0.925; s = 6.84; F = 131.4

%M3 = 2.92(±4.48) C + 2.42(±0.97) J + 85.2 (±4.9) PB − 27.3 (±3.4) (7A)

%M3 = 0.035 C + 0.135 J + 0.942 PB (7B)

n = 36;  r2 = 0.907; s = 5.96; F = 104.4

Each of the three dependent variables (%M1, %M2 and %M3) reveals a similar dependency, with

the influence of PB being about 3 to 7 times larger than that of J, itself 3 to 4 times larger than that of

C. In contrast, the contribution of concentration was low (Eq. 5 and 6) or even non-significant (Eq. 7),

because its influence was negative or positive depending on the joining parameter (negative for J = 0.5;

positive for J = 1.5 and 3.0).

To quantify this effect of J on the influence of C, we analyzed the data in Figure 6B separately for J

= 0.5 (Sets 1 + 4 + 7), J = 1.5 (Sets 2 + 5 + 8) and J = 3.0 (Sets 3 + 6 + 9). The same analysis was

performed for the data in Figure 6C and in Figure 6D. In each case, good to very good correlations

were found, with r2 in the range 0.92 to 0.99. The equations for Figure 6C are shown below as an

example (Eq. 8-10):

for J = 0.5 (Sets 1 + 4 + 7):

%M2 =  − 14.5(±5.3) C  +  86.3(±5.8) PB −  13.7(±3.5) (8A)

%M2 =  − 0.176 C  +  0.965 PB (8B)

n = 12;  r2 = 0.962; s = 4.09; F = 115.1
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for J = 1.5 (Sets 2 + 5 + 8):

%M2 =  9.75(±5.37) C  +  110.5(±5.8) PB −  26.0(±3.6) (9A)

%M2 = 0.094 C  +  0.983 PB (9B)

n = 12;  r2 = 0.976; s = 4.13; F = 180.8

for J = 3.0  (Sets 3 + 6 + 9):

%M2 =  27.8(±6.7) C  +  125.6(±7.2) PB −  33.3(±4.4) (10A)

%M2 =  0.231 C  +  0.959 PB (10B)

n = 12;  r2 = 0.973; s = 5.12; F = 159.2

The regression coefficient of C in Eq. 8A, 9A and 10A is of particular interest, since each of its

values (−14.5, 9.75 and 27.8) reflects the average slope of the 3 corresponding lines in Figure 6C.

These slopes quantify the influence of C on %M2, and they are seen to increase with J. Importantly, the

relation between these slopes and J is quasi-linear (r2 = 0.96; n = 3). The corresponding values for

%M1 and %M3 are r2 = 0.85 and 0.94, respectively. In other words, we have succeeded here is

showing how J modifies the constraint of C on %Mi.

Conclusion of Study B

The first point to emerge from Study B is that the movement of occupied cells is conditioned by an

intrinsic attribute (their configuration), by preset conditions (J and PB), as well as by concentration.

Like Study A, Study B succeeded in quantifying the strong influences of concentration, joining and

breaking on one of the outputs, here the probability of occupied cells to move (%Mi). This again

demonstrates and quantifies the direct constraints on cell properties (Figure 1). In essence, this first

conclusion regarding an attribute of cellular automata (their freedom to move) is comparable to the

conclusion of Study A regarding their configuration (F0 to F4).

However, the most significant result to emerge from Study B is that joining, breaking and

concentration not only influence the movement of occupied cells, they also modify each other's

influence on this output (Figure 1). This indirect influence is demonstrated here quite clearly, and is

even quantified in one case. Such second-order constraints, not predictable from the initial conditions,

have been equated with dissolvence. Their characterization has been the major objective of our CA

simulations.

Relations between constraints and the emergence of percolation

In a previous study [4], we used the same setup as here to monitor the appearance of percolation, an

emergent attribute of many-particle systems. When plotting concentration against the percent
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probability of having a dynamic percolating cluster of CA, sigmoidal curves were obtained. These

allowed a C50% to be calculated, namely the concentration for which there was a 50% probability of

having a percolating cluster (Table 1). Graphically (results not shown), C50% was seen to increase

strongly with increasing PB, and to decrease modestly with increasing J. Remarkably, these influences

were also amenable to multiple linear regression analysis, yielding equation 11 :

C50% =  − 0.0089(±0.0018) J  +  0.149(±0.009) PB +  0.468(±0.006) (11A)

C50% =  − 0.285 J  +  0.948 PB (11B)

n = 9;  r2 = 0.980; s = 0.0055; F = 147.2

This equation is of good statistical quality and expresses in a quantitative manner the above

qualitative conclusions. Of particular significance is the fact that an emergent property of the system,

i.e. percolation, was dependent on joining and breaking in a manner quite similar to the constraints on

movement of individual occupied cells (Eq. 5-7). Indeed, the regression coefficients of J and PB in Eq.

11B have a ratio close to 0.30, in the same range as the corresponding ratio in Eq. 5B, 6B and 7B (0.14,

0.24 and 0.37, respectively). In other words, there is evidence here for an analogy between the

conditions that govern emergence and dissolvence.

Conclusions

Expected and unexpected constraints on the behavior of CA

The first objective of this study was to examine whether and how the configurations and movements

of occupied cells are determined by initial conditions. These independent variables were the

concentration of occupied cells, and two predefined rules of the cellular automata simulations, namely

the joining and breaking probabilities.

Figures 2, 3 and 5 show that the probabilistic distribution of occupied cell configurations was

indeed highly dependent of concentration, joining and breaking. Figures 2A to 2E in particular describe

this dependence. Quantitative descriptions were obtained by multiple linear regressions (Equations 1-

4). Similar results came from monitoring the probability of movement of individual occupied cells.

Here also, the influence of concentration, joining and breaking is revealed in Figures 5 and 6 to be

quite complex. Again, multiple linear regressions offered a partial yet informative description of the

constraints experienced by individual occupied cells in the CA simulations (Equations 5-10).

When the configuration of occupied cells was the monitored output, no unexpected constraint was

seen, i.e. only the full arrows in Figure 1 seemed to operate. In contrast, an unexpected fact emerged

when monitoring the movement of occupied cells, namely that concentration, joining and breaking did

modify each other's influence (broken arrows in Figure 1). These are indirect constraints on the

individual occupied cells, not predictable from the initial conditions.
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In a previous writing, some of us have reflected on the properties of sub-systems as constituents of a

higher system [10-12]. We noted that such sub-systems experience constraints which affect their

property space, options and independence [1, 12-14]. In cellular automata, constraints on occupied cell

configurations and (as monitored here for the first time) on occupied cell movement are a direct and

trivial consequence of initial conditions, even if they can only be predicted qualitatively. What would

be non-trivial and unpredictable, we felt, would be indirect constraints resulting from the initial

conditions modifying each other's influence. Such constraints were taken as model and analogue of

dissolvence in CA, and indeed they were characterized here and even quantified.

Constraints versus emergence

In a previous study, we examined the global behavior of a many-particle CA system identical to the

one investigated here [4]. Specifically, we focused on an emergent property of the system, namely the

formation of a percolating cluster and its probability of appearance as concentration increased. It was

found that percolation appeared at higher or lower concentrations depending on the joining and

breaking parameters.

In the present study, we have shown that the emergent property of percolation on the one hand, and

the constraints on movement of occupied cells on the other, displayed a comparable dependence on

joining and breaking. Indeed, the relative influence of the joining and breaking probabilities were

comparable on the onset of percolation and on their probability to move. This analogy between the

conditions that govern emergence and dissolvence may be fortuitous, or it is indicative of a deeper

connection. The question remains open.

Physical relevance of the present study

Finally, the physical relevance of our many-particle CA model must be addressed. What we

examined were occupied cells whose valence configuration and freedom to move depended on

concentration and on rules of intercellular attraction (PB for all its values; J when > 1) and intercellular

repulsion (J when < 1). This picture bears for example resemblance with the gaseous state, and also

with solutions in an inert solvent. In this analogy, occupied cells in CA are models of molecules, and

the present study may be seen as a simulation of the behavior of individual molecules in a gas or an

inert solvent. In other words, CA have shown here their potential to model constraints experienced by

individual molecules, and to explore relations between such constraints and emergent properties of

many-particle systems such as gases and solutions.
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