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Abstract 37 

The treatment landscape of AML is evolving with promising therapies entering clinical 38 

translation, yet patient responses remain heterogeneous and biomarkers for tailoring 39 

treatment are lacking. To understand how disease heterogeneity links with therapy response, 40 

we determined the leukemia cell hierarchy make-up from bulk transcriptomes of over 1000 41 

patients through deconvolution using single-cell reference profiles of leukemia stem, 42 

progenitor, and mature cell types. Leukemia hierarchy composition was associated with 43 

functional, genomic, and clinical properties and converged into four overall classes, spanning 44 

Primitive, Mature, GMP, and Intermediate. Critically, variation in hierarchy composition along 45 

the Primitive vs GMP or Primitive vs Mature axes were associated with response to 46 

chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A 7-gene 47 

biomarker derived from the Primitive vs Mature axis was predictive of patient response to 105 48 

investigational drugs. Thus, hierarchy composition constitutes a novel framework for 49 

understanding disease biology and advancing precision medicine in AML. 50 

 51 
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Introduction 66 

AML is a devastating disease characterized by extensive inter-patient and intra-patient 67 

heterogeneity. Poor outcomes are attributed to primary chemotherapy resistance and a high 68 

rate of relapse among patients who achieve remission, highlighting the inadequacy of standard 69 

chemotherapy as a means of curing AML for most patients. Recently, a wide range of 70 

promising new therapies targeting diverse cellular mechanisms have been approved or are 71 

progressing through clinical trials, offering alternatives to chemotherapy. However, patient 72 

responses to these new therapies are heterogeneous and we lack a reliable way to select the 73 

best therapy for each patient. 74 

  75 

Historically, two distinct approaches have evolved for understanding heterogeneity in AML and 76 

informing therapy selection: a genomic model and a stem-cell model. The discovery of the 77 

Philadelphia chromosome in 1960 1 sparked a series of cytogenetic studies that identified 78 

distinct cytogenetic drivers of AML. More recently, advances in genome sequencing have 79 

uncovered mutational drivers of AML and culminated in a prognostically informative genomic 80 

classification2. While this genomic model accounts for a major source of inter-patient 81 

heterogeneity, cells sharing the same driver mutation can exhibit functional differences 3. 82 

Moreover, while some driver mutations can be directly targeted by inhibitors, genomic 83 

profiling is limited in its ability to predict the benefit from therapies targeted to specific 84 

biological processes or signaling pathways. 85 

  86 

The discovery of hematopoietic stem cells in 1961 and the development of quantitative assays 87 

to interrogate stem cell function 4 provided a basis for pioneering experiments that revealed 88 

that blasts within individual patients had functional differences in their cycling kinetics 5–7, 89 

differentiation state 8–10, and self-renewal capacity 11–13. Collectively, these studies 90 

conceptualized AML being sustained by rare leukemia stem cells (LSCs) 14, which were later 91 

formally identified through xenotransplantation studies 15–17. LSCs have since been shown to 92 

mediate relapse 18, and LSC-based gene expression stemness scores have emerged as 93 

predictors of outcomes following chemotherapy 19–25. While LSCs are an important therapeutic 94 
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target, this model offers limited guidance around therapy selection. Overall, these genomic 95 

and stem-cell models provide complementary insight into AML heterogeneity, yet neither 96 

model alone is sufficient to guide therapy selection, particularly for newer agents. A new 97 

approach for personalized therapy selection that integrates the genomic and stem cell models 98 

is needed.  99 

 100 

Cancer has long been recognized as a caricature of normal tissue development 26,27. AML is one 101 

of the best-studied cancer systems wherein leukemic cells are organized into a hierarchy 102 

resembling normal blood development. Cellular hierarchies in AML can be distorted in 103 

different ways, depending on genetic alterations and cell of origin. For example, a strong 104 

differentiation block arising in a stem cell may result in a shallow, stem cell-dominant 105 

hierarchy. In other cases considerable - albeit aberrant - differentiation may occur resulting in 106 

a steep hierarchy wherein rare LSCs generate a bulk blast population with mature myeloid 107 

features. In this way, the cellular composition of each patient’s leukemic hierarchy likely 108 

reflects the functional impact of specific mutations on the disease-sustaining LSCs. Thus, 109 

interrogation of leukemic hierarchies may provide an opportunity to potentially integrate 110 

features of the genetic and stem cell models of AML 28. Single-cell RNA-sequencing (scRNA-111 

seq) has emerged as a powerful tool for dissecting cellular hierarchies 29,30, however 112 

prohibitive costs restrict these studies to a limited number of patients. Without measuring 113 

these cellular hierarchies at scale in large clinical datasets, the relationship of hierarchy 114 

composition to therapy response remains unknown.  115 

 116 

Here, we were able to characterize the cellular hierarchies of >1000 AML patients through 117 

gene expression deconvolution on bulk AML transcriptomes using single-cell reference profiles 118 

of distinct AML stem, progenitor, and mature types. This approach to characterizing AML 119 

heterogeneity enabled integration of both the genomic and functional models of AML 120 

resulting in a novel framework for understanding disease biology and predicting drug 121 

response. 122 

 123 
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Results 124 

Single-cell characterization of leukemia stem and progenitor populations 125 

As a first step to uncover the organization of cellular hierarchies in AML, we re-analyzed the 126 

scRNA-seq data of 13,653 cells from 12 AML patients at diagnosis 29 with a focus on primitive 127 

stem and progenitor blast populations (henceforth Leukemia Stem and Progenitor Cells, 128 

LSPCs). Using Self-Assembling Manifolds (SAM), an unsupervised approach to prioritize 129 

biologically relevant features among relatively homogenous cells 31, we previously identified 130 

two transcriptomic populations of normal human HSC: a deeply quiescent population with low 131 

transcriptome diversity (Non-Primed) and another residing in a shallower state of quiescence 132 

with higher CDK6 expression (Cycle-Primed) 32. We applied SAM to analyze LSPCs and 133 

identified three distinct populations shared across the 12 patients (Fig. 1A, Fig. S1A-C). One 134 

population had low transcriptome diversity and was enriched for core LSC programs but 135 

appeared otherwise inactive (Fig. S1D). We named this population Quiescent LSPC. The second 136 

population was enriched for CDK6 expression and targets of the cell cycle regulator E2F3 137 

suggestive of cell cycle priming (Fig. S1E), as well as inflammatory signatures suggestive of 138 

priming for myeloid differentiation 33 (Fig. S1H). We named this population Primed LSPC. The 139 

third population exhibited enrichment for CTCF targets suggestive of stem cell activation 34 and 140 

broad enrichment of E2F targets indicating cell cycle progression, with 40% of cells classified as 141 

cycling (Fig. 1B, S1F-G, I). We named this third population Cycling LSPC. The existence of 142 

distinct cellular states provides a molecular basis for the known functional heterogeneity that 143 

is found within the LSC compartment 35. These new classes of Quiescent, Primed, and Cycling 144 

LSPC led to higher classification performance compared to the prior ‘HSC-like’ and ‘Progenitor-145 

like’ classification from van Galen et al 29 (weighted accuracy: 0.93 vs 0.73, respectively; Fig. 146 

S1J). We combined these new LSPC classes with the existing classification of more committed 147 

blasts by van Galen et al (GMP-like blasts resembling Granulocyte-Monocyte Progenitors, 148 

ProMono-like blasts resembling promonocytes, Mono-like blasts resembling monocytes, and 149 

cDC-like blasts resembling conventional Dendritic cells) to constitute a map of common 150 

leukemic blast states shared across these 12 AML patients, with each leukemic state having 151 

distinct molecular properties. 152 
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 153 

Deconvolution of constituent cell populations in AML 154 

We next sought to understand how these defined AML cell populations and the hierarchies 155 

into which they are organized relate to functional, biological, and clinical properties of AML. To 156 

study this at scale, we employed gene expression deconvolution to infer the leukemic 157 

hierarchy composition from bulk AML transcriptomes (Fig. 1C). We performed benchmarking 158 

analysis of multiple scRNA-seq-based deconvolution methods and identified CIBERSORTx as 159 

the highest-performing approach in the context of AML (Supplementary Note 1, Fig. S2). 160 

Additionally, we confirmed that deconvolution with the new LSPC classification of primitive 161 

AML cells improves discrimination of clinical and biological phenotypes compared to the prior 162 

HSC-like and Prog-like classification (Supplementary Note 2, Fig. S3). Thus, subsequent 163 

deconvolution was performed through CIBERSORTx using single-cell transcriptomes from 164 

seven leukemic cell types (Quiescent LSPC, Primed LSPC, Cycling LSPC, GMP-like, ProMono-like, 165 

Mono-like, cDC-like) and seven non-leukemic immune cell types (Natural Killer, Naive T, CD8+ 166 

T, B, Plasma, Monocytes, and cDCs) as a reference. 167 

 168 

Quiescent LSPC abundance is associated with functional LSC activity 169 

We first sought to determine whether any of our newly-defined LSPC cellular states were 170 

associated with LSC activity. The LSC state is functionally defined by whether a leukemic cell 171 

can initiate leukemia in vivo 36. We thus performed RNA-seq on 111 AML fractions previously 172 

evaluated by microarray and where LSC activity was determined through xenotransplantation 173 
23 and applied deconvolution to determine the cell type composition of each fraction (Fig. 1D). 174 

LSC-positive fractions were highly enriched for Quiescent LSPC (p = 8e-6) and Primed LSPC (p = 175 

6e-4) but not Cycling LSPC (p = 0.74) (Fig. 1E). Conversely, LSC-negative fractions were highly 176 

enriched for Mono-like blasts (p = 2e-3) (Fig. 1E). Given that immunophenotype does not 177 

consistently predict LSC activity 20,23,37, we compared deconvolution against 178 

immunophenotype by training classifiers to predict LSC activity in AML fractions based on cell 179 

type composition versus CD34/CD38 status. Classifiers trained on immunophenotype were 180 

consistently outperformed by those trained on leukemia cell composition (median AUCs = 0.71 181 
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vs 0.86, p < 2e-16) and were even outperformed by models trained from Quiescent LSPC 182 

abundance as a single variable (median AUCs = 0.71 vs 0.77, p < 2e-16) (Fig. 1F, Table S3). 183 

Finally, we found Quiescent LSPC to be associated with high LSC frequency in an independent 184 

dataset of bulk AML samples assessed through limiting dilution analysis 38 (Fig. 1G). 185 

Collectively, these findings establish a new link between transcriptomic LSPC states and 186 

functionally defined LSC at the apex of the hierarchy, suggesting that LSC activity can be 187 

inferred through deconvolution of patient hierarchies. 188 

 189 
AML hierarchy composition is associated with clinical and genomic properties  190 

The differentiation properties of the LSCs sustaining each patient’s AML are reflected in the 191 

cellular composition of the hierarchies that they generate. To examine how these hierarchies 192 

vary across patient samples and how they relate to molecular and clinical features of AML, we 193 

applied our deconvolution approach to infer the abundance of 7 leukemic cell types as well as 194 

7 non-leukemic immune populations (described above) within 864 patient samples from the 195 

TCGA 39, BEAT-AML 40, and Leucegene cohorts 41. Clustering patients based on the composition 196 

of their leukemia cell hierarchies revealed four distinct subtypes: Primitive (shallow hierarchy, 197 

LSPC-enriched), Mature (steep hierarchy, enriched for mature Mono-like and cDC-like blasts), 198 

GMP (dominated by GMP-like blasts), and Intermediate (balanced distribution) (Fig. 2A-C). 199 

Hierarchy composition was associated with multiple biological and clinical parameters 200 

including age at diagnosis, WBC differential counts, and FAB class (Fig. S4A-B). We focused on 201 

cytogenetic and mutational correlates in order to understand the cellular states and 202 

hierarchies generated by common genetic drivers of AML. 203 

 204 

Patient hierarchies were separated along two principal components: PC1, spanning a 205 

continuum from Primitive to GMP (35% of variance), and PC2, spanning Primitive to Mature 206 

(28% of variance) (Fig. 2A). Hierarchies generated by cytogenetic alterations primarily 207 

separated along the Primitive vs GMP axis (PC1) (Fig. 2D; Fig. S4E), with adverse cytogenetic 208 

alterations generating Primitive hierarchies and favorable cytogenetic alterations generating 209 

GMP-dominant hierarchies (Fig. 2D). Cellular hierarchies generated by genetic mutations and 210 

their combinations primarily separated along the Primitive vs Mature axis (PC2), reflecting 211 
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their impact on the extent of AML differentiation (Fig. 2E; Fig S4C-D). Notably, different 212 

mutations in the same gene could have different consequences on the resulting hierarchies. 213 

For example, DNMT3A R882 mutations were associated with more mature disease than other 214 

DNMT3A mutations (Fig. S4F-G) suggesting that DNMT3A R882 may be more permissive of 215 

AML differentiation compared to other DNMT3A mutations. Collectively, these data 216 

demonstrate that describing AML inter-patient heterogeneity based on hierarchy composition 217 

can capture and integrate both genomic and stem cell models of AML heterogeneity. 218 

Primitive vs GMP axis captures patient prognosis  219 

In line with the observed associations with favorable and adverse cytogenetics, patients with 220 

different hierarchy subtypes also differed in their survival outcomes, with Primitive hierarchies 221 

associated with the worst outcomes and GMP-dominant hierarchies associated with the best 222 

outcomes (Fig. 2F-G, Table S6). We validated these findings using microarray data from a 223 

cohort of genetically diverse adult AML patients (GSE6891 42,43; Fig. S5A-B) as well as a cohort 224 

of pediatric AML patients (TARGET-AML 44; Fig. S5C-D). To identify the leukemic cell types 225 

linked to patient survival, we performed regularized cox regression on the TCGA and BEAT-226 

AML datasets using leukemia cell type abundances. Quiescent LSPC and Cycling LSPC 227 

abundance were predictive of adverse outcomes (coefficients: 0.34 and 0.72, respectively) and 228 

GMP-like abundance was predictive of favorable outcomes (coefficient: -1.54). Strikingly, the 229 

composite survival score that included all three of these populations was highly anti-correlated 230 

with PC1 (r = -0.99, Fig. S5E). Indeed, PC1 was highly associated with survival outcomes in 231 

TCGA, BEAT-AML, and GSE6891 cohorts (Fig. S5F), and retained significance in a multivariate 232 

meta-analysis incorporating all three datasets (p = 0.007, Table S7). Moreover, both pediatric 233 

and adult AML patients who did not achieve complete remission following induction 234 

chemotherapy had higher Quiescent LSPC abundance and lower GMP-like abundance 235 

compared to patients who achieved remission (Fig. S5G). In contrast, the Primitive vs Mature 236 

axis was not associated with patient survival (p = 0.412, Table S7).  237 

We reasoned that the biology underlying the Primitive vs GMP axis may also underlie part of 238 

the variation captured by existing prognostic scores in AML. Indeed, when we considered four 239 
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recent prognostic gene expression scores for AML (LSC17 23, APS 45, 3-Gene 46, CODEG22 47) we 240 

found convergence across all four scores wherein patients with high scores had high Quiescent 241 

LSPC abundance and low GMP-like abundance (Fig. S5H-I). Finally, unbiased analysis of the 242 

association between individual genes with survival outcomes revealed that genes associated 243 

with shorter survival were enriched for HSC-specific programs while genes associated with 244 

longer survival were enriched for GMP-specific programs (Fig. S5J). 245 

Although prior studies implicated primitiveness as reflecting poor outcomes, our data reveal 246 

more complexity. Rather, our data suggest that the biological distinction between stem cells 247 

and GMP progenitors underlie prognosis in AML rather than stemness properties alone. Thus 248 

our data argue that existing prognostic AML scores are linked to this specific axis pointing to 249 

the clinical importance of the biological properties that determine hierarchy composition.  250 

Hierarchy composition changes between diagnosis and relapse 251 

Given the associations observed between hierarchy composition and clinical outcomes in AML, 252 

we asked whether the composition of these hierarchies evolve over the course of disease. To 253 

understand how the AML hierarchies change throughout disease progression, we 254 

deconvoluted 44 pairs of AML samples collected at diagnosis and relapse following induction 255 

chemotherapy from four independent cohorts 18,48–50 (Fig. 3A, S6A). At diagnosis, patients 256 

presented with diverse hierarchy compositions, yet by relapse most were classified as 257 

Primitive (Fig. 3B) with significant expansion of total LSPC populations (p = 1e-8) and, in 258 

particular, Quiescent LSPC (p = 9e-6, Fig. 3C). To validate this finding at the single-cell level, we 259 

analyzed scRNA-seq data from 8 relapsed AML patients 51 and observed uniformly higher LSPC 260 

abundance as compared to scRNA-seq data from 12 diagnostic AML samples 29 (Fig. 3D, S6B).  261 

 262 

While LSPC expansion at relapse is in line with prior functional xenotransplantation studies, 263 

the consistency and magnitude of this phenotype were unexpected, with LSPC expansion 264 

observed in 89% of patients at relapse (39 of 44 pairs). Furthermore, all 5 patients for whom 265 

LSPC abundance decreased at relapse already had high LSPC abundance at diagnosis (median 266 

78.9%, compared to 27.3% for other patients). To benchmark this finding, we also evaluated 267 
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12,441 biological signatures from MSigDB spanning biological pathways, immune processes, 268 

and cancer/AML-specific gene sets, and found enrichment in total LSPC at relapse to be two 269 

orders of magnitude more significant than the top-ranked signature from MSigDB (Fig 3E). 270 

Indeed, classifiers trained on the abundance of LSPC populations were able to achieve near-271 

perfect performance in classifying paired diagnosis and relapse samples (median AUC = 0.96; 272 

Table S8). 273 

 274 

These changes in cellular composition from diagnosis to relapse can help contextualize 275 

patterns of clonal evolution in AML. For example, FLT3-ITD alterations are recurrently gained 276 

at relapse while NRAS and FLT3-TKD alterations are recurrently lost at relapse in NPM1-mutant 277 

AMLs 52. Indeed, FLT3-ITD with NPM1c generated Primitive hierarchies (Fig. 3F), while NRAS or 278 

FLT3-TKD with NPM1c generated Mature hierarchies (Fig. 3G). For a subset of the patients we 279 

analyzed, changes in composition from diagnosis to relapse were concordant with patterns of 280 

clonal evolution (Fig. 3H, Fig. S6C-F). In other cases, shifts in composition occurred in the 281 

absence of clear genetic changes, potentially due to non-genetic modes of evolution (Fig. 3I). 282 

Together, our findings establish LSPC population expansion as a common hallmark across 283 

diverse evolutionary paths to AML relapse following chemotherapy. 284 

Primitive vs Mature axis predicts sensitivity to investigational drugs  285 

Having shown that survival outcomes following chemotherapy are tied to hierarchy 286 

composition (i.e. Primitive vs GMP axis), we asked whether AML samples with different cellular 287 

compositions were vulnerable to newer investigational therapies. Ex vivo drug sensitivity data 288 

from two public datasets 40,53 were integrated with cell type abundance to generate drug 289 

sensitivity profiles for each leukemic cell type (Fig. 4A). This revealed large differences in drug 290 

responses between primitive blasts and mature blasts, with separation of drug responses 291 

occurring primarily along the Primitive vs Mature axis, in which PC2 significantly correlated 292 

(FDR < 0.05) with response to 37 drugs in the BEAT-AML screen and 64 drugs in a separate 293 

screen from Lee et al (Total = 101; Fig. 4B, S7A). By contrast, the Primitive vs GMP axis (PC1) 294 

was not associated with sensitivity to any drug from either screen (Fig. S7A).  295 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.476266doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.476266
http://creativecommons.org/licenses/by-nd/4.0/


 

11 

The large number of drugs for which sensitivity was associated with the Primitive vs Mature 296 

axis suggested that this axis constituted the primary source of variation underlying ex vivo 297 

sensitivity to investigational drugs in AML. To test this hypothesis, we performed unsupervised 298 

clustering of patient samples from Lee et al 53 based on their ex vivo sensitivity to 159 drugs 299 

and identified two patient clusters with global differences in their drug sensitivity profiles (Fig. 300 

S7B). Differential expression analysis revealed that one cluster was highly enriched for 301 

primitive HSC programs while the other was enriched for mature myeloid programs (Fig. S7C), 302 

demonstrating that the Primitive vs Mature axis captures fundamental differences in drug 303 

sensitivity profiles among AML patients.  304 

Hierarchy-based gene expression scores predict drug sensitivity in AML  305 

As a first step to translate the association between the Primitive vs Mature axis and an 306 

individual's response to a specific drug into the clinic, we sought to capture this axis through 307 

simple gene expression scores. As a proof of concept, we turned to the LSC17 score, for which 308 

a CAP/CLIA-certified clinical assay has been developed on the NanoString platform 23,54. Given 309 

that the LSC17 score was associated with leukemic hierarchy composition (Fig. S5H-I), we 310 

reasoned that deriving a sub-score from these 17 genes to estimate PC2 may provide a rapidly 311 

deployable tool to inform therapy selection using data from the existing LSC17 assay. We thus 312 

retrained the LSC17 genes on PC2 through LASSO regression with leave-one-out cross-313 

validation to identify a 7-gene lineage classification sub-score (hereafter LinClass-7) (Fig. 4C). 314 

LinClass-7 correlated well with PC2 (|r| = 0.82) in the validation cohort and was significantly 315 

associated with sensitivity to 33 drugs from BEAT-AML as well as 72 drugs from Lee et al (Total 316 

= 105; Fig. 4D), each of which targeted either primitive blasts (e.g. Venetoclax, Azacytidine, 317 

Mubritinib) or mature blasts (e.g. MEK/mTOR inhibitors) (Fig. 4E). Importantly, neither LSC17 318 

nor the other prognostic AML scores 45–47 were significantly associated with drug sensitivity 319 

(Fig. S7D) and none effectively stratified patients by sensitivity to clinically relevant agents 320 

such as Venetoclax and Azacitidine (Fig. S7E).  321 

To examine the clinical relevance of these Primitive vs Mature scores, we turned to gene 322 

expression data from the pivotal ALFA-0701 adult AML clinical trial of low fractionated doses 323 
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of Gemtuzumab Ozogamicin (GO) in combination with standard chemotherapy 55,56. We asked 324 

whether the LinClass-7 score could predict clinical benefit from GO treatment. In the ALFA-325 

0701 trial, the addition of GO to standard chemotherapy conferred significant benefits in 326 

event-free survival and relapse-free survival (EFS HR = 0.64 [0.47 - 0.89], p = 0.008; RFS HR = 327 

0.65 [0.43 - 0.99], p = 0.045; Table S9), but differences in overall survival were not significant at 328 

the final time of follow-up. LinClass7 effectively separated responders from non-responders: 329 

GO treatment led to significantly longer event-free survival and relapse-free survival (EFS HR = 330 

0.57 [0.35 - 0.91], p = 0.018; RFS HR = 0.53 [0.30 - 0.93], p = 0.028; Table S9) for patients with 331 

LinClass-7 low (Primitive > Mature) AML, although this association did not extend to overall 332 

survival. In contrast, patients with LinClass-7 high (Mature > Primitive) AML derived no 333 

significant survival benefit from GO (Fig. 4F, Table S9). Importantly, we observed no 334 

association between surface levels of CD33 (the molecular target of GO) with either LinClass-7 335 

(Fig. 4G) or PC2 (Fig. S8B). In fact, CD33 levels appeared to be unassociated with hierarchy 336 

composition: most patients were CD33 positive regardless of their hierarchy subtype (Fig. 4H). 337 

The LSC17 score has also been shown to predict clinical benefit from GO treatment 23. Our 338 

analysis shows that the LSC17 and LinClass-7 scores captured different subsets of patients and 339 

further subgroup analysis revealed that only patients that had low scores for both LinClass-7 340 

and LSC17 derived clinical benefit from GO treatment (EFS HR = 0.44 [0.23 - 0.85], p = 0.014; 341 

RFS HR = 0.35 [0.16 - 0.78], p = 0.009; Fig. S8C; Table S9), demonstrating complementarity 342 

between LSC17 and LinClass-7 in the prediction of clinical benefit from GO.  343 

In the context of adult AML, these analyses point to the utility of LinClass-7 as a companion 344 

score to LSC17, enabling prediction of response to an array of current and investigational 345 

drugs. Importantly, the distribution of LSC17 and LinClass-7 scores across patient samples also 346 

loosely recapitulate the primary axes of variation in hierarchy composition, separating 347 

Primitive, GMP, and Mature AMLs (Fig. S9A). Thus the LSC17 and LinClass-7 scores, measurable 348 

through the same CAP/CLIA-certified clinical assay 54 (Fig S9B), allow for both prognostic and 349 

predictive stratification of patient samples while also providing salient information on patient 350 

hierarchy composition.  351 
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Although adult and pediatric AML are molecularly distinct diseases 44,57, the Primitive vs 352 

Mature axis captured through PC2 was also able to predict clinical benefit from GO among 353 

pediatric AML patients in the TARGET-AML retrospective cohort 44. Patients with high PC2 354 

(Mature > Primitive) experienced longer overall and event-free survival outcomes with GO 355 

treatment compared to those that did not receive GO treatment (OS HR = 0.51 [0.30 - 0.89], p 356 

= 0.017; EFS HR = 0.58 [0.37 - 0.90], p = 0.017; Table S11). In contrast, GO treatment did not 357 

influence survival outcomes of patients with low PC2 (Primitive > Mature) (OS HR = 1.20 [0.68 - 358 

2.00], p = 0.553; EFS HR = 0.97 [0.62 - 1.50], p = 0.878) (Fig. S8E-F, Table S11). However, in the 359 

context of pediatric AML we observed lower correlation between LinClass-7 and PC2 (r = 0.51) 360 

and found that prediction of clinical benefit from GO treatment in pediatric AML did not 361 

extend to either LinClass-7 or LSC17 (Fig. S87E-F, Table S11). 362 

Given this, we asked whether a Primitive vs Mature score not constrained by the LSC17 genes 363 

could accurately recapitulate PC2 in both adult and pediatric AML. Starting with the top 100 364 

PC2-associated genes, we trained a 34-gene score (termed PC2-34) which was highly 365 

correlated with PC2 (|r| = 0.95 in the validation cohort). PC2-34 performed similarly to 366 

LinClass-7 in capturing drug sensitivity in the BEAT-AML (48 drugs at FDR < 0.05) and Lee et al 367 

(82 drugs at FDR < 0.05) screens (Fig. S7D-E). PC2-34 also predicted clinical benefit from GO 368 

treatment (Fig. S8A, Table S10), and demonstrated similar complementarity with LSC17 in 369 

further stratifying GO response (Fig. S8D; Table S10). Notably, the PC2-34 score remained well 370 

correlated with the Primitive vs Mature axis in pediatric AML (r = 0.88) and captured the same 371 

survival benefits from GO treatment among these pediatric patients (Fig. S8E-F, Table S10). 372 

Together, our data provide a proof of concept that gene expression scores can be readily 373 

generated to capture axes of variation in leukemic hierarchy composition and these represent 374 

powerful biomarkers of response to non-chemotherapy agents. They are also one of only a 375 

few biomarkers that are broadly applicable in both adult and pediatric AML. 376 

A hierarchy composition framework to guide preclinical studies of AML drugs 377 

We next sought to determine how our leukemic hierarchy framework can be deployed in the 378 

context of drug development. Drug candidates are often identified based on reduction in 379 
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viability of bulk leukemia cells or cell lines, yet this measure lacks critical information 380 

pertaining to the subpopulations of cells that are targeted or that persist after treatment. To 381 

understand how drug treatment affects cellular composition, we deconvoluted RNA-seq data 382 

from 43 datasets in GEO and ArrayExpress with human AML cells sequenced before and after 383 

drug treatment (Fig. 5A-B). The changes in cellular composition following drug treatment were 384 

visualized in low-dimensional UMAP space and treatments were clustered based on the 385 

changes they induced (Fig. 5C-D). Across 153 treatment conditions, 125 resulted in significant 386 

changes in cell type composition. Seventy-seven treatment conditions led to a significant 387 

increase in PC2, potentially reflecting differentiation, yet most of these treatments resulted in 388 

depletion of GMP-like blasts (69%), with fewer treatments depleting the more primitive 389 

Quiescent LSPC (30%) or Primed LSPC populations (14% )(Fig. 5D, S10A-B). For example, ATRA 390 

induced differentiation predominantly from GMP-like blasts (Fig. 5E). In contrast, 391 

differentiation induced by the DHODH inhibitor Brequinar was accompanied by a reduction in 392 

Quiescent LSPC abundance, suggesting that this drug may better deplete the stem cell 393 

compartment (Fig. 5E). 394 

In some cases, the cell population depleted by a drug corresponded to the expression of the 395 

drug target. For example, we analyzed the cellular response to Selinexor, a drug targeting the 396 

nuclear export protein XPO1 (Fig. 5F). XPO1 and nuclear export processes were enriched in the 397 

Cycling LSPC population at the single-cell level (Fig. 5G), and depletion of this cell population 398 

was correlated with ex vivo Selinexor sensitivity in the BEAT-AML screen (Fig. 5H). To support 399 

this prediction with independent functional evidence, treatment of primary AML samples with 400 

Selinexor resulted in depletion of the Cycling LSPC population both in vitro 58 and in vivo 59 (Fig. 401 

5I-J) across diverse genetic backgrounds. Together, these data shed light on the changes in 402 

cellular composition that follow drug treatment and offer a functionally relevant read-out for 403 

prioritizing candidate drugs in preclinical settings.  404 

We next asked how hierarchy information can be utilized in preclinical studies that are more 405 

proximal to clinical translation, such as in the context of in vivo drug response. To this end we 406 

turned to patient-derived xenograft (PDX) response data generated by our group for two 407 
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drugs: Fedratinib, a JAK2 inhibitor approved for treatment of myeloproliferative neoplasms, 408 

and CC-90009 60, an immunomodulatory (IMiD) agent that induces cereblon-mediated 409 

degradation of GSPT1 61. A total of 46 independent AML samples were treated in PDX models 410 

(n=32 for Fedratinib and n=30 for CC90009) across 658 drug- or vehicle-treated xenografted 411 

mice. Deconvoluted RNA-seq profiles from the primary patient samples prior to 412 

xenotransplantation were clustered based on hierarchy composition and categorized as 413 

Primitive, Intermediate/GMP, or Mature (Fig. 6A-B). 414 

The primary target of Fedratinib, JAK2, was predominantly expressed in Mono-like and cDC-415 

like blasts at the single-cell level (Fig. 6C), and these mature blasts were enriched in patient 416 

samples that responded well to Fedratinib in vivo (Fig. 6D). Subgroup analysis of Fedratinib 417 

response showed high efficacy in AMLs with Mature hierarchies (88% response rate), while 418 

response rates among other hierarchy subtypes were poor (46% for Primitive and 20% for 419 

Intermediate/GMP) (Fig. 6E). CC-90009 targets GSPT1, whose expression is enriched in Cycling 420 

LSPC and GMP-like blasts at the single-cell level (Fig. 6F). GMP-like blasts were enriched among 421 

responders while Quiescent LSPCs were enriched among partial and non-responders (Fig. 6G). 422 

Subgroup analysis showed high CC-90009 efficacy in AMLs with Mature and Intermediate/GMP 423 

hierarchies, with 88% and 83% response rates, respectively. In contrast, those with Primitive 424 

hierarchies had heterogeneous responses at a rate of 40% (Fig. 6H). 425 

To better understand the heterogeneous responses to Fedratinib and CC-90009 among patient 426 

samples, we compared the genomic features of responding and non-responding AML samples 427 

for both Fedratinib and CC-90009 treatment conditions. Among Primitive AML hierarchies, 428 

NPM1c mutations were associated with favorable response to Fedratinib and poor response to 429 

CC-90009, while Primitive AMLs lacking NPM1c mutation demonstrated favorable response to 430 

CC-90009 and poor response to Fedratinib (Fig. 6E,H). Importantly, the association of NPM1c 431 

signatures with Fedratinib and CC-90009 response among Primitive AMLs did not extend to 432 

other hierarchy subtypes. Given the NPM1c-based response dichotomy to Fedratinib and CC-433 

90009 among Primitive hierarchies, as well as the sensitivity of Intermediate/GMP hierarchies 434 

to CC-90009 and Mature hierarchies to both drugs, we reasoned that a combination of the two 435 
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drugs may show efficacy against a broader range of samples than either drug alone. To test 436 

this hypothesis, we established PDX xenografts from eight AML patients with diverse hierarchy 437 

compositions and subjected them to treatment with Fedratinib, CC-90009, both drugs in 438 

combination, or vehicle control (median 5 mice/treatment/patient). PDXs from seven of the 439 

eight patients tested responded fully to combination treatment with virtual elimination of 440 

their leukemic grafts, despite variable responses to single-agent Fedratinib or CC-90009 (Fig. 441 

6I).  442 

Overall, responses to Fedratinib, CC-90009, and combination treatment in PDX models were all 443 

significantly associated with hierarchy composition (Fig 6J). These data establish that 444 

stratification of AML cases by hierarchy composition facilitates prediction of patients likely to 445 

benefit from specific therapies. This also represents a proof of concept for the design of 446 

combination regimens through pairing of drugs that show complementarity in their hierarchy-447 

based targeting profiles. Together with the monitoring of post-treatment changes in hierarchy 448 

composition, these approaches provide a powerful new paradigm for drug development in 449 

AML.  450 

 451 

Discussion  452 

Here we developed a new approach for understanding heterogeneity in AML by characterizing 453 

the cellular composition of each patient’s leukemic hierarchy. Analysis of patient-specific 454 

variation in hierarchy composition across large cohorts captured and integrated information 455 

on genomic profiles, functional stem cell properties, and clinical outcomes within a single 456 

classification framework; something that could not be achieved by applying the genomic or 457 

stem-cell models alone. Despite the wide diversity of genetic drivers, hierarchy composition 458 

could be distilled into four main subtypes, implying convergence in how mutations perturb LSC 459 

function and impair hematopoietic differentiation to generate a leukemia cell hierarchy. This 460 

new framework provides a means of understanding how different genetic subgroups relate to 461 

one another and, more broadly, how genetic alterations relate to LSC properties, enabling a 462 

more comprehensive view of biological heterogeneity in AML. 463 
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Our analysis of diagnosis/relapse pairs demonstrates the value of longitudinal monitoring of 464 

AML hierarchy composition through disease progression. While only a subset of relapsed AML 465 

cases are explained by clear patterns of genetic evolution, we show that LSPC expansion 466 

constitutes a hallmark of AML relapse following chemotherapy. This has important 467 

implications for trial design given that relapsed AML patients, for whom mature and GMP-468 

dominant hierarchies are underrepresented, are often the first patients in which novel 469 

therapeutics are evaluated. This mismatch could lead to valuable drugs for patients with such 470 

hierarchies being discounted. Our findings also raise an interesting question on the cell types 471 

that bear stemness properties. Emerging data from relapse following Venetoclax and 472 

Azacitidine treatment shows a loss of phenotypic LSC and the emergence of a promonocytic 473 

blast population that may also carry leukemic propagation potential 62. Thus an important and 474 

unresolved question pertains to the self-renewal capacity of distinct blast populations within 475 

these leukemia cell hierarchies. To address this, deeper functional studies of patient samples 476 

reflecting specific hierarchy subtypes will be necessary to pinpoint the specific populations 477 

that must be targeted to ensure long-term remission.  478 

 479 

A large number of targeted therapies are being developed in AML and many investigational 480 

therapies are progressing to clinical trials. Our study suggests that biomarkers focused on the 481 

composition of each patient’s leukemia cell hierarchy have strong potential to guide the 482 

development and selection of these therapies, thereby setting the foundation for a new 483 

precision medicine framework in AML. Unexpectedly, prognostic and predictive features were 484 

distinct and captured through different axes of variation in hierarchy composition. The 485 

Primitive vs GMP axis captured stemness properties including those revealed by LSC17 23 and 486 

was highly prognostic. Moreover, other modern prognostic biomarkers 45–47 also reflected this 487 

axis of variation the same way. Despite capturing stemness and being highly prognostic, drug 488 

response to biologically targeted therapies could not be predicted. This indicates that 489 

stemness per se is not driving the highly predictive features captured in the Primitive vs 490 

Mature axis. Future functional studies are needed to understand the biological mechanism of 491 

why this axis drives drug response prediction. Importantly, this axis can be distilled into new 492 
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gene expression scores including LinClass-7 that have great potential for rapid translation into 493 

the clinic. Hierarchy-based classification has clear implications for clinical trial design of 494 

investigational drugs: AML samples can now be stratified pre-clinically on the basis of 495 

hierarchy composition to identify patient subsets that are most likely to benefit from a single 496 

drug or even a predicted combination. Further, for drugs that are already in the clinic such as 497 

Venetoclax, Azacitidine, and Gemtuzumab-Ozogamicin where response varies, this 498 

stratification could potentially be used to select patients most likely to benefit from these 499 

specific treatments. Finally, our study provides a paradigm for translating scRNA-seq 500 

information into the clinic that has implications beyond the AML field and could also be 501 

applied to other cancers.  502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 
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Online Methods 522 

 523 

Patient Samples 524 

All biological samples were collected with informed consent according to procedures approved 525 

by the Research Ethics Board of the University Health Network (UHN; REB# 01-0573-C) and 526 

viably frozen in the Princess Margaret Hospital (PMH) Leukaemia Bank. No statistical methods 527 

were used to predetermine sample size. The investigators were not blinded to allocation 528 

during experiments and outcome assessment. 529 

RNA Sequencing and Pre-Processing 530 

RNA was extracted from bulk peripheral blood mononuclear cells using an RNeasy Micro Kit 531 

(Qiagen). Libraries were constructed using SMART-Seq (Clonetec). A paired-end 50-base-pair 532 

flow-cell lane Illumina HiSeq 2000 yielded an average of 240 million aligned reads per sample. 533 

To align RNA-seq reads from samples used in Selinexor and Fedratinib treatments, Illumina 534 

paired-end sequence data were analyzed with BWA/v0.6 alignment software with option (-s) 535 

to disable Smith-Waterman alignment. Reads were mapped onto GRCh37-lite reference 536 

genome and exon-exon junction reference whose coordinates were defined based on 537 

transcript annotations in Ensembl/v59. Reads with mapping quality < 10 were discarded and 538 

duplicate reads were tagged using the Picard's MarkDuplicates program. JAGuaR 2.1 was used 539 

to incorporate reads spanning multiple exons into the alignment by introducing large 540 

alignment gaps. All transcripts of a given gene were collapsed into a single gene model such 541 

that exonic bases were the union of exonic bases that belonged to all known transcripts of the 542 

gene. Read counts and subsequently RPKM counts were obtained by counting the fraction of 543 

each read that overlapped with an exonic region for that gene. To align RNA-seq reads from 544 

functionally annotated LSC fractions, sequence data was aligned against GRCh38 and transcript 545 

sequences downloaded from Ensembl build 90 using STAR 2.5.2a. Default parameters were 546 

used except for the following: “–chimSegmentMin 12 –chimJunctionOverhangMin 12 –547 

alignSJDBoverhangMin 10 –alignMatesGapMax 100000 –alignIntronMax 100000 –548 

chimSegmentReadGapMax parameter 3 –alignSJstitchMismatchNmax 5 -1 5 5.” Counts were 549 
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obtained using HTSeq v0.9.1. RNA-seq reads from four AML samples previously profiled by 550 

scRNA-seq from van Galen et al 29 were aligned to GRCh38 using STAR v2.7.9a and counts were 551 

obtained using HTSeq v0.7.2.  552 

Re-Clustering of Leukemia Stem and Progenitor Cells (LSPCs) 553 

Single-cell RNA-sequencing data from 12 AML patients at diagnosis was obtained from van 554 

Galen et al 29 (GSE116256). scRNA-seq count data was normalized using the R package ‘scran’ 555 
63, log-transformed with an offset value of 1, and scaled. Leukemic cells labeled as “HSC-like” 556 

and “Prog-like” (hereafter LSPCs) from the original study were subject to re-analysis using the 557 

Self-Assembling Manifolds (SAM) algorithm 31. SAM was applied individually to the four patient 558 

samples with the highest number of LSPCs (based on a cutoff of >100 HSC-like cells) to assign 559 

weights to each gene based on how well they can demarcate emerging transcriptomic states. 560 

Feature weights for each gene were averaged across the four samples and subsequently 561 

applied to LSPCs from all 12 patients. No batch correction was applied. Using the “scanpy” 562 

package 64, weighted expression data was subject to dimensionality reduction and 563 

neighbourhood detection based on the cell-cell correlation. The diffusion map embedding 65 564 

was used for visualization. Leiden clustering 66 was performed with a resolution of 0.15 to 565 

identify three clusters of LSPCs shared across the patient samples. Re-annotated LSPC labels 566 

are included in Table S1. 567 

  568 

Evaluation of LSPC Clustering 569 

To evaluate the new cluster assignments, cell type classifiers were built and evaluated for the 570 

new and prior classifications using the R package “SingleCellNet” 67. For each classification, 571 

scran normalized gene expression values were used as input and 800 cells from each leukemic 572 

cell type were used as a training set. For each cell type, paired products of the top 25 genes for 573 

each cell type were calculated and the 50 top gene pairs for each cell type were used to train 574 

the Random Forest based model with nTrees = 1000. Models trained on the new and prior cell 575 

type classification were subsequently evaluated on a held-out dataset of at least 250 576 

remaining cells for each cell type. 577 
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  578 

Regulon Analysis and Signature Enrichment 579 

To infer transcription factor (TF) regulon activity in scRNA-seq data, regulon analysis was 580 

performed using SCENIC 68. The Docker image of pySCENIC was run as per the guidelines from 581 

Van de Sande et al 69: log-transformed counts from leukemic AML cells were used as the input 582 

and candidate transcription factors were identified using a list of human transcription factors 583 

from Lambert et al 70 , with default parameters. To prune putative TF-target links within each 584 

regulon using annotations of TF motifs, CisTarget was applied using databases of known 585 

human TF motifs annotated at 500bp, 5kb, and 10kb of transcriptional start sites. Drop-out 586 

masking was also applied during this step. Enrichment of refined TF regulons was inferred 587 

using AUCell, and enrichment scores were scaled for visualization.  588 

 589 

Characterization of scRNA-seq AML Populations 590 

For biological characterization of the re-annotated leukemic cell types, single-cell enrichment 591 

scores of hallmark genesets as well as custom genesets from Ng et al (LSC+ AML fractions) 23 592 

and Xie et al (S1PR3 overexpression in LT-HSCs) 33 were calculated using AUCell 68. Cell cycle 593 

status was determined using the original annotations from van Galen et al 29, in which cell 594 

cycle scoring and classification was performed. Shannon diversity of single-cell transcriptomes 595 

was calculated from raw count data using the python package “skbio” after down-sampling 596 

each cell to 1,000 UMIs.  597 

 598 

Gene Expression Deconvolution 599 

Raw gene expression counts from 13653 cells belonging to any of seven leukemic populations 600 

(LSPC-Quiescent, LSPC-Primed, LSPC-Cycle, GMP-like, ProMono-like, Mono-like, cDC-like) or 601 

seven non-leukemic immune populations (T, CTL, NK, B, Plasma, and wild-type Monocyte and 602 

cDCs) were used as input for signature matrix generation with CIBERSORTx 71. Default settings 603 

were used with the exception of the minimum expression parameter which was set to 0.25. 604 

Deconvolution was performed on TPM-normalized bulk RNA-seq data using S-mode batch 605 

correction and Absolute mode. Due to differences in S-mode batch correction performance 606 
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between the CIBERSORTx web portal and the CIBERSORTx Docker image, we exclusively used 607 

the web portal for our analyses. For downstream analysis, the abundance of the seven 608 

leukemic populations were normalized to a sum of 1, wherein the score for each population 609 

represents the estimated proportion of all leukemic cells. For bulk RNA-seq samples composed 610 

entirely of leukemic blasts (cell lines or sorted primary samples), a second signature matrix 611 

with seven leukemic populations and no immune populations was used.  612 

 613 

For deconvolution with DWLS 72, a single-cell signature matrix was generated using MAST 73 for 614 

each cell type using default settings from the DWLS script. DWLS was then applied to TPM-615 

normalized RNA-seq data using default settings. Deconvolution with Bisque 74 was applied to 616 

TPM-normalized RNA-seq data following package guidelines and using default settings. 617 

Deconvolution with MuSIC 75 was applied to TPM-normalized RNA-seq data as per tool 618 

guidelines. This was performed in two different ways: direct and recursive. Direct 619 

deconvolution involves calculating cell type abundance of each population directly. In order to 620 

deal with issues arising from co-linearity, recursive deconvolution was also applied which first 621 

calculated the abundance of four groups of cell types: LSPC (LSPC-Quiescent, LSPC-Primed, 622 

LSPC-Cycle), GMP (GMP-like), Mature (ProMono, Mono, cDC-like), and Immune (T, B, NK, CTL, 623 

Plasma, cDC, Monocyte), and subsequently calculated the abundance of each individual cell 624 

type from each group. 625 

 626 

Clinical AML Datasets 627 

Publicly available clinical RNA-seq datasets used for deconvolution analysis are outlined in 628 

Table S4. All gene expression data was subject to TPM normalization prior to deconvolution 629 

with CIBERSORTx. Clinical and mutational data was extracted from the GDC Data Portal for 630 

TCGA (https://portal.gdc.cancer.gov/projects/TCGA-LAML) and from supplemental materials in 631 

Tyner et al 40 for BEAT-AML. For the BEAT-AML cohort, we focused exclusively on pre-632 

treatment samples collected at AML diagnosis (n = 281). For the Leucegene cohort, clinical and 633 

mutational annotations were extracted from supplemental materials of 13 papers 38,76–87 and 634 

linked based on sample ID.  635 
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 636 

Mapping and Clustering AML Hierarchy Composition 637 

To map AML patients based on the composition of their leukemic hierarchies, only 638 

deconvolution results pertaining to leukemic AML populations were used. In these cases, 639 

estimated abundances from leukemic populations were normalized to 1, such that the value 640 

associated with each cell type represents the proportion of total leukemic blasts that it 641 

constitutes. Patients from TCGA, BEAT-AML, and Leucegene were used. PCA was performed on 642 

the normalized leukemic cell type compositions of these patients. Neighbours were calculated 643 

using euclidean distance with a local neighborhood size of 30. To determine the optimal 644 

number of clusters, the package “NbClust” was used to calculate 30 clustering metrics for 645 

values of k from 2 to 10, and k = 4 was selected by majority rule. Leiden clustering was 646 

subsequently performed at a resolution of 0.4 to obtain four hierarchy clusters. Cluster 647 

assignments, hierarchy compositions, and genomic annotations for TCGA, BEAT-AML, and 648 

Leucegene are included in Table S5. 649 

 650 

To project hierarchies onto the reference map from the three AML cohorts (TCGA, BEAT-AML, 651 

Leucegene), normalized leukemic cell type abundances from the query dataset was combined 652 

with the reference dataset, and batch correction was applied using ComBat 88. Following this, 653 

the ingest function from scanpy was used to project the batch corrected query dataset onto 654 

the principal components of the batch corrected reference dataset and assign cluster labels. 655 

  656 

Hierarchy Classification of Microarray Cohorts 657 

To enumerate patient hierarchy composition from microarray data, we first compared the 658 

confidence of CIBERSORTx deconvolution between RNA-seq and microarray data from the 659 

TCGA cohort, using the correlation between the original transcriptomes and the synthetic 660 

transcriptomes reconstructed from pooling each cell type signature at their estimated 661 

frequencies. Deconvolution from RNA-seq achieved the highest correlation (median = 0.95) 662 

while deconvolution from Robust Multichip Average (RMA) 89 normalized microarray data 663 

performed poorly (median correlation = 0.58). However, we found that a single-sample 664 
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microarray normalization approach (SCAN) 90 yielded better deconvolution results (median 665 

correlation = 0.80). We next projected the deconvolution results from the microarray samples 666 

in TCGA onto the hierarchy map from the reference cohorts using ComBat and the ingest 667 

function from scanpy as previously described and compared the assigned cluster labels with 668 

the true labels from the corresponding TCGA samples for which RNA-seq data was available. 669 

This yielded weighted multi-class accuracies of 0.67 for RMA-normalized deconvolution results 670 

and 0.75 for SCAN-normalized deconvolution results. We thus restricted deconvolution of 671 

microarray data exclusively to SCAN-normalized data for new cohorts. 672 

  673 

Given the comparatively low accuracy (0.75) of our standard approach for hierarchy projection 674 

using reference cohorts in the case of microarray data, we employed additional approaches to 675 

classify microarray samples from the query cohort as Primitive, Intermediate, Mature, or GMP. 676 

A second approach involved projection onto deconvoluted microarray data from TCGA, for 677 

which cluster assignments were available from bulk RNA-seq for the same samples. 678 

Deconvolution results from the query cohort were batch corrected with the TCGA reference 679 

data using ComBat and cluster labels were projected using the ingest function from scanpy. As 680 

a third approach, cluster classifiers were trained from the microarray expression data from the 681 

TCGA cohort, using the top 10 marker genes for each cluster based on a Wilcoxon test. 682 

Microarray expression data from the query cohort was batch corrected with the TCGA 683 

reference data using ComBat, and L1-penalty Logistic Regression (L1-LR), L2-penalty Logistic 684 

Regression (L2-LR), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random 685 

Forest (RF) classifiers were subsequently trained from these marker genes with 686 

hyperparameter tuning performed through a grid search with 10-fold cross-validation for each 687 

model. For cluster assignment based on gene expression data in the query cohort, the majority 688 

vote of all five models was used. To obtain the final cluster assignments, the predictions from 689 

all three approaches (projection using deconvoluted RNA-seq reference cohorts, projection 690 

using deconvoluted microarray data from TCGA, and gene expression-based classification 691 

using microarray data from TCGA) were combined. Within the GSE6891 cohort 42,43, most 692 

samples (372/537, 69%) were assigned to a cluster unanimously by all three approaches, while 693 
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the remaining samples (165/537, 31%) had conflicting assignments between approaches. 694 

These ambiguous samples were primarily positioned at the boundary between the 695 

Intermediate cluster and other clusters (Primitive, Mature, GMP). These ambiguous cases were 696 

reclassified through a KNN approach trained on the 372 high confidence samples using the 697 

ingest function from scanpy to obtain the final classifications. 698 

 699 

Classification Benchmarking  700 

To benchmark classification performance for biological phenotypes (e.g. LSC activity, Relapse, 701 

Adverse Cytogenetics) as outlined in Fig. S3A, a repeated nested cross-validation approach was 702 

employed to obtain high-confidence estimates of model performance. Samples were subject 703 

to a 5-fold split (outer cross-validation), wherein each 20% split was used as a held-out set 704 

with the remaining 80% used as a training set. Within each split, Logistic Regression or 705 

Random Forest classifiers were trained with hyperparameter optimization performed through 706 

a grid search with 5-fold internal cross-validation, leading to a total of five separate AUC 707 

values. The mean of these five values was calculated as a summary AUC metric, and this 708 

nested cross-validation process was repeated for a total of 1000 iterations, with samples being 709 

randomly shuffled between each iteration. Together this produces a distribution of 1000 710 

summary AUC metrics, enabling statistical comparisons of model performance across different 711 

sets of features. Comparisons were performed through Wilcoxon signed-rank tests, with AUC 712 

metrics paired on each iteration, for which the cross-validations splits were the same). 713 

  714 

Clinical and Morphological Correlates 715 

For associations of leukemic and immune cell type abundance with clinical features in TCGA, 716 

Pearson correlations were calculated between the absolute abundance of each leukemic and 717 

immune population with each clinical feature. Only correlations with uncorrected p < 0.05 718 

were retained. To characterize the hierarchy compositions of distinct FAB morphological 719 

classes, we visualized 378 AMLs from TCGA, BEAT-AML, and Leucegene for whom FAB 720 

annotations were available. Samples labeled as M5 (without specifying M5A or M5B) were 721 

excluded; samples labeled as M6 (n = 4) or M7 (n = 4) were also excluded due to sample size. 722 
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 723 

Survival Analysis 724 

Overall survival (OS) was defined as the time from diagnosis until death or last follow-up. 725 

Differences in OS between hierarchy classes in each cohort were evaluated using Mantel-Cox 726 

Log-Rank tests using the R package “survival”, and survival curves for each cluster were 727 

visualized using Kaplan-Meier plots using the R package “survminer”. Univariate and pairwise 728 

hazard ratios for each cluster were derived from Cox proportional hazards regression. For 729 

combined hazard ratios, individual patient data were pooled and stratified Cox regression was 730 

performed with the patient cohort (TCGA, BEAT-AML, GSE6891) set as the stratifier. For 731 

multivariate survival meta-analysis, we included covariates that were available across all three 732 

cohorts (Cytogenetic Risk, Age, WBC, NPM1 status, and FLT3-ITD status) and performed 733 

multivariate stratified cox regression, with patient cohort as the stratifier. We determined 734 

whether hierarchy information (e.g. Cluster, PC1, or PC2) adds value in addition to baseline 735 

covariates through a likelihood ratio test to assess model improvement after incorporating 736 

hierarchy information.  737 

 738 

To benchmark the prognostic value of the new LSPC annotation compared to the prior HSC-739 

like/Prog-like annotation, repeated nested cross-validation was performed as described in the 740 

classification benchmarking section. Instead of Logistic Regression or Random Forest models, 741 

stratified cox regression was performed to predict overall survival from the TCGA and BEAT-742 

AML cohorts, using the abundances of primitive AML populations. L1 (LASSO) or L2 (Ridge) 743 

penalties were applied using partial likelihood deviance as the loss function and 5-fold internal 744 

cross-validation was performed to identify the optimal lambda value. Rather than AUC, model 745 

performance was estimated through the mean likelihood ratio test statistic across the five 746 

outer cross-validation splits. This was repeated for 1000 iterations.  747 

 748 

To identify the leukemic cell types associated with survival, we performed stratified cox 749 

regression on the TCGA and BEAT-AML cohorts using an L1 (LASSO) penalty with partial 750 

likelihood deviance loss. Because this process was not repeated over multiple iterations, this 751 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.476266doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.476266
http://creativecommons.org/licenses/by-nd/4.0/


 

27 

score was trained on the full dataset and leave-one-out cross-validation was employed to 752 

determine the optimal lambda value. Coefficients for each leukemic population were 753 

subsequently used to determine feature importance. 754 

 755 

For GSEA analysis of genes ranked by their association with overall survival, only genes that 756 

were detected in TCGA and BEAT-AML were evaluated. Univariate Wald tests were performed 757 

to evaluate the association with log(TPM+1) normalized expression of each gene with overall 758 

survival in each of the TCGA and BEAT-AML cohorts. The Wald test statistics from each cohort 759 

were averaged for each gene and used as a rank statistic for GSEA analysis using Stem vs GMP 760 

signatures from normal hematopoiesis (top 200 up-regulated and top 200 down-regulated 761 

genes from limma differential expression analysis of healthy LT-HSC vs GMP sorted fractions 762 

from umbilical cord blood 33) and malignant hematopoiesis (top 200 correlated and top 200 763 

anti-correlated genes with PC1). 764 

 765 

Calculation of Prognostic AML Scores 766 

We calculated LSC17 and other prognostic AML scores using log(TPM+1) normalized 767 

expression values from TCGA, BEAT-AML, and Leucegene, and normalized microarray 768 

expression values from Lee et al 53. In cases where specific genes were missing from a dataset, 769 

we calculated the score with those genes removed. To ensure high concordance of these 770 

partial scores, we calculated the correlation between each partial score and the full score in 771 

other datasets to ensure high concordance: we observed a median correlation of r = 0.99 772 

between partial and full scores, with the lowest correlation being r = 0.95. Patients were 773 

classified into high and low groups for each score based on a median split within each cohort. 774 

 775 

Mutation Analysis 776 

Cytogenetic and driver mutation annotations from TCGA, BEAT-AML, and Leucegene were 777 

used to correlate hierarchy composition with genomic profiles. Mutation combinations 778 

between driver mutations were identified and all combinations present in at least 5 patients 779 

were retained and visualized along hierarchy axes PC1 and PC2 using the R package “ggridges”. 780 
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Due to missing variant allele frequency (VAF) information in an appreciable subset of mutation 781 

calls from genomic annotations, samples were considered mutated as long as the mutation 782 

was called. This analysis was repeated exclusively using mutation calls where VAF > 0.25 to 783 

confirm that the observed trends remained the same.  784 

 785 

scRNA-seq Classification in Relapsed AMLs 786 

scRNA-seq profiles of blast cells from 8 relapsed AML patient samples were obtained from 787 

Abbas et al 51. To project these cells onto our cell types defined from diagnostic AML samples 788 

from van Galen et al 29, we used a transfer learning approach implemented through the scANVI 789 
91 and scArches 92 packages. First, semi-supervised dimensionality reduction was performed 790 

with scANVI using unnormalized scRNA-seq data from diagnostic AML samples filtered for 791 

3000 variable genes with malignant cell type annotations and patient batch as a covariate. For 792 

scANVI, an initial unsupervised neural network was trained over 500 epochs with patience for 793 

early stopping set to 10 epochs, followed by a semi-supervised neural network incorporating 794 

cell type annotations that was trained over 200 epochs with a patience of 10 epochs. Transfer 795 

learning with scArches was subsequently applied to update the scANVI neural network using 796 

scRNA-seq data from the relapsed AML samples, and training was performed over 500 epochs 797 

with a patience of 10 epochs. The updated model was subsequently applied to both diagnostic 798 

and relapsed AML samples to generate a shared latent representation, and this latent 799 

representation was used for further dimensionality reduction with UMAP. For visualization 800 

purposes, the diagnostic and relapsed AML data were each downsampled to 10,000 cells. 801 

 802 

Benchmarking Relapse Phenotypes  803 

To benchmark the changes in cellular composition from diagnosis to relapse, we obtained 804 

12,441 gene sets from the MSigDB database corresponding to Hallmark genesets (n = 48), 805 

Oncogenic signatures (n = 182), Computationally-derived signatures (n = 667), Chemical and 806 

Genetic Perturbations (CGP) from prior Literature (n = 2112), GO Biological Pathways (4400), 807 

and previously published Immune Signatures (n = 5024). The relative expression of each 808 

signature was scored in each individual diagnosis and relapse sample (n = 88) through GSVA to 809 
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generate a single-sample enrichment score for each signature. GSVA enrichment scores for 810 

each of the MSigDB signatures, alongside the inferred abundance of each leukemic cell type, 811 

were compared between diagnosis and relapse through paired t-tests based on the 812 

significance of their enrichment at relapse (absolute value of the log10(p)). Each signature was 813 

ranked and relapse enrichment of each leukemic subpopulation was subsequently compared 814 

against relapse enrichment of each of the MSigDB signatures. Non-parametric Wilcoxon 815 

signed-rank tests were also performed for each signature to ensure comparable results.  816 

 817 

To benchmark classification performance from using hierarchy information to discriminate 818 

between diagnosis-relapse samples, we performed repeated nested cross-validation as 819 

outlined in Fig S3A and described in the “Classification Benchmarking” section. This was 820 

performed first on individual samples without paired information (n = 88), or on paired patient 821 

samples, wherein the changes in cell composition were provided and the classifier was 822 

required to identify whether that change in composition corresponded to a transition from 823 

diagnosis to relapse (n = 44) or from relapse to diagnosis (n = 44).  824 

 825 

Clonal Evolution Analysis 826 

Clonal analysis of paired diagnosis and relapse samples from four independent cohorts was 827 

performed using annotated single nucleotide variant calls derived from targeted sequencing 48, 828 

whole exome sequencing 50, or whole genome sequencing 18,49 data. Genetic clones were 829 

identified using PhyloWGS 93, selecting the phylogenetic tree with the highest log likelihood 830 

(LLH) value. In cases of tied LLH values, the simplest tree with the most representative 831 

branching patterns among the top candidates was manually selected. Graphical 832 

representations of evolution of genetic clones were depicted using the R package “Fishplot” 94 833 

while representations of changes in cell type composition were depicted using the R package 834 

“ggAlluvial”. 835 

 836 

 837 

 838 
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Association with Drug Sensitivity 839 

Ex vivo drug response in BEAT-AML samples was measured through the Area Under the dose-840 

response Curve (AUC) metric, wherein a low AUC corresponds to sensitivity while a high AUC 841 

corresponds to resistance. AUC values were scaled and multiplied by -1 to represent sensitivity 842 

in each treatment condition. Pearson correlation was used to measure association between 843 

cell type abundance and drug sensitivities, following recommendations from a benchmarking 844 

study by Smirnov et al 95. Associations were depicted using the R package “corrplot”, and drug 845 

sensitivity volcano plots were generated using the R package “EnhancedVolcano”.  846 

 847 

Unsupervised Clustering by Drug Sensitivity  848 

Unsupervised clustering of 30 AML patient samples from Lee et al 53 was performed on the 849 

basis of their ex vivo drug sensitivity values to 159 drugs. Area under the dose response curve 850 

(AUC) values for each patient were scaled for each drug, and dimensionality reduction with 851 

PCA was applied and neighbours were calculated with a local neighborhood size of 5. Leiden 852 

clustering cluster with a resolution of 0.3 was used to determine the final clusters. Differential 853 

expression analysis between drug response clusters was performed using limma 96 from 854 

normalized microarray expression values obtained from GSE107465. The moderated t-statistic 855 

for each gene was subsequently used as the rank statistic for GSEA analysis using Stem vs 856 

Mature Myeloid signatures from normal hematopoiesis (top 200 up-regulated and top 200 857 

down-regulated genes from limma differential expression analysis of healthy LT-HSC vs 858 

Granulocyte/Monocyte sorted fractions from umbilical cord blood 33) and malignant 859 

hematopoiesis (top 200 correlated and top 200 anti-correlated genes with PC2). 860 

 861 

Derivation of PC2-based Gene Expression Scores 862 

For derivation of PC2-based gene expression scores we used log(CPM+1) normalized gene 863 

expression values, which we found to improve model performance during training. To derive 864 

the LinClass-7 score, logCPM-normalized expression of 16 genes from the LSC17 assay were 865 

used as input features for LASSO regression: DNMT3B, GPR56, NGFRAP1, CD34, DPYSL3, 866 

SOCS2, MMRN1, KIAA0125, EMP1, NYNRIN, LAPTM4B, CDK6, AKR1C3, ZBTB46, CPXM1, 867 
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ARHGAP22. The 17th gene, C19orf77, was excluded due to a lack of expression data in the 868 

Leucegene cohort. LASSO regression was performed on negative PC2 (high in Primitive and low 869 

in Mature) with leave-one-out cross-validation using the LassoCV function from scikit-learn 870 

with a path length of 0.1 to determine the optimal lambda value. Patients from TCGA and 871 

Leucegene were combined into a training set, and patients from BEAT-AML were used as a 872 

validation set to evaluate the strength of the association between LinClass-7 and PC2.  873 

 874 

To train the PC2-34 score, we started with the top 50 correlated and top 50 anti-correlated 875 

genes with PC2, based on the average Pearson correlation between the TCGA and Leucegene 876 

cohorts. LASSO regression was performed on PC2 with leave-one-out cross-validation to 877 

determine the lambda value corresponding to the lowest mean square prediction error. To 878 

further reduce the number of features in the model, the largest lambda within one standard 879 

error of the lowest root mean square prediction error (RMSE) was selected instead of the 880 

lambda directly corresponding to the lowest RMSE. This resulted in a 34-gene score (PC2-34) 881 

which was then evaluated in the BEAT-AML validation set. 882 

 883 

Literature Screen for Drug-Treated RNA-seq Datasets 884 

To identify RNA-seq datasets collected from AML samples before and after drug treatment, 885 

Applying the search terms “Acute Myeloid Leukemia” and “AML” with the “Homo Sapien” and 886 

“RNA-sequencing” flags on Gene Expression Omnibus (GEO) and ArrayExpress, we identified 887 

95 datasets posted before June 17, 2021. From these, 53 were inhibitors that met the inclusion 888 

criteria of human AML samples with available RNA-sequencing data collected before and after 889 

drug treatment. Datasets with only differential expression results or Bigwig files were 890 

excluded. Datasets with less than three samples in each treatment group were also excluded, 891 

resulting in a total of 47 datasets included in the final analysis. Detailed information on 892 

included datasets is available in Table S12. Each dataset was processed and underwent TPM 893 

normalization and deconvolution with CIBERSORTx using a signature matrix of seven leukemic 894 

cell types (LSPC-Quiescent, LSPC-Primed, LSPC-Cycle, GMP-like, ProMono-like, Mono-like, cDC-895 

like). For quality control among cell line samples, the deconvolution correlation values from 896 
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each sample across every dataset were compared and the Jenks natural breaks algorithm was 897 

employed to identify cutoffs demarcating low, medium, and high correlation bins. Cell line 898 

samples classified as “low-correlation” with a correlation value below 0.437 were excluded 899 

from further analysis, leaving 43 datasets spanning 153 treatment conditions.  900 

 901 

Quantifying Hierarchy Composition Changes after Drug Treatment  902 

Relative changes in cell type abundance in each treatment condition were evaluated using 903 

Wilcoxon rank-sum tests for technical replicates or Wilcoxon signed-rank tests for biological 904 

replicates with paired treatment conditions. For dimensionality reduction with UMAP, we 905 

focused exclusively on changes in cell type abundance where the p-value was < 0.05 to 906 

emphasize the key changes in cell type composition induced by each drug, resulting in 125 907 

treatment conditions spanning 38 studies. Absolute log p-values were used to represent the 908 

magnitude of the shift in cell type abundance, and cell type changes where p > 0.05 were 909 

assigned a magnitude of zero. We then applied UMAP with the following parameters 910 

(n_neighbors = 13, min_dist = 0.05) to generate the final representation, and Leiden clustering 911 

was applied with a resolution of 1. We note that UMAP was selected for visualization rather 912 

than PCA because, despite the low number of features, PCA did not adequately capture the 913 

variability between clusters. Cell type composition changes for treatment conditions were 914 

visualized with the R package “ComplexHeatmap” and are included in Table S13. 915 

 916 

Fedratinib and CC90009 – Hierarchy Classification 917 

Using normalized leukemic cell type composition data for 46 patient samples used for in vivo 918 

Fedratinib or CC-90009 treatment, dimensionality reduction was performed and clustering was 919 

assigned using the Leiden algorithm with a resolution of 0.7, yielding three clusters: Primitive, 920 

Mature, Intermediate/GMP. Owing to an under-representation of engrafting samples with 921 

GMP hierarchies, we did not attempt to divide the Intermediate/GMP cluster into 922 

Intermediate and GMP groups. Samples were subsequently projected on the reference map 923 

for visualization and confirmation of cluster assignments. 924 

 925 
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Fedratinib and CC90009 – Response Classification 926 

Patient samples were classified into response categories by comparing the relative reduction 927 

(RR) of AML engraftment in drug-treated mice versus vehicle-treated mice, as per Galkin et al 928 
97. RR was calculated as: ((mean % engraftment in control mice) - (mean % engraftment in drug 929 

treated mice)) / (mean % engraftment in control mice). Patient sample s were classified as 930 

Responders if RR in the injected femur (Right Femur, RF) was >50%, classified as Partial 931 

Responders if we observed 20 to 50% RR in the RF or >20% in the non-injected femur (Bone 932 

Marrow, BM) only, and classified as Non-Responders if there was no statistically significant 933 

difference in engraftment levels between control- and drug-treated mice, or if RR was <20% in 934 

both RF and BM. 935 

  936 

Fedratinib and CC90009 – Classification of NPM1 Status in Primary Samples 937 

Patient samples from Princess Margaret Hospital (PMH) in Toronto were classified as NPM1-938 

mutant (NPM1-mut) or NPM1-wildtype (NPM1-wt) based on clinical sequencing results. For 939 

patient samples where targeted sequencing data was unavailable, we predicted NPM1 status 940 

using gene expression-based classifiers. First, log(TPM+1) normalized RNA-sequencing data 941 

from PMH samples and the three reference cohorts (TCGA, BEAT-AML, Leucegene) were 942 

combined and batch corrected using ComBat 88. Two groups of classifiers were trained: the 943 

first group comprised of Logistic Regression (LR), Support Vector Machine (SVM), and Random 944 

Forest (RF) classifiers trained on NPM1 status from the reference cohorts and the second 945 

group comprised of LR, SVM, and RF classifiers trained on NPM1 status from 46 PMH samples 946 

for whom NPM1 genotype was available (out of 88 total samples).  947 

 948 

To select features for the first group of classifiers, differential expression (DE) analysis was 949 

performed using DESeq2 98 with AML cohort and patient hierarchy cluster as covariates, and 950 

DE genes were selected using an absolute log2 fold change threshold > 1 and FDR < 0.01. The 951 

top 50 NPM1-mut and top 50 NPM1-wt genes were then used to train LR, SVM, and RF 952 

classifiers. Hyperparameter tuning was performed through a grid search with 10-fold cross-953 

validation for each model. The final group-1 classifiers were subsequently evaluated on the 46 954 
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PMH samples with NPM1 genotype information. To further account for batch effects between 955 

reference cohorts and the PMH cohort, optimal classification thresholds were identified based 956 

on the ROC curves for the 46 genotyped PMH samples, yielding final classification accuracies of 957 

0.87 (LR), 0.89 (SVC), and 0.93 (RF). These thresholds were subsequently used for prediction of 958 

the remaining 42 PMH samples for whom NPM1 status was missing. 959 

  960 

The second group of classifiers was trained directly on the 46 PMH samples for whom NPM1 961 

genotype was available. Given that a subset of the PMH samples did not have raw counts 962 

available for DESeq2, we identified NPM1 mutation-specific marker genes through a Wilcoxon 963 

rank-sum test with the log(TPM+1) normalized expression. Genes with significant differences 964 

in expression between NPM1-mut and NPM1-wt PMH samples at FDR < 0.05 were 965 

subsequently filtered to keep genes that were also significantly differentially expressed in the 966 

reference cohorts at an absolute log2 fold change threshold > 1 and FDR < 0.01, leaving 63 967 

high confidence genes. LR, SVM, and RF classifiers were subsequently trained from these 63 968 

genes and hyperparameter tuning was performed through a grid search with 10-fold cross-969 

validation for each model. Classification performance was evaluated by 10-fold nested cross-970 

validation with 100 repeats, yielding median accuracies of 0.98 (LR), 1.00 (SVC), and 0.98 (RF). 971 

These models were subsequently used to predict NPM1 status in the remaining 42 PMH 972 

samples for whom NPM1 status was missing.  973 

 974 

For the final prediction of NPM1 status, the classifier with the lowest accuracy (group-1 LR) 975 

was excluded and the five remaining classifiers voted on the NPM1 genotype, with the 976 

majority vote being assigned as the final prediction. Together, this resulted in high-confidence 977 

predictions of NPM1 genotypes for patients in whom targeted sequencing data was not 978 

available. Imputed NPM1 genotypes for each of these patients are presented in Figure 6 979 

alongside NPM1 genotypes obtained from sequencing. 980 

  981 

 982 

 983 
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Fedratinib and CC90009 Combination Treatment 984 

NOD.SCID mice were bred and housed in the University Health Network (UHN) animal care 985 

facility and all animal experiments were performed in accordance with guidelines approved by 986 

the UHN animal care committee. Ten-week-old NOD.SCID mice were irradiated (225cGy) and 987 

pretreated with anti-CD122 antibody (200ug per mouse) 24 hours prior to transplantation. 988 

Viably frozen mononucleated cells from AML patients were thawed, counted, and 989 

intrafemorally injected at the dose of 5 million cells per mouse. At day 21 post-transplantation, 990 

treatment of either CC-90009 or Fedratinib alone with vehicle, or in combination, was initiated 991 

twice a day for 2 weeks. CC-90009 was given by intraperitoneal (IP) injections at the dose of 992 

2.5mg/kg and Fedratinib was dissolved in 0.5% methylcellulose and orally gavaged at 60mg/kg. 993 

Following treatment, levels of AML engraftment were assessed to determine the efficacy of 994 

drug treatment against the disease in the mice. Cells collected from the injected right femur, 995 

non-injected bone marrow of each individual mouse were stained with human-specific 996 

antibodies and evaluated by flow cytometry. Antibodies used for assessment of human AML 997 

engraftment include: CD45-APC, CD33-PE-Cy5, CD19-V450, CD34-APC-Cy7, CD15-FITC (BD), 998 

CD33-PE-Cy5, and CD14-PE (Beckman Coulter).  999 
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Figure Legends: 1064 

Figure 1. Functional significance of LSPC populations from single-cell RNA-seq 1065 

A) Diffusion map of 4163 AML Leukemia Stem and Progenitor Cells (LSPCs) using feature 1066 

weights from Self-Assembling Manifolds (SAM). B) Transcription Factor regulon activity in each 1067 

leukemic cell type, inferred through PySCENIC. Transcription factor regulon enrichment scores 1068 

were scaled and the top five regulons for each cell type are depicted. C) Schematic of 1069 

deconvolution approach using reference signatures from single-cell RNA-seq populations. D) 1070 

Experimental design for evaluating the relationship between AML cell states from scRNA-seq 1071 

and functional LSC potential. 111 sorted AML fractions previously evaluated for functional LSC 1072 

activity through xenotransplantation in Ng et al (2016) were subject to RNA sequencing and 1073 

gene expression deconvolution. The relative abundance of each leukemic population was 1074 

subsequently compared across LSC+ (engrafting) and LSC- (non-engrafting) fractions. E) 1075 

Enrichment of leukemic cell types across LSC+ (engrafting) and LSC- (non-engrafting) AML 1076 

fractions. Relative abundances of each cell type were compared through a Wilcoxon rank-sum 1077 

test. F) Model performance (AUC) of Random Forest classifiers predicting functional LSC 1078 

activity in sorted AML fractions. Classifiers were trained and evaluated through 5-fold nested 1079 

cross-validation with 1000 repeats, as outlined in Figure S3A. Three types of classifiers were 1080 

trained, each using different features to predict LSC activity: (1) using the CD34/CD38 1081 

immunophenotype of each fraction, (2) using the relative abundance of Quiescent LSPC alone, 1082 

and (3) using the relative abundance of all leukemic populations spanning the full AML 1083 

hierarchy. AUC values are paired by iteration, wherein sample order and cross-validation splits 1084 

were identical for each classifier. Comparisons were performed using a Wilcoxon signed-rank 1085 

test. G) Relative abundance of Quiescent LSPC in patient samples with low, medium, and high 1086 

bulk LSC frequencies, as defined by Pabst et al (2016). Comparisons were performed using a 1087 

Wilcoxon rank-sum test. 1088 

 1089 

 1090 

  1091 
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Figure 2. AML hierarchy composition correlates with genomics and survival 1092 

A) Principal component analysis of 864 AML patients from the TCGA, BEAT-AML, and 1093 

Leucegene cohorts based on the composition of their cellular hierarchy. B) Relative abundance 1094 

of each leukemic cell type in each patient. Each bar represents an individual patient and the 1095 

distribution of colors throughout each bar represents the distribution of leukemic cell 1096 

populations within their leukemic hierarchy. C) Depictions of the cellular organization of 1097 

Primitive, GMP, and Mature hierarchies. D) Density plots depicting cytogenetic groups along 1098 

the Primitive vs GMP axis (PC1). Cytogenetic alterations are coloured by prognostic 1099 

significance, wherein red indicates adverse prognosis while green indicates favorable 1100 

prognosis. E) Density plots depicting common driver mutation combinations along the 1101 

Primitive vs Mature axis (PC2). F) Overall survival outcomes of AML hierarchy subtypes in the 1102 

TCGA and BEAT-AML cohorts. Differences in survival across all subtypes were evaluated 1103 

through a log-rank test. G) Univariate and pairwise hazard ratios for each AML hierarchy 1104 

subtype across three patient cohorts. Univariate hazard ratios for each subtype and pairwise 1105 

hazard ratios between subtypes are depicted alongside their 95% confidence intervals. 1106 

Pairwise comparisons are colored based on the reference subtype, which is always positioned 1107 

lower than the query cluster. Combined hazard ratios, obtained by pooling individual patient 1108 

outcomes and performing Cox proportional hazards regression stratified by cohort, are also 1109 

depicted by black squares alongside the hazard ratios derived from each individual cohort. 1110 

  1111 

Figure 3. Transitions in hierarchy composition from diagnosis to relapse 1112 

A) Transitions in hierarchy composition from diagnosis to relapse in 44 paired AML samples 1113 

from four independent cohorts. B) Alluvial diagram depicting hierarchy subtype distribution 1114 

from diagnosis to relapse. The width of each band reflects the number of patients transitioning 1115 

from one subtype to another from diagnosis to relapse. C) Changes in leukemic cell type 1116 

abundance from diagnosis to relapse, including changes in total LSPC abundance. Significance 1117 

was evaluated using a Wilcoxon signed-rank test. D) Single-cell RNA-seq of diagnostic AML 1118 

from van Galen et al (2019) compared to relapsed AML samples from Abbas et al (2021), 1119 

classified, downsampled to 10,000 cells, and projected onto a common embedding using 1120 
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scArches with scANVI. E) Benchmarking the significance and magnitude of changes in hierarchy 1121 

composition from diagnosis to relapse against 12,441 signatures from MSigDB. The rank and 1122 

significance of enrichment for each leukemic cell population as well as 12,441 signatures from 1123 

diagnosis to relapse are shown, with the Y-axis depicting the absolute value of the 1124 

log10(pvalue) in the direction of the enrichment (positive for relapse, negative for diagnosis). 1125 

P-values were derived from paired t-tests; non-parametric Wilcoxon signed-rank tests were 1126 

also performed to ensure that results were comparable. F) Patients with NPM1 + FLT3-ITD 1127 

(recurrently acquired at relapse) G) Patients with NPM1c + NRAS, and NPM1c + FLT3-TKD 1128 

(recurrently lost at relapse). NRAS and FLT3-TKD mutations were filtered at a 0.25 VAF cutoff. 1129 

H-I) Changes in clonal and cell type composition from diagnosis to relapse. These are depicted 1130 

for a patient with concordant shifts in both clonal composition and cell type composition (H) as 1131 

well as for a patient with dramatic changes in cell type composition with minimal detected 1132 

changes in clonal composition with respect to known driver mutations (I). 1133 

  1134 

Figure 4. AML Hierarchy composition as a determinant of targeted therapy response 1135 

A) Correlation between cell type abundance and ex vivo drug sensitivity (-AUC) across 202 1136 

diagnostic patient samples in BEAT-AML, wherein color and size represent the direction and 1137 

magnitude of the correlation. Only correlations with p < 0.05 are depicted, those with q < 0.05 1138 

are marked with an asterisk. B) Volcano plot of correlations between the Primitive vs Mature 1139 

axis (PC2) and ex vivo drug sensitivities from the BEAT-AML screen, identifying drugs that 1140 

preferentially target either primitive or mature AML blasts. C) LinClass-7 (trained on PC2) 1141 

captures the Primitive vs Mature axis. D) Correlation of LinClass-7 identifies drugs targeting 1142 

either primitive blasts or mature blasts from BEAT-AML (Tyner et al, 2018; n = 202) as well as a 1143 

separate primary AML drug screen (Lee et al, 2019; n = 30). E) Venetoclax and Azacytidine 1144 

target primitive AML blasts (LinClass-7 high), MEK and mTOR inhibition targets mature AML 1145 

blasts (LinClass-7 low). F) Subgroup analysis of the ALFA-0701 trial, evaluating Gemtuzumab-1146 

Ozogamicin (GO), a drug-conjugated antibody targeting CD33 in AML. Event-free survival and 1147 

relapse-free survival of control patients (Daunorubicin + Cytarabine) compared to GO patients 1148 

(Daunorubicin + Cytarabine + GO), stratified by LinClass-7 score into LinClass-7 High (Primitive 1149 
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> Mature) and LinClass-7 Low (Mature > Primitive). G) Lack of correlation between LinClass-7 1150 

and surface CD33 levels, evaluated across 23 Toronto PMH AML patients for which both RNA-1151 

seq and clinical flow information was available. H) CD33 surface marker phenotype of TCGA 1152 

patients, demonstrating very high rates of CD33 positivity among AML patients regardless of 1153 

hierarchy composition. 1154 

 1155 

Figure 5. Changes in cellular composition following drug treatment 1156 

A) Experimental design of re-analyzed preclinical studies from the literature. Only studies of 1157 

human AML with RNA-seq available before and after drug treatment were included in order to 1158 

quantify changes in cell type composition. B) Schematic of re-analysis approach. Changes in 1159 

the abundance of each cell type were quantified in each treatment condition, and treatments 1160 

with significant changes in at least one cell type were used as input for dimensionality 1161 

reduction with UMAP and subsequent clustering. C) Clustering of drug treatments on the basis 1162 

of changes in cell type composition. D) Heatmap depicting cell type composition changes of 1163 

drug treatments within each cluster. Purple denotes decreased abundance following 1164 

treatment and green denotes increased abundance following treatment. E) Examples of the 1165 

drug treatments targeting specific processes and the changes induced in the abundance of 1166 

each cell type following treatment. F) Cellular composition changes following in vitro Selinexor 1167 

treatment in NPM1 mutant AMLs from Brunelli et al, 2018. G) Mean expression of XPO1 (the 1168 

target of Selinexor) and associated genes and pathways in AML blast populations from scRNA-1169 

seq. Nuclear export pathway geneset was obtained from GO Biological Pathways. H) 1170 

Correlation between cell type abundance and ex vivo drug sensitivity in BEAT-AML. 1171 

Correlations with p < 0.05 are marked with an asterisk. I) LSPC-cycle abundance in primary 1172 

AML samples treated with DMSO control or Selinexor in vitro (Treatment and RNA-seq from 1173 

Brunelli et al, 2018). J) LSPC-cycle abundance in primary AML samples treated with DMSO 1174 

control or Selinexor in vivo (Treatment from Etchin et al, 2015; RNA-seq from this study).  1175 

 1176 

 1177 

 1178 
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Figure 6. Hierarchy-based stratification predicts in vivo response to Fedratinib and CC-90009 1179 

A) Experimental design for evaluating the relationship between AML hierarchy composition 1180 

and drug response in patient-derived xenograft (PDX) models. Response data 658 drug or 1181 

vehicle-treated treated mice from prior studies (Surka et al, 2021; Chen et al, 2016) were 1182 

integrated with hierarchy composition data from the primary patient samples, and 1183 

heterogeneous in vivo drug responses were re-analyzed in the context of patient hierarchy 1184 

subtypes. B) Projected hierarchy composition of primary patient samples prior to in vivo drug 1185 

treatment, categorized by subtype. C) Mean expression of JAK2, the target of Fedratinib, in 1186 

AML blast populations from scRNA-seq. D) Differences in cell type abundance between full 1187 

responders and partial / non-responders to Fedratinib. Red depicts enrichment in full 1188 

responders and blue depicts enrichment in partial / non-responders. Significant differences (p 1189 

< 0.05) are marked with an asterisk. E) Xenograft responses to Fedratinib, stratified by 1190 

leukemic hierarchy subtype. Bar plot depicts the mean difference in engraftment in Fedratinib 1191 

treated mice compared to Vehicle treated mice. Cell type composition of each patient prior to 1192 

treatment is depicted below each bar. F) Mean expression of GSPT1, the target of CC-90009, in 1193 

AML blast populations from scRNA-seq. G) Differences in cell type abundance between 1194 

responders and partial / non-responders to CC-90009, represented as the -log(pvalue). Red 1195 

depicts enrichment in responders and blue depicts enrichment in partial / non-responders. 1196 

Significant differences (p < 0.05) are marked with an asterisk. H) Xenograft responses to CC-1197 

90009, stratified by leukemic hierarchy subtype. Bar plot depicts the mean difference in 1198 

engraftment in CC-90009 treated mice compared to Vehicle treated mice. Cell type 1199 

composition of each patient prior to treatment is depicted below each bar. I) Response to 1200 

Fedratinib + CC-90009 combination treatment. Patients are stratified by hierarchy and mean 1201 

engraftment levels are depicted for each treatment condition. J) in vivo efficacy of Fedratinib, 1202 

CC-90009, and Combination treatment of xenografted AML patient samples, stratified by 1203 

patient hierarchy subtype. Significance was evaluated using a chi-squared test.  1204 
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Figure 1. Functional significance of LSPC populations from single-cell RNA-seq
A) Diffusion map of 4163 AML Leukemia Stem and Progenitor Cells (LSPCs) using feature weights from Self-Assembling Manifolds (SAM). B) 
Transcription Factor regulon activity in each leukemic cell type, inferred through PySCENIC. Transcription factor regulon enrichment scores 

were scaled and the top five regulons for each cell type are depicted. C) Schematic of deconvolution approach using reference signatures 

from single cell RNA-seq populations. D) Experimental design for evaluating the relationship between AML cell states from scRNA-seq and 

functional LSC potential. 111 sorted AML fractions previously evaluated for functional LSC activity through xenotransplantation in Ng et al 
(2016) were subject to RNA sequencing and gene expression deconvolution. The relative abundance of each leukemic population was 
subsequently compared across LSC+ (engrafting) and LSC- (non-engrafting) fractions. E) Enrichment of leukemic cell types across LSC+ 

(engrafting) and LSC- (non-engrafting) AML fractions. Relative abundances of each cell type were compared through a Wilcoxon rank-sum 

test. F) Model performance (AUC) of Random Forest classifiers predicting functional LSC activity in sorted AML fractions. Classifiers were 

trained and evaluated through 5-fold nested cross-validation with 1000 repeats, as outlined in Figure S3A. Three types of classifiers were 

trained, each using different features to predict LSC activity: (1) using the CD34/CD38 immunophenotype of each fraction, (2) using the 
relative abundance of Quiescent LSPC alone, and (3) using the relative abundance of all leukemic populations spanning the full AML 

hierarchy. AUC values are paired by iteration, wherein sample order and cross-validation splits were identical for each classifier. 

Comparisons were performed using a Wilcoxon signed-rank test. G) Relative abundance of Quiescent LSPC in patient samples with low, 

medium, and high bulk LSC frequencies, as defined by Pabst et al (2016). Comparisons were performed using a Wilcoxon rank-sum test.
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Primitive Mature

Figure 2. AML hierarchy composition correlates with genomics and survival
A) Principal component analysis of 864 AML patients from the TCGA, BEAT-AML, and Leucegene cohorts based on the composition of their 
cellular hierarchy. B) Relative abundance of each leukemic cell type in each patient. Each bar represents an individual patient and the 

distribution of colors throughout each bar represents the distribution of leukemic cell populations within their leukemic hierarchy. C) 
Depictions of the cellular organization of Primitive, GMP, and Mature hierarchies. D) Density plots depicting cytogenetic groups along the 

Primitive vs GMP axis (PC1). Cytogenetic alterations are coloured by prognostic significance, wherein red indicates adverse prognosis while 

green indicates favorable prognosis. E) Density plots depicting common driver mutation combinations along the Primitive vs Mature axis 
(PC2). F) Overall survival outcomes of AML hierarchy subtypes in the TCGA and BEAT-AML cohorts. Differences in survival across all 

subtypes were evaluated through a log-rank test. G) Univariate and pairwise hazard ratios for each AML hierarchy subtype across three 
patient cohorts. Univariate hazard ratios for each subtype and pairwise hazard ratios between subtypes are depicted alongside their 95% 

confidence intervals. Pairwise comparisons are colored based on the reference subtype, which is always positioned lower than the query 

cluster. Combined hazard ratios, obtained by pooling individual patient outcomes and performing cox proportional hazards regression 
stratified by cohort, are also depicted by black squares alongside the hazard ratios derived from each individual cohort. 
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Figure 3. Transitions in hierarchy composition from diagnosis to relapse
A) Transitions in hierarchy composition from diagnosis to relapse in 44 paired AML samples from four independent cohorts. B) Alluvial 
diagram depicting distribution of hierarchy subtype from diagnosis to relapse. The width of each band reflects the number of patients 

transitioning from one subtype to another from diagnosis to relapse. C) Changes in leukemic cell type abundance from diagnosis to 

relapse, including changes in total LSPC abundance. Significance was evaluated using a Wilcoxon signed-rank test. D) Single-cell RNA-seq of 

diagnostic AML from van Galen et al (2019) compared to relapsed AML samples from Abbas et al (2021), classified, down sampled to 

10,000 cells, and projected onto a common embedding using scArches with scANVI. E) Benchmarking the significance and magnitude of 
changes in hierarchy composition from diagnosis to relapse against 12,441 signatures from MSigDB. The rank and significance of 

enrichment for each leukemic cell population as well as 12,441 signatures from diagnosis to relapse are shown, with the Y-axis depicting 

the absolute value of the log10(pvalue) in the direction of the enrichment (positive for relapse, negative for diagnosis). P-values were 

derived from paired t-tests; non-parametric wilcoxon signed-rank tests were also performed to ensure that results were comparable. F)
Patients with NPM1 + FLT3-ITD (recurrently acquired at relapse) G) Patients with NPM1c + NRAS, and NPM1c + FLT3-TKD (recurrently lost 
at relapse). NRAS and FLT3-TKD mutations were filtered at a 0.25 VAF cutoff. H-I) Changes in clonal and cell-type composition from 

diagnosis to relapse. These are depicted for a patient with concordant shifts in both clonal composition and cell-type composition (H) as 

well as for a patient with dramatic changes in cell-type composition with minimal detected changes in clonal composition with respect to 

known driver mutations (I). 
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Figure 4. AML Hierarchy composition as a determinant of targeted therapy response
A) Correlation between cell type abundance and ex vivo drug sensitivity (-AUC) across 202 diagnostic patient samples in BEAT-AML, wherein 
color and size represent the direction and magnitude of the correlation. Only correlations with p < 0.05 are depicted, those with q < 0.05 

are marked with an asterisk. B) Volcano plot of correlations between the Primitive vs Mature axis (PC2) and ex vivo drug sensitivities from 
the BEAT-AML screen, identifying drugs that preferentially target either primitive or mature AML blasts. C) LinClass-7 (trained on PC2) 

captures the Primitive vs Mature axis. D) Correlation of LinClass-7 identifies drugs targeting either primitive blasts or mature blasts from 

BEAT-AML (Tyner et al, 2018; n = 202) as well as a separate primary AML drug screen (Lee et al, 2019; n = 30). E) Venetoclax and Azacytidine 
target primitive AML blasts (LinClass-7 high), MEK and MTOR inhibition targets mature AML blasts (LinClass-7 low). F) Subgroup analysis of 

the ALFA-0701 trial, evaluating Gemtuzumab-Ozogamicin (GO), a drug-conjugated antibody targeting CD33 in AML. Event-free survival and 
relapse-free survival of control patients (Daunorubicin + Cytarabine) compared to GO patients (Daunorubicin + Cytarabine + GO), stratified 

by LinClass-7 score into LinClass-7 High (Primitive > Mature) and LinClass-7 Low (Mature > Primitive). G) Lack of correlation between 

LinClass-7 and surface CD33 levels, evaluated across 23 Toronto PMH AML patients for which both RNA-seq and clinical flow information 
was available. H) CD33 surface marker phenotype of TCGA patients, demonstrating very high rates of CD33 positivity among AML patients 

regardless of hierarchy composition.
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Figure 5. Changes in cellular composition following drug treatment
A) Experimental design of re-analyzed preclinical studies from the literature. Only studies of human AML with RNA-seq available before 
and after drug treatment were included in order to quantify changes in cell type composition. B) Schematic of re-analysis approach. 

Changes in the abundance of each cell type were quantified in each treatment condition, and treatments with significant changes in at 
least one cell type were used as input for dimensionality reduction with UMAP and subsequent clustering. C) Clustering of drug treatments 

on the basis of changes in cell type composition. D) Heatmap depicting cell type composition changes of drug treatments within each 

cluster. Purple denotes decreased abundance following treatment and green denotes increased abundance following treatment. E)
Examples of the drug treatments targeting specific processes and the changes induced in the abundance of each cell type following 

treatment. F) Cellular composition changes following in vitro Selinexor treatment in NPM1 mutant AMLs from Brunelli et al, 2018. G) Mean 
expression of XPO1 (the target of Selinexor) and associated genes and pathways in AML blast populations from scRNA-seq. Nuclear export 

pathway geneset was obtained from GO Biological Pathways. H) Correlation between cell type abundance and ex vivo drug sensitivity in 

BEAT-AML. Correlations with p < 0.05 are marked with an asterisk. I) LSPC-cycle abundance in primary AML samples treated with DMSO 
control or Selinexor in vitro (Treatment and RNA-seq from Brunelli et al, 2018). J) LSPC-cycle abundance in primary AML samples treated 

with DMSO control or Selinexor in vivo (Treatment from Etchin et al, 2015; RNA-seq from this study). 
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Figure 6. Hierarchy-based stratification predicts in vivo response to Fedratinib and CC-90009
A) Experimental design for evaluating the relationship between AML hierarchy composition and drug response in patient-derived xenograft 

(PDX) models. Response data 658 drug or vehicle-treated treated mice from prior studies (Surka et al, 2021; Chen et al, 2016) were 

integrated with hierarchy composition data from the primary patient samples, and heterogeneous in vivo drug response were re-analyzed 

in the context of patient hierarchy subtypes. B) Projected hierarchy composition of primary patient samples prior to in vivo drug treatment, 

categorized by subtype. C) Mean expression of JAK2, the target of Fedratinib, in AML blast populations from scRNA-seq. D) Differences in 

cell-type abundance between full responders and partial / non-responders to Fedratinib. Red depicts enrichment in full responders and 

blue depicts enrichment in partial / non-responders. Significant differences (p < 0.05) are marked with an asterisk. E) Xenograft responses 

to Fedratinib, stratified by leukemic hierarchy subtype. Bar plot depicts the mean difference in engraftment in Fedratinib treated mice 

compared to Vehicle treated mice. Cell-type composition of each patient prior to treatment is depicted below each bar. F) Mean 

expression of GSPT1, the target of CC-90009, in AML blast populations from scRNA-seq. G) Differences in cell-type abundance between 

responders and partial / non-responders to CC-90009, represented as the -log(pvalue). Red depicts enrichment in responders and blue 

depicts enrichment in partial / non-responders. Significant differences (p < 0.05) are marked with an asterisk. H) Xenograft responses to 

CC-90009, stratified by leukemic hierarchy subtype. Bar plot depicts the mean difference in engraftment in CC-90009 treated mice

compared to Vehicle treated mice. Cell-type composition of each patient prior to treatment is depicted below each bar. I) Response to 

Fedratinib + CC-90009 combination treatment. Patients are stratified by hierarchy and mean engraftment levels are depicted for each 

treatment condition. J) in vivo efficacy of Fedratinib, CC-90009, and Combination treatment of xenografted AML patient samples, stratified 

by patient hierarchy subtype. Significance was evaluated using a chi-squared test. 
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Supplemental Note 1: Benchmarking of deconvolution approaches 

  

Comparison of Deconvolution Approaches 

To identify the deconvolution approach best suited for our application, we compared four 

distinct methods designed for deconvolution of bulk gene expression from scRNA-seq data, 

including CIBERSORTx 1, DWLS 2, Bisque 3, and MuSiC 4. Each deconvolution approach leveraged 

single-cell reference profiles from seven leukemic populations (LSPC Quiescent, LSPC Primed, 

LSPC Cycle, GMP-like, ProMono-like, Mono-like, cDC-like) and seven immune populations (T, B, 

NK, CTL, Plasma, cDC, Monocyte). In addition to direct deconvolution with MuSIC (MuSIC - 

direct), we employed a second approach for MuSIC (MuSIC - recursive) wherein the abundance 

of four groups of cell types LSPC (LSPC Quiescent, LSPC Primed, LSPC Cycle), GMP (GMP-like), 

Mature (ProMono, Mono, cDC-like), and Immune (T, B, NK, CTL, Plasma, cDC, Monocyte) were 

first estimated, and the abundance of each individual cell type was subsequently calculated 

within each group. 

 

We assessed the performance of these deconvolution approaches with regards to three 

different parameters: 1) accuracy of deconvolution based on parallel bulk RNA-seq and scRNA-

seq data collected from the same patients, 2) agreement between deconvolution and flow 

cytometry for populations with well-defined surface markers, and 3) preservation of 

associations between cell types including in the setting of collinearity. 

 

Benchmarking with paired bulk RNA-seq and scRNA-seq data 

Benchmarking analyses for scRNA-seq based deconvolution approaches typically rely on 

deconvolution of pseudo-bulk data, wherein scRNA-seq count data is pooled on a per-patient 

basis to simulate bulk RNA-seq. However, these artificial transcriptome profiles do not account 

for the important technical differences between UMI-based scRNA-seq and read-based bulk 

RNA-seq. Given this, we sought to perform benchmarking analysis using parallel scRNA-seq and 

bulk RNA-seq from the same patients. To do so, we performed RNA-seq on four diagnostic AML 

samples which were originally profiled through scRNA-seq with concurrent genotyping in the 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.476266doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.476266
http://creativecommons.org/licenses/by-nd/4.0/


van Galen 2019 study 5. These four patients for which parallel RNA-seq was performed were 

each representative of one of the four distinct hierarchy subtypes identified in our study 

(AML916 = Primitive, AML707B = GMP, AML921A = Intermediate, AML556 = Mature). 

 

We first sought to understand the discrepancy between deconvoluted cell type abundance and 

true cell type abundance from scRNA-seq. Comparing CIBERSORTx (S-mode Batch Correction or 

No Batch Correction) and other deconvolution approaches (DWLS, Bisque, MuSIC direct, MuSIC 

recursive), we found that CIBERSORTx with S-mode batch correction had the lowest mean 

discrepancy between predicted and observed cell type abundances (CIBERSORTx S-mode: 4.5%; 

DWLS: 5.8%; MuSIC recursive: 6.7%; CIBERSORTx no batch correction: 6.8%; MuSIC direct: 7.2%; 

Bisque: 8.4%). Across all methods, CIBERSORTx with S-mode batch correction had the fewest 

high-discrepancy outliers with 73% of the cell type estimates falling within a 5% discrepancy 

from scRNA-seq (DWLS: 70%; CIBERSORTx no batch correction: 68%; MuSIC recursive: 64%; 

Bisque: 61%; MuSIC direct: 55%).  

 

We next generated correlation metrics for each patient wherein the relative abundance of all 

14 cell types (7 leukemic and 7 immune) from deconvolution were compared against scRNA-

seq. Comparing the correlations between deconvolution and scRNA-seq directly for each 

patient, we found that CIBERSORTx with S-mode batch correction achieves the best overall 

performance with high correlations within AML916 (Primitive, r = 0.97), AML707B (GMP, r = 

0.94), AML921A (Intermediate, r = 0.89). DWLS also achieved high performance (AML916: r = 

0.91; AML707B: r = 0.94; AML921A: r = 0.85), while Bisque and MuSIC performed poorly at this 

task (Fig. S2A). Importantly, correlations within AML556 (Mature) were low for all 

deconvolution approaches, with the ProMono-like fraction from AML556 frequently being 

misattributed to other populations (e.g. cDC-like) by deconvolution algorithms (Fig. S2A). Re-

analysis of the scRNA-seq data revealed that AML556 ProMono-like cells carried distinct 

transcriptomic features compared to ProMono-like cells from other patients (Fig. S2B). We 

hypothesized that this may be underlying the comparatively poor performance of 

deconvolution using consensus cell type signatures (including ProMono-like) in this particular 
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sample. Re-running CIBERSORTx with cell type signatures specifically derived from AML556 

effectively recovers the deconvolution performance in this sample, achieving a correlation of r = 

0.86 (p = 0.003) (Fig. S2C). 

 

In summary, deconvolution from leukemic scRNA-seq populations was highly accurate in AML, 

particularly for CIBERSORTx (most estimates of cell type abundance were within 5% of the true 

value), but in select patients this performance may drop if the transcriptional profiles of their 

leukemic populations diverge too much from the consensus (e.g. ProMono-like in AML556).  

 

Benchmarking with paired bulk RNA-seq and clinical flow cytometry data 

As a final benchmark, we considered the association between cell type abundances reported 

from deconvolution with the surface markers from flow cytometry. While primitive AML cells 

are known to be inconsistent with regards to immunophenotype, we reasoned that mature 

myeloid cell types may be more consistent in their presentation of cell surface markers despite 

their malignant nature. Of the AML patients from PMH for which RNA-seq was performed on 

their peripheral blood sample, 7 had clinical flow data available from their peripheral blood (PB) 

sample and 16 had clinical flow data available from their bone marrow (BM) aspirate. We 

started by comparing the total abundance of mature myeloid AML populations (ProMono-like, 

Mono-like, and cDC-like) with positivity levels of the pan-myeloid surface marker CD64. Based 

on deconvolution from CIBERSORTx with S-mode batch correction, we observed a near-perfect 

correlation of r = 0.98 between PB deconvolution and PB flow (Fig. S2D), and a high correlation 

of r = 0.90 between PB deconvolution and BM flow, despite variability in composition across 

tissue sources. We next compared the estimated abundance of the Mono-like population from 

deconvolution against levels of the monocyte-specific surface marker CD14, observing a 

correlation of r = 0.99 between PB deconvolution and PB flow (Fig. S2E) and r = 0.80 between 

PB deconvolution and BM flow. Other deconvolution methods (DWLS, MuSiC, and Bisque) were 

also accurate, albeit with comparatively lower correlations and variable slopes (Fig. S2D-E).  
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Effect of cell type collinearity on deconvolution results 

We also sought to assess how each deconvolution approach preserves relationships between 

each malignant cell type, particularly in the setting of collinearity (for example, with regards to 

Quiescent LSPC and Primed LSPC). To evaluate this, we captured the correlation between each 

cell type based on scRNA-seq data across the 12 patients with a dendrogram (Fig. S2F), and 

compared this with dendrograms generated from deconvolution of TCGA patients 6 to 

understand how well each deconvolution approach preserved the relationship of these cell 

types when applied to bulk RNA-seq data (Fig. S2G). From the scRNA-seq data, the LSPC 

populations (particularly Quiescent LSPC and Primed LSPC) were internally correlated while the 

mature myeloid populations (ProMono-like, Mono-like, cDC-like) were internally correlated. In 

the context of bulk RNA-seq, deconvolution with DWLS and Bisque resulted in the LSPC 

populations being anti-correlated and MuSIC in “Direct mode” reported abundances of multiple 

cell populations as zero across nearly all patients, despite variable abundances of closely 

associated populations. We found that CIBERSORTx with S-mode batch correction performed 

best in preserving these cell-cell associations best in the context of bulk RNA-seq. 

 

Taken together, these new benchmarking analyses led to our selection of CIBERSORTx with 

batch correction as the preferred gene expression deconvolution approach for bulk AML 

samples from scRNA-seq reference data. 

 

Deconvolution with leukemic vs healthy reference populations 

An alternative approach to deconvolution using leukemic scRNA-seq populations is to 

deconvolute bulk AML samples using signatures from healthy hematopoietic populations 

spanning stem, progenitor, and mature. We also deconvoluted bulk AML samples from three 

cohorts (TCGA, BEAT-AML, and Leucegene) using scRNA-seq signatures from healthy bone 

marrow sequenced in van Galen et al 5, comprised of the following cell types: HSC, Prog, GMP, 

ProMono, Mono, cDC, T, B, NK, CTL, Plasma. To compare deconvolution confidence between 

the leukemic and healthy reference signatures, we used the correlation metric from 
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CIBERSORTx which represents the agreement between the original bulk transcriptome and the 

‘synthetic’ transcriptome reconstructed by combining the reference signatures of each cell type 

at their estimated frequencies. In each cohort, deconvolution with leukemic reference 

signatures yielded consistently higher confidence compared to deconvolution with healthy 

reference signatures (Fig. S2H). 

  

Deconvolution of microarray data 

Last, we evaluated the performance of deconvolution applied to bulk transcriptomes profiled 

through microarray compared to bulk RNA-seq. Within the TCGA cohort, a majority of patients 

were profiled with both microarray and RNA-seq, and deconvolution was applied to both the 

microarray and RNA-seq profiles from these patients. Based on the correlation between the 

original and reconstructed transcriptomes for each patient, deconvolution from RNA-seq 

achieved high performance (median correlation = 0.95) while deconvolution from Robust 

Multichip Average (RMA) 7 normalized microarray data performed poorly (median correlation = 

0.58). However, we found that an alternative single-sample normalization approach (SCAN) 8 

attenuated the loss in deconvolution performance for microarray profiles (median correlation = 

0.80) (Fig. S2I). 

  

The differences in deconvolution performance between microarray normalizations were 

reflected at the level of individual cell types, particularly primitive LSPCs. Estimated cell type 

abundances were reasonably correlated between RNA-seq and RMA-normalized microarray for 

Quiescent LSPC (r = 0.68) and Cycling LSPC (r = 0.77) but correlation of Primed LSPC abundance 

was poor (r = 0.41), with most samples reported as having 0% Primed LSPC abundance from 

RMA normalized microarray profiles despite variable abundance levels from RNA-seq profiles. 

In contrast, SCAN normalized microarray profiles did not display this cell type-specific drop out 

phenomenon, remaining reasonably correlated with RNA-seq estimates for all three LSPC 

populations (Quiescent LSPC, r = 0.65; Primed LSPC, r = 0.75; Cycling LSPC, r = 0.82) (Fig. S2J). 

Thus, in the limited cases where deconvolution of microarray profiles was performed, SCAN 

normalized data was prioritized over RMA-normalization. 
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Supplemental Note 2: Comparison of new and prior LSPC annotations for discerning biological 

phenotypes 

  

Having established that the new LSPC annotations (Quiescent LSPC, Primed LSPC, and Cycling 

LSPC; derived from direct clustering of primitive AML cells with feature re-weighting through 

SAM) were better resolved at the single-cell level and led to higher classification accuracy than 

prior HSC-like and Prog-like annotations from van Galen et al 5 (labeled by a random forest 

classifier trained on normal CD34+CD38- HSCs and CD34+CD38+ Progenitors from healthy bone 

marrow), we asked whether deconvolution with the new LSPC annotation was also more 

informative for discerning biologically and clinically relevant phenotypes than deconvolution 

with the prior HSC/Prog annotation. 

 

To evaluate this, we first asked whether deconvolution using our new cell type annotations 

(Quiescent, Primed, and Cycling LSPC) can better discriminate between sorted AML fractions 

with and without functional LSC activity than deconvolution using the prior HSC/Prog 

annotations. To evaluate this, we built logistic regression and random forest classifiers to 

predict LSC activity using either the relative abundance of HSC-like and Prog-like populations 

(prior annotation) or of LSPC populations (new annotation) and measured their performance 

based on model AUC. To obtain high confidence estimates of model performance, we 

employed nested cross-validation and repeated this process for 1000 iterations, shuffling the 

data between each iteration (Fig. S3A). 

  

The logistic regression (LR) classifier and random forest (RF) classifiers trained on HSC-like and 

Prog-like abundance achieved median AUCs of 0.74 and 0.81 in predicting LSC activity, 

respectively. Classifiers trained on LSPC abundance achieved median AUCs of 0.77 (LR) and 0.86 

(RF), representing a significant increase in performance (p < 2e-16, Fig. S3B). This improvement 

may in part be reflected by cell type-specific associations with functional engraftment potential. 

Through deconvolution of sorted AML fractions with the prior HSC/Prog annotation, both HSC-
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like and Prog-like abundance were associated with engraftment potential (p = 6e-5 and p = 

0.0026, respectively). In contrast, deconvolution with the new LSPC annotation revealed that 

while Quiescent LSPC and Primed LSPC were both associated with functional LSC activity (p = 

8e-6 and p = 0.00062, respectively) while Cycling LSPC were not (p = 0.74). This suggests that 

long-term engraftment potential is restricted to a subset of primitive AML cells, a conclusion 

that would not be captured by deconvolution with the original HSC/Prog populations. This is 

likely due to some Quiescent LSPC and Primed LSPC being labeled as Prog-like in the original 

annotation, potentially contributing to the enrichment of Prog-like cells in LSC+ fractions.  

  

We next compared the prognostic value of the new LSPC populations against the prior HSC-like 

and Prog-like populations. To evaluate this, both LASSO and Ridge regression models were 

trained on overall survival in TCGA 6 and BEAT-AML 9 using either the relative abundance of the 

three LSPC populations or the two HSC-like and Prog-like populations, stratified by cohort. In 

these cases, nested cross-validation was performed with 5 inner folds to identify the lambda 

values with the lowest partial likelihood deviance, and 5 outer folds to estimate model 

performance based on the mean likelihood ratio test (LRT) statistic. This nested cross-validation 

process was repeated for a total of 1000 iterations with shuffling of the data prior to each 

repeat, and the distribution of LRT statistics was compared between the LSPC annotation and 

HSC/Prog annotation for both L1 (LASSO) and L2 (Ridge) penalties. Prognostic models trained 

from LSPC abundance consistently and significantly outperformed models trained from HSC-like 

and Prog-like abundance in the case of both LASSO and Ridge regression (Fig. S3C). This may 

also be explained by cell type-specific associations with survival: while both HSC-like and Prog-

like populations were associated with survival based on stratified cox regression on the TCGA 

and BEAT-AML cohorts (HSC-like: HR = 3.02, p = 0.028; Prog-like: HR = 2.22, p = 0.025), 

deconvolution with LSPC populations reveals that associations with survival are restricted to a 

subset of primitive AML cells. In this context, Quiescent LSPC and Cycling LSPC were 

significantly associated with survival (Quiescent LSPC: HR = 3.17, p = 0.028; Cycling LSPC: HR = 

8.34, p = 0.00035), while Primed LSPC were not (HR = 1.14, p. = 0.849). 
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To benchmark across additional clinical phenotypes, we compared classifiers trained on 

HSC/Prog or LSPC abundance in discriminating between diagnostic and relapsed patient 

samples 10–13 (Fig. S3D) as well as between Adverse cytogenetic status and Intermediate / 

Favorable cytogenetics among patients in the TCGA (Fig. S3E) or BEAT-AML (Fig. S3F) cohorts. In 

each of these cases, LR and RF classifiers trained on LSPC abundance performed consistently 

and significantly better in discriminating between these phenotypes than classifiers trained on 

HSC/Prog abundance. These results are also summarized in Table S2.  

  

Thus, the new LSPC populations capture biological differences specific to primitive AML cells 

that are not captured in normal hematopoiesis, and the AML-specific biology reflected in these 

new LSPC populations improves our ability to resolve important biologically and clinically 

relevant phenotypes compared to the prior HSC-like and Prog-like annotation. 
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Figure S1. Features of leukemia stem and progenitor cell populations from scRNA-seq
A) UMAP and PCA embeddings of AML LSPCs after feature weight derivation with the SAM algorithm. B-F) Diffusion map of re-annotated 
LSPC populations using feature weights from Self-Assembling Manifolds (SAM), depicting: B) patient identity, C) prior cell type annotation, 
D) enrichment of LSC-specific genes from Ng et al (2016) and Shannon Diversity Index, E) scaled CDK6 expression and enrichment of the 
E2F3 regulon, and F) enrichment of E2F1 and CTCF regulons. G) Cell cycle status of Quiescent, Primed, and Cycling LSPCs. H) Enrichment of 
inflammatory signaling pathways and regulons in LSPCs. I) Transcription factor regulon activity, inferred through pySCENIC, specific to each 
LSPC. J) Normalized confusion matrix depicting classifier accuracy of prior and new cell type annotations for primitive AML cells. The
classifier was built using SingleCellNet, an Ensemble classifier for scRNA-seq data trained from the top pairs of genes unique to each cell 
type. 800 cells from each cell type were used for training and 250 were used for validation.

Classifier using Prior Annotations Classifier using New Annotations

Multi-class Accuracy: 0.729 Multi-class Accuracy: 0.934
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Figure S2. Benchmarking gene expression deconvolution approaches for AML
A) Relative abundance of 14 cell types from scRNA-seq compared against inferred abundance from deconvolution of matched bulk RNA-
seq data, analyzed by patient. Gene expression deconvolution using CIBERSORTx (S-mode or No Batch Correction), DWLS, Bisque, or MuSIC
(direct or recursive) were benchmarked across these samples. B) scRNA-seq analyses of ProMono-like cells from AML556 compared to 
other patients, demonstrating distinct transcriptomic profiles. C) Deconvolution performance of CIBERSORTx for AML556 using patient-
specific reference signatures. D-E) Correlation between deconvolution and clinical flow cytometry for 7 AML patients from the Toronto 
PMH cohort. Deconvolution using scRNA-seq reference profiles was performed on RNA-seq data and matched with clinical flow cytometry 
data, both obtained from peripheral blood. D) Correlation between total mature myeloid abundance (ProMono-like + Mono-like + cDC-like) 
from deconvolution with pan-myeloid surface marker CD64. E) Correlation between mono-like abundance from deconvolution with 
monocyte-specific surface marker CD14. F) Dendrogram depicting associations between leukemic cell-types across scRNA-seq samples 
from 12 diagnostic AML patients. G) Observed associations between leukemic cell types from deconvolution analysis of 173 patients within 
the TCGA cohort, depicted for each deconvolution tool. MuSIC Direct was excluded due to multiple cell types having a detection rate of 
zero in bulk RNA-seq. Correlation between mono-like abundance from deconvolution with monocyte-specific surface marker CD14.
H-I) Correlation between observed transcriptomic profiles and synthetic transcriptomic profiles reconstructed based on predicted cell-type 
abundance from CIBERSORTx. Higher correlation suggests greater deconvolution confidence. Comparisons were performed through 
Wilcoxon signed-rank tests. These correlations are depicted for H) Deconvolution of AML cohorts using reference signatures from leukemic 
populations compared to deconvolution with reference signatures from matched healthy populations, and I) RNA-seq compared to 
microarray from matched TCGA patient samples. Prior to deconvolution, microarray data was normalized through either chip-based (RMA) 
or single-sample (SCAN) normalization approaches. J) Correlation of estimated LSPC abundances between RNA-seq deconvolution and 
Microarray deconvolution, with either RMA or SCAN normalization, among matched patient samples from the TCGA cohort. 

H I J

ED Mature Myeloid (Deconvolution) vs CD64 (Flow Cytometry) Mono-like (Deconvolution) vs CD14 (Flow Cytometry)

A

F scRNA-seq CIBERSORTx DWLS Bisque MuSIC

Deconvolution with patient-specific signatures

ProMono-like: AML556 vs Other AMLCell-type abundance estimates: bulk RNA-seq deconvolution vs scRNA-seq B

C

G

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.476266doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.476266
http://creativecommons.org/licenses/by-nd/4.0/


Functional LSC Activity

Overall Survival

TrainingValidation

TrainingValidation

Nested Cross Validation

Hyperparameter Tuning

Mean Model 
Performance

AUC1

AUC2

AUC3

AUC4

AUC5

Shuffle data.
Repeat for
1000 iterations

Best Model
Parameters

A

Figure S3. Comparison of new and prior leukemia stem and progenitor cell annotations for discerning biological phenotypes
A) Workflow to compare prior (HSC-like and Prog-like) annotations and new (Quiescent LSPC, Primed LSPC, and Cycling LSPC) annotations 
with regard to their utility in predicting important biological phenotypes in AML. This was measured through the performance of logistic 
regression and random forest models trained on the relative abundance of these populations. Models were trained using nested cross-
validation wherein samples were subject to a 5-fold split, with each split being used to train a unique model with hyperparameter 
optimization performed by grid search with 5-fold cross validation, and the model AUC for each split was averaged to estimate classifier 
performance. This nested cross-validation process was repeated over 1000 iterations, with samples being shuffled between each iteration, 
to generate a distribution of AUC metrics. B-F) Model performance for predicting key biological and clinical phenotypes from either HSC-
like and Prog-like abundance or Quiescent, Primed, and Cycling LSPC abundance. Performance metrics are paired by iteration, wherein 
sample order and cross validation splits were identical for each model. B) Prediction of functional LSC activity measured by leukemic 
engraftment from 72 LSC+ fractions and 38 LSC- fractions. C) Prediction of overall survival in the TCGA and BEAT-AML cohorts, evaluated 
through the likelihood ratio statistic from stratified cox regression. In this case LASSO and Ridge regression models were built rather than 
Logistic Regression and Random Forest classifiers, and these models were trained on splits of the TCGA and BEAT-AML cohorts, stratified by 
cohort. The repeated nested cross validation approach remained the same. D) Prediction of diagnosis vs relapse status from 44 relapsed 
and 44 diagnostic samples. E) Prediction of Adverse cytogenetic status in TCGA from 37 patients with Adverse cytogenetics and 131 
patients with Intermediate or Favorable cytogenetics. F) Prediction of Adverse cytogenetic status in BEAT-AML from 53 patients with 
Adverse cytogenetics and 175 patients with Intermediate or Favorable cytogenetics.
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Figure S4. Biological and genomic correlates of AML hierarchies
A) Correlation between deconvoluted abundance of leukemic and immune cell types with clinical features in TCGA. Only correlations with 
p < 0.05 are depicted, and correlations with FDR < 0.05 are noted with an asterisk. B) FAB categories from TCGA, BEAT-AML, and 
Leucegene, projected by cellular hierarchy. C) Density plots depicting all mutation combinations along the Primitive vs Mature axis (PC2). 
D) Density plots depicting all mutation combinations along the Primitive vs GMP axis (PC1). E) Density plots depicting all cytogenetic 
alterations along the Primitive vs Mature axis (PC2). F-G) Impact of DNMT3A R882 mutations compared to other DNMT3A mutations on 
leukemic hierarchy organization along the Primitive vs Mature axis (PC2). F) Boxplot comparing PC2 of DNMT3A R883 mutant AML 
compared to other DNMT3A mutations within the context of each mutational combination. G) Density plot depicting PC2 of mutational 
combinations with either DNMT3A R882 or other DNMT3A mutations. 
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Figure S5. The Primitive vs GMP axis governs AML prognosis
A) 495 adult AML patients from GSE6891, projected by hierarchy composition and classified based on the reference cohorts. B) 
Overall survival outcomes across hierarchy subtypes in GSE6891. C) 287 pediatric AML patients from the TARGET-AML cohort, 
projected by hierarchy composition. D) Overall survival outcomes across hierarchy subtypes in pediatric AML. E) Correlation between 
a prognostic score trained by regularized cox regression using leukemic cell type abundances with PC1 within the TCGA and BEAT-
AML cohorts. F) Overall survival outcomes of patients stratified by PC1 within the TCGA, BEAT-AML, and GSE6891 cohorts. G)
Association between cell-type abundance and induction failure in four independent studies spanning Pediatric AML (Bolouri et al, 
2018) and Adult AML (Chiu et al, 2019; Herold et al, 2018; Tyner et al, 2018). Green denotes higher relative abundance in induction 
failure patients compare to patients who achieved complete remission, while purple denotes lower relative abundance in induction
failure patients. Differences with a significance of p < 0.10 are noted with an asterisk. H) Correlation between four prognostic AML 
scores with the relative abundance of each leukemic cell type across the TCGA, BEAT-AML, and Leucegene cohorts. I) Relative 
abundance of Quiescent LSPC and GMP-like blasts among AML patients split into high and low risk categories by four prognostic 
scores. Significance was evaluated through Wilcoxon rank-sum tests. J) GSEA analysis with gene signatures derived from the 
Primitive vs GMP axis in normal and malignant hematopoiesis, performed on genes ranked by univariate associations with overall 
survival within the TCGA and BEAT-AML cohorts. 
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Figure S6. Changes in hierarchy composition at AML relapse
A) Hierarchy composition of 44 matched diagnosis and relapse pairs. Top row depicts hierarchy composition at diagnosis while the bottom 
row depicts hierarchy composition at relapse. Samples from the same patient are aligned vertically. B) Relative abundance of each 
leukemic cell population from scRNA-seq of diagnostic AMLs (van Galen et al, 2019) compared with relapsed AMLs (Abbas et al, 2021). 
Statistical significance was evaluated through Wilcoxon rank-sum tests. C-F) Evolution of paired diagnosis and relapse AML samples 
depicted through shifts in cellular hierarchies, evolution of genetic subclones, and changes in cell-type composition. C) Patient 303642, in 
which significant genetic evolution is accompanied by a dramatic shift in cellular hierarchy from GMP to primitive. D) Patient 1019, in 
which replacement of an NRAS and IDH2 positive clone with an IDH1 positive clone is associated with a modest shift in cellular hierarchy. 
E) Patient 4, in which a loss of monocytic blasts is accompanied by a modest decrease in the the size of an NRAS bearing clone. F) Patient 
150288, in which extensive linear genetic evolution is not associated with any appreciable change in cell type composition. 
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Figure S7. The Primitive vs Mature axis governs ex vivo drug sensitivity
A) Volcano plot depicting associations between Primitive vs GMP axis (PC1) and ex vivo drug sensitivity from the BEAT-AML (Tyner et 
al 2018) drug screen, and between PC1 and PC2 and ex vivo drug sensitivity from Lee et al (2018). B) Unsupervised clustering of 30 
primary AML patients from Lee et al (2018) on the basis of ex vivo sensitivity to 159 drugs. Drug sensitivity values (scaled negative 
AUC) are depicted for the top drugs corresponding to each patient cluster. C) GSEA analysis with gene signatures derived from the 
Primitive vs Mature axis in normal and malignant hematopoiesis, performed on genes ranked by differential expression between the
two drug response clusters from (B). D) Correlations of AML gene expression scores with ex vivo drug sensitivities from two 
drug screens (Tyner et al 2018, Lee et al 2018) performed on primary AML samples. E) Ex vivo drug sensitivity to Venetoclax
and Azacytidine of primary patient samples grouped into “High” or “Low” based on median splits of patient scores for each 
AML gene expression score. Significance was evaluated through Wilcoxon rank-sum tests.
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Figure S8. The Primitive vs Mature axis predicts clinical benefit from Gemtuzumab-Ozogamicin in both adult and pediatric AML
A) Subgroup analysis of ALFA-0701 after stratification by PC2-34. Event-free and Relapse-free survival curves comparing 
chemotherapy only (Control arm) against chemotherapy + Gemtuzumab-Ozogamicin (GO arm). B) Lack of correlation between 
CD33 levels by flow cytometry and Primitive vs Mature axis (PC2 and PC2-34 score), evaluated across 23 Toronto PMH AML 
patients for which both RNA-seq and clinical flow information was available. C) Stratification of ALFA-0701 patients on the 
basis of both LSC17 and LinClass-7. Event-free and Relapse-free survival for the LinClass-7 Low (Mature > Primitive) and LSC17 
low subgroup is depicted as this was the only group to derive significant benefit from GO treatment. D) Stratification of ALFA-
0701 patients on the basis of both LSC17 and PC2-34. Event-free and Relapse-free survival for the PC2-34 High (Mature > 
Primitive) and LSC17 low subgroup is depicted as this was the only group to derive significant benefit from GO treatment. E-F) 
Subgroup analysis of pediatric AML patients treated with GO or Chemo, stratified by the PC2 Primitive vs Mature axis and 
related gene expression scores. Outcomes are depicted for both overall survival (E) and event-free survival (F).
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Figure S9. LinClass-7 as a companion score for LSC17
A) LSC17 and LinClass-7 scores of 864 AML patients by RNA-seq. Patients belonging to each hierarchy subtypes (Primitive, 
Intermediate, GMP, Mature) are also depicted. (B) LSC17 and LinClass-7 scores measured through a 17-gene NanoString assay. 
Normalized NanoString-derived LSC17 and LinClass-7 scores from 306 Toronto PMH patients from Ng et al (2016) are depicted.



Figure S10. Literature screen to identify treatment-induced changes in cellular composition
A) ComplexHeatmap depicting changes in cell type composition following drug treatment from preclinical studies in human AML. Green 
depicts an increase in cell type abundance and purple depicts an decrease in cell type abundance. Each treatment is labeled with its 
target(s) in parentheses. Changes in PC2 (Primitive vs Mature) are depicted above the heatmap, and candidate differentiation drugs 
(increase in PC2 with uncorrected p-value < 0.05) are denoted with an asterisk. AML sample type and key genomic characteristics are also 
depicted for each treatment condition. B) UMAP coordinates for each drug treatment condition depicting changes to each cell type, as well 
as tissue source (Primary vs Cell Line), MLL translocation status, and drug target. 
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