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Abstract

Stochastic geometry models for wireless communication networks have recently attracted
much attention. This is because the performance of such networks critically depends on
the spatial configuration of wireless nodes and the irregularity of the node configuration
in a real network can be captured by a spatial point process. However, most analysis of
such stochastic geometry models for wireless networks assumes, owing to its tractability,
that the wireless nodes are deployed according to homogeneous Poisson point processes.
This means that the wireless nodes are located independently of each other and their
spatial correlation is ignored. In this work we propose a stochastic geometry model of
cellular networks such that the wireless base stations are deployed according to the Ginibre
point process. The Ginibre point process is one of the determinantal point processes and
accounts for the repulsion between the base stations. For the proposed model, we derive
a computable representation for the coverage probability—the probability that the signal-
to-interference-plus-noise ratio (SINR) for a mobile user achieves a target threshold. To
capture its qualitative property, we further investigate the asymptotics of the coverage
probability as the SINR threshold becomes large in a special case. We also present the
results of some numerical experiments.
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1. Introduction

Recently, stochastic geometry models for wireless communication networks have attracted
much attention (see, e.g. the introductory articles by Andrews et al. [2] and Haenggi et al.
[12], and the monographs by Baccelli and Błaszczyszyn [3], [4], and Haenggi [11]). This
is because the performance of such networks critically depends on the spatial configuration
of wireless nodes, and the irregularity of the node configuration in a real network can be
captured by a spatial point process. For cellular networks, some works have also proposed and
analyzed the stochastic geometry models, where the wireless base stations and mobile users
are located randomly on the Euclidean plane, and various performance indices, such as the
coverage probability—the probability that the signal-to-interference-plus-noise ratio (SINR)
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for a mobile user achieves a target threshold—have been evaluated (see, e.g. [1], [6], [7], [8],
[14], [16], and [17], which we briefly review in the next section).

Most analysis of such stochastic geometry models for wireless networks, however, assumes
that the wireless nodes are deployed according to homogeneous Poisson point processes though
the modeling is possible using general spatial point processes. While this assumption makes the
models tractable, it means that the wireless nodes are located independently of each other and
their spatial correlation is ignored. Since real networks can be designed such that two wireless
nodes are not too close, models which account for repulsion between the nodes are required.
Only a few works have so far allowed for non-Poisson configurated wireless nodes, except
for some works dealing with the classical grid models for cellular networks. For example,
Błaszczyszyn and Yogeshwaran [5] studied the connectivity of sub-Poisson SINR graphs. For
general motion-invariant (stationary and isotropic) point process models, Giacomelli et al. [10]
studied the asymptotics of the coverage probability as the density of interfering nodes goes
to 0, and Ganti et al. [9] developed a series expansion for functions of interference using the
factorial moment expansion.

In this work we propose a stochastic geometry model of cellular networks such that the
wireless base stations are deployed according to the Ginibre point process. The Ginibre point
process is one of the determinantal point processes, which are used to model fermions in
quantum mechanics and account for the repulsion between particles, and has been well studied
since it has several desirable features (see, e.g. [13], [18], and [19]). For the proposed model,
we derive a computable representation for the coverage probability. Furthermore, to capture
its qualitative property, we investigate the asymptotics of coverage probability as the SINR
threshold becomes large in the interference-limited (noise-free) case. Though we here focus
on the coverage probability in a basic model, it would be possible to extend our results to more
practical problems developed in [6], [7], [8], [14], and [17].

The rest of the paper is organized as follows. In the next section we describe our stochastic
geometry model of cellular networks by following [1] and present a brief review on some
related works with Poisson configured base stations. We also derive a basic formula for the
coverage probability, which plays a key role in our analysis. In Section 3 we define the Ginibre
point process and give some of its useful properties, as well as defining a scaled version of
that process. The computable integral representation for the coverage probability is derived
in Section 4. The effect of random frequency reuse is also considered there. In Section 5 we
investigate the asymptotic property of the coverage probability as the SINR threshold becomes
large in the interference-limited case. The results of numerical experiments are presented in
Section 6. Finally, concluding remarks are given in Section 7.

2. Stochastic geometry model of cellular networks

In this section we describe a stochastic geometry model of cellular wireless networks, which
mainly follows [1] though some notation is altered for convenience. Let � denote a point
process on R

2, and let Xi, i ∈ N, denote the points of �, where the order of X1, X2, . . . is
arbitrary. The point process � represents the configuration of wireless base stations and we
refer to the base station located at Xi as station i. We assume that � is simple and locally finite
almost surely (a.s.), and also motion invariant. The transmission power of each base station is
constant at 1/μ, μ > 0. Each mobile user is associated with the closest base station, that is, the
mobile users in the Voronoi cell of a base station are associated with that station. Thus, owing to
the motion invariance of the point process and the homogeneity of base stations, we can focus
on a typical user located at the origin o = (0, 0). We assume Rayleigh fading for the random
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effect of fading from each base station to a user (shadowing is ignored), so that the transmission
power multiplied by the fading effect from station i to the typical user, denoted by Fi , is an
exponential random variable with mean 1/μ, where Fi, i ∈ N, are mutually independent and
also independent of the point process �. The path-loss function � representing the attenuation
of signals with distance is given by �(r) = αr−2β, r > 0, for some α > 0 and β > 1.

In the setting described above, the SINR of a typical user from the associated base station is
then expressed as

SINRo = FBo�(|XBo |)
Wo + Io(Bo)

, (1)

where Bo denotes the index of the base station associated with the typical user and Wo denotes a
random variable representing the thermal noise at the origin. We assume that Wo is independent
of �F = {(Xi, Fi)}i∈N and its Laplace transform is known to be computable. Also, Io(i), i ∈ N,
in (1) denotes the cumulative interference from all the base stations except station i received
by the typical user and is given by

Io(i) =
∑

j∈N\{i}
Fj�(|Xj |). (2)

We consider the coverage probability as the performance index, which is defined as p(θ, β) =
P(SINRo > θ); the probability that the SINR of a typical user achieves a predefined threshold
θ > 0 (the coverage probability is, of course, not only a function of θ and β but also of μ, α,
and so on, but, as we will see later, the effective parameters are θ and β).

Some works have so far considered similar cellular network models in which the base
stations are deployed according to homogeneous Poisson point processes. Andrews et al. [1]
dealt with more general fading distributions, and evaluated the coverage probability and the
mean achievable rate, defined as τ(β) = E ln(1 + SINRo). Decreusefond et al. [6] proposed
a model that incorporated time-invariant shadowing and time-variant fading, and evaluated the
handover probability under the assumption that the associated base stations are altered when
the SINR from the current associated station continues to be lower than the threshold. Most
recent works have extended the model to that with multitiers of heterogeneous base stations,
which generates the macrocells, picocells, or femtocells (see, e.g. [7], [8], [14], [16], and [17]).

In this paper we adopt the Ginibre point process (or its scaled version) as the point process �

representing the configuration of base stations. Samples of Poisson and Ginibre point processes
with the same intensity are presented in Figure 1, where we can see that the points of the Ginibre
process are distributed more evenly. Also, comparing it with Figure 2 of [1], we find that the
point configuration of the Ginibre process is relatively closer to a real base station deployment
by a major service provider in a relatively flat urban area than that of a Poisson process. Before
proceeding to the description of the Ginibre point process, we give a basic formula for the
coverage probability, which plays a key role in our analysis.

Lemma 1. For the cellular network model described above, where the base stations are
deployed according to a general stationary point process on R

2, the coverage probability
for a typical user satisfies

p(θ, β) = E

(
LW

(
μθ |XB0 |2β

α

) ∏
j∈N\{B0}

(
1 + θ

∣∣∣∣XB0

Xj

∣∣∣∣2β)−1)
, (3)

where LW denotes the Laplace transform of Wo.
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Figure 1: Samples of the Poisson point process (left) and Ginibre point process (right).

Proof. We have, from (1),

P(SINRo > θ) =
∞∑
i=1

P(SINRo > θ, Bo = i)

=
∞∑
i=1

P

(
Fi >

θ(Wo + Io(i))

�(|Xi |) , |Xi | ≤ |Xj |, j ∈ N

)
. (4)

SinceFi is exponentially distributed with mean 1/μ, andWo and Io(i) are mutually independent,
conditioning yields

P

(
Fi >

θ(Wo + Io(i))

�(|Xi |) , |Xi | ≤ |Xj |, j ∈ N

)
= E(e−μθWo/�(|Xi |)e−μθIo(i)/�(|Xi |)1{|Xi |≤|Xj |, j∈N})

= E

(
LW

(
μθ

�(|Xi |)
)

E(e−μθIo(i)/�(|Xi |) | �)1{|Xi |≤|Xj |, j∈N}
)

, (5)

where 1A denotes the indicator of the set A. Furthermore, since Fj , j ∈ N, are mutually
independent, applying (2) yields

E(e−μθIo(i)/�(|Xi |) | �) =
∏

j∈N\{i}
E(e−μθFj �(|Xj |)/�(|Xi |) | �)

=
∏

j∈N\{i}

(
1 + θ

∣∣∣∣ Xi

Xj

∣∣∣∣2β)−1

, (6)

where the Laplace transform LF (s) = μ/(μ + s) of Fj and �(r) = αr−2β, r > 0, are applied
in the second equality. Hence, applying (5) and (6) to (4), we obtain (3).
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3. Ginibre point process

In this section we give the definition of the Ginibre point process and make a brief review
of its useful properties (see, e.g. [13], [18], and [19] for details). The Ginibre point process
is one of the determinantal point processes on the complex plane C defined as follows. Let
� denote a simple point process on C, and let ρn : C

n → R+, n ∈ N, denote its correlation
functions (joint intensities) with respect to some Radon measure ν on C; that is, for any disjoint
C1, C2, . . . , Cr ∈ B(C) and nonnegative integers k1, k2, . . . , kr such that

∑r
i=1 ki = n,

E

(
�(C1)!

(�(C1)! − k1)!
�(C2)!

(�(C2) − k2)! · · · �(Cr)!
(�(Cr) − kr)!

)

=
∫

C
k1
1 ×C

k2
2 ×···×C

kr
r

ρn(z1, z2, . . . , zn)ν(dz1)ν(dz2) · · · ν(dzn),

where �(C) represents the number of points of � that fall in C ∈ B(C). The point process � is
said to be a determinantal point process with kernel K : C

2 → C with respect to ν if ρn, n ∈ N,
satisfy

ρn(z1, z2, . . . , zn) = det(K(zi, zj ))1≤i,j≤n, z1, z2, . . . , zn ∈ C, n ∈ N. (7)

Determinantal point processes are negatively correlated in the sense that

ρn+m(z1, z2, . . . , zn+m) ≤ ρn(z1, z2, . . . , zn)ρm(zn+1, zn+2, . . . , zn+m)

for z1, z2, . . . , zn+m ∈ C.
A determinantal point process � is said to be a Ginibre point process when the ker-

nel K in (7) is given by K(z, w) = ezw̄, z, w ∈ C, with respect to the Gaussian measure
ν(dz) = π−1e−|z|2m(dz), where w̄ denotes the complex conjugate of w ∈ C and m denotes the
Lebesgue measure on C. This choice of pair of K and ν is not unique. Indeed, the de-
terminantal point process associated with the kernel K̃(z, w) = π−1e−(|z|2+|w|2)/2ezw̄ with
respect to ν̃(dz) = m(dz) coincides with the Ginibre point process. From this expression, it is
easy to see that ρ̃n(z1, z2, . . . , zn) = det(K̃(zi, zj ))1≤i,j≤n is motion invariant, or, equivalently,
that the Ginibre point process is motion invariant. One of its useful properties comes from the
radial symmetry and is described as follows (see, e.g. [13, Section 4.7] or [15]).

Proposition 1. ([15].) Let Xi, i ∈ N, denote the points of the Ginibre point process. Then the
set {|Xi |}i∈N has the same distribution as {√Yi}i∈N, where Yi, i ∈ N, are mutually independent
and each Yi follows the ith Erlang distribution with unit-rate parameter, denoted by Yi ∼
Gamma(i, 1), i ∈ N.

By the definition of the Ginibre point process, we see that E�(C) = π−1m(C) for C ∈
B(C), that is, the (first-order) intensity is equal to π−1 with respect to the Lebesgue measure.
To make it possible to control the intensity, we consider a scaled version �c of the Ginibre point
process with scaling parameter c > 0 and kernel Kc(z, w) = eczw̄ with respect to the reference
measure νc(dz) = (c/π)e−c|z|2m(dz), or, equivalently, K̃c(z, w) = (c/π)e−c(|z|2+|w|2)/2eczw̄

with respect to the Lebesgue measure. The scaled Ginibre point process �c has intensity c/π

and, for the points Xi, i ∈ N, of �c, the set {|Xi |}i∈N has the same distribution as {√Yi}i∈N,
where Yi, i ∈ N, are mutually independent and each Yi follows the ith Erlang distribution with
rate parameter c, denoted by Yi ∼ Gamma(i, c), i ∈ N. Note here that Yi ∼ Gamma(i, c) has
mean EYi = i/c, i ∈ N.
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4. Performance analysis

We adopt the scaled Ginibre point process �c given in Section 3 as the configuration of the
base stations in the cellular network model described in Section 2, where a point z = x+iy ∈ C

is identified as (x, y) ∈ R
2.

4.1. Integral representation of the coverage probability

Theorem 1. Consider the cellular network model described in Section 2 with the base stations
deployed according to the scaled Ginibre point process �c defined in Section 3. Then the
coverage probability of a typical user is given by

p(θ, β) =
∫ ∞

0
e−vLW

(
μθ

α

(
v

c

)β)
M(v, θ, β)S(v, θ, β) dv, (8)

where

M(v, θ, β) =
∞∏

j=0

1

j !
∫ ∞

v

sj e−s

1 + θ(v/s)β
ds, (9)

S(v, θ, β) =
∞∑
i=0

vi

(∫ ∞

v

sie−s

1 + θ(v/s)β
ds

)−1

. (10)

Note that the coverage probability p(θ, β) given in (8)–(10) is not of closed form but
computable by numerical integration given the Laplace transform LW of Wo.

Proof. Let Yj ∼ Gamma(j, c), j ∈ N, be mutually independent. For the points Xi, i ∈ N,
of the point process �c, {|Xi |}i∈N has the same distribution as {√Yi}i∈N by the arguments in the
preceding section. Thus, from (3) and the conditional independence of 1{Yj ≥Yi }, j ∈ N \ {i},
given Yi , we have

p(θ, β) =
∞∑
i=1

E

(
LW

(
μθYi

β

α

) ∏
j∈N\{i}

(
1 + θ

(
Yi

Yj

)β)−1

1{Yj ≥Yi }
)

=
∞∑
i=1

∫ ∞

0

ciui−1e−cu

(i − 1)! LW

(
μθuβ

α

)

×
∏

j∈N\{i}

∫ ∞

u

cj yj−1e−cy

(j − 1)!
(

1 + θ

(
u

y

)β)−1

dy du, (11)

where the second equality follows from applying the density functions of Yj , j ∈ N. Hence,
by the change of variables s = cy and v = cu, we obtain (8) after some manipulations.

Remark 1. We see from (8) that in the interference-limited (or noise-free) case (Wo ≡ 0) the
coverage probability p(θ, β) does not depend on the parameters c, α, and μ. This is also the
case when the base stations are deployed according to a homogeneous Poisson point process.
In this case, following Theorem 2 of [1] (or applying the density function of the distance to the
nearest point from the origin and then the Laplace functional of the Poisson point process to
(3)), the coverage probability is given by

p(Poi)(θ, β) =
∫ ∞

0
LW

(
μθ

α

(
v

πλ

)β)
exp{−v(1 + ρ(θ, β))} dv, (12)
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where λ > 0 denotes the intensity of the Poisson point process and

ρ(θ, β) = θ1/β

β

∫ ∞

1/θ

u−1+1/β

u + 1
du. (13)

Remark 2. As in [1], it is not difficult to generalize the distribution of fading from the interfering
base stations while retaining the Rayleigh fading from the associated base station. Provided
that |Xi | ≤ |Xj | for all j ∈ N, we assume that Fi is still exponentially distributed with mean
μ−1, but Fj = μ−1Gj for j ∈ N \ {i}, where the Gj are mutually independent and identically
distributed nonnegative random variables with unit mean, independent of �c = {Xi}i∈N, Fi ,
and W0. Let LG denote the Laplace transform of Gj . Then the coverage probability is obtained
similarly as in Theorem 1, replacing (1+θ(v/s)β)−1 in (9) and (10) with LG(θ(v/s)β). In this
case, the coverage probability is still computable whenever LG is (e.g. the probability density
function of Gj is available).

Remark 3. Besides the coverage probability, Andrews et al. [1] evaluated the mean achievable
rate τ(β) = E ln(1+SINRo) of a typical user, which follows from Shannon’s channel capacity
B log2(1 + SNR) with bandwidth B and signal-to-noise ratio SNR. We also derive the
numerically computable representation for the mean achievable rate from Theorem 1. Since
ln(1 + SINRo) > 0 a.s.,

τ(β) =
∫ ∞

0
P(ln(1 + SINRo) > t) dt

=
∫ ∞

0
P(SINRo > et − 1) dt

=
∫ ∞

0
p(et − 1, β) dt.

4.2. Frequency reuse

Frequency reuse is one of the ways to increase the coverage probability by reducing the
number of interfering base stations. In this section we follow [1] and consider the per-cell
random frequency reuse technique. The reuse factor δ ∈ N determines the number of different
frequency bands used by the network, that is, the total frequency band is divided into δ subbands
and each base station chooses one of the δ subbands uniformly at random for the use of its own
cell. The interfering base stations for the typical user are then those using the same frequency
band as his/her associated base station. Let Ri denote the frequency band of station i, where
Ri, i ∈ N, are mutually independent and distributed as P(Ri = k) = 1/δ, k = 1, 2, . . . , δ,
and also independent of �F = {(Xi, Fi)}i∈N and Wo. Noting that the noise power scales with
the bandwidth, the SINR of a typical user from the associated base station is given by

SINR(FR)
o = FBo�(|XBo |)

Wo/δ + I
(FR)
o (Bo)

,

where

I (FR)
o (i) =

∑
j∈N\{i}

Fj�(|Xj |)1{Rj =Ri }.

The coverage probability then reduces to p(θ, β, δ) = P(SINR(FR)
o > θ).
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Corollary 1. Consider the cellular network model given in Theorem 1, but apply the random
frequency reuse such that δ frequency bands are randomly allocated to the cells. The coverage
probability is then given by

p(θ, β, δ) =
∫ ∞

0
e−vLW

(
μθ

δα

(
v

c

)β)
M(v, θ, β, δ)S(v, θ, β, δ) dv, (14)

where

M(v, θ, β, δ) =
∞∏

j=0

1

j !
∫ ∞

v

sj e−s

{
1 − 1

δ

[
1 −

(
1 + θ

(
v

s

)β)−1]}
ds,

S(v, θ, β, δ) =
∞∑
i=0

vi

(∫ ∞

v

sie−s

{
1 − 1

δ

[
1 −

(
1 + θ

(
v

s

)β)−1]}
ds

)−1

.

Proof. In this case, (3) reduces to

p(θ, β, δ) = E

(
LW

(
μθ |XB0 |2β

δα

) ∏
j∈N\{B0}

{
1 − 1

δ

[
1 −

(
1 + θ

∣∣∣∣XB0

Xj

∣∣∣∣2β)−1]})
. (15)

The remaining procedures are the same as those for Theorem 1 and are omitted.

Remark 4. It is clear from (15) that the coverage probability is increasing in δ = 1, 2, . . . for
the general stationary point process � = {Xi}i∈N. Since the frequency band is divided by δ,
the mean achievable rate considered in Remark 3 is now given by

τ(β, δ) = 1

δ
E ln(1 + SINR(FR)

o ) = 1

δ

∫ ∞

0
p(et − 1, β, δ) dt.

5. Asymptotic analysis in the interference-limited case

By Theorem 1 we can evaluate the coverage probability p(θ, β) numerically. In this section
we investigate its asymptotic property as θ → ∞ in the interference-limited case.

Theorem 2. In the interference-limited case, the coverage probability derived in Theorem 1
satisfies

lim
θ→∞ θ1/βp(θ, β) =

∫ ∞

0

∞∏
j=1

1

j !
∫ ∞

0

yj e−y

1 + (v/y)β
dy dv. (16)

The right-hand side of (16) is finite and also computable by numerical integration.

Proof. In the interference-limited case, since LW(·) = 1, (11) reduces to

p(θ, β) =
∞∑
i=1

E

( ∏
j∈N\{i}

(
1 + θ

(
Yi

Yj

)β)−1

1{Yj ≥Yi }
)

= E

( ∞∏
j=2

(
1 + θ

(
Y1

Yj

)β)−1

1{Yj ≥Y1}
)

+
∞∑
i=2

E

( ∏
j∈N\{i}

(
1 + θ

(
Yi

Yj

)β)−1

1{Yj ≥Yi }
)

, (17)
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where Yj ∼ Gamma(j, 1), j ∈ N, are mutually independent. We now evaluate the two terms
on the right-hand side of (17) separately. First, since Y1 is exponentially distributed with the
unit mean,

E

( ∞∏
j=2

(
1 + θ

(
Y1

Yj

)β)−1

1{Yj ≥Y1}
)

=
∫ ∞

0
e−u

∞∏
j=2

E

((
1 + θ

(
u

Yj

)β)−1

1{Yj ≥u}
)

du

= θ−1/β

∫ ∞

0
e−θ−1/βv

∞∏
j=2

E

((
1 +

(
v

Yj

)β)−1

1{Yj ≥θ−1/βv}
)

dv, (18)

where the second equality follows from changing the variable to v = θ1/βu. The right-hand
side of (18) multiplied by θ1/β converges to that of (16) as θ → ∞ by the monotone convergence
theorem with e−θ−1/βv ↑ 1 and 1{Yj ≥θ−1/βv} ↑ 1, and by applying the density functions of
Yj ∼ Gamma(j, 1), j = 2, 3, . . ..

It remains to show that the second term on the right-hand side of (17) is o(θ−1/β) as θ → ∞.
Since (1 + θ(Yi/Yj )

β)−1 ≤ 1,

∞∑
i=2

E

( ∏
j∈N\{i}

(
1 + θ

(
Yi

Yj

)β)−1

1{Yj ≥Yi }
)

≤
∞∑
i=2

E

((
1 + θ

(
Yi

Y1

)β)−1

1{Y1≥Yi }
)

. (19)

Applying the density functions of Y1 ∼ Gamma(1, 1) and Yi ∼ Gamma(i, 1), i = 2, 3, . . . , to
the summand of (19), we have

E

((
1 + θ

(
Yi

Y1

)β)−1

1{Y1≥Yi }
)

=
∫ ∞

0

ui−1e−u

(i − 1)!
∫ ∞

u

e−y

(
1 + θ

(
u

y

)β)−1

dy du

= 1

(i − 1)!
∫ ∞

1

(
1 + θ

sβ

)−1 ∫ ∞

0
uie−(s+1)u du ds

= i

∫ ∞

1

1

(s + 1)i+1

(
1 + θ

sβ

)−1

ds, (20)

where the second equality follows from changing the variable to s = y/u and the third equality
holds by the definition of gamma functions. Here, letting β∗ = �β + 1 and summing the
right-hand side of (20) over i = β∗, β∗ + 1, . . . , we have

∞∑
i=β∗

i

∫ ∞

1

1

(s + 1)i+1

(
1 + θ

sβ

)−1

ds ≤ θ−1
∞∑

i=β∗
i

∫ ∞

1

sβ

(s + 1)i+1 ds

= θ−1
∫ ∞

1

(β∗s + 1)sβ−2

(s + 1)β
∗ ds,

where we have used (1+θ/sβ)−1 ≤ sβ/θ in the inequality. The last integrand is O(s−β∗−1+β)

as s → ∞, so the integral is finite, that is, the last expression is O(θ−1) as θ → ∞. On the
other hand, for i = 2, 3, . . . , β∗ − 1 ≤ β, the right-hand side of (20) satisfies

i

∫ ∞

1

1

(s + 1)i+1

(
1 + θ

sβ

)−1

ds

≤ i

∫ ∞

1
s−i−1

(
1 + θ

sβ

)−1

ds
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= iθ−i/β

β

∫ ∞

1/θ

t−i/β

t + 1
dt

≤ iθ−i/β

β

[∫ 1

1/θ

t−i/β dt +
∫ ∞

1
t−i/β−1 dt

]

=

⎧⎪⎨
⎪⎩

β

β − i
θ−i/β − i

β − i
θ−1 ≤ β

β − i
θ−i/β for i < β,

θ−1(ln θ + 1) for i = β,

where the first equality follows from changing the variable to t = sβ/θ and the next inequality
follows from 1/(t + 1) ≤ min(1, 1/t). The last expressions are o(θ−1/β) as θ → ∞ for both
i < β and i = β, which completes the proof.

Remark 5. Theorem 2 states that in the interference-limited case the distribution of the SINR
of a typical user has the tail of a Pareto distribution with infinite mean. This result is also the
case when the base stations are deployed according to a homogeneous Poisson point process.
In the interference-limited case of the Poisson base station model, (12) reduces to

p(Poi)(θ, β) = 1

1 + ρ(θ, β)
.

Here we have, from (13),

θ−1/βρ(θ, β) = 1

β

∫ ∞

1/θ

u−1+1/β

u + 1
du → π

β
csc

π

β
as θ → ∞,

which implies that

lim
θ→∞ θ1/βp(Poi)(θ, β) = β

π
sin

π

β
. (21)

Remark 6. The Pareto tail asymptotics of the SINR with infinite mean are due to the unbound-
edness of the path-loss function at the origin. We can show that, when the path-loss function
is bounded, the coverage probability decays faster than any polynomial. Now suppose that
�(r) ≤ α, r > 0, for a constant α > 0. Then the first line of (17) reduces to

P(SINRo > θ) = E

( ∏
j∈N\{Bo}

(
1 + θ

�(
√

Yj )

�(
√

YBo)

)−1)

= (1 + θ)E

( ∞∏
j=1

(
1 + θ

�(
√

Yj )

�(
√

YBo)

)−1)
.

Since (1+aθ)−1 ≤ 1 and θ/(1+aθ) is increasing in θ for a > 0, by the monotone convergence
theorem we see that, for each k ∈ N,

lim sup
θ→∞

θk−1
P(SINRo > θ) ≤ lim sup

θ→∞
1 + θ

θ
E

( k∏
j=1

θ

(
1 + θ

�(
√

Yj )

�(
√

YBo)

)−1)

= E

( k∏
j=1

�(
√

YBo)

�(
√

Yj )

)

≤ αk
k∏

j=1

E

(
1

�(
√

Yj )

)
.

https://doi.org/10.1239/aap/1409319562 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319562


842 N. MIYOSHI AND T. SHIRAI

Hence, if E(�(
√

Yj )
−1) < ∞ for each j ∈ N, the tail of the SINR distribution decays faster

than any polynomial. This condition is satisfied, for example, by �(r) = α max{1, r}−2β and
�(r) = α(1 + r)−2β, r > 0.

6. Numerical experiments

In this section we present the results of some numerical experiments for computing the
coverage probabilities. We first compare the results of computing (8) for the Ginibre base
station model with those of (12) for the corresponding Poisson model. In Figure 2 we plot
the coverage probability for a given value of θ , where the intensity λ = c/π is set at 1/π for
both point processes and the thermal noise is given as a constant such that SNR = (μWo)

−1

(SNR = ∞ stands for no noise). The coefficient α of the path-loss function is set at 1, and
the cases β = 1.25 and β = 2.0 (that is, �(r) = r−2.5 and �(r) = r−4) are computed. For
both the Ginibre and Poisson models, the gaps between the SNR = 10 and SNR = ∞ cases
are small, particularly for small values of β, which implies that the thermal noise is not a very
important consideration. Furthermore, comparing Figure 2 with Figure 4 of [1], we find that
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Ginibre, SNR = 10
Poisson, SNR = ∞
Poisson, SNR = 10
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Figure 2: Comparison of the coverage probability between the Ginibre base station model and the
corresponding Poisson model for β = 1.25 (top) and β = 2.0 (bottom).
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the coverage probability for the Ginibre model is very close to that for the corresponding model
with a real base station deployment by a major service provider in a relatively flat urban area.
This confirms that the Ginibre base station model is a very good approximate model for real
cellular networks.

Next, to see the effect of frequency reuse on the coverage probability, the results of computing
p(θ, β, δ) via (14) are exhibited in Figure 3, where the curves for δ = 1 are the same as those
for the Ginibre model with SNR = ∞ in Figure 2. We see that the coverage probability is
much improved by the frequency reuse.

In the third and final experiment, we compared the coverage probability with the correspond-
ing asymptotics in the interference-limited case. In Figure 4, the comparison results between
(8) and (16) for the Ginibre model as well as those between (12) and (21) for the Poisson model
are exhibited, where the curves for the coverage probability are the same as those for SNR = ∞
in Figure 2. Figure 4 shows that in the Poisson model the asymptotic results agree well with the
coverage probability for relatively small values of θ and β. In the Ginibre model, however, the
asymptotic results agree with the coverage probability only for large values of θ , particularly

0.1
0.0

0.2

0.4

0.6

0.8

1.0

1 10 100
SINR threshold

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0.1
0.0

0.2

0.4

0.6

0.8

1.0

1 10 100
SINR threshold

C
ov

er
ag

e 
pr

ob
ab

ili
ty

Ginibre, δ = 1
Ginibre, δ = 2
Ginibre, δ = 4

Ginibre, δ = 1
Ginibre, δ = 2
Ginibre, δ = 4

Figure 3: Effect of frequency reuse on the coverage probability for β = 1.25 (top) and β = 2.0 (bottom).
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Figure 4: Comparison between the coverage probability and its asymptotic results for β = 1.25 (top)
and β = 2.0 (bottom).

when the value of β is large. This implies that, to obtain a better approximation of the coverage
probability in the Ginibre model, it is necessary to take not only the main term obtained by the
asymptotic analysis but also some more terms of o(θ−1/β) as θ → ∞ into consideration.

7. Concluding remarks

We have considered a cellular network model such that the base stations are deployed
according to the Ginibre point process and have derived a computable integral representation
for the coverage probability. We have also investigated the asymptotic property of the coverage
probability in the interference-limited case.

Possible avenues for future work are as follows. Although we have studied just a basic
model, we could apply the Ginibre base station model to more practical problems, such as
those developed in [6], [7], [8], [14], and [17]. Also, we could consider applications to other
wireless networks, where the percolation of SINR graphs might be attractive. As extensions
of the model, we could consider more general stationary point processes. Since Proposition 1
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follows from the radially symmetric property of the Ginibre point process, the results obtained
in the paper might be generalized to models with other radially symmetric determinantal point
processes. It might also be interesting to give a general condition that the coverage probability
has decay rate θ−1/β as θ → ∞.
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