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A CENSUS OF CUSPED HYPERBOLIC 3-MANIFOLDS

PATRICK J. CALLAHAN, MARTIN V. HILDEBRAND, AND JEFFREY R. WEEKS

Abstract. The census provides a basic collection of noncompact hyperbolic
3-manifolds of finite volume. It contains descriptions of all hyperbolic 3-
manifolds obtained by gluing the faces of at most seven ideal tetrahedra.
Additionally, various geometric and topological invariants are calculated for
these manifolds. The findings are summarized and a listing of all manifolds
appears in the microfiche supplement.

1. Introduction

The classification of 3-dimensional manifolds has been one of the fundamental
problems confronting topologists for the last century. In 1982, William Thurston
announced his Geometrization Conjecture. Roughly, this conjecture says that all
3-manifolds can be decomposed in a canonical way into geometric pieces. These
geometric pieces are all of the form X/Γ for some Riemannian manifold X , and
some discrete torsion-free subgroup Γ of isometries of X . Thurston showed that
there were only eight such X necessary (see [T1] and [T2] for more details). Of
these eight geometries, seven are well understood. In fact the manifolds admitting
such geometric structures have been completely classified (see [S]). The unresolved
case is the class of hyperbolic manifolds, i.e., those manifolds homeomorphic to
H3/Γ for Γ a discrete torsion-free subgroup of isometries. It turns out that in
some sense “most” 3-manifolds are hyperbolic, similar to what occurs in the 2-
dimensional case (see chapter 5 of [T1]). Thus, there is a great amount of interest
in the investigation of the structures of hyperbolic 3-manifolds with the hope of
discovering some underlying organization which could lead to a classification.

It has been shown [My] that every compact 3-manifold contains a simple closed
curve whose complement admits a noncompact hyperbolic structure of finite vol-
ume. Furthermore, every noncompact hyperbolic 3-manifold of finite volume can
be decomposed into a finite collection of ideal hyperbolic tetrahedra (see [EP]).
Therefore, a natural place to start is to enumerate all the possible hyperbolic 3-
manifolds obtainable from gluing a small number of ideal tetrahedra together. Note
that given n ideal tetrahedra, for each set of face pairings there are 62n possible
gluings. Even for n = 6 there are 97 inequivalent sets of face pairings. Thus, it is
impractical even for small n to check all possible gluings. One must find effective
ways of eliminating the large numbers of gluings which could not possibly yield
hyperbolic manifolds for combinatorial or topological reasons or which have been
obtained previously. This process was started in [HW]. Section 4 describes how
the enumeration was carried out.
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After the list of all gluings which could possibly yield hyperbolic manifolds had
been made, it was then processed by a collection of special purpose computer pro-
grams, many of which were based on SnapPea (see [W1]). These programs de-
termined which gluings in fact admitted hyperbolic structures, removed duplicates
from the list, and calculated the various invariants described below. For other kinds
of computer generated censuses of 3-manifolds see [E], [L], and [MF].

The census provides a large collection of hyperbolic 3-manifolds which can be
investigated for typical and atypical properties. The census is also used as a test-
ing ground for hyperbolic 3-manifolds. By enumerating all the possible gluings we
get a wide variety of examples: knot and link complements, orientable and non-
orientable, singly cusped and multicusped, arithmetic and nonarithmetic manifolds.
Of course, by restricting the census to only those manifolds obtained from gluing
small numbers of tetrahedra, we are in some sense looking at a special case. On
the other hand many questions like “What is the smallest or simplest hyperbolic
3-manifold with a certain property?” would naturally have candidates among the
census manifolds. Furthermore, by considering the census as a whole we could gain
some idea of the variety and distribution of the set of all hyperbolic 3-manifolds.
Perhaps, even among these small examples, one could glimpse the underlying struc-
ture or at least propose provisional classification schemes.

2. Summary of results

There are 6075 noncompact hyperbolic 3-manifolds which can be obtained from
gluing 7 or fewer tetrahedra together. Of these 4815 are orientable and 1260 are
nonorientable. More information is summarized in the following tables which are
organized by the number of tetrahedra and the cusp type (see section 3 for conven-
tions for describing cusp type).

Orientable:
cusp type|# tetrahedra 1 2 3 4 5 6 7 total
1 - 2 9 52 223 913 3388 4587
2 - - - 4 11 48 162 225
3 - - - - - 1 2 3
total - 2 9 56 234 962 3552 4815

Nonorientable:
cusp type|# tetrahedra 1 2 3 4 5 6 7 total
1 1 1 5 14 52 171 617 861
2 - 1 2 9 23 68 208 311
3 - - - - - 3 6 9
4 - - - - - 1 - 1
0,1 - - - 1 1 4 19 25
0,2 - - - - - 1 - 1
1,1 - - - 1 2 8 31 42
2,1 - - - 1 - 3 6 10
total 1 2 7 26 78 259 887 1260
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3. Nomenclature

It is worthwhile to establish a standardized nomenclature for the manifolds in the
census so that they may be referred to with ease. We use a system analogous to that
used in the knot and link tables. We sort all the hyperbolic 3-manifolds obtainable
by gluing N tetrahedra (but which cannot be made with fewer tetrahedra) in order
of increasing volume. We then separate the orientable and nonorientable manifolds
and organize them by cusp type. For orientable manifolds we use the notation MT k

n

for the nth orientable manifold made from T tetrahedra on the list with k cusps.
As with the link tables, if the manifold has only one cusp we suppress the “k” in
the notation. For example the manifold M21 corresponds to the smallest orientable
hyperbolic 3-manifold obtained by gluing two ideal tetrahedra and having one cusp.
M21 happens to be homeomorphic to the complement of the figure eight knot and
shares its volume with the so-called “figure eight knot sister” denoted M22. One of
the smallest known hyperbolic links is the Whitehead link which can be decomposed
into four ideal tetrahedra. It shows up in the census as M42

1.
The nomenclature for nonorientable manifolds is only slightly more complicated

due to the fact that they can have both orientable and nonorientable cusps (the
cross sections are tori and Klein bottles, respectively). The basic symbol is the same
as for the orientable manifolds, except we use an “N” to indicate nonorientable
instead of an “M” for manifold. The symbol NT c

n stands for the nth nonorientable
hyperbolic 3-manifold made from T tetrahedra on the list with cusp type “c”,
where “c” is the string “k, t” and k is the number of Klein bottle cusps and t
is the number of torus cusps. We also use the convention that we drop the “,0”
if there are no orientable cusps and drop the “1,0” if there is exactly one Klein
bottle cusp. For example the smallest noncompact hyperbolic 3-manifold (see [A])
is the Gieseking manifold which is obtained by identifying the faces of a single ideal
tetrahedron. The Gieseking manifold has exactly one cusp which is nonorientable,
hence it is described as N11. The link 62

2 double covers a nonorientable manifold
with two nonorientable cusps, this manifold is described as N22

1. One of the smallest
known nonorientable manifolds with an orientable cusp also happens to have two
nonorientable cusps. It appears in the census as N42,1

1 and happens to be the
unique 3-cusped manifold which can be made with four or fewer tetrahedra (see
[AS]).

4. Rehydrating the census manifolds

Each manifold in the census is obtained from gluing together at most 7 tetra-
hedra. Since Mostow’s Rigidity Theorem implies that there is a unique hyperbolic
structure, it suffices to provide the combinatorial gluing pattern, i.e., a set of tetra-
hedra with labelings to indicate identifications. This gluing pattern is encoded in
a string of letters called the “dehydrated manifold”. The basic ideas behind this
encoding are due to Thurston. We will describe below how the gluing instructions
can be recovered by “rehydrating”. Once the manifold is rehydrated, the actual
hyperbolic structure, i.e., the shapes of the ideal tetrahedra can be found by solving
the holonomy equations as described in [T1].

We first describe the general procedure and then give the details for two exam-
ples. The rehydrating procedure may be more easily assimilated by following one
of the examples given below while reading through the general description.
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Each dehydrated manifold consists of a string of letters. The first letter tells how
many tetrahedra are in the manifold, offset from “a”: “b” means 1 tetrahedron,
“c” means 2, “h” means 7 tetrahedra, etc. Given N tetrahedra, 2N face pairings
are necessary. We will number these face pairings 1 through 2N . We will recover
the face pairing descriptions sequentially.

Label a tetrahedron “0” and label its vertices “0” through “3”. Label the faces
“0” through “3” by naming each face after the vertex opposite it. Now, since there
are N tetrahedra, N − 1 of the 2N face pairings will involve a “new” tetrahedron,
i.e., a tetrahedron which has not been used yet. The information about when new
tetrahedra are added is encoded in the next 2[(N + 3)/4] characters (where [X] is
the greatest integer less than or equal to X). These characters are read by taking
pairs XY and translating as a number 16X + Y which will be between 0 and 255.
The X and Y are the just the number of the alphabet offset from “a”, i.e., “a”=0,
“b”=1, etc. The numerical value of the pair XY is then written in binary. This
binary number read right to left gives the information for the first 8 face pairings:
“0” means glue to an old tetrahedron, “1” means glue a new tetrahedron. If N > 4,
then the next pair of characters is interpreted in the same way to describe the face
pairings numbered 9 though 16.

To describe a face pairing we must indicate one face of one tetrahedron and
one face of another tetrahedron and tell how these two faces are identified. To do
this we form a queue of “open” faces. We start with face 0 of tetrahedron 0 and
determine where it is glued. Then we move to face 1 of tetrahedron 0 (unless it has
already been glued, in which case we move on to face 2). After we have dealt with
face 3 of tetrahedron 0, we move on to face 0 of tetrahedron 1 (or whichever face is
still open, in order). To move along the queue we need to know where the indicated
face is glued and how the face is glued. First, to determine which tetrahedron the
face is glued to depends on whether this particular face pairing involves a new or
old tetrahedron as determined above. Exactly N − 1 will involve new tetrahedra.

If the gluing involves a new tetrahedron, then we give this new tetrahedron the
smallest number which has not been used. Then we glue this to the open face we
are considering via the identity map, e.g., if we are working with face 1, then we
label the glued face of the new tetrahedron 1 and we label the vertices 0, 2, and 3
to match up with the corresponding vertices of the old tetrahedron. Then we label
the remaining faces of the new tetrahedron from their opposite vertices. Thus, the
new tetrahedron gets an induced labeling and becomes one of the old tetrahedra.

If the gluing involves an old tetrahedron, then we need to know to which face
and to which tetrahedron the current face is glued. Since there will be exactly
N + 1 gluings which involve old tetrahedra, the last N + 1 characters in the string
encode how the face is glued. The second from last N + 1 characters encode
to the tetrahedron to which the face is being glued. Reading from left to right
these characters will be the letter representing a number offset from “a”, i.e., “a”
means “glue to tetrahedron 0”, “b” means “glue to tetrahedron 1”, etc. Once the
tetrahedron is known, it suffices to give a description of the face gluing. These can
be denoted by a permutation on the symbols “0” through “3”. If we write ABCD
as the permutation which sends 3 to A, 2 to B, 1 to C, and 0 to D, then we can
sort the 24 permutations in numerical order and associate them with the letters
“a” through “x”. For example: “a” would be the permutation 0123, “b” = 0132,
“c” = 0213, ..., and “x” = 3210.
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The permutation encodes the gluing by indicating which face will be glued to
the current face under consideration; if this face is X then the permutation sends
X to the number of the face of the old tetrahedron to which it is being glued. The
remaining three numbers in the permutation tell which vertices are glued together.
For example, if we are currently working with face 2, and the permutation is “b” =
0132, then face 2 is glued to face 1, and the vertices 3, 1, and 0 of face 2 are glued
to the vertices 0, 3, and 2 of face 1, respectively. Recall that all faces and vertices
of old tetrahedra have already been given labels.

Example: The Gieseking manifold: N11. The dehydrated description of the
Gieseking manifold is “baaaade”. So to rehydrate its gluing pattern we look first
at the first character: “b”. This means that there is only one tetrahedron being
glued together, N = 1. The next 2[(1+3)/4] = 2 characters: “aa” tells which of
the 2N face pairings involve new tetrahedra. Here “aa” = 0*16 + 0 = 0 which
in binary is 00000000. So none of the face pairings involve new tetrahedra (which
must be the case since there is only one tetrahedron!). Now we begin the face pairs
in sequential order. Beginning with face 0 of tetrahedra 0, this pairing involves an
old tetrahedron, so we look at the first character in the substring consisting of the
second from last set of N + 1 characters: “a” which means we glue to tetrahedron
0. Now we look at the first character in the substring consisting of the last N + 1
characters: “d”. This represents the permutation 0231, so face 0 is glued to face 1,
and the vertices 3,2,1 of face 0 are glued to the vertices 0,2,3 of face 1, respectively.
Now we go on to the next face pairing (which happens to be the last in this case).
We just did face 0 of tetrahedron 0, thus we move to face 1 of tetrahedron 0. Since
this face has already been glued, we move to face 2, which is still open. This face
is glued to tetrahedron 0, so to determine which face it will be glued to and how it
will be glued we look at the next character in the substring consisting of the last
N + 1 characters. This happens to be the last character: “e” which represents the
permutation 0312. This means that face 2 is glued to face 3, and the vertices 3,1,0
of face 2 are glued to the vertices 0,1,2 of face 3, respectively.

This completes the description, which can be summarized in the following table:

Active face: glue to: via face map:
1 tet 0 face 0 tet 0 face 1 321 to 023
2 tet 0 face 2 tet 0 face 3 310 to 012

Example: A seven tetrahedra example: M72
162. The dehydrated description

of M72
162 is “hbpabbcfggfegfkadihgo”. The first character “h” tells us that N =

7. The next 2[(7 + 3)/4] = 4 characters tell us which face pairings involve new
tetrahedra: these characters “bpab” are taken in pairs. The first pair “bp” gives
1*16 + 15 = 31 which in binary is 00011111, which means the first five face pairings
involve new tetrahedra. The next two characters “ab” give 0*16 + 1 = 1, which
in binary is 00000001. This means that the ninth face pairing involves a new
tetrahedron. Note that this tells us that six of the face pairings involve a new
tetrahedron, which is correct, since there must always be exactly N−1 such pairings
in a given gluing pattern. To facilitate things, we will call the substring consisting
of the next N + 1 characters “bcfggfeg” the W string (for which tetrahedron will
be glued) and the substring consisting of the last N + 1 characters “fkadihgo” the
H string (for how the tetrahedra are glued).
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We start with face 0 of tetrahedron 0. It involves a new tetrahedron which we
call tetrahedron 1. We glue these together by the identity map on face 0. Now we
go on to face 1 of tetrahedron 0. This also involves a new tetrahedron which we call
tetrahedron 2 which is glued to face 1. Thus we label the glued face of tetrahedron
2 as 1 and label the vertices of the face to match those of face 1 of tetrahedron 0.
This induces a labeling on the rest of the faces and vertices of tetrahedron 2.

We continue on: face 2 of tetrahedron 0 gets a new tetrahedron which we call 3.
Face 3 of tetrahedron 0 gets a new tetrahedron which we call 4. Now we move on to
face 0 of tetrahedron 1, which has already been glued (to face 0 of tetrahedron 0).
Thus we go on to face 1 of tetrahedron 1, which is still open, and we give it a new
tetrahedron which we call 5. We are now on the sixth face pairing. It is the first
one which does not involve a new tetrahedron. Thus we look to the first character
of W which is “b”, which means “glue to tetrahedron 1”. The first character of H
is “f”, which represents the permutation 0321. Since the face we are considering
is face 2 of tetrahedron 1, the permutation tells us that 2 is sent to 3. Thus we
glue face 2 to face 3 of tetrahedron 1 and the vertices 3,1,0 of face 2 are glued to
the vertices 0,2,1 of face 3, respectively. We continue in this fashion until we have
completed all 14 face pairings. The results are summarized below.

Active face: glue to: via face map:
1 tet 0 face 0 tet 1 face 0 id
2 tet 0 face 1 tet 2 face 1 id
3 tet 0 face 2 tet 3 face 2 id
4 tet 0 face 3 tet 4 face 3 id
5 tet 1 face 1 tet 5 face 1 id
6 tet 1 face 2 tet 1 face 3 310 to 021
7 tet 2 face 0 tet 2 face 2 321 to 130
8 tet 2 face 3 tet 5 face 0 210 to 123
9 tet 3 face 0 tet 6 face 0 id
10 tet 3 face 1 tet 6 face 3 320 to 021
11 tet 3 face 3 tet 6 face 1 210 to 203
12 tet 4 face 0 tet 5 face 2 321 to 103
13 tet 4 face 1 tet 4 face 2 320 to 103
14 tet 5 face 3 tet 6 face 2 210 to 103

5. Description of enumeration process

The basic outline of the census was described in [HW], but further work has
incorporated some additional refinements. As described in [HW], the first step
was to enumerate all nonisomorphic connected graphs on n vertices, where each
vertex has degree 4 and n is the number of tetrahedra. The graphs correspond
to pairings of the faces of the tetrahedra. Each vertex of the graph corresponds
to a tetrahedron, and each edge of the graph corresponds to a pair of faces glued
together. For n being 1 through 7, the number of such graphs is 1, 2, 4, 10, 28,
97, and 359, respectively. For each pair of faces, there are potentially six different
ways to glue the pair. Three of these ways correspond to orientable gluings while
the rest correspond to nonorientable gluings. A recursive routine does this, but the
recursion stops when certain Euler characteristic or edge class criteria (described
in [HW]) cannot be met. For instance, if a complete edge class contains one or two
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edges or three edges with distinct tetrahedra surrounding the edge class, then the
manifold will be either nonhyperbolic or will have been obtained previously.

An additional technique used in the 7-tetrahedra census is to examine partial
cusps. Part way through the gluings, triangular cross-sections of the ideal vertices
of the tetrahedra form “partial cusps” which are surfaces with boundaries. The
code checks what would happen if the boundaries of the partial cusps were capped
off by disks. If the Euler characteristic of any surface resulting from such capping is
negative, then no matter how the remaining face pairs are glued, the final manifold is
sure to have an end whose cross section is a surface of negative Euler characteristic.
In that case, the manifold cannot possibly be hyperbolic. At first, each partial cusp
is a triangle corresponding to an ideal vertex of a tetrahedron. Each time we specify
the gluings of the tetrahedral faces (including how the vertices along the faces are
identified), we glue three pairs of edges in the partial cusps. The gluings of these
edges may change the Euler characteristic and number of boundary components
of the partial cusp. The program keeps track of these values as well as edges and
vertices along the boundary components of each partial cusp. These edges and
vertices of the boundary components of the partial cusp correspond to unglued
faces and edges, respectively, of the tetrahedra.

The program examines various cases to determine the change in Euler charac-
teristic and number of boundary components of a partial cusp. The procedure used
to examine these cases is described as follows.

1. If the edges in a pair lie on the same boundary component and the edges are
the only two edges in the boundary component, then remove the boundary
component, subtract 1 from the number of boundary components, and add
either 0 or 1 to the Euler characteristic of the cusp. The number added
depends on how the vertices of the boundary components are identified.

2. If the two edges lie on the same boundary component are adjacent and are
not the only edges on the boundary component, then subtract 0 or 1 from the
Euler characteristic and leave the number of boundary components alone. The
number subtracted depends on how the vertices of the boundary components
are identified.

3. If the two edges lie on the same boundary component and are not adjacent,
then the gluing may split the boundary component into two components. If
so, then add 1 to the number of boundary components but subtract 1 from
the Euler characteristic. Otherwise, subtract 1 from the Euler characteristic
of the cusp but leave the number of boundary components alone.

4. If the two edges lie on different boundary components, then merge the cusps
if the components are on different cusps. To find the Euler characteristic and
the number of boundary components of a merged partial cusp, add the Euler
characteristics of the old cusps and add the number of boundary components
of the old cusps. If both boundary components have length 1, subtract 2 from
the number of boundary components and leave the Euler characteristic alone.
Otherwise, merge components and subtract 1 from the Euler characteristic
and the number of boundary components.
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A B C A B C D

Figure 1

Note that the sum of the Euler characteristic plus the number of boundary
components never increases at any step. In the last case, this fact can be seen by
noting that this sum is never more than 2. Thus if this sum is negative at any step
before the manifold is finished, we may conclude that the cusp will not be a torus
or Klein bottle and that the manifold will not be hyperbolic.

Gluings obtained from this process include all the desired hyperbolic 3-manifolds.
A gluing may appear a number of times and may not be a hyperbolic 3-manifold.
A terse description which uniquely identifies the gluing helps eliminate the du-
plication, and SnapPea checks to see which manifolds are hyperbolic. SnapPea
also calculates and compares canonical triagulations to remove distinct gluings of
isometric manifolds (see [W2] for details).

With programs of this size, bugs naturally creep in. A number of methods were
used to test for bugs. Some were described in [HW]. Further checks included
tracing through the partial cusp check at the start and then checking by hand. The
partial cusp check was also used on a few graphs in the 6-tetrahedra case, and the
results agreed with runs for these graphs without this check. Furthermore before we
implemented the partial cusp check, we were able to run the census for orientable
manifolds obtained from 7 tetrahedra. All tetrahedral gluings which were identified
as potentially hyperbolic reappeared when the partial cusp check was added. At
the end of a run for each graph, the computer would output a message indicating
completion. Thus if the program was no longer running a graph but had not
produced this message, we knew that the run had been aborted (perhaps due to a
computer failing or being restarted) and that the results could be incomplete unless
this graph was run again.

To search only for orientable manifolds, one gives an arbitrary handedness to
the first tetrahedron. At each face pairing, if the handedness of both tetrahedra
is known, then there are only three ways to glue the pair and keep the manifold
orientable. If the handedness of one tetrahedron in the face pairing is known,
then there are six possible ways to glue the faces, but this choice determines the
handedness of the other tetrahedra. Furthermore, if tetrahedra are glued as in
Figure 1, one may, by symmetry, preset the orientation of tetrahedra A, B, and C.
In the left portion, the handedness of C can be changed by interchanging the 2 faces
glued with B; this changes the handedness of B. The handedness of B can also be
changed by interchanging the faces glued onto A. This will change the handedness
of A, but the handedness of A can also be changed by interchanging the faces glued
to each other. A similar argument applies to A through C in the right portion
provided that tetrahedron D is not the first tetrahedron. Presetting the orientation
was used to speed up the census of orientable manifolds obtained from 7 tetrahedra.

A potential future project for someone attempting to extend the census is to see
if one can better exploit symmetries within each graph. Often the same gluings
appear a number of times in census runs already performed.
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6. Description of the tables

The 6075 manifolds of the census are organized into several tables. The manifolds
made from four or fewer tetrahedra are in the appendixes. The manifolds made
from five, six, or seven tetrahedra are in tables included on a microfiche supplement.

Each manifold is listed by name (see section 3 for nomenclature conventions).
Various invariants are listed in the table. These are described below.

i. Volume: The primary invariant of hyperbolic 3-manifolds is the volume. The
volume is defined with respect to the Riemannian metric of constant curvature −1.
The remarkable thing is that by the Mostow Rigidity Theorem (see [T1]) volume
is in fact a topological invariant.

ii. Chern-Simons: Meyerhoff extended the usual Chern-Simons invariant to
include noncompact hyperbolic 3-manifolds (see [M]). It is well defined modulo
1/2. The Chern-Simons invariant changes sign when the orientation of the manifold
changes. Hence, an amphichiral manifold must have a Chern-Simons invariant equal
to 0 or 1/4 modulo 1/2 (see [M] for more information). The Chern-Simons invariant
is defined only for orientable manifolds, so this column is not included in the tables
of nonorientable manifolds.

iii. Homology: This is the first homology group of the manifold with integer
coefficients, i.e., H1(M). The symbol “Z/n” denotes the finite cyclic group of order
n. Note that the rank of H1(M) must be at least equal to the number of cusps.

iv. Symmetry: This is the group of isometries of the manifold. The symbol
“Z/n” denotes the finite cyclic group of order n. The symbol “Dn” denotes the
dihedral group of order 2n. If a manifold has a symmetry group which is not a
product of cyclic and dihedral groups then only the order of the group is given.

v. SG: This gives the length (to two decimal places) of the shortest closed
geodesic in M .

vi. C: This describes the chirality or handedness of M . If M does not admit
an orientation reversing isometry, then M is called chiral and is denoted in the
table as “c”. If M does admit an orientation reversing isometry, then M is called
amphichiral and is denoted in the table as “a”. This column is not included in the
tables of nonorientable manifolds.

vii. OC: The original census in [HW] grouped all the manifolds obtained from
five or fewer tetrahedra together and sorted them by volume. The manifolds were
labeled in order of increasing volume by “mXXX” with XXX ranging from 000 to
414. This column gives the number XXX of the given manifold if it is obtainable
from no more than five tetrahedra. For the other manifolds, there were separate
numbering schemes depending on the number of tetrahedra and the orientability of
the manifold. For manifolds obtainable from six or seven tetrahedra, this column
gives the number from the appropriate numbering scheme.

viii. Dehydrated: This gives the dehydrated description of the manifold. Section
4 describes how to reconstruct the manifold from a given string of letters.
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Appendix A: Orientable census manifolds with at most 4 tetrahedra

Name Volume Cherns-Simons Homology Symmetry SG C OC Dehydrated
M21 2.0298832128 0.0000000000 Z D4 1.09 a 4 cabbbbaei
M22 2.0298832128 0.2500000000 Z/5+Z Z/2+Z/4 0.86 a 3 cabbbbapt

M31 2.5689706009 0.1141366530 Z/5+Z D2 0.65 c 6 dadacccfkfo
M32 2.5689706009 0.1358633470 Z/3+Z D2 0.65 c 7 dadbcccqqok
M33 2.6667447834 0.0208333333 Z/2+Z D2 0.63 c 9 dadbcccaafo
M34 2.6667447834 0.2291666667 Z/6+Z D2 0.63 c 10 dadbcccaajs
M35 2.7818339124 0.1918367664 Z Z/2 0.51 c 11 dadacccfofr
M37 2.8281220883 0.2365374666 Z Z/2 0.58 c 16 dadacccfokn
M36 2.8281220883 0.1532041333 Z D2 0.56 c 15 dafbcccllks
M38 2.8281220883 0.0967958667 Z/7+Z D2 0.56 c 17 dafbbccltkn
M39 2.9441064867 0.1477812075 Z Z/2 0.43 c 19 dagacccfwkn

M41 2.9891202829 0.2131068668 Z/7+Z D2 0.42 c 22 ebfbcdddaaalu
M42 2.9891202829 0.0368931332 Z/3+Z D2 0.42 c 23 ebfbcdddaaadm
M43 3.0593380578 0.0780932475 Z Z/2 0.40 c 26 eanbbdddabfon
M44 3.1213347730 0.1588461787 Z Z/2 0.32 c 27 ebjbadddafbsg
M45 3.1485098264 0.2121909004 Z/5+Z D2 0.32 c 29 eaoacdddfkhaq
M46 3.1485098264 0.0378090996 Z/7+Z D2 0.32 c 30 eaoaccddfknan
M47 3.1639632289 0.1559770167 Z D2 0.33 c 32 ealadcddflnxm
M48 3.1639632289 0.0940229833 Z/9+Z D2 0.33 c 33 ealaccddfrnxf
M49 3.1663333212 0.1092749687 Z Z/2 0.56 c 34 ebfbcdddhhheu
M410 3.1772932786 0.0342702910 Z D2 0.79 c 38 eahddccdacfoc
M411 3.1772932786 0.2157297090 Z/3+Z D2 0.61 c 36 ealaccddfknxf
M412 3.1772932786 0.0490630423 Z/4+Z D2 0.30 c 35 eaoacdddnkhaq
M413 3.1772932786 0.2009369577 Z/8+Z D2 0.30 c 37 eaoaccddnknan
M414 3.2529080485 0.1824397261 Z/5+Z Z/2 0.27 c 43 ebkabdddfakng
M415 3.2756765600 0.0973831836 Z Z/2 0.24 c 44 ebjabdddbawkn
M416 3.2758716439 0.2206814602 Z/2+Z D2 0.25 c 45 eaoacdddnkiae
M417 3.2758716439 0.0293185398 Z/10+Z D2 0.25 c 46 eaoaccddnkoab
M418 3.3082415547 0.2482281792 Z Z/2 0.24 c 52 ebkabdddfhgbf
M419 3.3317442316 0.0551535349 Z D2 0.22 c 53 eaoacdddfkiae
M420 3.3317442316 0.1948464651 Z/11+Z D2 0.22 c 54 eaoaccddfkoab
M421 3.3371917200 0.1650511625 Z Z/2 0.20 c 55 ebkabdddfhgvb
M422 3.3620932044 0.1493345594 Z Z/2 0.20 c 60 ebkabdddfhfob
M423 3.3805053992 0.2332493881 Z Z/2 0.18 c 64 ebkabdddfhvof
M424 3.4029912512 0.0515271394 Z Z/2 0.42 c 69 ebjbadddafksg
M425 3.4029912512 0.2181938061 Z Z/2 0.42 c 70 ebjbadddafsgk
M426 3.4644088173 0.2208204219 Z Z/2 0.56 c 81 ebdbccddqqfab
M427 3.4742477613 0.1617537304 Z Z/2 0.36 c 82 eaoaccddnknab
M428 3.5142520584 0.1760270094 Z Z/2 0.34 c 100 eaoaccddfknab
M429 3.5899014608 0.2404266499 Z Z/2 0.49 c 116 ealaccddffrab
M430 3.6038850434 0.0726930451 Z Z/2 0.54 c 117 ebdbccddqqfhg
M431 3.6086890618 0.1139831647 Z Z/2 0.29 c 118 ebkabdddfhvbf
M432 3.6086890618 0.2193501686 Z Z/2 0.29 c 119 ebkabdddfhfvb
M433 3.6638623767 0.2500000000 Z/2+Z/4+Z Z/2+Z/4 0.88 a 135 ebdbcdddaahhx
M434 3.6638623767 0.0000000000 Z/2+Z/2+Z D4 0.88 a 136 ebdbcdddaahqa
M435 3.6638623767 0.1250000000 Z/8+Z D2 0.53 c 130 eahbdccdhffff
M436 3.6638623767 0.1250000000 Z Z/2 0.51 c 137 eanbcdddhnbsk
M437 3.6756456059 0.1005707624 Z/2+Z Z/2 0.44 c 141 ealaccddffrak
M438 3.7146852120 0.1179041465 Z Z/2 0.44 c 142 ebdbccddqqfak
M439 3.7506106744 0.2175697433 Z Z/2 0.48 c 145 eaoaccddnknxf
M440 3.7588449482 0.1436621612 Z/2+Z D2 0.84 c 148 eahbdcddlofnv
M441 3.7588449482 0.1063378388 Z/6+Z D2 0.84 c 149 eahbdcddlffnk
M442 3.7588449482 0.1853288278 Z/2+Z Z/2 0.54 c 147 ealbcdcdlgwgn
M443 3.7588449482 0.2313378388 Z/2+Z Z/2 0.45 c 146 ebdbccddaasqf
M444 3.7848914166 0.0323143238 Z Z/2 0.51 c 154 ebdaccddkonho
M445 3.8216875862 0.1914927999 Z/3+Z D2 0.88 c 160 eanbdcddakkfo
M446 3.8216875862 0.0585072001 Z/7+Z D2 0.44 c 159 eaoaccddfknxf
M447 3.8578647343 0.0789781054 Z Z/2 0.45 c 170 ealaccddfrnhg
M448 3.9254753156 0.1918472789 Z Z/2 0.43 c 178 eaoaccddfkohf
M449 3.9259173429 0.2358653467 Z Z/2 0.40 c 180 ecgaccddfwkhf
M450 3.9542298167 0.1536981285 Z Z/2 0.40 c 185 eaoaccddfkohg
M451 4.0597664256 0.0000000000 Z/5+Z |G| = 16 1.09 a 206 ebdbcdddaqhpt
M452 4.0597664256 0.2500000000 Z/3+Z/3+Z |G| = 16 1.09 a 207 ebdbcdddaqhie

M42
1 3.6638623767 0.1250000000 Z+Z D4 1.06 c 129 eahbcdddhsssj

M42
2 3.6638623767 0.0416666667 Z+Z D4 0.96 c 125 eahbcdddljjrv

M42
3 4.0597664256 0.0833333333 Z+Z D6 0.86 c 202 ebdbbdddemlqp

M42
4 4.0597664256 0.0000000000 Z+Z D4 0.86 a 203 ebdbcdddddddx
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Appendix B: Nonorientable census manifolds

with at most 4 tetrahedra

Name Volume Homology Symmetry SG OC Dehydrated
N11 1.0149416064 Z Z/2 1.09 0 baaaade

N21 1.8319311884 Z/2 + Z Z/2 0.88 1 cabbbbabw

N22
1 2.0298832128 Z/2 + Z Z/2 0.86 2 cabbbbcdw

N31 2.4069095931 Z/3 + Z Z/2 0.67 5 dafbcccaadl

N32 2.6193420504 Z Z/2 0.60 8 dadcbccdjkd

N33 2.7868045564 Z Z/2 0.73 12 dadbcccbbcv

N34 2.8465105456 Z Z/2 1.28 18 dadbcccccdm

N35 3.0448248192 Z/2 + Z/2 + Z Z/6 1.09 25 dadbcccaqhx

N32
1 2.7868045564 Z/4 + Z Z/2 0.50 13 dadbbcccsbb

N32
2 2.9539817021 Z/2 + Z Z/2 0.42 20 dagacccfekl

N41 2.7868045564 Z/4 + Z Z/2 0.50 14 ebdbcdddaaafj

N42 2.9563855471 Z/3 + Z Z/2 0.41 21 eahbdddcrnenf

N43 3.1545451962 Z Z/2 0.31 31 eaoacdddnkgaf

N44 3.1956957274 Z/2 + Z Z/2 0.28 41 eaoacdddfkgaf

N45 3.4853372924 Z Z/2 0.82 91 ealbdcddkfrfh

N46 3.6638623767 Z/2 + Z Z/2 0.96 133 eahbdcddnxxxk

N47 3.6638623767 Z/4 + Z Z/2 0.88 132 ebdbcdddaabbx

N48 3.6638623767 Z Z/2 0.69 138 ealbcdddkhdwh

N49 3.7775073841 Z/2 + Z Z/2 0.75 153 ebdbcdddaajfa

N410 3.7775073841 Z/6 + Z Z/2 0.75 152 ebdbcdddaahkc

N411 3.7940901118 Z Z/2 0.79 156 eanadcddlnbtq

N412 3.8182598148 Z/2 + Z Z/2 0.76 158 eahbdcddlafnu

N413 3.8963450465 Z Z/2 0.68 177 ealbcdddpndoq

N414 3.9696478012 Z Z/2 0.89 187 eahdccddakfhq

N42
1 3.1268546407 Z/2 + Z Z/2 0.32 28 ebjbadddafbpd

N42
2 3.2822525639 Z/2 + Z Z/2 0.24 48 ebkabdddfadnp

N42
3 3.3372473279 Z/2 + Z Z/2 0.20 56 ebkabdddfhgmi

N42
4 3.3817493792 Z/4 + Z Z/2 0.17 65 ebkabdddfhiom

N42
5 3.6638623767 Z/4 + Z D2 1.53 126 ebdbcdddccvca

N42
6 3.6638623767 Z/2 + Z/2 + Z D2 1.06 134 eahbcdddhhhhx

N42
7 3.6638623767 Z/8 + Z D2 1.06 127 ebdbcdddaccax

N42
8 4.0597664256 Z/2 + Z Z/2 1.66 204 eahbcdcdidxid

N42
9 4.0597664256 Z/2 + Z Z/2 0.86 205 ebdbcdddcemre

N40,1
1 3.6638623767 Z + Z D2 0.88 131 ebdbcdddbbbbx

N41,1
1 3.6638623767 Z + Z D2 1.32 128 eahbcdddjsssh

N42,1
1 3.6638623767 Z/2 + Z + Z D4 1.76 124 eahbcdddjxxxj
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