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Posttranscriptional gene regulation (PTGR) concerns all processes acting directly upon coding 

and non-coding RNAs, regulating and executing their maturation, ribonucleoprotein assembly, 

transport, stability and translation. RNA-binding proteins (RBPs) and ribonucleoprotein (RNP) 

complexes coordinate these processes. RBPs are central to cellular metabolism and their role in 

human diseases has been widely studied. Recent large-scale quantitative methods such as next-

generation sequencing and modern protein mass spectrometry enabled new approaches to dissect 

PTGR networks and renewed interest in investigations of factors involved in PTGR at a genome-

wide level. A census of all coding and noncoding RBPs has previously not been readily available 

and the number of RBPs was estimated based on few selected protein classes. However, for 

system-wide analyses of PTGR a comprehensive account of the RBPs is necessary. To address 

this need, I developed a census of 1,542 manually curated RBPs and categorized their interactions 

with different classes of RNA, defined the number of factors in different regulatory pathways, 

and investigated their evolutionary patterns, abundance, and tissue-specific expression. Co-

regulated gene expression during developmental processes often gives novel insights into 

regulatory pathways and components. Furthermore, I showed that by classifying RBPs into their 

main regulatory RNA pathways we can start to understand the disease phenotypes of proteins 

involved in the same RNA metabolic pathways. These insights are useful for dissecting 



dysregulated PTGR pathways in human diseases and finding new therapeutic targets. Finally, I 

showed in this chapter that by careful domain analysis, novel RBPs can be predicted and 

characterized the previously unknown RG/GG-rich RBP FAM98A. Overall, this analysis 

provides a critical step towards the comprehensive characterization of proteins involved in human 

RNA metabolism.  

In the second part of the thesis I focused on the uncharacterized, highly tissue-specific 

RNA exonuclease NEF-sp and characterized its function in pre-28S ribosomal RNA processing. 

Ribosomal RNA biogenesis requires a series of endo- and exonucleolytic processing steps for the 

production of mature rRNAs. Although the mechanism of 28S 3’ end rRNA maturation remains 

largely unknown in higher eukaryotes, it is thought that the 3’ external transcribed spacer (3’ETS) 

of the large 47S rRNA precursor, containing 18S, 5.8S, and 28S rRNA, is removed in a precise 

endonucleolytic cleavage reaction, guided by U8 snoRNA. Here I show instead that the 3’ETS is 

exonucleolytically trimmed by the DEDDh RNA exonuclease NEF-sp in Drosophila 

melanogaster. I characterize for the first time in higher eukaryotes a nuclease that is involved in 

the removal of the 3’ ETS. Interestingly, NEF-sp shows high tissue-specific expression in gonads. 

Gonad development is arrested in dNEF-sp mutants. Our results demonstrate that exonucleolytic 

trimming is essential for 28S rRNA maturation in higher eukaryotes and, counterintuitively, the 

expression of a factor involved in a core RNA metabolic process can be highly regulated. Our 

findings suggest an additional level of posttranscriptional gene regulation in the maturation of 

28S rRNA, mediated by the regulated expression of RNA exonucleases. 
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1 Introduction 

1.1 Principles of posttranscriptional gene regulation 

RNA is an essential constituent of all living organisms and central to decoding the genetic 

information of every cell. Posttranscriptional gene regulation (PTGR) is a term that refers to the 

cellular processes that control gene expression at the level of RNA; it encompasses RNA 

maturation, modification, transport, and degradation. Each of these events is regulated by the 

formation of different ribonucleoprotein (RNP) complexes with RNA-binding proteins (RBPs) at 

their core. Consequently, every RNA molecule independent of its ultimate function is at some 

level subject to PTGR (Figure 1.1). 

Initially, it was thought that RNA mainly served either as the template in the form of 

messenger RNA (mRNA) or as an adaptor or structural component during protein synthesis 

provided by transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). With the discovery of 

catalytic RNAs and a multitude of non-coding RNA (ncRNA) species it was recognized that 

RNA is a highly versatile molecule carrying out many regulatory functions in the cell, either by 

acting as a guide to recognize RNA sequence motifs or RNA recognition elements (RREs) 

present in their target RNAs, or by functioning as a scaffold and assembly platform for recruiting 

proteins to act synergistically (Cech and Steitz, 2014).  
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Figure 1.1 Overview of the main PTGR pathways in eukaryotes. Overview of biogenesis, 

decay and function of the most abundant RNAs: rRNAs, tRNAs, mRNAs, snRNAs, snoRNAs, 

miRNAs, piRNAs, and lncRNAs. Processes are described from left to right in the diagram. (a) 

tRNAs are transcribed by Pol III, 5’ leader and 3’ trailer sequences removed, introns spliced and 

end-joined. CCA nucleotides are added to 3’ ends and nucleotide modifications introduced before 

tRNA aminoacylation (Maraia and Lamichhane, 2011). (b) 5S rRNA is transcribed by Pol III, 

while 28S, 18S, and 5.8S rRNAs are transcribed as one transcript by Pol I. The precursor is 

processed by RNA exo- and endonucleases and RNP RNase MRP, guided by U3 snoRNP. 

Nucleotide modifications are introduced by snoRNPs. rRNAs are assembled together with 

ribosomal proteins into ribosomal precursor complexes in the nucleus and transported to the 

cytoplasm, where they mature to functional ribosomes (Granneman and Baserga, 2004; 

Lafontaine and Tollervey, 2001; Thomson et al., 2013). (c) Most small nuclear RNAs (snRNAs) 

are transcribed by Pol II, capped and processed in the nucleus. Exported to the cytoplasm they 

undergo methylation and assemble with LSM proteins to snRNP particles aided by the SMN 

complex. Re-imported into the nucleus into the Cajal Body (CB) they undergo final maturation 

and snRNP assembly (Kiss, 2004). U6 and U6atac snRNAs are transcribed by Pol III and 

alternatively processed in the nucleus/nucleolus (Mroczek and Dziembowski, 2013). Mature 

snRNPs form the core of the spliceosome. (d) Small nucleoloar and small cajal body-specific 

RNAs (snoRNAs and scaRNAs) are processed from mRNA introns, capped, and modified before 

they assemble into snoRNPs/scaRNPs in the CB. snoRNPs/scaRNPs carry out methylations and 

pseudouridylations in rRNAs and snRNA or function in rRNA processing (e.g. U3 snoRNA) 

(Kiss, 2004). (e) mRNAs are transcribed by Pol II, capped, spliced, edited, and polyadenylated in 

the nucleus. Correctly matured mRNAs are exported into the cytoplasm. Regulatory RBPs control 

correct translation, monitor stability, decay and localization, and shuttle mRNAs between active 

translation, stress granules and P bodies (Buchan and Parker, 2009; Dreyfuss et al., 2002; 

Glisovic et al., 2008; Jackson et al., 2010; Müller-McNicoll and Neugebauer, 2013; Parker and 

Sheth, 2007). (f) microRNAs (miRNAs) are transcribed from separate genes by Pol II as long pri-

miRNA transcripts, or alternatively, are expressed from mRNA introns (mirtrons), and processed 

into hairpin pre-miRNAs in the nucleus. After transport into the cytoplasm, they are processed 

into 21-nt double-stranded RNAs. One strand is incorporated into AGO-proteins (miRNPs) and 

guides them to partially complementary target mRNAs to recruit deadenylases and repress 

translation (Kim et al., 2009). (g) piwi-interacting RNAs (piRNAs) are ~28 nt long, germline-

specific small RNAs. Primary piRNAs are directly processed and assembled from long, Pol II-

transcribed precursor transcripts, while secondary piRNAs are generated in the ping-pong cycle 

by the cleavage of complementary transcripts by PIWI proteins. Mature piRNAs are 2’-O-

methylated and incorporated into PIWI-proteins. The piRNA-PIWI complexes (piRNPs) silence 

transposable elements (TEs) either by endonucleolytic cleavage in the cytoplasm or through 

transcriptional silencing at their genomic loci in the nucleus (Siomi et al., 2011). (h) Most long 

noncoding RNAs (lncRNAs) are transcribed and processed similarly to mRNAs. Nuclear 

lncRNAs play an active role in gene regulation by directing proteins to specific gene loci, where 

they recruit chromatin modification complexes and induce transcriptional silencing/activation 

(Ulitsky and Bartel, 2013). Other ncRNAs, e.g. 7SK RNA, regulate transcription elongation rates 

(Peterlin et al., 2011) or induce formation of paraspeckles (PS) (Fox and Lamond, 2010). 

Cytoplasmic ncRNAs can modulate mRNA translation (Yoon et al., 2012). (i) Incorrectly 

processed RNAs are recognized by a number of complexes in the nucleus and cytoplasm that 

initiate and execute their degradation (Doma and Parker, 2007; Houseley et al., 2006).  
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Recent advances in RNA sequencing technologies have facilitated the discovery of novel 

transcripts and we will soon know the precise composition of most cellular transcriptomes. While 

functional annotation for many RNAs is still in progress, the major classes of RNAs have now 

been described. The most abundant RNAs, constituting 90% of cellular RNAs by copy number, 

are shared by all organisms and required for protein synthesis: rRNAs, tRNAs and mRNAs. The 

remaining 10% are noncoding RNAs (ncRNAs) that mainly serve as guides or molecular 

scaffolds in a variety of processes including RNA splicing, RNA modification, and RNA 

silencing. The structure, length and composition of these RNAs and their RNPs is distinct and 

allows their integration into diverse functions (Table 1.1). 
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Table 1.1 Classes of RNAs, their sizes and functions. Functional description of the main RNA 

classes in humans and their length distribution. Additional reviews on biogenesis pathways and 

RBP components interacting with each class of RNA are referenced. 

 
RNA class Size (nt) Biological role (additional reviews on function and biogenesis) 

messenger RNA 

(mRNA) 

~200-

100,000 

Encode the information for protein coding genes, translated by ribosomes (Dreyfuss et al., 2002; 

Glisovic et al., 2008; Müller-McNicoll and Neugebauer, 2013) 

transfer RNA 

(tRNA) 

~70-95 RNA adaptor molecules, transport amino acids to ribosome and recognize specific triplet 

codons on mRNA (Maraia and Lamichhane, 2011; Simos and Hurt, 1999; Suzuki et al., 2011) 

ribosomal RNA 

(rRNA) 

~120-

5070 

Structural component of ribosomes (Boisvert et al., 2007; Ciganda and Williams, 2011; 

Granneman and Baserga, 2004; Woolford and Baserga, 2013) 

small nuclear 

RNA (snRNA) 

~150 snRNAs U1, U2, U,4, U5 , U6, U12, U4atac, U6atac are core components of the spliceosome; 

U7 snRNA functions in 3’ end maturation of histone RNAs (Kiss, 2004; Matera et al., 2007) 

small nucleolar 

RNA (snoRNA) 

and small Cajal-

body-specific 

RNA (scaRNA) 

50-450 Guide chemical modifications (methylation and pseudouridylation) of rRNAs, snRNAs and 

snoRNAs (Filipowicz and Pogacić, 2002; Kiss et al., 2006; Matera et al., 2007) 

microRNA 

(miRNA) and 

small interfering 

RNA (siRNA) 

21-22 Associate with AGO proteins, guide them to target sequences predominantly in the 3’UTRs of 

mRNAs; induce degradation and translational repression (Bartel, 2009; Kim et al., 2009) 

piwi-interacting 

RNA (piRNA) 

~28-32 Associate with PIWI proteins, induce transposon silencing in the germline by guiding PIWI 

RNP complexes to genomic loci in the nucleus and transposon RNAs in the cytoplasm, leading 

to epigenetic silencing and ribonucleolytic cleavage of transposon RNA (Kim et al., 2009; 

Siomi et al., 2011) 

long intervening 

noncoding RNA 

(lncRNA), 7SK 

RNA 

>200 Recruit chromatin modifiers and remodeling complexes, modulate transcription by recruitment 

of protein cofactors to transcription starts sites and enhancers, function as molecular scaffolds 

for nuclear RBPs (Batista and Chang, 2013; Ulitsky and Bartel, 2013); 7SK RNA regulates 

transcription elongation (Peterlin et al., 2011) 

RNase P and 

RNase MRP 

~260-

340 

Ribonucleolytic RNP complexes that carry out processing of precursor tRNAs, rRNAs, 

snRNAs, and other noncoding RNAs; RNase P is an RNA-based enzyme, RNase MRP a 

protein-based ribonuclease (Ellis and Brown, 2009; Esakova and Krasilnikov, 2010; Jarrous, 

2002; Xiao et al., 2002) 

Y RNA ~ 80-110 Small noncoding RNAs that form an RNP complex with TROVE2 (Ro60) protein and act as 

RNA-chaperones, have a role in DNA replication and immune response (Hall et al., 2013; Köhn 

et al., 2013) 

signal recognition 

particle RNA 

(7SL/SRP RNA) 

~300 RNA of the signal recognition particle, which recognizes signal sequences of newly synthesized 

peptides and targets them to the endoplasmatic reticulum (Akopian et al., 2013) 

Vault-associated 

RNA (vtRNA) 

~80-140 Small noncoding RNAs, which are part of the vault RNP complex, thought to be involved in 

drug resistance and to downregulate mRNA targets through posttranscriptional gene silencing 

(Berger et al., 2008) 

telomerase RNA 

(telRNA) 

~500 RNA component of the telomerase complex TERC, which acts as reverse transcriptase and 

elongates telomer repeats. TERC is structurally related to box H/ACA snoRNAs (Egan and 

Collins, 2012) 
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RBPs execute PTGR, hence the characterization of the proteins transiently or stably 

interacting with RNAs is a prerequisite for the dissection of RNA regulatory processes. In many 

cases RBPs form a stable complex with an obligate RNA component, named ribonucleoprotein 

complex (RNP), which is the basic regulatory unit (e.g. snRNPs, snoRNPs, RNase P, ribosome 

subunits). However, many other types of RNAs, particularly mRNAs and tRNAs, only transiently 

associate with RBPs, whose functions are necessary for their proper maturation, localization, and 

turnover (Dreyfuss et al., 2002; Granneman and Baserga, 2004; Müller-McNicoll and 

Neugebauer, 2013; Phizicky and Hopper, 2010). Most mRNA-binding proteins (mRBPs) regulate 

thousands of targets, thus the proper assembly and function of RNA-protein complexes is critical 

for the maintenance of cellular metabolism in all cells and organisms. For a large fraction of 

RBPs, we are only starting to understand the complexity of their basic molecular roles, modes of 

recognition and global targets.  

1.2 Aim of this thesis 

In the present thesis I focused first on the system-wide analysis of RNA metabolism and second, 

resulting from this analysis, I characterized the function of the putative 3’-5’ RNA exonuclease 

NEF-sp in Drosophila melanogaster. First, I set out to create a foundation for the system-wide 

study of PTGR factors. I developed a comprehensive census of human RBPs that regulate all 

coding and noncoding RNAs, and demonstrated its utility to gain insights into patterns in PTGR 

and to discover novel regulatory roles of RBPs. I created this catalog of RBPs based on structural 

domain annotations and experimental evidence and defined the number of proteins in different 

RNA regulatory pathways. I investigated their evolutionary conservation, protein families, and 

expression across adult tissues using published RNA-seq and microarray gene expression data. I 

further analyzed the co-expression of RBPs, finding common and unique trends in regulatory 

RNA pathways. Lastly, I used this categorization to summarize phenotypic commonalities 
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encountered for diseases caused by mutations in RBPs involved in the same RNA regulatory 

pathways. From the computational analyses of RBDs and RNA-binding low complexity repeats, I 

discovered a novel RBP, FAM98A and characterized its binding sites by PAR-CLIP 

(Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation). 

Furthermore, from the curated RBP census I discovered a highly tissue-specific 3’-5’ 

RNA exonuclease NEF-sp (LOC81691).  Using a combination of genetic, biochemical and RNA-

sequencing experiments, I characterized the function of the Drosophila melanogaster homolog 

dNEF-sp (CG8368) and discovered its role in ribosomal RNA biogenesis in Drosophila 

melanogaster. The findings give unprecedented insights into the 3’ end maturation of 28S rRNA 

in higher eukaryotes.  

Together, the presented work developed a foundation for the system-wide analysis of PTGR 

factors in humans and its conserved homologs in other species, and elucidated mechanistic details 

of the 3’ end maturation of 28S rRNA in higher eukaryotes. 
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2 A census of human RNA binding proteins 

2.1 Introduction  

2.1.1 Experimental and bioinformatic approaches towards a census of RBPs 

PTGR is essential to cellular metabolism, coordinating maturation, transport, stability and 

degradation of all classes of RNAs. Mechanistically, each of these events is regulated by the 

formation of different RNP complexes with RBPs at their core. Among the first ribonucleoprotein 

complexes discovered was the ribosome in the 1950s (Darnell 2011; Steitz, 2008). Early 

biochemical studies on heteronuclear RNPs (hnRNPs) found that specific structural domains 

within proteins conferred direct and specific RNA-binding, which led to the definition of the first 

conserved, canonical RNA-binding domain (RBD) in RBPs (Burd and Dreyfuss, 1994). Different 

strategies were initially employed towards the identification of RBPs. Early approaches for the 

isolation of RBPs used gel electrophoresis of UV-crosslinked nuclear extracts, RNA pulldown or 

conventional chromatography to recover associated RBPs from cell lysates, followed by their 

mass spectrometric identification or immunodetection (Ascano et al., 2013; Dreyfuss et al., 1984; 

Pinol-Roma et al., 1988). To distinguish direct RNA-protein interactions from proteins 

associating with assembled RNPs UV-crosslinking became a refined method to isolate RNA-

protein complexes during harsher purification steps, allowing the reduction of protein-protein-

mediated background binders (Ascano et al., 2013). Alternatively, in vitro assays of 

recombinantly expressed candidate proteins were performed to interrogate RNA-binding 

properties. These allowed the quantitative assessment of binding preferences to specific RNA 

targets in vitro.  

The definition of RBDs in proteins was facilitated by the growing amount of experimental and 

structural data, as well as the completion of sequenced genomes from all kingdoms of life, which 

allowed sequence alignments of multiple, related proteins and computational RBD predictions 
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across organisms based on sequence information (Finn et al., 2010; Haft et al., 2001; Letunic et 

al., 2009; Marchler-Bauer et al., 2013; Murzin et al., 1995; Tatusov et al., 2000; Wilson et al., 

2009). These algorithms used Hidden Markov probabilistic models (HMM) that determine the 

likelihood of a specific amino acid sequence based on multiple sequence alignments. HMMs 

enable the detection of structural domains in uncharacterized protein sequences across organisms 

based on probability calculations of observed states of amino acid sequences, assuming an 

unobserved (hidden) state of a defined archetype structural domain sequence. At least 600 

structural domains have been defined in RNA-related processes on Pfam by now (Finn et al., 

2010). Early counts of RBPs used predictions selecting a small number of single-stranded-RNA-

binding domains (ssRBDs, e.g. KH, RRM, PUF, S1, Table 5.1), often named canonical RBDs. 

These arrived at ~500 RBPs in human and mouse (Cook et al., 2011; Galante et al., 2009; McKee 

et al., 2005), ~300 in D. melanogaster (Gamberi et al., 2006; Lasko, 2000), and ~250-500 in C. 

elegans (Lasko, 2000; Lee and Schedl, 2006; Tamburino et al., 2013). An estimated ~700 RBPs 

in humans was reached when including additional RBDs involved in other aspects of RNA 

metabolism (Anantharaman et al., 2002). These approaches suggested a complex regulatory 

network controlled by RBPs and recognized that a census of RBPs was a prerequisite for the 

interpretation of synergistic and competitive action of RBPs on their targets.  

Other approaches to obtain an estimate of the proteins involved in PTGR are automated 

functional annotations, including the Gene Ontology (GO) project (Ashburner et al., 2000) and 

the Kyoto Encyclopedia of Genes and Genomes database (KEGG) (Kanehisa and Goto, 2000), 

which integrate literature reports, database entries, and structural features. Using GO annotation, 

we arrived at ~1,900 human RBPs. While these gene groups are useful for gene set pathway 

analyses, they are not designed to establish a census of RBPs, as they include falsely assigned 

proteins due to inferred participation in biological processes or exclude valid proteins due to 

absence of annotation. 



 

 

10 

High-throughout experimental methods to determine the number of RBPs in different 

organisms, such as RBP-immunoprecipitation (RIP) coupled with cDNA array hybridization of 

recovered RNA (Tenenbaum et al., 2000), or SELEX-based (Systematic Evolution of Ligands by 

Exponential Enrichment) RNA ligand selections (Stoltenburg et al., 2007), enabled researchers to 

gain more global insights into specific RNA targets and RBP/RNPs preferential binding, but they 

were still limited to a few hundred targets. Protein microarrays allowed increased throughput for 

probing RNA-binding capabilities of a fraction of the proteome in vitro, using RNA probes of 

defined sequence (Scherrer et al., 2010; Siprashvili et al., 2012; Tsvetanova et al., 2010). The 

recent development of large-scale quantitative methods, especially next-generation sequencing 

and modern protein mass spectrometry (Ascano et al., 2012a; Gerstberger et al., 2013; Konig et 

al., 2011; Mann, 2006; Wang et al., 2009), now facilitates genome-wide identification of RBPs, 

their protein cofactors, and RNA targets at an unprecedented scale. In addition, deep sequencing 

approaches utilizing immunoprecipitation of RBPs, with or without in vivo RNA-protein 

crosslinking (CLIP- and RIP-seq, respectively) (Ascano et al., 2012a; Konig et al., 2011), as well 

as in vitro evolution methods (Ray et al., 2013; Stoltenburg et al., 2007), revealed binding spectra 

of RBPs and showed that a large proportion of RBPs binds to thousands of transcripts in cells at 

defined binding sites.  

In an effort to experimentally validate RBPs across proteomes, four recent studies 

employed a combination of in vivo UV RNA-protein crosslinking followed by poly(A) RNA 

pulldown and protein mass spectrometry. These characterized the mRNA-binding proteome in 

HEK293 and HeLa human cell lines, mouse embryonic stem cells, and yeast (Ascano et al., 2013; 

Baltz et al., 2012; Castello et al., 2012; Kwon et al., 2013; Mitchell et al., 2013). The approach 

identified ~800 mRNA-binding proteins (mRBPs) in human HEK293 and HeLa cell lines, 

respectively (Baltz et al., 2012; Castello et al., 2012), 555 in mouse embryonic stem cells 

(mESCs) (Kwon et al., 2013), and 200 mRBPs in yeast (Mitchell et al., 2013). A total of ~1100 
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putative mRBPs were identified in the human and mouse datasets, ~600 of them were found in all 

three of them (Figure 2.1). A significant portion of these (64%) overlapped with known GO-

classified RBPs (Figure 2.1).   

Figure 2.1 Results from different cataloging efforts for defining RBPs. (A) Venn diagram 

showing the overlap of proteins with RNA-related Gene Ontology (GO) categories (Ashburner et 

al., 2000) (orange), the human RNA-binding proteome identified by RNA-crosslinking and mass 

spectrometry studies (MS RBP proteome, green) (Baltz et al., 2012; Castello et al., 2012; Kwon 

et al., 2013), and the RBPDB database of human RBPs with canonical RBDs (Cook et al., 2011) 

(red). (B) Venn diagram showing the overlaps of GO RBPs (orange), MS RBP proteome (green), 

and the curated RBP list presented here based on domain analysis of RBDs and experimental 

evidence of RNA-binding found in the literature (violet). (C) Composition of RBPs in the curated 

census: Canonical-RBD RBPs (containing canonical RBDs (Cook et al., 2011; Lunde et al., 

2007), red) (Table 5.1), ribosomal proteins (bright violet), other RBPs (dark violet). 

Many of the residual mRBP candidates did not contain previously described RBDs and 

require further experimental validation, while other known and expressed RBPs were missed due 

to the sensitivity of the experiments. However, in comparison to earlier predictive counts of the 

number of mRBPs using only canonical RBDs (Cook et al., 2011) (Figure 2.1, Table 5.1),  this 

approach expanded the mRBP proteome from an estimated 400 to ~1,100 putative, 

experimentally derived candidates. With increasing sensitivity, approaches like these may 

represent the most suitable method to experimentally identify novel RBPs in proteome-wide 

experiments in different cell types. Comparative large-scale studies isolating the many ncRNA-

binding proteins have not been undertaken yet, reflecting the predominant focus in PTGR 

centering around mRBPs. However, PTGR is not limited to mRNA regulation and a predominant 



12 

part comprises processes acting on ncRNAs. In this respect, it may not be surprising that among 

the ~150 RBPs listed in the Online Mendelian Inheritance (OMIM) (Hamosh et al., 2005) linked 

to human diseases, only a third are described as binding mRNAs, while others target diverse 

ncRNAs.  

In summary, bioinformatic and experimental methods advanced enough to allow the 

investigation of RBPs at a systems-wide level, but perhaps due to the complexity of RNA 

metabolism, PTGR research is often focused on selected pathways and ignored that the 

fundamental RNA regulatory processes are tightly interconnected. As a consequence, at the onset 

of this project we did not have a clear understanding of the identity and number of all genes 

involved in PTGR.  To address this need, I synthesized the available knowledge of PTGR factors 

through computational analyses to arrive at a curated census of the 1,542 proteins involved in 

RNA metabolism (Figure 2.1 B-C). The work presents an important step towards the 

comprehensive characterization of PTGR and the results of the analysis are presented here. 
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2.2 Computational methods 

2.2.1 Selection of RNA-binding proteins and transcription factors 

To define the total number of RBPs in humans, the complete set of protein sequences of the 

human proteome (105,237 isoforms) in Ensembl database (release v75) was searched for the 

presence of protein domains defined by Pfam A (Pfam HMM profiles, release v27) (Finn et al., 

2010) using the domain-search algorithm hmmer3.0 (Eddy, 1998). We decided to set a 

confidence cut-off at e-value <0.01 for protein domain annotations. Next, I selected 799 Pfam 

domains (see Table 5.2) that were described to be involved in RNA-related processes (either 

directly RNA-binding/ processing or typically found in RNP complexes) and filtered out all 

protein isoforms that contained the selected RNA-binding domains (RBDs) (Figure 2.2).  

Figure 2.2 Diagram for generating a curated list of human RBPs. 80,000 protein-coding 

mRNA isoforms as curated by Ensembl were searched with defined HMM models for 799 RNA-

binding domains (Table 5.2). The candidates were merged and compared with mass-spectrometry 

data from RNA-protein crosslinking experiments and Gene Ontology annotations. The resulting 

candidate genes were manually curated to arrive at a final census of 1,542 RBPs. The RBPs were 

further analyzed for their evolutionary conservation, families, tissue specificity, and expression 

trends across developmental stages.  



14 

For the final gene list I took one representative protein isoform per gene, selecting either 

the isoform with the highest number of RBDs or, in cases of an equal number of RBDs per gene 

in each isoforms, the longest isoform was selected. This procedure resulted in 2,103 putative 

RBPs. In a second filtering step I removed zinc finger proteins of the KRAB-, SCAN, and BTB 

domain classes, which are exclusively found in DNA-binding proteins. I manually inspected the 

residual 1,962 proteins using information available on NCBI’s Entrez Gene and publication 

records to further remove proteins, which were unlikely to be involved in RNA metabolism based 

on their literature reports, homolog and paralog annotation, or presented pseudogenes and gene 

duplications. Finally, I manually added RBPs based on literature reports of the proteins or their 

orthologs, if they were missed by domain annotation, refined the selection of RBDs, and added 

known RBPs, which lacked a Pfam-defined structural protein domain. This resulted in a final 

census of 1,542 proteins (Figure 2.2, Table 5.3).  

I compared structural conservation of RBPs with the other main gene regulatory group, 

transcription factors (TFs). For this comparison, I downloaded the curated TF dataset from 

Vaquerizas et al. (Vaquerizas et al., 2009) and matched the gene names and IDs to the current 

Ensembl v75 release, removing non-protein-coding genes and archived gene IDs. Of the 1,987 

listed genes we could trace 1,874 genes. Duplicated genes were only listed once and genes, which 

were also present in our curated RBP list (such as e.g. ZFP36 protein family), were removed and 

classified as TF misannotations and predominant RBPs. The final list of TFs contains 1,704 

proteins (see Table 5.5). 

2.2.2 Expression analysis across 16 tissues 

I used RNA-seq data from the human body map generated by Illumina, which comprised single 

and paired-end sequencing reads from poly(A)-selected RNA, isolated from 16 adult human 

tissues (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/). I aligned the raw reads 
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with tophat2 and cufflinks2 against the human genome (hg19) using default parameters (Kim et 

al., 2013a; Trapnell et al., 2010). With a minimum expression threshold of rpkm=1 log2(rpkm) 

expression values were calculated for RBPs, TFs, and the remaining protein-coding genes across 

the 16 tissues. For the cumulative abundance analysis of RBPs and TFs, I added rpkm values for 

both groups in each tissue. For the subdivision of mRBPs and ribosomal proteins I used the 

manually curated annotation categories (see next section). Downstream analysis was performed in 

R using ggplot2. 

2.2.3 Categorization of RNA targets for RBPs 

I manually inspected the list of 1,542 RBPs and defined categories for RNA targets based on 

literature reports as ribosomal proteins, diverse targets, mRNA-, tRNA-, rRNA-, snoRNA-, 

snRNA-, and ncRNA-binding. Proteins with reported RNA-binding properties but unknown 

natural targets, were grouped into an unknown targets category. All other noncoding RNAs were 

grouped together in the ncRNA-binding category, including miRNAs, piRNAs, 7SK, lncRNAs, 

MRP RNA and RNase P, 7SL, vtRNAs, Y RNAs, viral RNAs and telomerase RNA. RBPs 

binding DNA/RNA hybrids were categorized into the diverse category, together with RNA 

nucleases and RNA exosome components. Proteins that are part of RNP complexes, but may not 

bind RNA directly, were assigned to their main RNA pathways, e.g. candidates involved in 

splicing or translation processes were classified as mRBPs. 

2.2.4 RBP family definition, targets, and conservation analysis 

I used Ensembl Compara (Vilella et al., 2009) to retrieve paralog information for the current 

Ensembl v75 proteome and grouped protein families based on an average of 20% sequence 

identity of the query and target percentage identities. I hand-curated cases where family 

relationships were not well defined and overlapped. I furthermore removed pseudogenes, read-
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through transcripts, cDNA clones, and open reading frames (ORFs), which had no protein-coding 

entry on NCBI’s Entrez Gene. Using this approach, I defined 1,111 RBP families and 554 TF 

families. Target categories for RBP families were defined by manually inspecting the annotation 

categories of the individual members in each family and then assigning the common target group 

per family based on the most frequently found target group in the family.  

For the conservation analysis of paralogous protein families, the number of homologs and 

average homologies to human were queried through the Ensembl Compara database, which 

defined sequence identities and evolutionary relationships of proteins across organisms. The 

identity scores were retrieved for RBPs and TFs from 10 selected species (macaque, mouse, rat, 

Xenopus, zebrafish, zebrafinch, chicken, fruitfly, C. elegans, and S. cerevisiae). The average 

homology for protein families was determined based on sequence identities in three subsequent 

steps. First, for each homolog the average identity between the target and query score was 

calculated. Next, if one gene had more than one homolog in the queried species, the geometric 

average of the identity scores was taken to arrive at a final average homolog conservation score 

per gene. Third, per family I took the geometric averages of the average identity scores calculated 

for each individual member to give an average homology score per protein family. I grouped 

families into 4 different conservation categories with average identity scores of 0-20%, 20-30%, 

40-60%, 60-75%, and 75-100%. The average conservation of each RNA target group was 

determined for RBP families conserved in S. cerevisiae.  

2.2.5 Tissue specificity analysis of RBPs and RBP families 

To assess tissue specificity of RBPs and TFs across human tissues, I used a microarray tissue 

atlas by Dezso et al. (Dezso et al., 2008) that profiled expression of 16,867 genes across 31 

human tissues using the ABI Human Genome Survey Microarray platform version 2. I directly 

used the processed data deposited on GEO for further analysis, selecting per gene, if more than 
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one probe was present, the probe with the highest reported minimum intensity value. I defined a 

tissue specificity score S that assesses the deviation from a uniform distribution as information 

content. S measures, analogous to the definition of sequence logos in information theory, the 

difference between the logarithm of the total number of tissues and the Shannon entropy of the 

expression values for a gene. 

𝑆 = 𝐻!"# − 𝐻!"# = 𝑙𝑜𝑔! 𝑁 − (− [𝑝!×𝑙𝑜𝑔! 𝑝! ])
!

!!!

 

where the relative frequency 𝑝! =
!!

!!
!

!!!

 ; 

𝑥! is the microarray expression level for gene in tissue i, 𝐻!"# = maximum possible entropy, 

𝐻!"# = observed entropy, N is the number of tissues, in this case 31. The scale of the tissue 

specificity score S depends on the number of tissues, in the current dataset the maximum S (Hmax) 

is reached when 𝑆 = 𝑙𝑜𝑔! 31 = 4.95. The plots show the maximum expression value per gene 

against its tissue specificity score S. Assessing tissue specificities of RBP families, I examined 

scores of the profiled genes per family and defined four categories of expression profiles for RBP 

families. In the first category I defined tissue-specific protein families, in which all members had 

tissue specificity scores S≥1. This score was set based on the tissue specificity scores of known 

tissue-specific RBPs, such as the PIWI proteins exclusively expressed in the germline. In the 

second category, I defined families with tissue-specific members, in which not all, but at least one 

member had a tissue specificity score S≥1. For the third category I binned gradient RBP families, 

if all their members had tissue specificity scores between 0.3>S>1. In the final category of 

ubiquitous families, I grouped all protein families with tissue specificity scores for all their 

members S<0.3. 
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2.2.6 Expression analysis of RBPs across developmental stages  

For analyzing the variation of expression of RBPs during human fetal ovarian development, I 

used a microarray study by Houmard et al. (Houmard et al., 2009), which profiled expression of 

17,508 genes during different gestational weeks using the Affymetrix Human Genome U133 Plus 

2.0 Array platform. The publically available processed data was used for further analysis, 

selecting, if more than one probe per gene was present, the probe with the highest minimum 

expression value across the profiled stages. The geometric average for biological replicates of 

developmental stages was computed. Tissue specificity scores were calculated as described above 

across the developmental stages. 1,461 of the 1,542 RBPs profiled in this dataset could be 

extracted and selected the top 200 RBPs with highest scores S, i.e. which showed the highest 

deviation from a uniform distribution across the developmental stages, were selected for the 

representation of differentially expressed RBPs. In order to display dynamics of expression on a 

comparable, scale I further normalized the microarray intensity values for each gene to fold 

changes over the mean intensities across the profiled stages (Fold change = 
!!

!!
!

!!!

×
1
𝑁

, where xi 

= microarray intensity for stage i, N = number of stages). Heat maps show unsupervised 

clustering of the log2(fold change over mean) expression values.  

For the analysis of RBP expression in brain, I downloaded the publically available, 

processed RNA-sequencing data for human brain development from the brainspan atlas 

(http://www.brainspan.org) and selected 12 stages of hippocampus development as model for 

assessing RBP expression changes during neural development. Geometric average for biological 

replicates of the developmental stages were computed. To calculate tissue-specificity scores, a 

pseudo counts of 0.1 was added to each rpkm value and tissue specificity scores calculated as 

described above. A minimum expression cut-off of the sum of rpkm values across the 

developmental stages was set to (𝑥!) ≥ 12
!

!!! , where N = total number of profiled stages, and xi 

= rpkm value in stage i. 1,402 RBPs were above this threshold. The top 200 RBPs with highest 
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tissue specificity scores S were selected for the heat map analysis. Rpkm values were further 

transformed to fold changes over the mean by dividing the rpkm values over the mean rpkm 

across the developmental stages. This allowed comparison of expression changes of different 

genes at a similar scale (𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
!!

!!
!

!!!

∗ 1/𝑁, where xi = rpkm for stages i, N = number

of stages). Unsupervised clustering of the log2(fold change over mean) was used for the heat map 

representation. Pearson correlation and heat maps were generated using the gplots package in R. 

2.2.7 Analysis of PAR-CLIP Libraries 

FAM98A PAR-CLIP reads were adapter extracted, clipped with length of at least 20 nts and 

mapped to the hg19 human genome with Bowtie 0.12.9 (Langmead et al., 2009) (Bowtie 

parameters “-v 1 -m 10 --all --best –strata”), allowing for one mismatch in read alignments and up 

to 10 multimatches in the genome. Processing and annotation of clusters to the ENCODE 

GRCh38 genome annotation was performed using the PARalyzer software as described in 

Corcoran et al. (Corcoran et al., 

2011)(http://www.genome.duke.edu/labs/ohler/research/PARalyzer/). Downstream analysis was 

performed in R. Shuffling of protein-coding ORFs was performed using the shuffling algorithm 

in the HMMER-3.0 suite using dinucleotide shuffling to preserve the dinucleotide composition 

(Eddy, 1998). 

2.2.8 Analysis of FAM98A RNA-sequencing data 

Illumina HiSeq 2000 100-base-pair (bp) single-end sequence reads were aligned to the reference 

genome (GRCh38/ hg19) using TopHat version 2.0.5 (Kim et al., 2013a) in default settings. Gene 

expression was estimated using the Ensembl GRCh38 gene model and the Cufflinks software 

version 2.0.2 (Trapnell et al., 2012b). Downstream cumulative distribution and statistical analyses 

were performed in R.  
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2.3 Experimental methods 

2.3.1 Cell lines and plasmids 

pENTR4-FAM98A was generated by restriction enzyme digest with SalI and NotI according to 

standard cloning procedures. The resulting pENTR4 vector was subsequently recombined into the 

pFRT/TO/FLAG/HA-DEST destination vectors using Gateway LR recombinase according to 

manufacturer’s protocol (Invitrogen). Primers for FAM98A cDNA amplification were designed 

containing the BP recognition overhangs: FAM98A-forward: 5’- 

ACGCGTCGACATGGAGTGTGACCTCATGGAG; FAM98A-reverse: 5’- ATAGTTTAGCG-

GCCGCTCAACTAGTGTAATGTCTTCCCTG. Cell lines were established according to the 

manufacturer’s protocol for generating stable cell lines using the FlpIn system (Invitrogen). 

50,000 cells/ml HEK293T FlpIn cells were seeded in a 12-well plate in antibiotic-free DMEM 

(Dulbecco's Modified Eagle Medium (DMEM) (Invitrogen, Life Technologies) supplemented 

with 10% heat inactivated fetal bovine serum (Thermo Scientific), 2 mM L-Glutamine, 100 U/ml 

penicillin, 100 U/ml streptomycin). 0.1 µg pFRT/TO/FLAG/HA-FAM98A-DEST destination 

vector was co-transfected with 0.9 µg pOG44 plasmid containing the Flp recombinase enzyme 

and 2 µl Lipofectamine 2000 in 50 µl Opti-MEM according to the manufacturer’s instructions 

(Invitrogen). After 24 hrs Flp-In T-REx HEK293 cells expressing doxycycline-inducible 

FLAG/HA-tagged FAM98A were supplemented with a hygromycin and blasticidin selection 

medium (Dulbecco's Modified Eagle Medium (DMEM) (Invitrogen, Life Technologies) 

supplemented with 10% heat inactivated fetal bovine serum (Thermo Scientific), 2 mM L-

Glutamine, 100 U/ml penicillin, 100 U/ml streptomycin, 100 µg/ml hygromycin, 15 µg/ml 

blasticidin). Colonies selected were after a few days, tested for inducible FLAG/HA-FAM98A 

expression by Western blot analysis, and cell line stocks were flash frozen in liquid nitrogen with 

50% DMSO and stored at -196°C in liquid nitrogen. Stable cell lines were generally maintained 

in cell culture in DMEM supplemented with 10% heat inactivated fetal bovine serum (Thermo 
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Scientific), 2 mM L-Glutamine, 100 U/ml penicillin, 100 U/ml streptomycin, 100 µg/ml 

hygromycin, 15 µg/ml blasticidin. Parental HEK293FlpIn-TRex cells were maintained in DMEM 

supplemented with 10% FBS, 2 mM L-Glutamine, 100 U/ml penicillin and 100 mg/ml 

streptomycin, 15 mg/ml blasticidin, and 100 mg/ml zeocin. 

2.3.2 RNA isolation and cDNA preparation   

Total RNA was isolated with TRIzol following the manufacturer’s protocol. First strand cDNA 

was synthesized from 5 µg total RNA using oligo(dT) priming and the Superscript III First Strand 

synthesis kit following the manufacturer’s instructions (Invitrogen).  

2.3.3 RNA phenol/chloroform isolation and ethanol precipitation 

One volume of phenol/chloroform/isoamyl alcohol (25:24:1, phenol buffered at pH 4.3) was 

added to one volume of an RNA solution and vortexed vigorously for 15 sec. The phases were 

separated by centrifugation at 12,000 g at 4°C for 2 min. The upper aqueous layer was removed 

to a new tube and re-extracted with an equal volume of ice-cold chloroform. The mixture was 

vortexed for 15 sec and the phases were separated by centrifugation, 12,000 g at 4°C for 2 min. 

The upper aqueous layer was removed and added to a new tube, and the salt concentration 

adjusted to a final of 0.3 M NaCl. 3 volumes of 100% EtOH were added to the solution, mixed 

thoroughly, and stored at -20°C for 10 min (long RNAs) or 1 hr/overnight (short RNAs). RNA 

was precipitated by centrifugation at 12,000 g at 4°C for 30 min. The supernatant was removed 

and the pellet dissolved in 10-50 µl water.  

2.3.4 Radiolabeling of oligo size markers  

For 5’ end radiolabeling, 100 pmoles of RNA size markers (19 nt: 5’ 

pCGUACGCGGGUUUAAACGA; 35 nt: 5’ pCUCAUCUUGGUCGUACGCGGAAUAGUUU 



22 

AAACUGU) was incubated with 5 pmoles of γ-
32

P ATP and 10 units of T4 PNK (NEB) in 1 x T4 

PNK buffer (70 mM Tris-HCl pH 7.6, 10 mM MgCl2, 5 mM DTT) in a 20 µl reaction for 15 min 

at 37°C; followed by addition of 1,000 pmoles of non-radiolabelled ATP for another 5 min. The 

reaction was stopped by 1 volume of stop buffer (8 M urea, 10 mM EDTA, bromophenol). 

Labeled oligoribonucleotides were separated on an 18% polyacrylamide/ 8M urea gel at 28 W for 

1 hr; the gel was exposed on a phosphorimaging screen, and gel pieces with the labeled oligomers 

excised. The RNA was eluted from the excised gel pieces with 3x the gel volume of 0.3 M NaCl 

solution overnight at 4°C, ethanol precipitated and the RNA pellet collected by centrifugation at 

>12,000g for 30 min at 4°C as described above. 

2.3.5 PAR-CLIP  

PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) 

was performed as previously described in Hafner et al. (Hafner et al., 2010a; 2010b). Expression 

of FLAG/HA-tagged FAM98A in stable FAM98A HEK293 cell lines was induced by addition of 

doxycycline (1 µg/ml) 16 hrs prior to harvesting.  

4-SU incorporation and in vivo crosslinking:  

FAM98A expressing cells were incubated with 100 µM 4-thiouridine (4SU) nucleoside analog 

for 16 hrs, the medium decanted and the cells irradiated on ice with a dose of 0.15 J/cm
2
 of at 365 

nm UV light in a Spectrolinker XL-1500 (Spectronics Corporation) equipped with 365 nm light 

bulbs or similar device. Cells were collected, frozen in liquid nitrogen, and stored at -80°C. 

FAM98A cell pellets were lysed in 3x the volume of the cell pellet in NP-40 lysis buffer [50 mM 

HEPES-KOH pH 7.2, 150 mM KCl, 0.5% (v/v) NP-40, 0.5 mM DTT, complete EDTA-free 

protease inhibitor cocktail (Roche)]. The lysate was incubated 30 min on ice and cleared by 

centrifugation at 12,000 g for 30 min at 4°C. The cleared supernatant was filtered through a 5 µm 

membrane syringe filter (Pall).  
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RNase T1 digest: In the first RNase T1 digest cell lysates were incubated with RNase T1 

(Fermentas) at a final concentration of 1 U/µl at 22°C for 15 min and cooled on ice before 

proceeding. 50 µl magnetic Dynabeads Protein G coupled (Invitrogen) were used per 5 ml cell 

pellet. Magnetic beads were washed 3x in 1 ml PBS-Tween 20 0.1% (PBS-T) and incubated with 

25 µl anti FLAG mouse monoclonal antibody (M2, 1 mg/ml, Sigma) in 200 µl PBS-T on a 

rotating wheel for 1 hr at room temperature.  

Immunoprecipitation: Antibody-conjugated beads were washed 2x with PBS-T, resuspended in 

200 µl lysis buffer and added to the lysate. Beads were incubated in the cell lysates on a rotating 

wheel for 1 hr at 4°C. After immunoprecipitation, magnetic beads were collected in a magnetic 

particle collector and washed 3x in 1 ml IP wash buffer [50 mM HEPES-KOH pH 7.5, 300 mM 

KCl, 0.05% (v/v) NP-40, 0.5 mM DTT, complete EDTA-free protease inhibitor cocktail 

(Roche)].  

2
nd

 RNase T1 digest: In a second RNase T1 digest beads were resuspended in one bead volume 

IP wash buffer and incubated with RNase T1 to a final concentration of 100 U/µl for 15 min at 

22°C.  

Dephosphorylation: Prior to dephosphorylation of protein-bound RNA fragments, the magnetic 

beads were washed 3x in 1 ml high salt wash buffer [50 mM HEPES-KOH pH 7.5, 500 mM KCl, 

0.05% (v/v) NP-40, 0.5 mM DTT, complete EDTA-free protease inhibitor cocktail (Roche)], and 

resuspended in 1 bead volume dephosphorylation buffer (NEB buffer #3, 50 mM Tris-HCl pH 

7.9, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT). Calf intestinal alkaline phosphatase (CIP) (10 

U/µl, NEB) was added to a final concentration of 0.5 U/µl, and the suspension incubated for 10 

min at 37ºC. Beads were washed 2x in 1 ml phosphatase wash buffer (50 mM Tris-HCl, pH 7.5, 

20 mM EGTA, 0.5% (v/v) NP-40), and 2x in 1 ml T4 polynucleotide kinase (PNK) buffer 

without DTT (50 mM Tris-HCl, pH 7.5, 50 mM NaCl, 10 mM MgCl2).  
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Phosphorylation with radioactive γ -
32

P-ATP: For radiolabeling of protein-bound RNA 

segments beads were resuspended in one bead volume of PNK buffer with DTT (50 mM Tris-

HCl, pH 7.5, 50 mM NaCl, 10 mM MgCl2, 5 mM DTT). Radioactive γ-
32

P-ATP (0.01 mCi/µl) 

was added to a final concentration of 0.5 µCi/µl (1.6 µM ATP) and the reaction incubated with 

T4 PNK (10 U/µl) added to a final concentration of 1 U/µl. The suspension was incubated at 

37°C for 30 min. Non-radioactive ATP was added to a final concentration of 100 µM and the 

reaction incubated for another 5 min at 37ºC.  

SDS-PAGE separation and electro-elution: Beads were washed 5x with 1 ml PNK buffer 

without DTT, resuspended in 70 µl of 4x SDS-PAGE loading dye (10% glycerol (v/v), 50 mM 

Tris-HCl pH 6.8, 2 mM EDTA, 2% SDS (w/v), 100 mM DTT, 0.1% bromophenol blue) and 

incubated at 90°C for 5 min. The supernatant was separated by SDS-PAGE, loaded onto a Novex 

Bis-Tris 4-12% polyacrylamide gel (Nupage, Invitrogen), and the gel run at 200 V for 45 min in 

1x Nupage MOPS running buffer according to the manufacturer’s instructions (Invitrogen). The 

gel was exposed for 1 hr on a phosphorimaging screen and a band excised at the correct protein 

size. The excised gel pieces were transferred into a dialyzer tube (Novagen) and the residual 

volume filled with 800 µl 1x SDS running buffer (25 mM Tris base pH 8.3, 0.192 M glycine, 

0.01% SDS). The RNA-protein complex was electro-eluted from the gel in SDS running buffer at 

100 V for 1 hr. 

Proteinase K digest: The electro-eluted supernatant was transferred to a new tube and mixed with 

2x Proteinase K buffer (100 mM Tris-HCl, pH 7.5, 150 mM NaCl, 12.5 mM EDTA, 2% (w/v) 

SDS), followed by addition of Proteinase K (Roche) to a final concentration of 1.2 mg/ml and the 

reaction incubated for 30 min at 55°C.  The reaction mix was phenol-chloroform extracted, 

ethanol precipitated (to aid precipitation 1 µl glycogen was added), and the RNA redissolved in 

10 µl water.  
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3’adapter ligation:  RNA was incubated with 2 µl of 10x RNA ligase buffer without ATP [0.5 M 

Tris-HCl, pH 7.6, 0.1 M MgCl2, 0.1 M 2-mercaptoethanol, 1 mg/ml acetylated BSA (Sigma)], 6 

µl 50% DMSO and 1 µl of 100 µM adenylated RNA 3’adapter 21.930 (5’-

AppTCGTATGCCGTCTTCTGCTTGT), heat denatured at 90°C for 1 min and placed on ice. As 

ligation control 40 fmol of 1:100 dilution of 5'-
32

P-labeled RNA size markers were prepared in a 

separate reaction. 1 µl of truncated T4 RNA ligase Rnl2 (1-249)K227Q ligase (1 µg/µl, plasmid 

for recombinant expression available from addgene.org) was added per reaction and incubated on 

ice at 4°C overnight. The reaction was stopped by addition of 20 µl 2x formamide stop mix 

(98.8% deionized formamide, 1% (v/v) 0.5 M EDTA pH 8.0, 0.2% Bromophenol blue), 

denatured at 90°C for 1 min, and loaded onto a 18% polyacrylamide/8M urea gel. The RNA was 

separated by electrophoresis in 1x TBE buffer (0.045 M Tris base, 0.045 M boric acid, 0.001 M 

Na2EDTA) at 28 W for 45 min. The gel was exposed on a phosphorimaging screen for 1 hr and 

gel bands of the 3’ ligation product excised in the size range of the ligated size marker control. 

The RNA was eluted from the gel with 400 µl 0.3 M NaCl at 4°C overnight, ethanol precipitated 

with 3 volumes, the pellet collected by centrifugation at 12,000 g and resuspended in 9 µl water.  

5’adapter ligation: 1 µl of 100 µM RNA 5' adapter 26.68 (5’-

GUUCAGAGUUCUACAGUCCGACGAUC), 2 µl of 10x RNA ligase buffer with ATP (0.5 M 

Tris-HCl pH 7.6, 0.1 M MgCl2, 0.1 M 2-mercaptoethanol, 1 mg/ml acetylated BSA, 2 mM ATP) 

and 6 µl 50% aqueous DMSO were added to the RNA and the mixture denatured at 90°C for 1 

min. The reaction was immediately placed on ice for 2 min, followed by addition of 2 µl T4 RNA 

ligase Rnl1 (Fermentas) and incubated at 37°C for 1 hr. The ligation reaction was stopped by 

addition of 20 µl formamide stop mix, heat inactivated at 90°C for 1 min, and separated on a 15% 

polyacrylamide/ 8M urea gel in 1x TBE running buffer at 28 W for 45 min. The gel was exposed 

on a phosphorimage screen for 1 hr and gel bands excised at the correct size range of the 5’ 

ligated product (assessed by the control ligation of size marker). RNA was eluted from the gel 
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with 400 µl 0.3 M NaCl solution overnight at 4°C. To facilitate the recovery of the ligation 

product 1 µl of 100 µM 3' primer 21.929 (5’-CAAGCAGAAGACGGCATACGA) was added 

during the elution as carrier. The mixture was ethanol precipitated and re-dissolved in 5.6 µl 

water.  

Reverse transcription: The RNA ligation product was denatured for 30 sec at 90°C and 

transferred to 50°C. cDNA reaction mix was prepared as following: 1.5 µl 0.1 M DTT, 3 µl 5x 

first-strand synthesis buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 15 mM MgCl2), 4.2 µl 10x 

dNTPs (2 mM dATP, 2 mM dCTP, 2 mM dGTP, 2 mM dTTP) and the mix added to the RNA. 

The reaction was incubated for 3 min at 65°C before addition of 0.75 µl Superscript III reverse 

transcriptase (Invitrogen) and the reaction was incubated for 2 hrs at 50°C. The cDNA product 

was diluted with 85 µl water and stored at -20°C.  

PCR amplification of cDNA library: The PCR reaction mix was prepared per sample as 

following: 40 µl of the 10x PCR buffer (100 mM Tris-HCl pH 8.0, 500 mM KCl, 1% Triton-X-

100, 20 mM MgCl2, 10 mM 2-mercaptoethanol), 40 µl 10x dNTPs, 2 µl of 100 µM 5’ primer 

44.32 (5’- AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA), 2 µl of 

100 µM 3’ primer 21.929, 272 µl H2O. 89 µl of PCR reaction mix was used for a pilot PCR while 

the remaining reaction mix was kept for 3 large scale PCRs. 10 µl cDNA product, 1 µl Taq 

polymerase (5 U/µl) and 89 µl reaction mix were added to a final volume of 100 µl. PCR 

amplification was carried out under following cycle conditions: 45 sec at 94°C denaturation, 85 

sec at 50°C annealing, 60 sec at 72°C extension. Aliquots were taken every second cycle between 

12-28 cycles, mixed with 5x DNA loading dye (0.2% bromophenol blue, 0.2% xylene cyanol FF, 

50mM EDTA pH 8, 20% Ficoll type 400) and analyzed on a 2.5% agarose gel for 1.5-2 hrs at 180 

V. An expected length of about 95-110 nts and a lower band at 65 nts corresponding to the direct 

3'adapter-5'adapter ligation product were separated. The optimal cycle number was obtained by 

choosing the cycle number 5 cycles away from the saturation level of the PCR amplification. 
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Large scale PCRs at the optimal cycle were performed, the PCR product was directly ethanol 

precipitated, the DNA pellet dissolved in 60 µl of 5x DNA loading dye, and separated on a 2.5% 

agarose gel for 1.5-2 hrs at 180 V. The upper band corresponding to the cDNA library product 

was excised from the gel and eluted using the QiaQuick gel extraction kit according to the 

manufacturer’s instructions (Qiagen). The DNA was eluted in 30 µl water and 10 µl submitted for 

HiSeq sequencing.  

2.3.6 siRNA-mediated knockdown 

siRNAs with oligo U overhangs were chemically synthesized in the laboratory by C. Bognanni. 

The siRNAs were designed using the algorithms from Dharmacon siDESIGN 

(http://dharmacon.gelifesciences.com/design-center/) and the Whitehead siRNA design center 

(http://sirna.wi.mit.edu/home.php) and were antisense to the ORF of FAM98A. Sequences of the 

sense strands of the three different siRNAs were the following: FAM98A siRNA#1: 5’-

GCUAAGAGCCAGACAGAAAUU; FAM98A siRNA#2: 5’-GGAGAAAGCU-

GCUAAUAAAUU; FAM98A siRNA#3: 5’-GGGAAAAGAUAGAAGCAAUUU. dsRNA 

duplexes were annealed in 10 mM Tris pH 7.5, 20 mM NaCl with a final siRNA concentration of 

20 µM by heating them for 1 min at 95°C and letting them cool down overnight at room 

temperature. For siRNA-mediated knockdown 2.5x10^5 Flp-In T-REx HEK293 cells/well were 

seeded in 6-well plates in DMEM antibiotic-free medium (DMEM supplemented with 10% FBS, 

2 mM L-Glutamine, 100 U/ml penicillin, 100 U/ml streptomycin) and transfected with a 3.3 nM 

final concentration for each dsRNA duplex using Lipofectamine RNAiMAX following the 

manufacturer’s instructions (Invitrogen). All siRNAs were pooled to a final dsRNA concentration 

of 10 nM (3.3 nM per siRNA duplex) and transfected together to obtain efficient knockdown with 

reduced off-target effects. Cells were harvested 72 hrs post-transfection and the knockdown 

efficiency was evaluated on the protein level by Western blot analysis. 
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2.3.7 RNA-sequencing 

Total RNA from knockdown and overexpression experiments performed in biological duplicates 

was used as input for poly(A) purification and cDNA library construction using the TruSeq 

version 1.5 kit (Illumina). cDNA was barcoded using the Illumina Multiplexing Sample 

Preparation Oligonucleotide kit and sequenced on an Illumina HiSeq 2000 sequencer in a 100-

base-pair (bp) single-end sequencing run.  

2.3.8 Western blot analysis 

Cells were lysed in NP-40 lysis buffer [50 mM HEPES-KOH pH 7.2, 150 mM KCl, 0.5% (v/v) 

NP-40, 0.5 mM DTT, complete EDTA-free protease inhibitor cocktail (Roche)] and cleared by 

centrifugation at 12,000 g for 15 min at 4°C. Total protein concentration of supernatants was 

assessed by BCA assay (Pierce). 40 µg lysate was mixed in 4x SDS loading dye (10% glycerol 

(v/v), 50 mM Tris-HCl, pH 6.8, 2 mM EDTA, 2% SDS (w/v), 100 mM DTT, 0.1% bromophenol 

blue), incubated at 90°C for 2 min, and samples were separated by SDS-PAGE at 30 mA per gel 

using standard Tris base glycine running buffer (25 mM Tris base pH 8.3, 0.192 M glycine, 

0.01% SDS). After electrophoresis, proteins were blotted onto nitrocellulose membranes 

(Hybond-ECL, GE Life Science), pre-wetted in transfer buffer (25 mM Tris base, 190 mM 

Glycine, 20% MeOH, 0.05% SDS), and semi-dry transferred (Bio-Rad) at 250 mA for 1 hr. 

Nitrocellulose membranes were taken through a standard immunoblot protocol, followed by 

enhanced chemiluminescent detection (Crescendo ECL, Millipore) using a Lumimager (Fuji, 

LAS-3000). Following primary antibodies were used: rabbit polyclonal anti-FAM98A (1:500, 

abcam), mouse monoclonal anti-HA (HA-7, 1:1000, Sigma-Aldrich), mouse monoclonal anti-HA 

(HA.11, 1:1,000, Covance). Horseradish-peroxidase-conjugated polyclonal goat secondary 

antibodies raised against rabbit or mouse immunoglobulin (Dako, P0448 and P0447) were used at 
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a titer of 1:5,000, in conjunction with the appropriate species primary antibody, for immunoblot 

analyses. 

2.3.9 Immunofluorescent stainings and microscopy 

HEK293 cells expressing FLAG/HA-tagged FAM98A cells were grown on Lab-Tek II Chamber 

slides and induced with 1 µg/mL doxycycline 24 hrs before fixation. Chamber slides were rinsed 

with PBS and cells were fixed in 4% paraformaldehyde/PBS for 15 min at room temperature. 

Cells were permeabilized in PBS supplemented with 0.1% Triton-X100 (PBS-T) for 5 min, 

blocked with 5% normal goat serum in PBS-T for 30 min at room temperature and subsequently 

incubated for 1 hr with anti-HA antibody solution (Sigma-Aldrich, HA-7, 1:1000 in 5% normal 

goat serum in PBS-T). Chamber slides were washed 3x for 10 min in PBS-T, and incubated for 1 

hr in PBS-T with Hoechst stain (1:1000), Alexa Fluor 488 anti-rabbit IgG (H + L) (1:500), and 

Alexa-647 Phalloidin (1:300, in 5% normal goat serum in PBS-T). Chamber slides were washed 

in PBS 3x for 10 at room temperature and disassembled according to the manufacturer’s 

instructions. VectaShield mounting medium (Vector laboratories Inc.) was used for mounting. 

Single-layer images were recorded on a Zeiss LSM-710 confocal microscope. 
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2.4 Results  

2.4.1 Defining the RBP repertoire: Generation of a curated list of RBPs 

To annotate RBPs in the human genome, we defined proteins as RBPs if they contained domains 

known to directly interact with RNA or which resided within well-characterized RNPs, even if 

they were not directly contacting RNA, in some structurally characterized conformations. 

Considering that most RNPs are dynamically assembled and disassembled, transient sequence-

unspecific RNA contacts are still plausible, examples include components of the exosome 

complex, the polyadenylation and cleavage complex, the spliceosome, and the ribosome. To 

select RBPs with known defined structural RBDs, I extracted 799 Pfam-defined protein domains 

(Table 5.2) known to be RNA-binding or exclusively found in RNA-related proteins and used 

their protein domain Hidden Markov models to search the human genome (~20,500 protein-

coding genes) for proteins containing these RBDs (Eddy, 1998; Finn et al., 2010). From these 

candidates, I filtered out proteins with established RNA-unrelated functions, mostly DNA-

binding zinc finger proteins, and manually added RBPs missed by domain searches but clearly 

defined in the literature. This resulted in a final census of 1,542 RBPs (Table 5.3), or 7.5% of all 

protein-coding genes in human, which constitutes the basis of subsequent analysis described in 

this chapter. This catalog provides a fresh starting point for future curation efforts, yet is likely to 

change as experimental studies continue to uncover novel RBPs or recognize that candidate RBPs 

comprising established RBDs evolved to adopt new functionalities unrelated to RNA-binding. 

2.4.2 Analysis of structural features of RBPs 

RBPs are commonly classified based on their specific RBDs as their structure and function 

provides some insight into their binding preferences and targets. Many excellent reviews have 

covered the different RBD families and their modes of RNA-binding (Anantharaman et al., 2002; 

Arcus, 2002; Auweter et al., 2006; Burd and Dreyfuss, 1994; Chang and Ramos, 2005; Curry et 
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al., 2009; Draper and Reynaldo, 1999; Gerstberger et al., 2014b; Glisovic et al., 2008; 

Jankowsky, 2011; Kim and Bowie, 2003; Kuchta et al., 2009; Linder and Jankowsky, 2011; 

Lunde et al., 2007; Masliah et al., 2013; Meister, 2013; Mihailovich et al., 2010; Rajkowitsch et 

al., 2007; Rocak and Linder, 2004; Singh and Valcarcel, 2005; Sommerville, 1999; Tanner and 

Linder, 2001; Tharun, 2009; Valverde et al., 2008; Wang et al., 2002; Wilusz and Wilusz, 2005), 

and the depth of their discussion is limited to the insights gained from this analysis. RBDs are 

deeply conserved across bacteria, archaea, and eukaryotes. The 1,542 human RBPs contain a 

repertoire of ~600 structurally distinct RBDs. Among the structural RBDs, only 20 have more 

than 10 human gene members, while most of them have on average one or two members (Figure 

2.3, Table 5.4). mRBPs predominantly comprise the large RBD classes, mirroring the rapid 

expansion of mRNA metabolic processes in the evolution of higher eukaryotes (e.g. alternative 

splicing and polyadenylation) (Chen and Manley, 2009; Keren et al., 2010). 405 of the estimated 

692 mRBPs contain an RRM, KH, DEAD, dsrm, or zinc finger domain (Figure 2.3). In contrast, 

the 169 ribosomal proteins have 119 distinct domains exclusively found in ribosomal proteins. 

This diversity of RBDs complicates both the task of defining a census, as well as de novo 

identification of RBPs, and explains why earlier approximations based on the few large structural 

groups underestimated the number of proteins involved in PTGR. 

Prototypical ssRNA-binding domains interact with their targets in a nucleobase-

sequence-specific manner, typically binding between 4-8 nucleotides (Glisovic et al., 2008; 

Lunde et al., 2007; Singh and Valcarcel, 2005). Specificity is introduced mainly by hydrogen 

bonding and Van-der-Waals interactions of the nucleobases with the protein side chains or the 

carbonyl and amide groups of the main chain (Auweter et al., 2006), often leaving the RNA 

phosphate backbone exposed to the solvent. Additional base stacking interactions with aromatic 

amino acids or positively charged residues in cationic π-interactions serve to increase affinity. 

dsRNA-binding proteins achieve specificity through recognition of shape of RNA secondary 
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structure, such as stem loops (Masliah et al., 2013). Non-sequence-specific RBDs generally 

interact with the negatively charged phosphate backbone, leaving the bases exposed to the 

solvent. To achieve specificity, these RBPs can interact with cofactors recruiting them to specific 

targets, as has been observed for many RNA helicases (Auweter et al., 2006; Rocak and Linder, 

2004). 

While many RBDs and DNA-binding domains derive from a few common superfamily 

folds, such as the oligonucleotidyl transferase fold (Kuchta et al., 2009) and the oligosaccharide-

binding fold (OB-fold) (Arcus, 2002), RBDs largely diversified throughout evolution. 

Oligonucleotidyl transferase fold proteins include enzymatic RBPs such as TUTases, poly(A) 

polymerases, RNA ligases, tRNA CCA-adding enzymes and immune-stimulatory 2’,5’-

oligoadenylate synthases (Kuchta et al., 2009).  RBDs of OB-fold superfamily are the S1, PAZ, 

and CSD domains (Arcus, 2002; Lunde et al., 2007; Murzin, 1993). 

Analyzing the number and abundance of structural domain classes, it became evident that 

most RBDs had only one member. Only 4% of all RBD classes found in human have more than 8 

members. Further analysis of this newly curated census showed that members of the 26 most 

abundant RBD classes constituted a third of the 1,542 RBPs - most of them were mRBPs. Most 

of the prominently studied “canonical” RBDs (Lunde et al., 2007), such as the PUF (2 proteins), 

S1, CSD, and PIWI domains (8 members each), did not represent highly abundant RBD classes in 

humans and their overrepresentation in PTGR studies does not mirror their abundance in the 

genome. One of the largest functional groups, ribosomal proteins and proteins involved in 

ribosome maturation, possessed almost all unique domains for each protein and could not be 

classified into large families of related structural organization (Korobeinikova et al., 2012). In 

conclusion, mainly mRNA-related processes showed an expansion of protein families and are 

frequently found in small families of paralogs.  
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Figure 2.3 Overview of most abundant RNA-binding domains (RBDs) with selected 

examples in humans. (A) Counts of proteins with Pfam-defined RBDs with 8 or more members 

in humans. Domain names are listed according to Pfam nomenclature; additional information can 

be found in Table 5.4. In addition, low complexity RG/RGG repeat regions in RBPs are shown, 

defined as by at least three RG/RGG repeats spaced 10 amino acids or less apart. Counts are 

further subdivided to indicate the number of genes containing (1) one RBD as the only structural 

domain in the encoded protein (red), or (2) repeats of the same class RBD (orange), or (3) one or 

more RBDs in combination with different class RBDs (yellow), or (4) combinations of the RBD 

with one or more domains unrelated to RNA-metabolic function, e.g. protein kinase domains 

(grey). (B) Domain structure organization of representative RBPs, scaled by amino acid length 

and categorized into the domain combination classes listed in (A). 
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A common feature of the large mRNA-binding domain classes is their frequent 

occurrence in multiple repeats or in combination with other RBDs. The modular design also 

allows for rapid evolutionary adaptation of proteins to new RNA targets (Lunde et al., 2007), 

which in some cases poses interesting questions about the regulatory functions of RBPs and 

evolution of targets. For example, while most KH-domain-containing RBPs have one or two KH 

domains, the HDLBP gene expanded from 7 KH repeats in S. cerevisiae to 14 KH repeats in 

humans (Figure 2.3).  

Overall, this analysis highlighted the total number of structural RBD classes present in 

humans and their members, and highlighted that many RBD classes are currently far from a 

comprehensive characterization. Even among the established large RBD classes, the function of 

many individual members, including RRM proteins, helicases (DEAD, HA2), zinc finger proteins 

(zf-CCCH, zf-CCHC, jaz-like zf-CH2H2), RNA nucleases (RNase A, RNase T, RNase Zc3h12a), 

and putative translation factors (GTP-EFTU) have not been characterized in their RNA-binding 

capacity and physiological roles. For at least a third of all 1,542 RBPs their biological functions 

are unknown or merely inferred from homologs. 

2.4.3 Abundance of RBPs across tissues in comparison to other proteins 

The importance of PTGR is revealed by analyzing RNA-seq expression levels of RBPs relative to 

the residual proteome across 16 human tissues of the Illumina body map 

(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/). The majority of RBPs were 

ubiquitously expressed and typically at higher levels than average cellular proteins (Figure 2.4 

A), consistent with previous analyses (Kechavarzi and Janga, 2014; Vaquerizas et al., 2009). 

While RBPs and TFs encoded a similar number of genes (1,542 and 1,704 genes, respectively), 

the cumulative abundance of rpkm expression levels of RBPs contributed up to 20% of the 

expressed, protein-coding transcriptome, whereas TFs constituted only up to 3% by transcript 
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abundance (Figure 2.4 B). The equivalent of 10-12% of the expressed transcriptome originates 

from the 169 ribosomal proteins but represents only about 0.8% of protein-coding genes in the 

genome. In contrast, the transcripts encoded by the 692 mRBP genes, representing 3% of protein-

coding genes, accounted for 4-5% of the transcriptome, while all remaining RBPs (tRNA-, 

rRNA-, etc.) contributed the remaining 4-5%. The discrepancy between RBPs, TFs as the main 

gene regulatory protein groups, and other cellular protein groups, such as cytoskeletal proteins  

(CSK proteins), was also illustrated when one compares the number of total genes present in the 

genome (Figure 2.4 C) to their relative expression in the transcriptome (Figure 2.4 D).  Scaling 

each by total mRNA abundance, the group of transcription factors displays the largest reduction 

in percentage going from gene presence to expression (from 6.2% to 2.4%), while ribosomal 

proteins show the largest percentage increase (1.1% to 10.3%).  All other RBPs are relatively 

unchanged in their contribution and CSK proteins increase by 50% in smooth muscle cells. 
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Figure 2.4. Transcript abundance of RBPs and TFs across 16 different human tissues.  

(A) Distribution of gene expression levels of protein-coding genes measured by RNA-seq with 

rpkm expression values ≥ 1. Shown as subgroups are mRNA-binding proteins (mRBPs) (red), 

ribosomal proteins (blue), the remaining RBPs (orange), TFs (magenta), and the residual protein-

coding transcriptome (grey). For each group, the mean number of expressed proteins across the 

tissues is shown in brackets. (B) Cumulative abundance of RBPs (blue, red, orange) and TFs 

(magenta) as fraction of all RNA-seq reads. (C) Pie chart of the number of protein-coding genes 

in the genome encoding for mRBPs (red), ribosomal proteins (orange), other RBPs (dark red), 

transcription factors (yellow), cytoskeletal proteins (green), other proteins (grey). (D) Pie chart of 

the rpkm cumulative expression in muscle cells of all genes in (C) expressed with rpkm ≥ 1. 
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These relative mRNA abundances illustrated the central importance of translation-related 

processes in the cell. Tumors and immortalized cell lines express mRBPs and ribosomal proteins 

at even higher levels than normal tissues. The increased demand for continuous protein 

production, changes in nucleolar size (the site of ribosome and rRNA biogenesis), and 

translational activities have long been considered as hallmarks of cancer (Boisvert et al., 2012; 

Montanaro et al., 2008; Ruggero and Pandolfi, 2003; Zhang et al., 2015a). More generally, 

altered translational activity has been observed in a wide range of human pathologies and has also 

recently been connected to neurodegenerative diseases, including Parkinson’s and Alzheimer’s 

disease (Klein and Westenberger, 2012; Ma et al., 2013; Martin et al., 2014; Scheper et al., 

2007b). Given the central importance of protein translation and ribosome biogenesis for energy 

metabolism and cellular growth, understanding disease-related changes in PGTR pathways is not 

only of diagnostic and possibly prognostic value, but also enables therapeutic approaches. 

Consequently, targeting of PTGR pathways has been explored in drug development of inhibitors 

to block translation initiation or ribosome biogenesis, such as the anti-cancer drug silvestrol 

inhibiting the translation initiation factors EIF4A1 and 2 (Grzmil and Hemmings, 2012; Hein et 

al., 2013; Silvera et al., 2010; Skrtić et al., 2011). 

2.4.4 Categorization of RBPs into target subclasses 

A classification of RBPs by interacting RNA targets is useful as it isolates individual PTGR 

pathways and can also explain similar phenotypes for RBP genes in human diseases. I grouped 

the set of 1,542 human RBPs based on literature reports (Figure 2.5) into mRNA-, rRNA-, tRNA, 

snRNA-, snoRNA-binding, and a residual ncRNA-binding category (Table 5.3). Further 

categories were introduced to define protein components of the ribosome, diverse RBPs 

interacting indiscriminately with many types of RNAs (such as the RNA exosome in general 

RNA turnover) and unknown-target RBPs (proteins with known RBDs or some experimental data 
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on RNA-binding, which lacked information on specific targets). RBPs with more than one target 

class were also found and emerging transcriptome-wide binding studies reveal that it may be 

common for certain RBPs to interact with and regulate multiple classes of RNAs, e.g. LIN28 

proteins bind let-7 pre-miRNA, mRNAs, and snoRNAs, while DGCR8 binds dsRNA regions 

within pre-miRNAs and mRNAs (Cho et al., 2012; Hafner et al., 2013; Macias et al., 2012; 

Wilbert et al., 2012). For simplification we grouped RBPs, when known, by the predominantly 

interacting RNA class based on literature reports, homolog conservation and structural domain 

information.  

Figure 2.5 Target RNA classification of RBPs and of RBP paralogous families. (A) RBPs 

were grouped by their respective target RNAs: ribosomal proteins (dark blue), mRNA- (red), 

tRNA- (dark green), rRNA- (orange), snRNA- (light green), snoRNA- (yellow), ncRNA-binding 

(grey), diverse targets (light blue), unknown targets (blue). Percentage and counts (in brackets) of 

RBPs in the category are shown. (B) Same as in (A) but paralogs are grouped into families 

defined by 20% sequence identity according to Ensembl Compara.  

Almost all categories of RBPs are directly or indirectly invested in the process of protein 

synthesis: 692 proteins were mRNA-binding, 169 ribosomal proteins, and 130 proteins were 

involved in biogenesis and delivery of charged tRNAs to the ribosome. Another 90 proteins were 
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involved in biogenesis of snRNAs or the formation of snRNPs (snRNA-protein complexes) and 

122 and 41 RBPs took part in rRNA- and snoRNA biogenesis, respectively, which may be an 

underestimation given that rRNA biogenesis and some orphan snoRNAs or snoRNA-like 

lncRNAs have yet to be fully characterized (Bratkovič and Rogelj, 2014; Henras et al., 2008; 

Tafforeau et al., 2013; Yin et al., 2012). 122 RBPs were grouped together that interacted with the 

remaining ncRNAs (including all remaining ncRNA categories, e.g. miRNAs, piRNAs, lncRNAs, 

the RNA components of MRP and RNase P etc.. For the different categories see Table 1.1 and 

5.3). These proteins associate with a range of ncRNAs, some of which are involved in gene 

regulation, e.g. miRNAs, piRNAs, and lncRNAs, and control gene expression through 

posttranscriptional RNA degradation, transcriptional silencing/activation of gene loci, and 

translational repression/activation. Others act as structural and catalytic components of RNP 

complexes (RNase MRP and P nucleases, telomerase RNP), or form RNP complexes of unknown 

functions, e.g. vault RNAs and Y RNAs. 47 RBPs, mostly RNA nucleases involved in general 

RNA turnover, were categorized into the diverse target RNA group.  

The categorization of proteins into different pathways became highly useful for breaking 

down the complexity of PTGR into basic units, and allows now detailed analyses of changes 

taking place in different regulatory pathways in system-wide PTGR studies. Furthermore, it 

facilitates exploration of areas in PTGR, which have been relatively overlooked. For example, our 

curation highlights that the functions of many rRNA and tRNA biogenesis factors in humans are 

largely inferred from distant homologs and domain relationships (Hopper et al., 2010; Kiss, 2004; 

Phizicky and Hopper, 2010). As these processes are essential for cellular life and highly 

conserved, core functions often remain the same. However, with increasing complexity of 

organisms, protein factors and their family members, and/or the spectrum of target RNAs of 

pathway components evolved, grew in size, and diverged. The recently discovered new roles of 

tRNA methylases in mRNA and ncRNA metabolism may represent such an example (Hussain et 



41 

al., 2013; Sibbritt et al., 2013). Future characterization of these proteins will be important to 

delineate the specificities and targets of these factors in higher eukaryotes. 

2.4.5 Conservation of RBP and TF families 

Phylogenetic relationships of RBPs reveal the creation of gene families during evolution, a 

process that in principle allows for diversification of RNA metabolic pathways. In most instances, 

however, human paralogs are functionally overlapping, with similar or even identical binding 

sites (Ascano et al., 2012a; Ray et al., 2013; Spencer et al., 2006; Todd et al., 2001), and the 

evolution of paralogs represent an alternative to facilitating regulation across cell types. 

Understanding family relationships and examining protein families together, instead of singular 

members, is therefore a valuable approach.  

To define redundant properties of RBPs, I compared the evolutionary characteristics of 

RBPs to TFs, the regulatory group of proteins controlling gene expression at the transcriptional 

level. I used the phylogenetic homology classification as already defined by the Ensembl 

Compara database (Vilella et al., 2009) and further grouped together paralogs with even closer 

homology. Most RBP paralogs shared 20-70% sequence identity and by this criteria known 

functionally related RBPs grouped together, such as members of the CPEB1-4 cytoplasmic 

polyadenylation family, which shared ~25% sequence identity. We refer to these grouped 

paralogs as ‘paralogous RBP families’ throughout the text. We found a minimum of 20% to be 

the best threshold to group functionally related or redundant proteins into families. Sequence 

identity cut-offs below 20% included predominantly functionally unrelated, distant paralogs, 

which were not in the same RNA regulatory pathways, while higher cut-offs often missed family 

members of known functional similarity.  
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Figure 2.6 Evolutionary conservation of RBP and TF families. (A, B) Number of human RBP 

and TF families conserved across 10 species and their percentage identity score, (A) RBP (black) 

and (B) TF families (magenta). The number of families with different degrees of conservation are 

binned into 5 categories, color-coded in black-yellow and magenta-yellow shades: (i) ≥85% 

homology, (ii) ≥60% and <85% homology, (iii) ≥40% and <60% homology, (iv) ≤20% 

homology. (C,D,E) Number of paralogous families and their degree of sequence identity in 

humans. (C) ribosomal proteins (blue), (B) mRBPs (red), and (D) tRNA-binding proteins (green). 
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Consistent with their high structural diversity, the 1,542 RBPs formed 1,111 families, in 

which individual members within RBP families generally have the same RNA target class (Figure 

2.6). In contrast, the 1,704 human TFs, which diverged more recently than RBPs [census 

generated by Vaquerizas et al. (Vaquerizas et al., 2009)], formed only 554 protein families by the 

above stated homology criteria (Table 5.4). RNA- and DNA-binding domains often originated 

from common superfamily folds, such as the OB-fold (oligonucleotide/oligosaccharide-binding 

fold), nucleotidyltransferase, zinc finger, or DNA/RNA helicase domains (Arcus, 2002; 

Jankowsky and Fairman-Williams, 2010; Krishna et al., 2003; Kuchta et al., 2009). However, 

despite a shared evolutionary history, TFs expanded late in evolution into large families by 

multiple gene duplications (Vaquerizas et al., 2009) and the current homology grouping resulted 

in TF families with up to 50 members per family and 2.5 members on average, while RBPs 

diversified early and paralogous families comprised 1.3 members on average, with the largest 

RBP families including up to 10 members. Paralogous RBP families were well conserved across 

eukaryotes and 50% of the human RBP families were also present in S. cerevisiae (Figure 2.6). 

This finding is consistent with previous observations that at least 200 distinct RBPs were present 

in the lowest common ancestor of animals (LCA), and 80 orthologous groups of RBPs were 

traceable even to the lowest universal common ancestor (LUCA) (Anantharaman et al., 2002; 

Kerner et al., 2011). In striking contrast, few TFs were conserved across evolution, and only 14% 

of the human TF families were found in S. cerevisiae. Even the most rapidly expanding group, 

mRBPs, had 178 of 422 (42%) mRBP families conserved in yeast.  While the expansion of TFs 

traced organismal complexity, possibly enabling the development of new functionalities 

(Vaquerizas et al., 2009), evolutionary stability of RBPs went along with the early establishment 

of core RNA metabolic processes in all cellular systems (Anantharaman et al., 2002). 
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2.4.6 Conservation of RBP families interacting with different RNA classes 

With the growing number of RBP families in higher eukaryotes the relative size of the various 

RBP families committed to different RNA targets remained constant across phylogenies (38% 

mRBPs, 12% tRNA-binding, 14% ribosomal proteins, Figure 2.6). However, RBP families in 

different target groups displayed varying levels of evolutionary conservation. Most RBP classes, 

including families in rRNA, tRNA, snRNA and snoRNA pathways, displayed average 

homologies of 31% between human and yeast (e.g. tRNA-binding proteins in Figure 2.6). 

Ribosomal proteins were among the most conserved, with an average homology of 51%, in 

contrast to the factors involved in maturation and processing of rRNAs, which were conserved 

only to 31%, reflecting the increasing divergence of rRNA biogenesis factors in higher 

eukaryotes (Granneman and Baserga, 2004; Phipps et al., 2011). ncRNA- and mRNA-binding 

protein families displayed the lowest conservation, with 20% and 27%, respectively, and only a 

fifth of all ncRNA-binding families had homologous families in yeast.  

2.4.7 Phylogenetic comparisons of small ribosomal and KH-domain proteins 

Visualization of the evolutionary relationships of RBP families facilitates systems biology 

approaches to dissect their regulatory roles by giving an intuitive graphic representation of the 

conservation of proteins. They highlight closely related homologs and provide a glimpse into 

function of uncharacterized RBPs when the homolog has been characterized. Phylogenetic 

comparison of the predominantly mRNA-binding KH-domain-containing proteins and the 

proteins of the small subunit of the cytosolic ribosome illustrate the differences in their 

evolutionary trajectory and I used these extensively to judge family relationships and 

conservation among RBP families (Figure 2.7).  
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Figure 2.7 Phylogenetic trees of RBP families highlight their evolutionary history. 

Phylogenetic trees of (A) KH-containing proteins and (B) ribosomal proteins of the small subunit. 

Branch lengths are scaled to the sequence identity of the proteins. S. cerevisae proteins are 

marked in red, human proteins in black, homologous families with conserved members in S. 

cerevisae are highlighted in yellow. 

KH proteins experienced multiple gene expansions, as noted earlier for mRBPs, and evolved new 

RBP families at the later metazoan stages. Thereby they expanded and diversified, evolving new 

factors involved in various regulatory pathways, such as mRNA splicing, translational regulation, 

and transport. KH protein families contain between one to four members in human, and possess 

generally one distantly related homolog in yeast (Figure 2.7). Multiple family members often 

have redundant biological functions and RNA target spectra. For example, members of the FMR1 

family (FMR1, FXR1, FXR2) or the IGF2BP1 family (IGF2BP1, 2, and 3) show >90% identical 

RNA-binding specificities (Ascano et al., 2012b; Hafner et al., 2010a). In contrast, cytosolic 

ribosomal proteins display an unusually high conservation, not too surprising, given that the 

process of protein translation is conserved to such a high degree between prokaryotes and all 

clades of eukaryotes that functional details of translation determined in bacteria are almost 

identical to higher systems (Dever and Green, 2012; Melnikov et al., 2012; Wool et al., 1995). 
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The ~90 ribosomal cytosolic proteins are highly similar in structure between yeast and human and 

show late divergence in evolution, illustrated for the phylogenetic tree of small ribosomal subunit 

proteins (Figure 2.7). With on average 55% protein identity, 96% of all human ribosomal proteins 

have direct one-to-one, or due to a whole genome duplication in yeast, one-to-two or two-two 

matching homologs (Anger et al., 2013; Wool, 1979; Wool et al., 1995). From the level sequence 

identity and number of homologs we often also gain functional insights: high conservation of 

RBPs with 1:1 conserved homologs (or in the case of S. cerevisiae gene duplication 1:2) often 

points to either the RBP being part of a highly conserved RNP complex with a structural RNA 

component at its core (e.g. ribosome, snRNPs, snoRNPs), or towards a conserved enzymatic 

process with little mechanistic divergence (e.g. tRNA splicing). In contrast, RBPs involved in 

mRNA-gene regulatory processes display much higher redundancy and less sequence 

conservation. Thus, intuitively one can make a prediction about the likely process encountered 

from the phylogenetic tree. The ~80 human mitochondrial ribosomal proteins form the exception 

to the rule (Matthews et al., 1982). The majority (80%) have no homologs in yeast and the few 

that do display low conservation of 22% sequence identity. The low conservation reflects their 

evolutionary history. Mitochondrial ribosomes were acquired through eubacterial endosymbiosis 

and rapidly evolved independently across species with major remodeling events happening later 

during evolution (Cavdar Koc et al., 2001; O'Brien, 2003). In contrast, the nuclear encoded RBPs 

show characteristic conservation patterns and protein family expansions for the different RNA 

regulatory processes.  

2.4.8 Tissue specificity of RBPs 

Tissue-specific expression, phyletic age, and cellular functions of proteins often correlate. While 

ancient and highly conserved genes are widely expressed and support basic cellular functions, 

more recently evolved genes, such as TFs and secreted proteins, are expressed in a species- and 
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tissue-specific manner (Freilich et al., 2005; Ramsköld et al., 2009; Winter et al., 2004). I 

investigated mRNA expression of 1,441 RBPs and 1,463 TFs profiled in a microarray study 

measuring transcript levels of 16,867 protein-coding genes across 31 human tissues (Dezso et al., 

2008). To analyze protein abundance, we assumed that transcript abundance approximated 

protein abundance in the cell as previously shown by large-scale transcriptomic and proteomic 

studies (Guo et al., 2010; Schwanhausser et al., 2011). Tissue-specific variation of RBP isoforms 

due to alternative splicing and alternative cleavage and polyadenylation were not considered for 

this analysis as they are not well understood. We favored microarray over RNA-seq studies 

because the former profiled larger collections of different human tissues and organs. I calculated 

a tissue specificity score S for every gene on the array across the profiled samples, which ranged 

from 0 for ubiquitously expressed to 5 for highly tissue-specific proteins. Based on the score of 

established tissue-specific RBPs, such as the germline-specific PIWI-family (S=1.7-2.3) or 

neuronal members of the ELAVL family (S=3.2) (Li et al., 2007; Thomson and Lin, 2009), I set 

an empirical cut-off score of 1 for referring to tissue-specific genes, at which 6% of RBPs and 

13% of TFs showed some level of tissue-specific expression (Figure 2.8 A). As expected, 

ribosomal proteins (Figure 2.8 A,B), as well as general components of the spliceosome, RNA 

transport, and turnover machineries were ubiquitously expressed across tissues. Furthermore, 

while tissue-specific variation has been reported for some tRNAs and snoRNAs (Castle et al., 

2010; Dittmar et al., 2006; Plotkin and Kudla, 2011), the biogenesis factors of tRNAs and 

snoRNAs, as well as snRNA and rRNA maturation pathways, were generally uniformly 

expressed across tissues (Figure 2.8 C). The majority of tissue-specific RBPs consisted of 

mRNA- and ncRNA-binding proteins, as well as a range of RNA nucleases with diverse target 

specificity (Figure 2.8D). Perhaps unexpectedly, some tissue-specific outliers were observed 

among rRNA biogenesis factors and ribosomal proteins, including the uncharacterized, muscle-

enriched ribosomal multicopy gene RPL3L, a homolog of RPL3 (Figure 2.8B). These selectively 
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expressed RBPs may reflect extra-ribosomal roles (Warner and McIntosh, 2009) or tissue-specific 

adaptations in composition of ribosomes that regulate translation of subsets of proteins (Xue and 

Barna, 2012).  
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Figure 2.8 Tissue specificity of RBPs across 31 human tissues and organs. A tissue specificity 

score S was calculated from mRNA expression levels of 1,441 RBPs and 1,463 TFs profiled in a 

human microarray tissue atlas assessing expression across 31 tissues (Dezso et al., 2008). (A) 

Densities of the log2 transformed tissue specificity scores are shown for RBPs (black), TFs 

(magenta), ribosomal proteins (dark blue), mRNA- (red), tRNA- (dark green), rRNA-binding 

(orange) proteins. The densities of RBPs and TFs are filled in shades of their original color to 

highlight their shifts in distribution. (B) Log2 maximum expression intensity value of a gene 

versus S for ribosomal proteins (dark blue), and rRNA-binding proteins (orange) compared to the 

residual proteome (grey). Tissue-specific genes were defined as genes with scores S≥1 (dashed 

line). Selected genes are highlighted. (C) Same as (B) for tRNA- (dark green), snRNA- (light 

green), and snoRNA-binding proteins (yellow). (D) Same as (B) for mRBPs (red), ncRNA-

binding (dark grey), and diverse target RBPs (blue). (E) Log2 maximum expression intensity 

value of a gene is plotted against its tissue specificity score S. RBPs are highlighted in red, all 

other proteins in grey. Tissue-specific RBPs with maximum expression in testis (orange) and 

brain (green) are highlighted. (F) Same as in (E) highlighting tissue-specific RBPs expressed in 

bone marrow (sky blue), liver/pancreas (dark green), muscle (blue), placenta (violet). 
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The majority of profiled RBPs, including mRBPs, displayed no tissue specificity; 80% of 

all RBPs (1,144 of 1,441 RBPs) had scores lower than 0.3. Among the paralogous RBP families, 

808 (77%) of the 1,049 families, or 277 (68%) of 409 mRBP families, were ubiquitously 

expressed with S<0.3, while only 20 families were tissue-specific with S≥1, and 53 had at least 

one tissue-specific member (Figure 2.9).  

Figure 2.9 RBP families with tissue-specific or ubiquitous expression. Expression of 

paralogous families profiled in the tissue atlas: 1,049 RBP families, of which 409 are mRBP 

families, are scaled to relative size. Families are binned into different categories of expression, 

color-coded in shades of black-yellow and red-yellow. Representative paralogous families are 

highlighted for mRBPs. 2% of RBP and 1% of mRBP families displayed tissue-specific 

expression for all their members (yellow), 5% and 9% respectively had one or more members 

with tissue specificity score S≥1, 16% and 22% of families had members with tissue-specificity 

scores ranging between 0.3>S>1, classified here as gradient RBP families, and 77% of RBPs 

(black) and 68% of mRBPs (red) display little variation in expression, with S<0.3, named here 

ubiquitous RBP families.  

Few tissues contained specialized RBPs and 90% of the 82 tissue-specific RBPs were 

identified in germline, brain, muscle, bone marrow, placenta or liver (Figure 2.8 E-F).  The 

largest fraction, 47 proteins, were enriched in adult testis, where they contribute to gametogenesis 

and fertility through regulation of transposon silencing, mitosis, meiosis, stem cell maintenance, 

and differentiation (Kang and Han, 2011; Kotaja and Sassone-Corsi, 2007; Luteijn and Ketting, 

2013; Seydoux and Braun, 2006; Siomi et al., 2011; Voronina et al., 2011) (Figure 2.8 E). These 
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proteins were also expressed during fetal ovary development, at the stage of mitotic and meiotic 

cell divisions and germ cell expansion (Houmard et al., 2009). 2% (20 families) of all RBP 

families were exclusively tissue-specific and most of these families were expressed in the 

germline, such as the DAZ1-4 and PIWI family, and other RBPs involved in the piRNA pathway 

(Brook et al., 2009; Reynolds and Cooke, 2005; Siomi et al., 2011; Thomson and Lin, 2009) 

(Figure 2.8 D-F).  

Instead of RBP families where all paralogs are tissue-specifically expressed, the larger 

proportion of tissue-specific RBPs belongs to sequence families with at least one ubiquitously 

expressed member. 5% (52 families) of all RBP families were broadly expressed with one or 

more highly tissue-specific member. Examples included a number of helicase families with 

germline-specific paralogs, such as the tissue-specific DDX4 protein, comprising ubiquitously 

expressed family members DDX3X and DDX3Y, the MOV10L1 helicase and its ubiquitously 

present paralog MOV10, or the tissue-specific helicase DDX25 with the ubiquitous paralogs 

DDX19A and DDX19B (Dufau and Tsai-Morris, 2007; Frost et al., 2010; Lasko, 2013; Zheng et 

al., 2010). Also, most members of the secreted, vertebrate-specific RNase A family displayed 

high tissue-specificity and were expressed in bone marrow cells and liver, where they have a role 

in immune response and angiogenesis (ANG, RNASE2, and RNASE3) (Rosenberg, 2011) 

(Figure 2.8D). Other families in this group were the mRNA splicing and regulatory families 

ELAVL1-4 and IGF2BP1-3, which had ubiquitously expressed paralogs (ELAVL1, IGF2BP2) 

and highly tissue-specific members (ELAVL3-4, IGF2BP1, IGF2BP3) in the brain, germline, and 

liver (Li et al., 2007; Simone and Keene, 2013; Yisraeli, 2005) (Figure 2.8D). For 16% of RBP 

families, here named gradient RBP families, individual members were ubiquitously expressed 

with tissue-specificity scores below 1, but displayed, while not classified as tissue-specific, some 

degree of differential expression across tissues (Figure 2.9). Loss-of-function of proteins in these 

families often affects the tissue of highest expression most strongly. A prominent example for 
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RBPs with this expression pattern is the FMR1 family comprising three ubiquitously expressed 

members, FMR1, FXR1, and FXR2, with redundant target specificities (Ascano et al., 2012b). Of 

these proteins, FMR1 has the highest expression levels in brain, thyroid, and gonads, and FXR1 

and FXR2 are most abundant in skeletal muscle and testis. Thus, even though activity of this 

protein family is necessary in every tissue, loss-of-function of FMR1 mainly affects the brain and 

gonads and causes mental retardation and premature ovarian insufficiency in Fragile X syndrome 

(FXS) or Fragile X-associated ataxia syndrome (FXTAS) (Wang et al., 2012), while mouse 

knockout models for FXR1 are embryonic lethal due to skeletal muscle defects (Mientjes et al., 

2004). For families with some tissue-specific variation, the closely related paralogs often bind the 

same sites on target RNAs with similar affinities, such as the members of the FMR1 and ELAVL 

families, which have identical binding sites in cell culture models (Ascano et al., 2012a; 2012b; 

Simone and Keene, 2013). The redundant functions of the ubiquitous paralogs can therefore 

complicate the dissection of the role of the tissue-specific proteins and may require technically 

challenging experimental designs, such as generation of animals with tissue-specific knock-in/out 

of family members.  

In conclusion, 98% of paralogous RBP families were ubiquitously expressed and their 

deep evolutionary conservations supports their predominant basic cellular function. Of these a 

fifth are families with tissue-specific and ubiquitous paralogs or ubiquitous members that are 

enriched in some tissues. Only 2% of families are tissue-specific for all paralogs, suggesting for 

these, similar to the evolution of TFs, a strictly cell-type specific contribution to PTGR pathways. 

Cell-type specific expression levels of an RBP and its paralogs must be considered when 

choosing a system to study regulatory networks and targets.  
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2.4.9 Co-regulated expression of RBPs in common pathways 

2.4.9.1 Dynamic complexes of RBPs  

RBPs assemble into dynamic RNP complexes that mature, process, regulate, or transport RNAs. 

Remodeling RNA structure to keep RNAs accessible to other RBPs and enzymatic RNA 

processing complexes, RBPs and RNPs also act as RNA chaperones, prevent aggregation, 

misfolding, and incomplete processing, and facilitate movement of RNA targets to required 

locations in the cell across cellular compartments. As a consequence, abundance of RBPs and 

their constituents differentially affects RNA regulation (Dreyfuss et al., 2002; Glisovic et al., 

2008; Keene, 2007; Mitchell and Parker, 2014; Müller-McNicoll and Neugebauer, 2013). For 

example, the abundance of various splicing factors can influence mRNA splicing patterns (Chen 

and Manley, 2009; Kalsotra and Cooper, 2011; Kornblihtt et al., 2013; Smith and Valcarcel, 

2000; Wahl et al., 2009), while U1 snRNP levels control alternative polyadenylation sites (Berg 

et al., 2012; Kaida et al., 2010). The competition among RBPs with similar or overlapping target 

specificity can also define regulatory modes. For example, ELAVL1 protein antagonizes miRNA 

regulation on a number of mRNA targets (Mukherjee et al., 2011), LIN28 protein competes with 

the miRNA-processing machinery to suppress pre-let-7 miRNA processing (Cho et al., 2012; 

Hafner et al., 2013; Wilbert et al., 2012), and PUM proteins synergize with miR-221/222 to 

destabilize the CDKN1B mRNA (Kedde et al., 2010). Similarly, multiple RBPs are involved in 

localization and transport of RNA to distinct RNP granules, which contain highly concentrated 

subsets of RNAs and RBPs and act in the storage and/or degradation of mRNAs (Anderson and 

Kedersha, 2009; Kedersha and Anderson, 2007). The central position of PTGR regulatory 

networks in cellular processes shows in genetic knockouts of RBPs that are often lethal or affect 

all tissues, consistent with their high conservation, number of targets, and low tissue-specificity. 

Selective expression of a single RBP typically does not result in differentiation or 

dedifferentiation into distinct cell types, in contrast to TFs (Hanna et al., 2010). Instead, the 
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interactions of many RBPs in regulatory complexes determine specificity of PTGR processes. 

Hence, groups of RBPs in common PTGR pathways are often co-expressed and can drive 

coordinate expression of targets in cells, tissues, and across developmental processes (Cirillo et 

al., 2014; McKee et al., 2005; Mittal et al., 2009). Specific expression of RBPs can be used to 

deduce their putative roles and to identify novel components of regulatory pathways. In the next 

two sections I investigated co-regulated RBP expression and used available gene expression data 

across several developmental stages in human ovary, testis, and brain to identify correlated 

expression of groups of RBPs that potentially act in the same developmental pathways. 

 

2.4.9.2 Co-expression of RBPs required for ovarian development  

The germline presents a unique system for functional studies of process-specific RBPs, as it has a 

highly specialized RNA metabolism. At least 50 tissue-specific RBPs contribute to differentiation 

and maintenance of germ cells (Seydoux and Braun, 2006) and many are involved in germline-

specific piRNA-induced transposon silencing, alternative polyadenylation and translational 

regulation affecting hundreds of mRNA targets (Di Giammartino et al., 2011; Lianoglou et al., 

2013; MacDonald and McMahon, 2010; Norbury, 2013; Seydoux and Braun, 2006; Siomi et al., 

2011). Between 8 to 20 weeks of gestation, oogonia proliferate and their numbers increase from 

0.6 to 6 million cells (Oktem and Urman, 2010). By 20 weeks of gestation, primordial oocytes 

enter meiosis and arrest in the diplotene stage of meiosis I prophase I until oogenesis resumes in 

puberty. I examined RBP expression in a microarray study of 9-18 week human fetal ovary 

(Houmard et al., 2009). Expression of germline-specific RBPs peaked at 14, 16.4, 16.9, and 18 

weeks (Figure 2.10), and displayed highly correlated expression dynamics, reaching Pearson 

coefficients close to 1 (Figure 2.10).  
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Figure 2.10 Expression of RBPs across 9 gestational stages of fetal human ovarian 

development. The top 200 most differentially expressed RBPs from a microarray study profiling 

human fetal gonad development are shown (Houmard et al., 2009). For each gene microarray, 

intensity values were normalized to relative fold changes by dividing the expression value by the 

mean expression value across developmental stages. (A) Heat map of the log2 transformed 

relative fold changes of the RBPs shown sorted by unsupervised clustering. Some gonad-specific 

RBPs are indicated. (B) Pearson correlation map indicates correlated expression changes of the 

200 selected RBPs. Functionally related RBPs in gonad development cluster into a distinct 

expression group. (C) Plot showing the normalized expression changes of selected genes relevant 

in gonad development.  

While some of the expression changes may be attributed to changing percentages of 

tissue composition of germline and somatic cells, the increase in expression for known germline-

specific RBPs was evident and also correlated with their high tissue-specific expression in adult 

testis, confirming a role in germline development for both sexes. The expression dynamics were 

clearly distinct from differentially expressed, somatic RBPs with functions unrelated to germline 

development. For instance, the IGF2BP1-3 proteins, required during embryogenesis and organ 

development, were highly expressed at week 9 before expression levels rapidly decreased (Bell et 

al., 2013; Yisraeli, 2005). All constituents of the piRNA pathway (Siomi et al., 2011) were 

upregulated in the course of germline development, including piRNA biogenesis factors such as 
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the RNA endonucleases MAEL and PLD6, the RNA helicases DDX4, DDX39A (UAP56 

homolog), and MOV10L1, and most members of the Tudor protein family (TDRD1-9, RNF17) 

(Siomi et al., 2011) (Figure 2.10). In addition to the piRNA pathway, we observed coordinated 

expression of the established germline-specific translational regulators DAZ1-4, DAZL, and 

BOLL, which are also essential regulators of gametogenesis (Brook et al., 2009; Kee et al., 2009). 

The expression dynamics of groups of RBPs during ovarian development and expression patterns 

mirrors their role in germline development derived from genetic experiments. In conclusion, the 

clustering of expression profiles of RBPs across developmental stages allowed us to investigate 

novel regulatory roles of RBPs not previously studied in germline development, including 

RBM46, PIH1D2, ADAD1, and PNLDC1 (Figure 2.10). Resulting from this clustering analysis I 

discovered one novel factor, LOC81691 (NEF-sp), which displayed differential expression across 

development identical to gonad-specific RBPs and characterized this factor in detail in Chapter 3.  

2.4.9.3 Co-expression of RBPs in brain development 

Neurons demonstrate unique alternative splicing and polyadenylation of mRNAs (Chen and 

Manley, 2009; Di Giammartino et al., 2011; Li et al., 2007; Lianoglou et al., 2013; Norbury, 

2013). Furthermore, the considerable length of neuronal projections makes mRNA transport and 

local translation at neuronal dendrites indispensable for development, synaptic plasticity, and 

long-term memory (Bramham and Wells, 2007). Not surprisingly, many RBPs regulating 

splicing, RNA transport, storage, and translation are critical for neuroplasticity (Jung et al., 2014; 

Kandel et al., 2014; Sutton and Schuman, 2006). In order to capture brain-specific PTGR 

networks, I examined the expression dynamics of RBPs at different fetal and postnatal stages in 

human hippocampus development using RNA-seq data from the BrainSpan database 

(http://www.brainspan.org).  While more than 75% of all protein-coding genes were reported to 

be expressed in brain (Hawrylycz et al., 2012), the expression of thousands was found to be either 
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restricted to a particular cell-type or to be temporally regulated (Hawrylycz et al., 2012; Miller et 

al., 2014). We found in our analysis that RBPs were generally expressed ubiquitously, but we 

detected distinct groups of RBPs that were upregulated at different developmental stages, 

consistent with previous studies (McKee et al., 2005; Mody et al., 2001).  

Figure 2.11 Expression of RBPs across fetal human hippocampus development. The top 200 

most differentially expressed RBPs across 12 stages of human hippocampus development ranging 

from post-conception week (PCW) 9 up to 12 months after birth profiled by RNA-seq (Houmard 

et al., 2009). For each gene, rpkm values were normalized to relative fold changes by dividing the 

expression value by the mean expression value across developmental stages. (A) Heat map of the 

log2 transformed relative fold changes of the RBPs sorted by unsupervised clustering. (B) 

Pearson correlation map indicates correlated expression changes of the 200 selected RBPs. (C) 

Characteristic expression fold changes across developmental stages for genes in the three 

different groups. Group I: Genes with high expression levels at early PCW, which rapidly 

decrease at later stages. Group II: Genes with low expression at early PCW and rapidly increasing 

levels at late PCW and postnatal stages. Group III: Genes with a single, high expression peak at 

37 PCW. 
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The largest cluster of differentially expressed RBPs in hippocampus contained ~100 

RBPs, which were highly expressed during early development, but then were rapidly down-

regulated at later stages (Figure 2.11, group I). This cluster included proteins required for the 

regulation of developmentally relevant pathways, such as the IGF2BP1-3 family (Bell et al., 

2013; Yisraeli, 2005) and LIN28 (Thornton and Gregory, 2012), as well as general factors 

involved in translation, mRNA splicing, transport, and rRNA biogenesis.  

Opposite in trend, a group of ~20 proteins displayed low expression in the first fetal post-

conception weeks (PCW), which rapidly increased during the period coinciding with 

hippocampal development. This group comprised multiple splicing regulators required for 

neuronal function, such as the RBFOX family, which contributes to the characteristic splicing 

pattern of many neuronal transcripts (Gehman et al., 2011; Lovci et al., 2013) (Figure 2.11, group 

II). Another distinct group of ~20 RBPs, enriched in RNA nucleases and mRNA-regulatory 

proteins involved in inflammatory and innate immune responses, was highly expressed at 37 

PCW (Figure 2.11, group III), coinciding with a maturation wave of pyramidal neurons and 

synaptogenesis at 34-36 PCW (Arnold and Trojanowski, 1996). Consistent with a neuronal 

function, mutations in the RNA nucleases ANG and RNASET2 are found in patients with the 

neurological diseases ALS and cystic leukoencephalopathy, respectively (Greenway et al., 2006; 

Henneke et al., 2009; Skorupa et al., 2012; Thiyagarajan et al., 2012). Strikingly, the mRNA-

regulatory protein ZFP36 (tristetraprolin, TTP) was the most specifically upregulated RBP in the 

hippocampus by more than 200-fold. ZFP36 is known to destabilize mRNAs coding for cytokines 

and other inflammatory immune genes by recruiting the CCR4-NOT1 complex to AU-rich 

elements in the 3’UTR of targets, leading to deadenylation and subsequent degradation of 

mRNAs (Brooks and Blackshear, 2013; Fabian et al., 2011; 2009; Mukherjee et al., 2014; Reyes-

Turcu and Grewal, 2012). Recently, it was found that cytokines and other immune regulatory 

proteins are expressed in the developing and adult nervous system, where they are required for 
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normal brain development and synaptic plasticity (Boulanger, 2009; Deverman and Patterson, 

2009). Indeed, coinciding with ZFP36, immune regulatory genes such as the members of the 

major histocompatibility complex class I (e.g. HLA-A/B/C/E/F) were also selectively expressed 

at 37 PCW (Figure 2.11, group III) (Zhang et al., 2013). Whether or not the molecular function of 

ZFP36 remains the same in neurons is unknown, but the coordinated expression of these 

regulatory RBPs may imply a biological role during neural development and synaptic plasticity.  

2.4.10 RBPs in human diseases 

Disease phenotypes of RBPs may correlate with tissue-specific expression, e.g. loss-of-function 

of germline-specific proteins causes infertility (Reynolds and Cooke, 2005) and loss of the mRBP 

Fragile X mental retardation (FMR1) protein causes severe phenotypes in the tissues where it is 

most enriched (Wang et al., 2012). However, highly tissue-specific pathologies are often 

observed for loss-of-function of RBPs with no specificity in expression at all. These tissue-

specific phenotypes may be explained by either (1) tissue-specific expression of critical RNA 

targets and cofactors of the RBP, or (2) a greater sensitivity to expression changes of PTGR 

components in general for the affected tissue.   

Within the previously categorized RBP regulatory groups we found as general trend that RBPs, 

which interacted with the same RNA classes (e.g. mRNA-, tRNA-binding, etc.), displayed similar 

pathologies. Understanding diseases involving RBPs in the context of their RNA pathway was 

therefore the most important factor for predicting and interpreting their disease phenotypes. For 

example, ribosomopathies, such as Diamond-Blackfan anemia and Shwachman-Diamond 

syndrome, are caused by defects in ribosomal proteins and rRNA biogenesis factors, severely 

affecting the bone marrow and skin (Narla and Ebert, 2010), while mutations in mRBPs are found 

in multiple neurodegenerative and neuromuscular diseases, affecting mRNA metabolism in 

neurons and, in particular, motor neurons (Cooper et al., 2009; Lukong et al., 2008; Scheper et al., 
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2007b). Here, mutations in mRBPs or their RNA targets cause impaired RNA transport and 

translation, often leading to protein/RNA aggregation and inefficient clearance of neuronal 

RNA/protein granules, which cause a range of neuropathological diseases (Buchan et al., 2013; 

Cooper et al., 2009; Kim et al., 2013b; Lagier-Tourenne et al., 2010; Liu-Yesucevitz et al., 2011; 

Lukong et al., 2008; Ramaswami et al., 2013; Scheper et al., 2007b). Examples include 

amyotrophic lateral sclerosis (ALS), caused by mutations in the mRBPs TDP43, FUS, and 

HNRNPA2B1/A1 (Kim et al., 2013b; Lagier-Tourenne et al., 2010), leading to prion-like 

accumulation of proteins in RNA granules in motor neurons, and spinocerebellar ataxia, caused 

by polyglutamine expansions in ATXN proteins leading to protein aggregations (Banfi et al., 

1994; Orr et al., 1993). Defect in RNA transport and protein translation, such as loss-of-function 

of FMR1, and defects in mRNA splicing, caused by loss-of-function of e.g. the splicing 

RBFOX1, both manifest in neurological phenotypes as mental retardation and autism (Voineagu 

et al., 2011; Wang et al., 2012). mRNA repeat expansions typically lead to sequestration of RBPs, 

often splicing factors and have been linked to muscular diseases caused by dysregulated splicing, 

such as myotonic dystrophies, mental retardation, and ataxia (Echeverria and Cooper, 2012). 

Loss-of-function of the snRNP assembly factor SMN1 directly affects the spliceosome and causes 

spinal muscular atrophy (SMA), a motor neuron disease (Cooper et al., 2009). Loss-of-function 

mutations in tRNA splicing components and aminoacyl tRNA synthetases typically cause 

encephalopathies and the neurological Charcot-Marie tooth disease (Budde et al., 2008; Scheper 

et al., 2007b; Yao and Fox, 2013). A number of RNA/DNA nucleases critical for nucleic acid 

clearance have been implicated in the autoimmune disease Aicardi-Goutieres syndrome (Crow et 

al., 2006b; Rice et al., 2009).  

In summary, our target categorization of RBPs allowed to detect and interpret patterns in 

RNA metabolic diseases. From this analysis it became clear that, instead of RBP expression, the 

interacting RNA targets are often a better predictor for the disease pathologies observed and it is 
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more useful to separate RBPs by their targets in order to interpret disease phenotypes and affected 

organs. Furthermore, for novel RBPs with unknown targets involved in human diseases, the 

disease phenotypes can point towards the likely dysregulated RNA pathways. In Table 2.1 I 

generated a human disease table of RBPs listed by OMIM and separated the RBPs by their 

dominant RNA targets. This analysis gives an overview of recurring patterns and phenotypes 

encountered in the different target groups. In the sections below, I briefly summarized the main 

characteristic phenotypes of diseases typically encountered in each RNA category.  

 

2.4.10.1 Diseases of mRBPs 

Most of the ~150 RBPs currently listed in the OMIM database (Hamosh et al., 2005) are mRBPs. 

Mutations in mRBPs typically display neurological and neuromuscular dysfunctions due to 

dysregulation of splicing, translation, localization or protein aggregation (Cooper et al., 2009; 

Hanson et al., 2011; Kapeli and Yeo, 2012; Lukong et al., 2008; Ule, 2008). Family members 

tend to have overlapping phenotypes, reflecting their functional redundancies. For instance, the 

paralogs RBM20 and MATR3 are both involved in myopathies due to dysregulated splicing of 

their targets (Guo et al., 2012; Senderek et al., 2009).  

 RNA gain-of-function diseases do not necessarily occur within an mRNA coding for an 

RBP, but they commonly lead to altered mRBP binding patterns, thereby they directly affect 

PTGR (Cooper et al., 2009; Echeverria and Cooper, 2012; Nelson et al., 2013). In these disorders, 

repeat expansions in introns or UTRs of mRNAs lead to sequestration of mRBPs in the nucleus, 

thereby causing dysregulation of their respective targets. The myotonic dystrophies DM1 and 

DM2 are caused by repeat expansions in the 3’UTR of DMPK and the intron of CNBP (ZNF9), 

which sequester the mRBPs CELF1 and MBNL1 and their paralogs (Echeverria and Cooper, 

2012). FXTAS (Fragile X-associated tremor/ataxia syndrome), caused by trinucleotide repeat 
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expansions in the 5’UTR of the FMR1 mRNA, directly leads to loss-of-function of FMR1 

(Hagerman, 2013). 

Another common disease mechanism encountered for RBPs are mutations that lead to 

prion-like aggregation of cytoplasmic or shuttling mRBPs into RNA granules. Defective 

clearance and dysregulation in assembly and disassembly of cytoplasmic RNP granules have been 

found to be the underlying cause in a range of neurodegenerative disorders. For example, 

cytoplasmic inclusion of TARDBP/TDP43 and FUS have been found in amyotrophic lateral 

sclerosis, a motor neuron disease leading to muscle atrophy (Anthony and Gallo, 2010; Lagier-

Tourenne et al., 2010; Lee et al., 2012; Ling et al., 2013). Accumulation and inefficient removal 

of these RNA-protein granules leads to cellular stress predominantly affecting neuronal cells 

(Buchan et al., 2013; Li et al., 2013; Liu-Yesucevitz et al., 2011; Ramaswami et al., 2013).  

2.4.10.2 Mitochondrial RBPs in disease 

Generally, mitochondrial RBPs, such as translation elongation factors GFM1 and TSFM, cause 

deficiencies in oxidative phosphorylation, that manifest themselves on a physiological level as 

neurological and muscular myopathies (Smeitink et al., 2006; Smits et al., 2010; Yao and Fox, 

2013). 

2.4.10.3 Diseases involving snRNA-binding proteins 

Mutation or loss-of-function of snRNA-binding and assembly factors are known to lead to defects 

in assembly of spliceosomal U snRNPs and thus ultimately cause mRNA splicing defects. 

Overall, only a few snRNA-binding proteins have been linked to human disease so far. Loss-of-

function of the snRNP assembly factor SMN causes spinal muscular atrophy (SMA). SMN 

proteins form a multimeric complex with Gemin proteins, which carries out assembly of snRNPs 

and other RNP complexes in the cytoplasm (Battle et al., 2006; Paushkin et al., 2002). Autosomal 
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recessive loss-of-function of the SMN1 gene is the molecular cause for SMA, affecting one in 

6000 births (Gubitz et al., 2004). In the autosomal recessive disorder, the SMN1 locus is deleted 

and SMN2 becomes the main transcription locus. Due to a point mutation in SMN2 very low 

amounts of full-length SMN protein are produced, which leads to highly skewed ratios of snRNPs 

and results in global aberrant splicing patterns (Cooper et al., 2009; Zhang et al., 2008). While 

snRNP assembly defects are detected in all tissues upon SMN1 deletion, the physiological 

phenotype manifests itself mainly in motor neurons (Cooper et al., 2009; Glisovic et al., 2008; 

Liu-Yesucevitz et al., 2011), similar in phenotypes to defects in mRBP splicing factors.  

Interestingly, loss-of-function of RBPs in the U2, U12 and U4/U6-U5 snRNP complexes 

specifically cause myelodysplastic syndromes (Lindsley and Ebert, 2013) and retinitis 

pigmentosa, a retinal degeneration leading to blindness caused by incorrect splicing of mRNAs 

encoding for photoreceptors (Daiger et al., 2013). Why mutations in components of the general 

splicing machinery display highly tissue-specific phenotypes in the eye remains unclear (Singh 

and Cooper, 2012; Wang and Cooper, 2007). 

2.4.10.4 Diseases of tRNA-binding proteins 

Disease-causing mutations in tRNA-binding proteins are found in the tRNA maturation and 

aminoacylation pathways and show predominantly neurological phenotypes (Scheper et al., 

2007b) (Table 2.1). Mutations in a number of cytoplasmic tRNA synthetases cause Charcot-

Marie-Tooth disease, affect the peripheral nervous system and lead to muscular atrophy 

(Antonellis and Green, 2008; Yao and Fox, 2013). Loss-of-function of components of the TSEN 

tRNA-splicing endonuclease lead to pontocerebellar hypoplasia, a sometimes fatal 

underdevelopment of the cerebellum that causes intellectual disability and impairs muscle control 

and motor skills (Budde et al., 2008). Mutations in cytoplasmic tRNA aminoacyl synthetases lead 
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to inefficient translation (Scheper et al., 2007b). The disease phenotypes for cytoplasmic tRNA 

aminoacyl synthetases overlap with mRBP diseases. 

2.4.10.5 Diseases of rRNA-biogenesis and ribosomal proteins 

Loss-of-function of rRNA biogenesis factors and ribosomal proteins are generally embryonically 

lethal and only few diseases, classified as ribosomopathies, are known for these RBPs (Narla and 

Ebert, 2010; Ruggero and Pandolfi, 2003). Ribosomopathies commonly show growth retardation, 

organ malformation and frequently bone marrow failure (Liu, 2006). Examples of 

ribosomopathies include mutations in the SBDS involved in rRNA biogenesis that causes 

Shwachman-Bodian syndrome, patients also show exocrine pancreatic dysfunction; mutation in 

SBDS leads to a deficit in neutrophils (Boocock et al., 2003). A number of mutations in 

ribosomal proteins cause Diamond-Blackfan anemia, a disease which impairs red blood cell 

formation (Narla and Ebert, 2010). A number of other ribosomopathies are caused by mutations 

in RNA Pol I components or rRNA-specific transcription factors, such as in Treacher-Collins 

syndrome (Dauwerse et al., 2011; Edwards et al., 1997) [reviewed in (McCann and Baserga, 

2013)]. 

2.4.10.6 Diseases of snoRNA-binding proteins 

snoRNA-binding proteins are required for the maturation of rRNAs, snRNAs, and the H/ACA-

snRNA-like telomerase RNA. snoRNPs introduce nucleotide modifications in their targets, which 

are essential for viability (Watkins and Bohnsack, 2012). Thus loss-of-function of snoRNPs leads 

to deficient nucleotide modifications in rRNAs, snRNAs and telomerase RNA (Bachellerie et al., 

2002; Filipowicz and Pogacić, 2002). As a consequence, snoRNP disease phenotypes overlap 

with ribosomopathies, as well as genetic diseases of components involved in telomerase 

assembly, such as TERT and WRAP53 of the telomerase complex. Defects in snoRNA 
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biogenesis manifest themselves in the severe developmental disorder dyskeratosis congenita, lead 

to bone marrow failure, growth retardation, neurological defects and premature aging (Filipowicz 

and Pogacić, 2002; Ruggero et al., 2003; Smogorzewska and de Lange, 2004).  

2.4.10.7 Diseases of microRNA pathway components 

Mutations in miRNA-binding proteins are found in different cancers and developmental disorders 

(Kaneko et al., 2011; Merritt et al., 2008; Perron and Provost, 2009). Mutations, loss-of-function, 

or reduced levels of DICER1, TARBP2, and XPO5 have been found in pleuropulmonary 

blastomas, ovarian and other cancers (Hill et al., 2009; Melo et al., 2010; 2009; Zhang et al., 

2006). 

2.4.10.8 Autoimmune diseases caused by RBPs 

In recent years it has become evident that nucleic acids play a central role in autoimmune and 

cellular-stress-related diseases. A number of nucleases and RBPs specific for DNA/RNA hybrids, 

or which have overlapping DNA/RNA specificity, display autoimmune disease phenotypes. 

Mutations or loss-of-function in three RNA/DNA nucleases, SAMHD1, the RNase H2 complex, 

and TREX1, lead to development of the autoimmune disease Aicardi-Goutieres syndrome (AGS), 

a neurodevelopmental disorder causing white matter abnormalities and cerebral atrophy. 

Symptomatically, AGS overlaps with the autoimmune disorder systemic lupus erythematosus 

(SLE) (Crow et al., 2006b). In both cases, a failure to remove accumulating nucleic acids is 

central to disease development and activates the innate immune system by type I interferon 

signaling (Atianand and Fitzgerald, 2013; Rabe, 2013). The triphosphatase SAMHD1 possesses 

3’-to-5’ exonuclease activity for ssRNA, ssDNA, and DNA/RNA hybrids. Its antiviral and 

autoimmune-suppressive function has been attributed to its role in the removal of nucleotides and 

nucleic acids in the cell (Beloglazova et al., 2013). The heterotrimeric RNase H2 complex 
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endonucleolytically cleaves DNA/RNA hybrids and is thought to be required for the removal of 

Okazaki fragments during DNA replication (Cerritelli and Crouch, 2009; Rabe, 2013). Mutations 

in all three subunits of the RNase H2 complex (RNASEH2A, RNASEH2B, RNASEH2C) have 

been found to cause AGS (Crow et al., 2006b; Rabe, 2013). The 3’-to-5’ ssDNA and ssRNA 

exonuclease TREX1 is involved in the degradation of ssDNA fragments during replication and 

antiviral defense (Rabe, 2013; Yuan et al., 2015). Mutations in TREX1 are found in AGS patients 

(Crow et al., 2006a) and TREX1 knockout mice accumulate endogenous retroelements. The 

accumulating nucleic acids are thought to trigger a subsequent interferon response (Stetson et al., 

2008). Loss-of-function of the dsRNA-editing ADAR enzyme has also been shown to cause AGS 

by an as yet unknown mechanism (Rice et al., 2012).  

Notably, while not directly related to loss-of-function mutations in RBPs, many 

autoantibodies against other RBPs and even RNA have been detected in autoimmune diseases, 

pointing to a central importance of a dysregulation of nucleic acid/RNA metabolism in the 

mechanism of autoimmune diseases (DeHoratius et al., 1975; Gelpi et al., 1992; Gold et al., 1988; 

Hendrick et al., 1981; Pettersson et al., 1984). It is thought that dysregulation of RNA clearance 

mechanisms triggers innate immune responses and leads to apoptosis and release of RBP-RNA 

complexes into circulation. There these granules mobilize the immune system to develop 

autoantibodies against self-RNA-protein complexes (Gaipl et al., 2005; Muñoz et al., 2010). The 

Ro60 complex, consisting of the TROVE2 (Ro60) protein and Y RNAs, was among the first 

identified targets of autoimmune antibodies in SLE patients was the Ro-RNP particle (Hendrick 

et al., 1981; Lerner et al., 1981). The Ro60 complex plays a regulatory role in DNA replication 

and stress response, removing misfolded RNAs, and mice lacking Ro60 develop lupus-like 

syndromes (Chen and Wolin, 2004; Hall et al., 2013; Sim and Wolin, 2011). Cleavage of tRNAs 

and Y RNAs accompanies cellular stress response and apoptosis (Hall et al., 2013; Köhn et al., 

2013; Nawrot et al., 2011; Phizicky and Hopper, 2010) and these stress-induced small RNA 
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fragments may also act as immune-stimulatory RNAs. Autoantibodies against RBPs associating 

with these RNAs have been found in serum of SLE patients, stressing the importance of efficient 

clearance of circulating RNP granules in autoimmune diseases. 

Dysfunctional nucleic acid clearance has not only been associated with autoimmune 

diseases, but also with neurological defects of the peripheral nervous system, as seen in loss-of-

function of the RNA exosome component EXOSC3 and RNASET2 (Henneke et al., 2009; Monti 

et al., 2008; Wan et al., 2012). Loss of these general RNA turnover factors more closely 

resembles loss of mRBPs or tRNA-binding proteins.  



69 

Table 2.1 Overview of RBPs involved in human genetic diseases. Overview of RBPs with 

identified genetic disease-causing mutations collected in the OMIM database (Hamosh et al., 

2005), categorized into their main RNA target groups. Mitochondrially localized proteins are 

indicated with (mt). Proteins within the same RBP family are written in one line, family members 

also involved in the same disease are highlighted in bold, family members involved in other 

diseases are highlighted in brown and listed elsewhere again in a separate category. 



70 

RBP 

class 

Disease 

category 

RBP family Disease Genetic mutation Reference 

mRNA-

binding 

cancer EWSR1, FUS, 

TAF15 

Ewing sarcoma, soft 

tissue tumors 

gene fusion (Gill et al., 1995; Ichikawa 

et al., 1994; May et al., 

1993; Panagopoulos et al., 

1994; 1999) 

TPR gastric, thyroid 

carcinoma, sarcoma 

gene fusion (Dean et al., 1987; 

Gonzatti-Haces et al., 

1988)  

muscular/ 

cardiac 

disease 

CNBP, 

ZCCHC13 

myotonic dystrophy RNA repeat 

expansion sequesters 

RBPs 

(Liquori et al., 2001) 

MBNL1, 

MBNL2, 

MBNL3 

myotonic dystrophy sequestered RBP in 

repeat expansion 

(Fardaei, 2002; Mankodi 

et al., 2001; Miller, 2000) 

CELF1, 

CELF2-6 

myotonic dystrophy sequestered RBP in 

repeat expansion 

(Roberts et al., 1997; 

Timchenko et al., 1996) 

MATR3, 

RBM20 

cardio-/distal myopathy missense mutation (Brauch et al., 2009; 

Senderek et al., 2009) 

PABPN1, 

PABN1L 

muscular dystrophy polyalanine 

expansion leading to 

protein aggregation 

(Brais et al., 1998) 

neurological 

disease 

AFF1, AFF2, 

AFF3, AFF4 

mental retardation deletion, loss-of-

function through 

repeat expansion in 

mRNA 

(Knight et al., 1993; 

Stettner et al., 2011) 

ATXN1, 

ATXN1L 

spinocerebellar ataxia polyglutamine 

expansion leading to 

protein aggregation 

(Banfi et al., 1994; Orr et 

al., 1993; Servadio et al., 

1995) 

ATXN2, 

ATXN2L 

spinocerebellar ataxia, 

susceptibility to late-

onset Parkinson disease, 

susceptibility to 

amyotrophic lateral 

sclerosis (ALS) 

polyglutamine 

expansion leading to 

protein aggregation 

(Cancel et al., 1997; Elden 

et al., 2010; Gwinn-Hardy 

et al., 2000; Pulst et al., 

1996) 

DYNC1H1,DN

AH1-11, 

DNAH17, 

DYNC2H1 

Charcot-Marie-Tooth 

disease, mental 

retardation, spinal 

muscular atrophy 

(SMA) 

missense mutation (Harms et al., 2012; 

Vissers et al., 2010; 

Weedon et al., 2011) 

EIF2B1 leukoencephalopathy 

with vanishing white 

matter 

missense mutation (van der Knaap et al., 

2002) 

EIF2B2 leukoencephalopathy 

with vanishing white 

matter 

missense, nonsense 

mutation 

(Leegwater et al., 2001) 

EIF2B3 leukoencephalopathy 

with vanishing white 

matter 

missense mutation (van der Knaap et al., 

2002) 

EIF2B4 leukoencephalopathy 

with vanishing white 

matter 

missense mutation (van der Knaap et al., 

2002) 

EIF2B5 leukoencephalopathy 

with vanishing white 

matter 

missense mutation (Fogli et al., 2002; 

Leegwater et al., 2001; van 

der Knaap et al., 2002) 

EIF4G1, 

EIF4G2, 

EIF4G3 

Parkinson disease missense mutation (Chartier-Harlin et al., 

2011) 

FMR1, FXR1, 

FXR2 

fragile X mental 

retardation syndrome 

(FXS), fragile X 

tremor/ataxia syndrome 

(FXTAS), premature 

ovarian failure 

deletion, repeat 

expansion leading to 

protein loss-of-

function (FXS) or 

RNA-gain-of-

function (FXTAS) 

(Devys et al., 1992; 

Gedeon et al., 1992; 

Hagerman et al., 2001; 

Kremer et al., 1991; 

Murray et al., 1998; 

Wöhrle et al., 1992) 
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sequesters RBPs 

EWSR1, FUS, 

TAF15 

amyotrophic lateral 

sclerosis (ALS) 

missense mutation 

leading to prion-like 

protein aggregation 

(Kwiatkowski et al., 2009; 

Vance et al., 2009) 

DAZAP1, 

HNRNPA2B1,

HNRNPA0, 

HNRNPAB, 

HNRNPA1L2,

HNRNPA1, 

HNRNPA3, 

HNRNPD, 

HNRNPDL 

amyotrophic lateral 

sclerosis (ALS) 

missense mutation 

leading to prion-like 

protein aggregation 

(Kim et al., 2013b) 

TARDBP amyotrophic lateral 

sclerosis (ALS) 

missense mutation 

leading to protein 

aggregation 

(Sreedharan et al., 2008) 

IGHMBP2 distal spinal muscular 

atrophy  (DSMA1) 

missense mutation (Grohmann et al., 2001) 

LRPPRC Leigh syndrome missense mutation (Mootha et al., 2003) 

MECP2 Rett syndrome, X-

linked mental 

retardation 

missense, nonsense 

mutation, frameshift, 

deletion 

(Amir et al., 1999; 

Cheadle et al., 2000; 

Huppke et al., 2000; Wan 

et al., 1999) 

MTPAP, 

PAPD4, TUT1, 

ZCCHC6, 

ZCCHC11 

spastic ataxia missense mutation (Crosby et al., 2010) 

PARK7 Parkinson disease missense mutation (Bonifati et al., 2003) 

PQBP1 Renpenning syndrome 1 frameshift (Kalscheuer et al., 2003) 

PRKRA, 

TARBP2 

dystonia frameshift, missense 

mutation 

(Camargos et al., 2008; 

Seibler et al., 2008) 

RANBP2, 

RGPD1-6, 

RGPD8 

acute, infection-induced 

susceptibility to  

encephalopathy 

missense mutation (Neilson et al., 2009) 

NOVA1, 

NOVA2 

paraneoplastic 

opsoclonus-myoclonus 

ataxia (POMA) 

autoantibodies (Buckanovich et al., 1996) 

ELAVL1, 

ELAVL2, 

ELAVL3, 

ELAVL4 

paraneoplastic 

neurological disorders, 

encephalomyelitis, 

neuropathy 

autoantibodies (Sakai et al., 1994) 

UPF3A, 

UPF3B 

mental retardation frameshift, missense, 

nonsense mutation  

(Tarpey et al., 2007) 

TIA1, TIAL1 Welander distal 

myopathy 

missense mutation (Hackman et al., 2012) 

RBFOX1, 

RBFOX2, 

RBFOX3 

mental retardation, 

epilepsy 

deletion, breakpoint (Bhalla et al., 2004; Martin 

et al., 2007) 

neurological/ 

developmental 

disease 

GLE1 lethal congenital 

contracture syndrome 

splice site mutation, 

missense mutation 

(Nousiainen et al., 2008) 

developmental 

disease 

BICC1 susceptibility to renal 

dysplasia 

missense, nonsense 

mutation 

(Kraus et al., 2012) 

EEF2, 

EFTUD2 

mandibulofacial 

dysostosis with 

microcephaly 

splice site mutation, 

nonsense, missense 

mutation, frameshift 

(Bernier et al., 2012; 

Gordon et al., 2012; Lines 

et al., 2012) 

EIF2AK1, 

EIF2AK2, 

EIF2AK3 

Wolcott-Rallison 

syndrome, multiple 

epiphyseal dysplasia 

missense, nonsense 

mutation, splice site 

mutation 

(Brickwood et al., 2003; 

Delépine et al., 2000; 

Durocher et al., 2006) 

FTO growth retardation, 

developmental delay 

missense mutation (Boissel et al., 2009) 

NR0B1, 

NR0B2 

congenital adrenal 

hypoplasia 

deletion, missense 

mutation 

(Muscatelli et al., 1994; 

Yanase et al., 1996) 

RBM5, RBM6, 

RBM10 

TARP syndrome frameshift, missense 

mutation  

(Johnston et al., 2010) 

RBM11, 

SF3B4 

acrofacial dysostosis missense, nonsense 

mutation, frameshift 

(Bernier et al., 2012; 

Czeschik et al., 2013) 
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SKIV2L trichohepatonenteric 

syndrome 2 

missense, nonsense 

mutation 

(Fabre et al., 2012) 

infertility BOLL, DAZ1-

4, DAZL 

azoospermia deletion (Reijo et al., 1995) 

metabolic 

disease 

AUH, ECH1, 

ECHS1, 

ECHDC2, 

ECHDC3 

 3-methylglutaconic 

aciduria 

nonsense mutation, 

frameshift, splice site 

mutation 

(IJlst et al., 2002; Ly et al., 

2003) 

C12ORF65 

(mt) 

combined oxidative 

phosphorylation 

deficiency, spastic 

paraplegia-55 (SPG55) 

frameshift, missense, 

nonsense mutation 

(Antonicka et al., 2010; 

Shimazaki et al., 2012) 

GFM1  (mt) combined oxidative 

phosphorylation 

deficiency 

missense, nonsense 

mutation 

(Coenen et al., 2004; 

Valente et al., 2007) 

TSFM  (mt) combined oxidative 

phosphorylation 

deficiency 

missense mutation (Smeitink et al., 2006) 

EEFSEC, 

TUFM (mt) 

combined oxidative 

phosphorylation 

deficiency 

missense mutation (Valente et al., 2007) 

SECISBP2, 

SECISBP2L 

abnormal thyroid 

metabolism 

missense mutation (Dumitrescu et al., 2005) 

hematologic 

disease 

FIP1L1 spontaneous 

hypereosinophilic 

syndrome 

deletion leading to 

gene fusion 

(Cools et al., 2003; Griffin 

et al., 2003) 

U2AF1, 

U2AF1L4 

ZRSR1, ZRSR2 

myelodysplastic 

syndrome 

missense mutation (Graubert et al., 2012) 

Immunologica

l/ skin disease 

ADAD1, 

ADAD2, 

ADAT, ADAR, 

ADARB1, 

ADARB2 

Aicardi-Goutieres 

syndrome (AGS), 

dyschromatosis 

symmetrica hereditaria 

1 (DSH1) 

missense, nonsense 

mutation 

(Miyamura et al., 2003; 

Rice et al., 2012) 

tRNA-

binding 

cancer/ 

metabolic 

disease 

ELAC1, 

ELAC2 

prostate cancer, 

combined oxidative 

phosphorylation 

deficiency 

missense, nonsense 

mutation, frameshift 

(Haack et al., 2013; 

Tavtigian et al., 2001) 

muscular/ 

metabolic/ 

hematologic 

disease 

PUS1 myopathy, lactic 

acidosis and 

sideroblastic anemia 1 

missense, nonsense 

mutation 

(Bykhovskaya et al., 2004; 

Fernandez-Vizarra et al., 

2007) 

YARS2 (mt) myopathy, lactic 

acidosis and 

sideroblastic anemia 2 

missense mutation (Riley et al., 2010) 

neurological 

disease 

AARS, AARS2 

(mt) 

Charcot-Marie Tooth 

disease 

missense mutation (Latour et al., 2010; Lin et 

al., 2011) 

AIMP1, YARS hypomyelinating 

leukodystrophy, 

Charcot-Marie Tooth 

disease 

frameshift, missense 

mutation, deletion 

(Feinstein et al., 2010; 

Jordanova et al., 2006) 

CLP1 Pontocerebellar 

hypoplasia 

missense mutation (Karaca et al., 2014) 

KARS Charcot-Marie Tooth 

disease, deafness 

missense mutation, 

frameshift 

(McLaughlin et al., 2010; 

Santos-Cortez et al., 2013) 

GARS Charcot-Marie Tooth 

disease 

missense mutation (Antonellis et al., 2003) 

ANG, 

RNASE1-4, 

RNASE6-8 

amyotrophic lateral 

sclerosis (ALS) 

missense mutation (Greenway et al., 2006) 

DARS2 (mt) leukoencephalopathy frameshift, missense, 

nonsense mutation, 

splice site mutation 

(Scheper et al., 2007a) 

NSUN2 mental retardation nonsense, missense 

mutation, splice site 

mutation 

(Abbasi-Moheb et al., 

2012; Khan et al., 2012) 

FTSJ1 mental retardation frameshift, splice site (Freude et al., 2004; 
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mutation Ramser et al., 2004) 

RARS, RARS2 

(mt) 

pontocerebellar 

hypoplasia 

splice site mutation, 

missense mutation 

(Edvardson et al., 2007; 

Rankin et al., 2010) 

SEPSECS pontocerebellar 

hypoplasia 

missense mutation (Agamy et al., 2010) 

TSEN2 pontocerebellar 

hypoplasia 

missense mutation (Budde et al., 2008) 

TSEN34 pontocerebellar 

hypoplasia 

missense mutation (Budde et al., 2008) 

TSEN54 pontocerebellar 

hypoplasia 

missense, nonsense 

mutation, deletion 

(Budde et al., 2008; 

Cassandrini et al., 2010) 

metabolic 

disease 

EEF2, 

EFTUD2 

spinocerebellar ataxia missense mutation (Hekman et al., 2012) 

AARS, AARS2 

(mt) 

combined oxidative 

phosphorylation 

deficiency  

missense mutation (Götz et al., 2011) 

MTO1 (mt) combined oxidative 

phosphorylation 

deficiency  

frameshift, missense 

mutation 

(Ghezzi et al., 2012) 

EARS2 (mt) combined oxidative 

phosphorylation 

deficiency  

missense mutation, 

insertion 

(Steenweg et al., 2012; 

Talim et al., 2013) 

FARS2 (mt) combined oxidative 

phosphorylation 

deficiency 

missense mutation (Elo et al., 2012; 

Shamseldin et al., 2012) 

SARS2 (mt) hyperuricemia, 

pulmonary 

hypertension, renal 

failure, and alkalosis 

missense mutation (Belostotsky et al., 2011) 

TRMU (mt) liver failure, deafness missense mutation (Guan et al., 2006; Zeharia 

et al., 2009) 

opthalmologic 

disease/ 

hearing loss 

HARS, 

HARS2 (mt) 

Usher syndrome, 

Perrault syndrome 

missense mutation (Pierce et al., 2011; 

Puffenberger et al., 2012) 

 rRNA-

binding 

developmental 

disease 

EMG1 Bowen-Conradi 

syndrome 

missense mutation (Armistead et al., 2009) 

MURC, PTRF, 

PRKCDBP, 

SDPR 

lipodystrophy, muscular 

dystrophy 

frameshift (Hayashi et al., 2009; 

Shastry et al., 2010) 

developmental

/ hematologic 

disease 

SBDS Shwachman-Diamond 

syndrome 

frameshift, missense, 

nonsense mutation 

(Boocock et al., 2003; 

Nakashima et al., 2004) 

opthalmologic 

disease 

WDR36 open angle glaucoma missense mutation (Monemi et al., 2005) 

snRNA-

binding 

neurological 

disease 

SMN1, SMN2 spinal muscular atrophy 

(SMA) 

missense, nonsense 

mutation, frameshift, 

deletion 

(Cobben et al., 1995; 

Gambardella et al., 1998; 

Hahnen et al., 1997; 

Lefebvre et al., 1995; 

Parsons et al., 1996; Sossi 

et al., 2001) 

RBM28 alopecia, neurologic 

defects, endocrinopathy 

syndrome  

missense mutation (Nousbeck et al., 2008) 

skin disease SART3 porokeratosis missense mutation (Zhang et al., 2005) 

opthalmologic 

disease 

SNRNP200, 

ASCC3 

retinitis pigmentosa missense mutation (Zhao et al., 2009) 

PRPF3 retinitis pigmentosa missense mutation (Chakarova et al., 2002) 

PRPF31 retinitis pigmentosa splice site 

mutation/deletion, 

missense mutation 

(Vithana et al., 2001) 

PRPF6 retinitis pigmentosa missense mutation (Tanackovic et al., 2011) 

PRPF8 retinitis pigmentosa missense mutation (McKie et al., 2001) 

RP9 retinitis pigmentosa missense mutation (Keen et al., 2002) 
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snoRNA

-binding 

neurological 

disease 

NOP56 spinocerebellar ataxia RNA repeat 

expansion sequesters 

RBPs 

(Kobayashi et al., 2011) 

hematologic/ 

neurodevelop

mental/ 

developmental 

disorder 

DKC1 dyskeratosis congenita missense mutation, 

deletion, intron 

insertion, splice site 

mutation 

(Heiss et al., 1998; 

Kanegane et al., 2005; 

Knight et al., 1999; 2001; 

Pearson et al., 2008; 

Vulliamy et al., 1999) 

NHP2 dyskeratosis congenita missense mutation (Vulliamy et al., 2008) 

NOP10 dyskeratosis congenita missense mutation 

(Walne et al., 2007) 

skin disease USB1 poikiloderma with 

neutropenia 

deletion, splice site 

mutation, frameshift 

(Tanaka et al., 2010; Volpi 

et al., 2010) 

Cyto-

solic 

ribo-

somal 

proteins 

neurological 

disease 

RPL10, 

RPL10L 

autism missense mutation (Klauck et al., 2006) 

hematologic 

disease 

RPL11 Diamond-Blackfan 

anemia 

frameshift, deletion, 

splice site mutation, 

nonsense mutation  

(Gazda et al., 2008) 

RPL35A Diamond-Blackfan 

anemia 

missense, nonsense 

mutation, deletion 

(Farrar et al., 2008) 

RPL5 Diamond-Blackfan 

anemia 

missense, nonsense 

mutation, frameshift, 

splice site mutation 

(Gazda et al., 2008) 

RPS10 Diamond-Blackfan 

anemia 

missense, nonsense 

mutation, frameshift 

(Doherty et al., 2010) 

RPS17, 

RPS17L 

Diamond-Blackfan 

anemia 

missense, frameshift (Cmejla et al., 2007; 

Gazda et al., 2008) 

RPS19 Diamond-Blackfan 

anemia 

missense, nonsense 

mutation, frameshift 

(Draptchinskaia et al., 

1999; Matsson et al., 

1999) 

RPS24 Diamond-Blackfan 

anemia 

nonsense mutation, 

frameshift 

(Gazda et al., 2006) 

RPS26 Diamond-Blackfan 

anemia 

missense mutation, 

splice site mutation, 

frameshift 

(Doherty et al., 2010) 

RPS7 Diamond-Blackfan 

anemia 

splice site mutation (Gazda et al., 2008) 

Mito-

chondr. 

(mt) 

ribo-

somal 

proteins 

metabolic 

disease 

MRPL3 combined oxidative 

phosphorylation 

deficiency  

missense mutation (Galmiche et al., 2011) 

MRPS16 combined oxidative 

phosphorylation 

deficiency 

nonsense mutation (Miller et al., 2004) 

MRPS22 combined oxidative 

phosphorylation 

deficiency 

missense mutation (Saada et al., 2007) 

lncRNA- 

binding 

cancer BRCA1 breast, ovarian, 

pancreatic cancer 

missense, nonsense 

mutation, deletion, 

frameshift 

(Al-Sukhni et al., 2008; 

Castilla et al., 1994; 

Simard et al., 1994) 

developmental 

disorder 

EZH1, EZH2 Weaver syndrome 2 missense mutation, 

frameshift 

(Gibson et al., 2012) 

miRNA- 

binding 

cancer DICER1 pleuropulmonary 

blastoma, goiter with 

testicular tumors, 

embryonal 

habdomyosarcoma  

missense, nonsense 

mutation, frameshift 

(Foulkes et al., 2011; Hill 

et al., 2009; Rio Frio et al., 

2011) 

XPO5 colorectal cancer frameshift, insertion (Melo et al., 2010) 

cancer/ 

developmental 

disorder 

SMAD1, 

SMAD2, 

SMAD3, 

SMAD4, 

SMAD5, 

SMAD6, 

SMAD7, 

SMAD9 

colorectal cancer, 

Loeys-Dietz syndrome, 

juvenile polyposis, 

pancreatic cancer  

missense, nonsense 

mutation, frameshift 

(Broderick et al., 2007; 

Howe et al., 1998; 

Regalado et al., 2011; 

Schutte et al., 1996; van de 

Laar et al., 2011) 

PRKRA, colorectal cancer frameshift (Melo et al., 2010) 
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TARPBP2 

developmental 

disorder 

DIS3, DIS3L, 

DIS3L2 

Perlman syndrome deletion, splice site 

mutation, missense 

mutation 

(Astuti et al., 2012) 

neurological 

disease 

SNIP1 psychomotor 

retardation, epilepsy, 

craniofacial 

dymorphism 

missense mutation (Puffenberger et al., 2012) 

pulmonary 

disease 

SMAD1, 

SMAD2, 

SMAD3, 

SMAD4, 

SMAD5, 

SMAD6, 

SMAD7, 

SMAD9 

pulmonary 

hypertension, aortic 

valve disease (AOVD2) 

missense, nonsense 

mutation 

(Drake et al., 2011; Nasim 

et al., 2011; Tan et al., 

2012) 

telRNA- 

binding 

developmental

/ cardio-

vascular/ 

pulmonary 

disease 

TERT coronary artery disease, 

dyskeratosis congenita, 

aplastic anemia 

missense mutation, 

frameshift 

(Armanios et al., 2007; 

Marrone et al., 2007; 

Tsakiri et al., 2007; 

Yamaguchi et al., 2005) 

developmental 

disorder 

WRAP53 dyskeratosis congenita missense mutation (Zhong et al., 2011) 

7SL-

RNA-

binding 

hematologic 

disease 

SRP72 bone marrow failure missense mutation (Kirwan et al., 2012) 

immune-

stimul-

atory 

RNA-

binding 

metabolic 

disease 

OAS1, OAS2, 

OAS3, OASL 

susceptibility to diabetes 

mellitus 

missense mutation (Tessier et al., 2006) 

cancer RNASEL prostate cancer nonsense, missense 

mutation 

(Carpten et al., 2002; 

Casey et al., 2002) 

RNA/ 

DNA-

hybrid-

binding 

autoimmune/ 

neurological 

disease 

RNASEH2A Aicardi-Goutieres 

syndrome (AGS) 

missense mutation (Crow et al., 2006b; Rice 

et al., 2013) 

RNASEH2B Aicardi-Goutieres 

syndrome (AGS) 

missense mutation (Crow et al., 2006b) 

RNASEH2C Aicardi-Goutieres 

syndrome (AGS) 

missense mutation (Crow et al., 2006b) 

SAMHD1 Aicardi-Goutieres 

syndrome (AGS), 

Chilbain lupus 2 

missense mutation (Ravenscroft et al., 2011; 

Rice et al., 2009) 

diverse 

targets 

neurological 

disease 

EXOSC3 pontocerebellar 

hypoplasia, spinal motor 

neuron degeneration 

missense mutation, 

deletion 

(Wan et al., 2012) 

RNASET2 leukoencephalopathy, 

cancer 

missense mutation, 

deletion, splice site 

mutation 

(Henneke et al., 2009) 

unknown 

targets 

cardiac 

disease 

CALR3, 

CALR, CANX, 

CLGN 

cardiomyopathy missense mutation (Chiu et al., 2007) 

connective 

tissue/ skin/ 

muscular 

disease 

PLEC, DSP, 

EPPK1 

epidermolysis bullosa 

simplex with muscular 

dystrophy 

insertion, deletion, 

missense, nonsense 

mutation 

(Koss-Harnes et al., 2002; 

McLean et al., 1996; 

Pulkkinen et al., 1996; 

Selcen et al., 2011; Smith 

et al., 1996) 

developmental 

disorder 

ASCC1 barrett esophagus missense mutation (Orloff et al., 2011) 

neurological 

disease 

APTX, PNKP ataxia deletion, splice site 

mutation, missense 

mutation 

(Amouri et al., 2004; 

Criscuolo et al., 2005) 

pulmonary 

disease 

DNAAF2 ciliary dyskinesia insertion, nonsense 

mutation 

(Omran et al., 2008) 

RBP-

interact-

ing 

proteins 

ophthalmol. 

disease 

TDRD7 cataract frameshift (Lachke et al., 2011) 
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2.4.11 FAM98A is a novel RG/RGG-rich RBP 

Several decades ago, arginine/glycine-rich structural repeats were identified to be often present in 

heteronuclear RBPs (hnRNPs) [reviewed in (Thandapani et al., 2013)]. Consecutive repeats of 

RG/RGG amino acid motif, separated by few amino acids in between, created a functional unit 

defined as an RG/RGG box and were enriched in RBPs and some extracellular proteins such as 

collagens. These RG/RGG boxes were subsequently shown to influence RBP transport through 

posttranslational modifications of the RG residues and also to directly bind to RNA (Kiledjian 

and Dreyfuss, 1992; Shen et al., 1998). The prion-like, undefined structural properties of 

RG/RGG rich RBPs causes them to easily aggregate in RNA-protein granules, and a number of 

them have been implicated in diseases with prion-like aggregation into stress granules (Kim et al., 

2013b; Li et al., 2013; Ramaswami et al., 2013). The location of RG/RGG boxes is often 

conserved within these RBPs, suggesting functional conservation (Thandapani et al., 2013). 

However, because of their loose structural definition, these low-complexity regions are not 

defined as structural domains by public protein domain databases such as Pfam, SMART, or 

InterPro, and currently missed by protein domain annotations (Apweiler et al., 2001; Finn et al., 

2010; Letunic et al., 2009).  

We noticed the density of RG/RGG boxes in a number of RNA transport proteins such as 

FUS, EWSR1, HNRNPU, and hypothesized that if RG-rich repeats were RNA-binding or 

characteristic of RBPs, their presence may be a sufficient predictor for RBPs. To identify de novo 

RBPs based on RG/RGG-rich regions, I conducted a genome-wide search of RG/RGG repeats in 

human proteins. I scanned all human protein isoforms for the presence of at least three RG/RGG 

motifs and examined the distribution of RG/RGG motifs across known RBPs, comparing them to 

the residual proteome (Figure 2.12 A). On average distances of <20 amino acids were found 

between RG/RGG motifs in RBPs (Figure 2.12 A). Based on the distribution of RG repeats in 

RBPs, I defined a conservative approach to identify and classify RG/RGG boxes in proteins, if a 
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minimum of at least three RG/RGG amino acid motifs were found within a distance of ≤10 amino 

acids between each RG/RGG amino acid sequence. This gave a local density measure of 

RG/RGG boxes independent the total number of RG/RGG motifs and the length of the protein. 

From this definition I ranked the number of genes with one or more RG/RGG box. Further 

excluding collagen genes, 369 proteins had at least one or more RG/RGG repeat. The highest 

enriched Gene Ontology pathway was mRNA-binding and indeed 80 of those proteins were 

known characterized RBPs in our RBP census. In fact, RG repeats are a commonly encountered 

structural feature in RBPs and the second most abundant structural motif in our curated census, 

after the RRM domain (Figure 2.3 A). The top five RG/RGG rich proteins in humans were all 

RBPs: ZC3H4, TAF15, EWSR1, CHTOP, SYNCRIP with 21, 20, 20, 19 and 16 RG-boxes 

respectively. Of the 98 proteins with at least three RG/RGG boxes, 50 were known RBPs; the 

uncharacterized FAM98A and B protein were among the 48 putative RBP candidates.  

The FAM98 protein family is absent in S. cerevisae, but highly conserved across higher 

eukaryotes, from C. elegans, fruitfly, to vertebrates. FAM98 proteins contain one conserved 

protein domain of unknown function (DUF2465) (Finn et al., 2010) (Figure 2.12 B). FAM98A 

has two paralogs in humans, FAM98B and C. FAM98C remains uncharacterized, but FAM98B 

was recently identified in a complex with the HSPC117 (RtcB) tRNA splicing ligase (Popow et 

al., 2011). FAM98A contains six RG/RGG boxes, FAM98B contains three, and FAM98C has 

none. While the number of RG/RGG boxes varies across organisms, the location of the RG/RGG 

repeats is generally conserved in FAM98A: one RG/RGG box lies within the conserved 

DUF2465 domain and two other boxes lie in the C-terminal region (Figure 2.12 C). To test 

whether the FAM98 family may be an RBP family, I chose FAM98A as candidate, since it had 

the highest count of RG/RGG boxes and their density most likely suggested a role in RNA-

binding. To assess the closest structurally homologous relationship of the unknown domain of 

FAM98A, I ran a Phyre2 domain folding prediction of the conserved DUF2465 domain of 
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FAM98A, which most strongly resembled the kinetochore Hec1/human NDC80 protein (Kelley 

et al., 2015) (Figure 2.12 B). Hec1 is required for spindle checkpoint signaling, which assures 

correct chromosome segregation during cell division (Martin-Lluesma et al., 2002). A previous 

computational study also noted the structural similarities of FAM98 proteins with Hec1 

kinetochore and other microtubule associated proteins (Schou et al., 2014).   
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Figure 2.12 FAM98A is a conserved RG-rich mRBP. (A) Density plot of the geometric mean 

distances of RG/RGG repeats of proteins with at least three RG/RGG repeats. RBPs are shown in 

red, other proteins in grey. The highest density of RG/RGG amino acid repeats is 17 for RBPs 

and 43 for non-RBPs. (B) Phyre2 predicted domain folding of the conserved DUF2465 domain of 

FAM98A shows similarities to the Hec1 kinetochore protein. (C) FAM98A is a conserved protein 

across vertebrates and invertebrates. Domain distribution of the DUF2465 (green) and RG repeats 

(dark blue) and conservation of FAM98A proteins are shown across human, mouse, Xenopus and 

Drosophila. (D) Schematic overview of PAR-CLIP: First photoactivatable thioribonucleosides 

are incorporated into nascent transcripts, RNA-protein complexes are crosslinked in vivo at UV 

365 nm. After cell lysis and limited RNase T1 treatment, RNA–RBP complexes are 

immunoprecipitated. The crosslinked RNA segments are recovered, converted into cDNA 

libraries and deep sequenced. (E) PAR-CLIP 4-SU crosslink and Western blot of 

immunoprecipitated FLAG/HA-tagged FAM98A protein in HEK293 cells. (F) Length 

distribution of FAM98A PAR-CLIP reads mapping to mRNA genes. Reads mapping to the 

human mRNA reference annotation are split into T>C crosslinked reads (red), reads mapping 

with distance 0 to the reference annotation (white), reads mapping with distance 1, but which 

contain transitions other than T>C (grey), and reads mapping with distance 2 (black). The x-axis 

shows read length, the y-axis shows read number. (G) Pie chart of the distribution of PARalyzer 

clusters with ≥20 reads for all annotation categories. (H) Pie chart of the distribution of clusters 

with ≥20 reads in mRNA genes alone, given are also the number of total mRNA targets. (I) 

Immunostaining of FLAG/HA-FAM98A shows cytoplasmic localization in HEK293 cells. 
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To test whether FAM98A had direct RNA-binding activity, I generated stable HEK293 

cell lines with doxycycline inducibly expressing FLAG/HA-FAM98A protein and performed 

PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation).  

In the PAR-CLIP protocol 4-thiouridine (4-SU) metabolically-labeled RNA is crosslinked at 365 

nm to interacting protein components in vivo (Hafner et al., 2010a). The photochemical reactivity 

of the thio group at the 4-position of the uridine analogue shows increased efficiency of photo-

induced crosslinking compared to the natural nucleoside (Sontheimer, 1994). 

Immunoprecipitation of the crosslinked RBP-RNA complex with an RBP-specific antibody, 

followed by cDNA library preparation of the RNA for HiSeq sequencing, allows us to identify 

transcriptome-wide targets of RBPs (Figure 2.12 D). During crosslinking of the photoreactive 4-

thiouridine with aromatic amino acids the chemical structure of the uridine analogue changes 

such that the reverse transcription step of the library preparation results in a significant 

enrichment of T to C (T>C) transitions on the DNA level. Hence, PAR-CLIP sequences 

intrinsically contain the information of specific crosslinking events. This is important as during 

the RT-PCR step the reverse transcriptase is in many cases blocked as soon as protein-RNA 

crosslinks are encountered. As a consequence, about 70-90% of background RNA sequences co-

purified during immunoprecipitation will be amplified more frequently and make peak detection 

of real crosslinking events of RNA to protein very difficult. Consequently, T>C transitions 

created by crosslinking of 4-SU to protein targets become an essential parameter for the 

identification of specific crosslink events and distinguish specific RNA-protein interactions from 

background RNA. For a successful experiment we expect the largest fraction of distance 1 

mismatches against the genome to be T>C transitions.  

Using PAR-CLIP I established that the previously unknown FAM98A protein was an 

RBP and showed that FAM98A crosslinked with high efficiency to the mRNA-transcriptome. 

The results are described in the next few sections.   
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2.4.11.1 FAM98A is a cytoplasmic mRBP 

The FAM98A showed good crosslinking capacity as assessed by phosphorimaging and the 

resulting PAR-CLIP library had an unusually high T>C crosslinking efficiency, with thousands of 

targets, detecting significant enrichment of T>C transitions over background nucleotide 

transitions in sequence reads (Figure 2.12 E, F). To extract the binding regions, sequence reads 

were grouped by PARalyzer, which identifies regions with locally enriched T>C conversions in 

PAR-CLIP reads over background mismatch errors (Corcoran et al., 2011).  Defining a cut-off of 

≥20 reads per cluster, 62,980 clusters (or binding regions) were identified by PARalyzer, 54,731 

(87%) of those were located in the coding regions, introns, 5’UTR or 3’UTRs of mRNAs (Figure 

2.12 G,H). These corresponded to 10,422 total genes; 8,155 of these were protein-coding (Figure 

2.12 H). By immunofluorescent analysis FAM98A was predominantly localized in the cytoplasm, 

which was in agreement with the PAR-CLIP results of FAM98A predominantly binding to 

mature mRNAs (Figure 2.12 I). 

2.4.12 FAM98A binds to G-rich regions in mRNA targets 

Further inspection of the extracted PAR-CLIP binding regions revealed that FAM98A bound 

broadly along the entire transcript, in coverage similar to RNA-seq data, and preferentially bound 

to G-rich regions (Figure 2.13 A). To quantify enrichment of sequence motifs in the binding sites, 

I used kmer cluster analysis to calculate the enrichment of 4mers along a 20-nt sliding window 

within clusters of coding regions, normalizing them over 4mer counts within a 20-nt sliding 

window of shuffled coding regions of the complete human transcriptome. By this analysis the 

most frequently enriched motifs contained variations of GG, GGG, GNGG, GNNG (Figure 2.13 

B). I confirmed this G enrichment using the motif finding algorithm cERMIT, which ranks 

clusters based on T>C conversion specificity to give an evidence based estimate of preferred 
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binding sites (Georgiev et al., 2010). The top cERMIT motifs of FAM98A clusters were G-rich 

motifs (Figure 2.13 C).   
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Figure 2.13 PAR-CLIP target clusters, motif enrichment, and RNAi knockdown of 

FAM98A. (A) (i) PAR-CLIP cluster along the FAM98A gene. (ii) Representative PAR-CLIP 

cluster of FAM98A within the FAM98A gene. Shown is the signal T base enrichment (red), 

background intrinsic sequence T enrichment (blue), and read coverage (grey). G-rich regions are 

highlighted in yellow in sequence alignments of reads. Number of reads is given behind each 

read, T>C transitions are highlighted in red. T>C frequency transitions are shown in a heat map 

from blue to yellow below the cluster. (B) Enrichment of 4mers in FAM98A PAR-Clip clusters 

normalized over shuffled coding regions. (C) cERMIT motif enrichments resulting from 

FAM98A PAR-CLIP clusters. (D) Western blot of knockdowns (three different siRNA duplexes 

and all three pooled together) and overexpression of FAM98A, compared to control parental 

HEK293 FlpIn T-Rex cells. (E) Log2 fold down- (orange) and up-regulation (blue) of FAM98A 

mRNA and control RBP gene (IGF2BP1) assessed by RNA-seq. (F) Cumulative distribution plot 

for mRNA abundance of FAM98A targets (red) and background mRNAs (black) in knockdown 

versus overexpression experiments.  
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2.4.13 FAM98A knockdown does not affect target mRNA stability 

To study putative regulatory effects of FAM98A on mRNA stability, I recorded mRNA 

expression profiles of siRNA-mediated knockdown of endogenous FAM98A or overexpression 

of FLAG/HA-FAM98A in HEK293 cells. Successful knockdown of all three siRNAs was 

assessed by Western blot analysis and the pooled knockdown submitted for RNA-sequencing. 

siRNA-mediated knockdowns reduced protein levels of FAM98A >10-fold, while doxycycline 

induced overexpression of FAM98A slightly reduced expression of endogenous FAM98A, but 

increased overall FAM98A levels approximately 2-fold (Figure 2.13 D).  FAM98A mRNA levels 

were reduced 1.7-fold, while FAM98A overexpression resulted in >4-fold increase in mRNA 

levels. To assess the affect of FAM98A knockdown on mRNA stability of its targets, I analyzed 

the fold change differences in targets and nontargets mRNA levels in knockdown and 

overexpression experiments.  The cumulative distribution of FAM98A PARalyzer-defined PAR-

CLIP targets and non-targets showed no significant changes on mRNA stability of its targets 

(Figure 2.13 F). At an expression cut-off of rpkm ≥ 0.1 most expressed mRNAs (74%) were 

bound by FAM98A. Adding PARalyzer-defined PAR-CLIP binding sites with less than 20 reads 

resulted in an even larger fraction of the expressed transcriptome being bound to FAM98A. We 

concluded that FAM98A broadly bound most expressed mRNAs in HEK293 cells. Furthermore, 

at the protein level, targets displayed no measurable changes in abundance upon FAM98A 

knockdown or overexpression by Western blot analysis. Both assays, measuring mRNA and 

protein abundance, showed no indication that FAM98A had a role in regulating mRNA or protein 

stability, or translation. We reasoned that either FAM98A had an independent role in other RNA 

metabolic pathways (such as RNA transport) or that the family members of FAM98A could exert 

some redundancy upon RNAi knockdown of FAM98A and that knockdown of one member, but 

not the entire family was not sufficient to see regulatory effects. However, in our experience most 

studied RBPs with a role in mRNA or protein stability show measurable regulatory effects upon 
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knockdown or overexpression even if the expression of their paralogs are unaltered in the cell. 

Given the results we decided that the experimental conditions and design had to be significantly 

changed to elucidate the function of FAM98A in vivo. With a lacking phenotype upon loss-of-

function and an unidentified process to pursue, I decided to not further investigate the effects of 

FAM98A expression levels on protein levels using methods such as quantitative mass 

spectrometry methods with stable isotope labeling (SILAC) (Mann, 2006). Our analysis of the 

PAR-CLIP experiment together with the RNA-seq data showed that generally abundant protein-

coding mRNAs were bound by FAM98A and and that all unbound mRNAs were expressed at on 

average lower levels than bound targets. Thus, a regulatory role of FAM98A for specific subsets 

of mRNAs seemed unlikely and FAM98A may have a general role in RNA translation or 

transport.  

2.4.14 Summary and discussion on the physiological role of FAM98A 

I identified, using low-complexity domain definitions, the novel RBP FAM98A and confirmed its 

RNA-binding ability by PAR-CLIP. A number of proteins of unknown function with high 

numbers of RG/RGG boxes still remain uncharacterized and it will be interesting to characterize 

their role in RNA-binding in the future. Interestingly, also a number of chromatin regulatory 

proteins such as MBD2 (methyl-CpG binding protein 2), BRWD3 (bromodomain and WD repeat 

domain containing protein 3), KMT2B (Histone-lysine N-methyltransferase 2B) are also highly 

RG/RGG rich (12,11,11). For MBD2 (Tan and Nakielny, 2006) RNA-binding capability has been 

demonstrated, but physiological RNA targets have not been characterized and a putative role in 

RNA-binding of other chromatin regulatory proteins with RG-rich regions would be interesting to 

investigate further. 

In conclusion, we found that FAM98A bound to most expressed mRNAs with some 

enrichment in G-rich regions. FAM98A is a cytoplasmic protein that binds broadly along the 
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entire mature mRNA transcript, predominantly in the coding region. Overexpression or 

knockdown of FAM98A did not alter mRNA or protein abundance of its targets.  The 

predominant localization of PAR-CLIP clusters in coding regions could support a putative role in 

protein translation, where it perhaps is required to assist unwinding of extended secondary 

structures and thereby to facilitate protein translation. To measure translation changes, a more 

global assay such as ribosome profiling may present a better approach to investigate a putative 

role of FAM98A during translation (Ingolia, 2014).  

Independent of my own studies, two proteome-wide pulldown studies of RBPs also 

isolated FAM98A (Baltz et al., 2012; Castello et al., 2012) and one study verified its binding 

activity in vitro (Strein et al., 2014). However, their findings disagree with our results in 

localization, which was reported to be predominantly nuclear, and RNA-binding capability, 

detecting low RNA affinity of FAM98A in GFP-multiTrap essays. In contrast, a proteomic study 

of proteins involved in 5’terminal oligopyrimidine (TOP) motif RNAs found FAM98A associated 

with the translation regulatory factor LARP and the mTOR complex and supports our finding that 

FAM98A is localized to the cytoplasm (Tcherkezian et al., 2014).  

FAM98 is highly conserved in metazoan with 33% sequence conservation of the human 

FAM98A protein to the Drosophila melanogaster FAM98 homolog CG5913. I tested the 

viability of a loss-of-function genetic mutant of CG5913. CG5913 was not an essential gene and 

homozygous mutants did not show any physiological abnormalities (data not shown). Together, 

given our data, as well as the domain similarities to kinetochore proteins such as Hec1, and 

previous studies on RG-rich proteins, it seems likely that FAM98A is a nonessential, cytoplasmic 

(or nuclear/cytoplasmic) shuttling/transport RBP or could have a general function in protein 

translation. Recent findings for the paralog FAM98B support the idea of a shuttling protein and 

find that FAM98B is a component of a shuttling RNA-transporting complex with 

HSPC117/DDX1/C14orf166 (Pérez-González et al., 2014). 
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2.5 Chapter 2 Discussion 

A census of human RBPs is critical to organize our current molecular and genetic understanding 

of PTGR. This catalog provides researchers with a newly curated resource to guide their 

investigations of PTGR processes and to systematically study RBPs. An analogous catalog that 

assesses the abundance and classifies all expressed RNAs, i.e. the RBP targets, across tissues and 

cell types is still missing and would represent a useful addition to this census. Among the 20,500 

protein-coding genes in humans, our curated census estimates that 7.5% (1,542 genes) are directly 

involved in RNA metabolism by binding and/or processing RNA or comprising essential 

components of RNPs. RBPs are structurally diverse and include many distinct classes of RBDs. 

In contrast, the three most abundant DNA-binding domains account for 80% of the 1,704 TFs in 

humans (Vaquerizas et al., 2009). The three most abundant RBDs only accounted for 20% of all 

RBPs in our census.  

Based on our target RNA categorization, nearly 50% of RBPs acted in mRNA metabolic 

pathways and 11% constituted ribosomal proteins, while the rest were involved in the diverse 

number of ncRNA metabolic processes. From the categorization of RBPs into RNA pathways, we 

can deduce the percentage of RBPs committed to different pathways and interpret expression 

changes of RBPs by regulatory process. The target-based categorization of RBPs also assists the 

interpretation of disease phenotypes and mutations emerging from rapidly increasing patient 

genome sequencing and may guide future functional studies.  

Analyzing expression data across multiple tissues in humans and also other organisms I 

found that the majority of RBPs were ubiquitously expressed at higher levels than the residual 

protein-coding transcriptome, and represented up to a fifth of the total expressed protein-coding 

transcripts encoded for RBPs. We conclude that RNA metabolism not only constitutes one of the 

most conserved processes in the cell, but is also one of the cellular processes with the highest 

protein copy number demand.  
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Lastly, I demonstrated how structural data mining could be used to discover novel RBPs. 

Through a simple count of RG/RGG repeats across the human proteome I discovered the novel 

RBP FAM98A, a metazoan-conserved protein, and characterized its RNA-binding affinity by 

PAR-CLIP. FAM98A predominantly bound mature mRNAs in G-rich regions. Based on domain 

homologies, the domain of unknown function (DUF2465) in FAM98A may point towards a 

regulatory role in kinetochore/RNA-transport related processes, while its predominant 

localization to coding regions may also point to a putative role in protein translation. Further 

studies are needed to determine its physiological need in the cell.  

Many details of PTGR remain to be revealed, including the dissection of newly 

discovered RNA regulatory processes, such as nuclear noncoding RNAs transcriptionally 

regulating gene expression and chromatin conformation or the dynamic regulation of 

posttranscriptional modifications of mRNAs (Cech and Steitz, 2014; Meyer and Jaffrey, 2014; 

Ulitsky and Bartel, 2013). However, even at the basic biochemical level we still have an 

incomplete understanding of how binding specificity is achieved, and how the regulatory function 

of an individual RBP is influenced by synergy and competition with other RBPs. How is PTGR 

executed in the cell with such high precision? A balanced approach of detailed biochemical and 

functional studies paired with complex, systems biology methods will ultimately lead to an 

understanding of the principles underlying PTGR networks. The more recent development of next 

generation sequencing-based methods aids the investigation of PTGR networks, such as RIP and 

CLIP-based methods (Ascano et al., 2012a; Konig et al., 2011; McHugh et al., 2014), ribosome 

profiling (Ingolia, 2014), in vivo RNA-secondary structure profiling (Ding et al., 2014; Rouskin 

et al., 2014; Wan et al., 2014), small and long RNA-sequencing (Jan et al., 2011; Ozsolak and 

Milos, 2011; Wang et al., 2009), or 3’-end sequencing methods profiling of alternative 

polyadenylation sites and poly(A) tail lengths (Chang et al., 2014; Jan et al., 2011; Lianoglou et 

al., 2013; Subtelny et al., 2014). These studies reveal an unanticipated complexity in RBP binding 
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and targeting and highlight the need to experimentally dissect PTGR networks in various cellular 

systems. Much of our current efforts are still focused on developing the tools and collecting large-

scale datasets to understand the breadth of regulatory mechanisms of RBPs and their targets. With 

this census I hope to have created a foundation for the system-wide study of PTGR factors, which 

facilitates our understanding and interpretation of their gene regulatory patterns. 
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3 The DEDDh RNA exonuclease NEF-sp is involved in the 

3’ETS removal of 28S rRNA 

3.1 Introduction 

3.1.1 Ribosomes 

Ribosomes are highly conserved RNA-protein complexes central to protein synthesis. They 

decode information of mRNAs and translate it into proteins, catalyzing peptide bond formation. 

Ribosomes are composed of two subunits, the small (40S in eukaryotes) and large (60S in 

eukaryotes) ribosomal subunit. The large subunit catalyzes the peptide bond formation, also 

referred to as peptidyl transferase activity, while the small subunit has the decoding function of 

the ribosome [reviewed in (Lafontaine and Tollervey, 2001)]. The large ribosomal subunit 

contains three ribosomal RNAs, 5S, 5.8S, and 28S rRNA, while 18S rRNA forms the RNA 

component of the small ribosomal subunit. Eukaryotic ribosomes have 80 core ribosomal proteins 

(Anger et al., 2013), the large ribosomal subunit contains 47 proteins, while the small subunit 

possesses 33 proteins; together the human ribosome forms a 4.3 MDa complex (Anger et al., 

2013; Khatter et al., 2015). The majority of cellular metabolism is committed to ribosome 

synthesis and about 90% of all cellular transcribed RNA is rRNA (Warner, 1999). The number 

and production of ribosomes determine protein synthesis and growth rates of cells. In highly 

growth-stimulated cells, such as cancerous cells, ribosomal proteins and rRNA biogenesis factors 

are often expressed at higher levels. Nucleolar size (the site of rRNA production) and rRNA 

transcription are increased and lead to a higher number of ribosomes and protein synthesis in the 

cell (Boisvert et al., 2012; Montanaro et al., 2008; Ruggero and Pandolfi, 2003; Zhang et al., 

2015a). Several oncogenes, such as p53 and Myc, directly regulate ribosome biogenesis (Ruggero 

and Pandolfi, 2003). Mutations that lead to dysfunctional ribosome assembly are generally lethal 
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early on during development. However, some defects in ribosomal proteins or rRNA biogenesis 

have been found to occur in several genetic diseases, commonly referred to as ribosomopathies 

[reviewed in (Hannan et al., 2013; Sondalle and Baserga, 2014)]. These show predominantly 

pathologies in bone marrow malfunction and growth defects. Several mutations in ribosomal 

proteins of the small (RPS7, 10, 17, 17L, 19, 24, 26) and large (RPL5, 10, 11, 35A) subunit cause 

Diamond-Blackfan anemia, a disorder that affects the production of red blood cells, while 

mutations in the ribosome biogenesis factors SBDS and EMG1 cause Shwachman-Diamond 

syndrome and Bowen-Conradi syndrome, which affect the production of white blood cells 

(neutrophils) and cause growth defects (Gerstberger et al., 2014b; Narla and Ebert, 2010; 

Sondalle and Baserga, 2014) (also see Table 2.1). Mutations in RNA polymerase I components, 

as well as rDNA transcription factors, such as TCOF1, have also been found in a number of 

genetic diseases causing growth and developmental defects, mental retardation, craniofacial and 

limb abnormalities (Hannan et al., 2013). 
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Figure 3.1 Overview of rRNA biogenesis in eukaryotes. Electron microscopy image of 

transcribed rRNA transcription units of amphibian oocytes and schematic overview of rRNA 

biogenesis steps in eukaryotes [adapted from (Lafontaine, 2015), image by (Miller and Beatty, 

1969)]. Three out of four rRNAs are transcribed in the nucleolus by Pol I as a long 47S precursor 

(47S pre-rRNA). The precursor is further processed, cleaved and modified to give the mature 

18S, 5.8S and 28S rRNAs, which are assembled into the pre-40S (green) and pre-60S (orange) 

ribosomal subunits. 5S rRNA (pink) is transcribed by Pol III in the nucleus and incorporated into 

maturing 60S subunits. 80 ribosomal proteins, >200 auxiliary factors and 200 snoRNAs are 

required for assembly. Pre-60S subunits require more nuclear maturation steps than pre-40S 

subunits and are exported after the 40S export to the cytoplasm. Final structural modifications 

take place in the cytoplasm (Panse and Johnson, 2010), such as formation of the beak on the 

small subunit and the stalk on the large subunit (Nerurkar et al., 2015).  
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3.1.2 rRNA transcription, processing, assembly and export 

Eukaryotic ribosome biogenesis is a highly orchestrated process and involves >200 assembly 

factors in S. cerevisiae and >400 in humans (Lafontaine, 2015; Tafforeau et al., 2013). By 

complexity and number of proteins involved, ribosome biogenesis is perhaps the most complex 

RNA metabolic pathway in the cell. rRNA processing is highly conserved among species, but 

additional protein factors, and processing pathways have evolved in higher eukaryotes 

concomitant with increasing organismal complexity. Due to its relative organismal simplicity, 

most of our knowledge on rRNA biogenesis results from the functional studies in S. cerevisae.  

The main site of rRNA biogenesis is the nucleolus. Here, three of the four ribosomal 

RNAs, 18S, 5.8S and 28S, are transcribed by RNA polymerase I as a long 47S (35S in S. 

cerevisiae) precursor transcript, posttranscriptionally cleaved, nucleotide modified and assembled 

into early ribosomal complexes. ~200 proteins have been found in S. cerevisiae nucleoli 

(Woolford and Baserga, 2013) and up to ~4500 proteins have been detected in human nucleoli 

(Ahmad et al., 2009). Most of these are likely to be involved directly or indirectly in rRNA 

biogenesis and assembly (Mullineux and Lafontaine, 2012).  5S rRNA is transcribed separately 

by RNA polymerase III in the nucleus and assembled into pre-60S ribosomal complexes 

(Ciganda and Williams, 2011; Lafontaine, 2015). rDNA gene loci are organized in tandemly 

repeated arrays, with copy numbers varying between 400-100,000 copies in eukaryotic cells 

(Prokopowich et al., 2003). 400-600 copies are found in S. cerevisiae and humans, which are 

distributed between the nucleolar organization regions (NORs) (Carmo-Fonseca et al., 2000; 

Stults et al., 2009). About 50% of all rDNA loci are actively transcribed, while the others are 

nonfunctional or transcriptionally inactive repeats (Boulon et al., 2010). When visualized by 

electron microscopy, nascent precursor transcripts branch off from actively transcribed rRNA 

genes and form characteristic Christmas tree structures, at which ends RNP protein complexes, 

also termed terminal knobs, carry out rRNA processing (Kass and Sollner-Webb, 1990; Miller 



99 

and Beatty, 1969; Mougey et al., 1993) (Figure 3.1). In yeast, these have been identified as the 

small subunit (SSU) processome complexes [(Dragon et al., 2002), reviewed in (Granneman and 

Baserga, 2004; Henras et al., 2014; Woolford and Baserga, 2013)]. The long rRNA precursor is 

co- and post-transcriptionally processed, with endo- and exonucleolytic cleavage reactions taking 

place that remove the internal and external transcribed spacer regions (5’ETS, 3’ETS, ITS1, 

ITS2). Site-specific RNA modifications, such as methylation or pseudouridylation, are introduced 

by enzymes or snoRNPs guided by sequence specific basepairing of the snoRNAs to their target 

site. Instead of nucleotide modifications, some snoRNAs, such as U3 snoRNA, guide cleavage of 

rRNA precursors at specific sites [reviewed in (Henras et al., 2008)]. Concomitantly with 

posttranscriptional processing, rRNAs and ribosomal proteins are assembled into the ribosomal 

precursor complexes of the small and large subunit, assisted by a plethora of transport, folding 

and assembly complexes in the nucleolus, nucleus and cytoplasm. 18S rRNA assembles into the 

small subunit, while 5S rRNA, 28S, and 5.8S rRNA are incorporated into the large ribosomal 

subunit.  

3.1.3 RNA exo- and endonucleases involved in rRNA processing 

rRNA cleavage sites within the long precursor have been mapped in detail in yeast and the main 

pre-rRNA processing intermediates have also been characterized in higher eukaryotes [reviewed 

in (Mullineux and Lafontaine, 2012)] (Figure 3.2). The characterization, however, of the enzymes 

catalyzing the cleavage reactions has been challenging in all organisms. For some sites we do not 

know the identity of the cleavage factors, and for others understanding the overlapping substrate 

specificity has resulted in some uncertainty about how substrates are recognized and how 

processing is regulated (Mullineux and Lafontaine, 2012). Table 3.1 summarizes the current 

knowledge of RNA endo- and exonucleases involved in pre-rRNA processing. 
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Table 3.1 Overview of RNA exo- and endonucleases in rRNA processing. RNA exo- and 

endonucleases characterized in rRNA biogenesis in S. cerevisae and higher eukaryotes, their 

cleavage sites and nuclease domains are listed [based on (Henras et al., 2014; Zuo and Deutscher, 

2001)]. 

S. cerevisiae 

RNA nuclease 

S. cerevisiae 

cleavage site 

Nuclease domain (endo/exo) Mammalian 

homolog 

(human) 

Mammalian 

cleavage site 

Drosophila 

melanogaster 

homolog 

NOB1 D PIN (endo) NOB1 3 CG2972 

RNase MRP 

(MRP RNA in 

complex with 

POP1, POP5, 

RPP20, RPP25, 

RPP30, RPP38 

and RPP40) 

A3 Catalytic RNA (endo) RNase MRP 

(POP1, 

POP4, POP5, 

POP7, 

RPP14, 

RPP21, 

RPP25, 

RPP25L, 

RPP30, 

RPP38, 

RPP40) 

- RNase MRP 

(l(1)G0045, 

CG8038, 

CG14057, 

Rpp20, 

CG9422, 

Rpp30) 

RCL1 (SSU 

component) 

A0, A1, A2 RNA 3’terminal phosphate 

cyclase-like domain (endo) 

RCL1 E Rtc1 

Utp24 

(Fcf1p)/cofactor 

Utp23 (Faf1p) 

(SSU 

component) 

A0, A1, A2 PINc (endo) FCF1 SSU exosome 

component, 

putative A’, 

A0, 1 

Bka 

RNT1 B0 Ribonuclease III (endo) DROSHA - Drosha 

Rrp6 (RNA 

exosome) 

5.8S+30>6S DNA_pol_A_exo1/DEDD/ 

RNase D (3’-5’ exo) 

EXOSC10 Rrp6 

Rrp44 (Dis3) 

(RNA exosome) 

7S>5.8S+30 PIN/RNR (endo, 3’-5’ exo) DIS3 7S>5.8S+40 Dis3 

Rat1p/cofactor 

Rai1p 

C2>C1, A3>B1S Xrn1/ 5PX (5’-3’ exo) XRN2/ 

cofactor 

DXO 

2>5.8S rRNA, 

4>28S rRNA, 

Rat1/ putative 

cofactors 

CG912/ cuff 

Rrp17p A3>B1S Nop25 domain (5’-3’ exo) NOL12 Putative 

2>5.8S rRNA 

viriato 

Ngl2p 6S>5.8S rRNA Exo_endo_phos/ DEDD/ Ccr4p 

(3’-5’ exo) 

- - 

Rexp1 28S rRNA, 5S 

rRNA, 5.8S rRNA(?) 

(Piper et al., 1983; 

1987; van Hoof et al., 

2000) 

DEDDh RNase T (3’-5’ exo) REXO1, 

NEF-sp 

unknown CG42666 

(dREXO1), 

CG12877 

(dREXO1), 

CG8368 

(dNEF-sp) 

Rex2p 5.8S rRNA(?) (van 

Hoof et al., 2000) 

DEDDh RNase T (3’-5’ exo) REXO2 - CG10214 

Rex3p 5.8S rRNA(?) (van 

Hoof et al., 2000) 

DEDDh RNase T (3’-5’ exo) - - - 

Rex4p ITS1 processing 

(Faber et al., 2004) 

DEDDh RNase T (3’-5’ exo) REXO4 (ITS1 

regulation) 

CG6833 

- - DEDDh RNase T (3’-5’ exo) ISG20L2 5.8S+40>6S 

rRNA 

- 

- - DEDDh RNase T (3’-5’ exo) Eri1 6S>5.8S 

rRNA 

- 
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Figure 3.2 pre-rRNA processing in S. cerevisiae, humans, and Drosophila. rRNA size 

nomenclature is shown in dark blue, U3 and U8 snoRNAs are highlighted in light blue, RNA 

nucleases characterized in 28S rRNA 3’ end processing are highlighted in orange, 

endonucleolytic cleavage sites are shown with orange triangles, exonucleolytic cleavages are 

shown in direction of the cleavage sites. (A) rRNA processing in S. cerevisiae: The majority of 

nascent transcripts is already co-transcriptionally cleaved at sites A0, A1, A2 dependent on U3 

snoRNP, yielding 20S and 27S-A2 precursors. Alternatively, the full-length 35S pre-rRNA 

precursor is released by cleavage by the dsRNA endonuclease Rnt1p and processed 

posttranscriptionally. Cleavage A2 involved Rcl1p, while RNase MRP is involved in cleavage at 

A3. Nuclear export (NE) of the 20S precursor precedes final maturation of 20S to 18S rRNA by 

the RNA endonuclease Nob1 in the cytoplasm. The 5’-3’ exonucleases Rrp17p and Rat1p trim 

the 5’ ends of 27S-A3, 26S, 25S’, while the 3’-5’ exonucleases of the nuclear exosome trim 7S/L 

and 6S/L rRNA precursors in the nucleus, and the yeast-specific cytoplasmic RNA exonuclease 

Ngl2p matures the 3’ ends of 5.8S rRNA. The 3’-5’ exonuclease Rex1p (RNH70) trims off the 

3’ETS overhangs from 28S rRNA. (B) rRNA processing in humans/mammalian cells [processing 

steps are adapted from (Henras et al., 2014)]: The rRNA precursor is fully transcribed before it is 

posttranscriptionally processed. The precursor is initially cleaved at sites 01 and 02. The 45S 

precursor can be processed in two different pathways, either first in the 5’ETS (at site A0 and 1) 

or first in the ITS1 (site 2). Cleavage at site 2 depends on Rcl1p, endonucleolytic cleavage of 

Nob1 of the 18S-E precursor generates the mature 18S rRNA. The 5’-3’ exonuclease XRN2 trims 

5’ overhangs of 32S and 28S precursors after cleavage 2 and 4. Isg20l2 and the nuclear exosome 

trim different 5.8S rRNA precursors, namely the 12S, 7S, and 5.8S+40, while the final 5.8S 

exonucleolytic maturation of 5.8S takes place in the cytoplasm processed by Eri1. (C) rRNA 

processing in D. melanogaster: Few studies have investigated rRNA processing in D. 

melanogaster, but the main rRNA processing intermediates have been characterized (Long and 

Dawid, 1980). Similar to mammalian and Xenopus laevis pre-rRNA processing, Drosophila also 

contains U8 snoRNA (Peculis, 1997). Drosha is not involved in rRNA processing (Smibert et al., 

2011). MRP RNase is involved in cleavage at site 3 (Schneider et al., 2010). Conceptionally, the 

two alternative processing pathways are conserved among mammalian and Drosophila rRNA 

processing.  
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3.1.4 pre-rRNA processing in S. cerevisiae 

In S. cerevisiae transcription terminates 210 nts downstream of the mature 28S rRNA site. The 

precursor transcript is co-transcriptionally cleaved by the dsRNA-binding endonuclease Rnt1p, 

which results in the 35S precursor with a 3’ETS of 10-20 nts in length (Kressler et al., 1999) 

(Figure 3.2 A). The resulting primary 35S rRNA precursor is cleaved in the 5’ETS at site A0, A1, 

and A2, a process that requires the small subunit processome (SSU) in complex with U3 snoRNA 

(Woolford and Baserga, 2013). At present the enzyme carrying out endonucleolytic cleavage 

remains unknown, but both the endonucleases Rcl1 and Utp24 have been implicated as putative 

catalytic factors at A1 and A2, most recent studies favor Rcl1 as the catalytic factor based on its 

mammalian homolog that is also involved in ITS1 cleavage (Henras et al., 2014; Mullineux and 

Lafontaine, 2012; Woolford and Baserga, 2013). After A2, 20S intermediates are exported to the 

cytoplasm, where Nob1 endonuclease cleaves the remaining 3’ end of ITS1 from the precursor to 

generate the mature 18S rRNA (Henras et al., 2014). Following 5’ETS cleavage, precursors are 

cleaved either at A3 by RNase MRP or cleaved at B1L by an unknown RNA endonuclease. Some 

uncertainty about the required enzymatic factors also exists at A3, since cleavage at A3 is not 

strictly dependent on RNase MRP and cleavage by MRP seems to be not conserved in higher 

eukaryotes (Henras et al., 2014; Kressler et al., 1999). After cleavage at A3 or B1L, the resulting 

27S intermediate is 3’ end processed by RNH70 (also known as Rex1p), which 

exonucleolytically trims the 3’ETS overhangs of the 27S precursor (Kempers-Veenstra et al., 

1986; Mullineux and Lafontaine, 2012; Piper et al., 1984; Skowronek et al., 2014; van Hoof et 

al., 2000) (highlighted in Figure 3.2 A). 27S intermediates cleaved at A3 possess 5’ extensions of 

ITS1, which are 5’-3’ exonucleolytically removed by Rat1p/Rai1 or Rrp17p to generate the 

mature end of 5.8S rRNA (Hage et al., 2008; Henras et al., 2014; Oeffinger et al., 2009). After A3 

or B1L cleavage, the resulting 27S-BS/L intermediates undergo endonucleolytic cleavage at C2, 

releasing the 7S precursor and the mature 25S rRNA. The mature 25S rRNA is transported to the 



103 

cytoplasm, while the 7S precursor is trimmed by the RNA exosome, assisted by unwinding of 

secondary structures by the RNA helicase Mtr4p. The nuclear exosome component Rrp6 further 

trims 7S to generate the 6S precursor, which is then exported to the cytoplasm. The yeast specific 

RNA exonuclease Ngl2p exonucleolytically 3’-5’ trims the final extensions, generating the 

mature 5.8S rRNA.   

3.1.5 pre-rRNA processing in higher eukaryotes 

In Xenopus laevis RNA Pol I transcribes the entire ribosomal gene repeat unit far into the 3’ 

external spacer and terminates ~200 nts upstream of the rDNA promoter of the next rDNA unit 

(Labhart and Reeder, 1986). A processing event at a site ~250 nt downstream of the mature 28S 

rRNA (T2) forms the 7,800 kb precursor (Labhart and Reeder, 1987). Similarly, near-promoter 

termination sites -200 nts upstream of the initiation site have also been found in mouse rDNA 

repeats, but rRNA transcription is thought to terminate ~560 nts downstream of the 28S 3’end 

(Grummt et al., 1986; Henderson and Sollner-Webb, 1986). In humans, precursor transcripts 

extend to ~350 nts downstream of 28S rRNA (Bartsch et al., 1987; Gurney, 1985; Kuhn and 

Grummt, 1989). In Drosophila melanogaster transcription termination can extend throughout the 

entire 3’ETS and spacer region without a fixed termination point, however the long 47S precursor 

transcript has a defined length of ~8 kb (Long and Dawid, 1980; Mandal and Dawid, 1981; Tautz 

and Dover, 1986).  

In mammals, the 47S precursor is first cleaved at site 01, ~600 nts downstream of the 

transcription start site, followed by cleavage at 02 (also known as site 6) (Figure 3.2 B). This 

generates the 45S precursor, which already contains the mature 3’ end of 28S rRNA. Two 

alternative pathways for maturation can take place then. In pathway 1 the precursor undergoes 

cleavage at site A0 and 1, generating the 41S precursor. The 41S precursor has already the mature 

5’ and 3’ ends of 18S and 28S rRNA defined (Figure 3.2 B). Internal cleavage 2 in the ITS1 
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generates 21S, the 3’ extended 18S precursor, and 32S, the 5.8-28S precursor. Cleavage at site 2 

depends on the PES1/BOP1/NOL12 complex (Henras et al., 2014). Alternatively, in pathway 2, 

cleavage at 2 precedes cleavage at A0 and 1, generating first the 32S precursor of 28S and a 30S 

precursor of 18S, which is then rapidly cleaved by A0 and 1 to generate the 21S precursor. 

Cleavage at A’, A0 and 1 depend on the U3 SSU processome (Henras et al., 2014). Ultimately, 

both pathways arrive at the 21S and 32S precursors. The 21S rRNA precursor undergoes cleavage 

at site E, which is dependent on RCL1, followed by a series of exonucleolytic trimming reactions 

before it is exported to the cytoplasm, where Nob1 endonucleolytically cleaves off the 3’ 

extension to generate mature 18S rRNA. The 5.8S-28S containing 32S precursor undergoes 

endonucleolytic cleavage at site 4, generating the 12S precursor of 5.8S rRNA and a 5’ extended 

28S rRNA. 28S rRNA is 3’-5’ exonucleolytically trimmed by Xrn2. The 12S rRNA precursor 

undergoes a series of 3’-5’ exonucleolytic trimming reactions, first to by the RNA exosome and 

Isg20L2, which generate the 7S precursor in the nucleus. The nuclear RNA exosome component 

Rrp6 further trims the 7S to generate the 6S precursor. The 6S precursor is transported to the 

cytoplasm, where Eri1 3’-5’ exonucleolytically trims the final ends to form mature 5.8S rRNA 

(Ansel et al., 2008).  

Pre-rRNA processing in Drosophila has been characterized in less detail, and only the 

main rRNA precursor intermediates have been described (Long and Dawid, 1980), however the 

basic outline, as well as conserved protein factors closely mirror mammalian pre-rRNA 

processing steps (Figure 3.2 C). Additionally, Drosophila 5.8S rRNA is split into two pieces, a 

shortened 5.8S rRNA and an additional 2S rRNA downstream, presenting essentially the 3’ end 

of 5.8S rRNA (Pavlakis et al., 1979). 2S rRNA basepairs with 5.8S and 28S rRNA and is also 

incorporated into the large ribosomal subunit. Furthermore, insect 28S rRNAs contains a natural 

hydrolytic internal cleavage site, which cleaves 28S rRNA into two fragments 28Sa and 28Sb 

(Long and Dawid, 1980). 
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3.1.6 28S rRNA maturation in S. cerevisiae 

The 3’ ends of the primary precursor transcript are processed co-transcriptionally in yeast by the 

dsRNA-specific RNA endonuclease Rnt1p. The resulting precursor transcripts terminate 10-20 nt 

downstream of the mature 28S 3’ end (Henras et al., 2014; Kressler et al., 1999) (Figure 3.2 A). 

The 3’-5’ DEDDh RNA exonuclease RNH70 (Rex1p) exonucleolytically trims the 3’ overhangs 

of 28S during late ribosome biogenesis (Mullineux and Lafontaine, 2012). RNH70 has also been 

shown to trim the 3’ trailer of 5S rRNAs in yeast (Kempers-Veenstra et al., 1986; Piper et al., 

1983; 1984; Skowronek et al., 2014; van Hoof et al., 2000). While Rnt1p is essential for rRNA 

biogenesis in yeast, RNH70 is a nonessential enzyme and deletion strains are viable without any 

growth defects (Henras et al., 2008; Kufel et al., 1999; van Hoof et al., 2000). The 28S rRNA is 

released from the precursor after cleavage at site C2 by an unknown RNA endonuclease. Rat1p 

does a final trimming by exonucleolytically removing 5’-3’ overhangs on 28S rRNA to generate 

the mature 5’ end (Wang and Pestov, 2011).  

3.1.7 28S rRNA maturation factors in higher eukaryotes 

In metazoans, under steady state conditions the majority of the precursor is already processed at 

the mature 3’ end of 28S rRNA (site 02), by an unknown nuclease (Labhart and Reeder, 1986). 

Removal of the 3’ETS is thought to take place as precise endonucleolytic cleavage reaction at the 

mature 28S rRNA end and depends on the presence of U8 snoRNA. Drosha, the homolog of 

Rnt1p, is functionally not conserved in 3’ETS cleavage and processes microRNA precursors in 

the nucleus (Johanson et al., 2013; Lee et al., 2003). Knockdown of Drosha with antisense 

oligonucleotides in HeLa cells had no effect on 47S precursor levels, but a small increase 

observed for the 12S and 32S intermediates suggested a minor role of Drosha in ITS2 cleavage 

(Wu et al., 2000). However, an in vivo knockout of Drosha in mice or in Drosophila had no 
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effects on precursors or mature rRNA species, leading to the conclusion that Drosha has no role 

in pre-rRNA processing (Chong et al., 2008; Smibert et al., 2011).  

Absent in yeast, U8 snoRNA is conserved across verte- and invertebrates and displays 

base complementarity to the 28S 3’end and the 5.8-28S ITS2 junction. U8 is thought to assist 

long range pre-rRNA folding and correct positioning of the RNAs for 3’ETS and ITS2 cleavage 

(Peculis, 1997; Peculis and Steitz, 1993). U8 snoRNA depleted Xenopus laevis oocytes show 

depleted cytoplasmic 28S rRNA pools and cleavages at the 28S-3’ETS border, ITS1 and ITS2 

sites are inhibited. Cleavage at T1 (site 02 in mammals) is completely blocked and rRNA 

precursors are extended by ~800 nts to the termination site T2 in U8 depleted oocytes. The 

inhibition leads to accumulation of aberrant 32S and 36S intermediates with extended nucleotides 

at both 3’ and 5’ ends (Peculis and Steitz, 1993). Currently, apart from the U8 snoRNP, only two 

other protein factors are implicated in the 3’ end maturation of 28S rRNA in mammalians: the 

DEAD box helicase Ddx51 with its interaction partner Nog1, while an additional helicase, 

Ddx27, is required for correct 3’ETS end definition (Kellner et al., 2015; Srivastava et al., 2010). 

The nuclease that removes the 3’ETS remains unknown in metazoans. To generate the 5’ end of 

28S rRNA cleavage takes place at site 4 in the ITS2 of the 32S precursor by an unknown RNA 

endonuclease, thereby releasing the 28S precursor. The resulting 28.5S rRNA precursor is 5’-3’ 

exonucleolytically trimmed by Xrn2 to generate the mature 5’ end (Wang and Pestov, 2011).  

3.1.8 Role of snoRNPs in rRNA modification and processing 

rRNAs undergo extensive co- and posttranscriptional RNA modifications. These modifications 

are essential in eukaryotes, required for cell growth, and strengthen RNA stability, specific 

secondary structural folds, and influence ribosome activity (Granneman and Baserga, 2004; 

Henras et al., 2008; Sharma and Lafontaine, 2015; Watkins and Bohnsack, 2012). snoRNPs 

catalyze site-specific 2’-O-methylations and pseudouridylations in rRNAs, other snoRNAs, 
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telomerase RNA and snRNAs. Alternatively, some snoRNPs are required for rRNA processing 

by guiding cleavage and assisting folding of rRNA precursors. snoRNPs are ribonucleoprotein 

complexes composed of small nucleolar RNAs (snoRNAs) of ~150 nts (range from 50-450 nts) 

bound to their obligate protein partners. Based on their conserved sequence motifs and secondary 

structure, snoRNAs can be grouped into two classes, box C/D and box H/ACA snoRNAs 

(Filipowicz and Pogacić, 2002) (Figure 3.3).  

Figure 3.3 Structure of box C/D and H/ACA snoRNPs. Box C/D snoRNPs 2’-O-methylate 

their targets, while box H/ACA snoRNPs isomerize uridines to pseudouridines. (A) Schematic 

structure of the box C/D family snoRNAs bound to their protein binding partners. In eukaryotes 

box C/D snoRNPs form heterodimers with the complex partners Nop58 or Nop56, Fbl, Snu13. 

Guiding 2′-O-methylation involves base-pairing of the 10-21 nt-long sequence positioned 

upstream of box D (or D′) to the target RNA, the nucleotide positioned 5 bp upstream of the D/D′ 

box is selected for methylation. (B) Box H/ACA snoRNAs form a double loop. Within the

pseudouridylation pocket 3-10 nucleotides are complementary to the nucleotides in the target 

RNA flanking the isomerization site. Figure adapted from [(Fatica and Tollervey, 2003; 

Filipowicz and Pogacić, 2002; Watkins and Bohnsack, 2012)]. 

Each class associates with a distinct set of four evolutionary conserved core proteins 

(human orthologs official gene name given in parentheses): box C/D snoRNAs bind to Snu13 

(SNU13), Nop56 (NOP56), Nop58 (NOP58), and the 2’-O-methylase Nop1 (Fibrillarin, FBL); 

box H/ACA snoRNAs protein complex partners are Nhp2 (NHP2), Nop10 (NOP10), Gar1 

(GAR1), and the pseudouridine synthase catalytic subunit Cbf5 (DKC1). snoRNAs are 

transcribed by RNA Pol II, and are predominantly located in introns of mRNA genes in higher 
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eukaryotes (Dieci et al., 2009). Through complementary base pairing, the RNA component of 

snoRNPs guides the complex site-specifically to the target rRNAs to introduce nucleotide 

modifications. Most snoRNAs are involved in RNA modification, but a subset assists RNA 

folding or cleavage during rRNA processing (Watkins and Bohnsack, 2012). U3 snoRNP is a 

component of the SSU processome and is essential for cleavage in the 5’ETS at A0, A1 and A2 

(in yeast) (Phipps et al., 2011). In higher eukaryotes (not present in S. cerevisiae) U8 snoRNA is 

required for 28S rRNA maturation and cleavage of the 3’ETS. Few other snoRNAs have been 

characterized in the context of 90S pre-ribosomal complex processing, where they assist folding 

and interact with the 35S rRNA precursor (C/D: U14, U22; H/ACA: snR30/U17, snR10) (Henras 

et al., 2008).  

3.1.9 Tissue-specificity of rRNAs, ribosomal proteins and rRNA processing factors 

Ribosomal proteins and rRNA biogenesis factors are among the highest expressed proteins in the 

cell. Based on the analysis in Chapter 2, we find that they are generally expressed ubiquitously 

across human tissues with very little tissue-specific variation in mRNA levels (Gerstberger et al., 

2014a) (Figure 2.8). However, tissue-specific differences in pre-rRNA intermediates, the 

processing pathways, rRNA species (e.g. ratio of 5.8SS/L rRNA), as well as heterogeneous 

compositions of ribosomes have been described (Lafontaine, 2015; Mullineux and Lafontaine, 

2012). Heterogeneous ribosomes arise from tissue-specific ribosomal protein composition 

through incorporation of different ribosomal protein isoforms or variations in the rRNA 

sequences, resulting from stage-specific transcription of different rDNA gene loci (Lafontaine, 

2015; Xue and Barna, 2012). Furthermore, rRNA modifications and posttranslational 

modifications of ribosomal proteins introduce additional levels of heterogeneity (Mauro and 

Edelman, 2002; Ramagopal, 1992). Incorporation of specific ribosomal protein paralogs affects 

the production and function of yeast ribosomes (Parenteau et al., 2011). Tissue-specific and 
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stress-response tailoring of ribosomes by tissue-specific incorporation of ribosomal proteins has 

been shown to enhance translation of specific mRNA targets (Kondrashov et al., 2011; Vesper et 

al., 2011; Xue and Barna, 2012; Zhang et al., 2015b). Other extraribosomal roles for ribosomal 

proteins have also been reported (Warner and McIntosh, 2009). Most of these cases are incidental 

and a systematic survey of ribosome composition in different cell types and tissues, their 

expressed rRNA and ribosomal protein isoforms, as well as the level of protein and rRNA 

modifications has been challenging (Lafontaine, 2015; Xue and Barna, 2012). Profiling protein 

and rRNA isoforms, as well as their posttranslational modifications, across cell types, 

developmental stages and tissues remains an important goal for elucidating the underlying 

principles of ribosome composition in adaptation to different developmental and tissue-specific 

needs.  

Furthermore, while tissue-specific regulation of ribosomal proteins has been reported so 

far, much less is understood about the processes of posttranscriptional regulation during rRNA 

biogenesis. We know very little about the regulation and redundancy of rRNA processing and the 

involved enzymes, their stoichiometry, and activity. Given the functional redundancies of some 

exonucleases, as well as the regulation of rRNA biogenesis factors by growth stimulatory factors 

(e.g. mTOR, p53, myc) (Buszczak et al., 2014), the question arises how rRNA biogenesis is 

regulated by signaling pathways and maintains adaptation and homeostasis in the cell. A detailed 

understanding of ribosome composition and the different rRNA processing pathways will be 

important in order to explain the observed heterogeneity of rRNAs and the resulting functional 

consequences for protein translation.  
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3.1.10 NEF-sp is a conserved, tissue-specific RNA exonuclease uncharacterized in higher 

eukaryotes 

In the previous genome-wide gene expression analysis of RBPs across human 31 tissues (Chapter 

2), I noticed the uncharacterized protein LOC81691, human NEF-sp RNA exonuclease (hNEF-

sp), among the most tissue-specific RBPs (top 3 in our ranking of tissue-specific RBPs in Chapter 

2) with a tissue specificity score ~4 (Gerstberger et al., 2014a) (Figure 2.8 B). hNEF-sp, a

member of the DEDDh RNase T exonuclease family, displayed unique expression in comparison 

to all other members of the RNase T class and had exceptional tissue specificity in adult human 

testis and human fetal ovaries, where it was found among the top 100 expressed genes (Figure 3.4 

A-C).  
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Figure 3.4 NEF-sp is highly expressed in gonads in humans, mouse and Drosophila. (A) 

Microarray expression profiles for human DEDDh RNA exonucleases across 31 human tissues. 

NEF-sp is the only DEDDh RNA exonuclease with such high and selective tissue-specific 

expression. (B) Plot showing the normalized expression changes of selected RBPs relevant in 

female ovarian gonad development and NEF-sp in comparison [analysis is the same as in Figure 

2.10 C, (Houmard et al., 2009)]. (C) Microarray intensity levels for germline-specific RBPs 

DDX4, MAEL, TDRD5, MOV10L1, in comparison to NEF-sp and the ubiquitous RBP ELAC2 

as control across gestational stages in human ovary and testis development. (D) Microarray 

intensities of NEF-sp mRNA levels across 31 human adult tissues, 32 mouse adult tissues and 30 

Drosophila embryonic, larval and adult tissues. 
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Its expression clustered with gonad-specific RBPs, such as the PIWI proteins, DDX4, or 

BOLL proteins (Gerstberger et al., 2014a) and suggested to us a putative role of NEF-sp during 

gonad development (Figure 3.4 B). Supporting a conserved role during gonad development, the 

observed tissue-specific of NEF-sp in testis was found across organisms, in mouse 

(2610020H08Rik, mNEF-sp) and Drosophila melanogaster (CG8368, dNEF-sp).  

3.1.11 DEDDh RNase T class exonucleases 

The RNase-T class of single-stranded 3’-5’ RNA exonucleases is highly conserved across 

prokaryotes and eukaryotes and belongs to the DEDD 3’-5’ exonuclease superfamily, also known 

as DnaQ-like or RNase D superfamily (Aravind and Koonin, 2001a; Hsiao et al., 2011; Zuo and 

Deutscher, 2001) (Figure 3.5 A).  
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Figure 3.5 Active site of DEDD RNA exonucleases. (A) ClustalX multiple sequence alignments 

for bacterial, viral and eukaryotic DEDD RNA exonucleases. Two main classes of DEDD RNA 

exonucleases exist, DEDDy and DEDDh, where four acidic catalytic residues coordinate a 

divalent cation (e.g. Mg
2+

, Mn
2+

), and one general base residue, tyrosine (y) or histidine (h) 

deprotonates the coordinated water molecule in the active site. Figure adapted from (Zuo and 

Deutscher, 2001). The three conserved DEDD regions are indicated on the top (green arrow), the 

conserved residues are highlighted in red. Residues that are only highly conserved in subfamilies 

are highlighted in yellow. (B) Schematic representation of the active site residues coordinating 

two Mg
2+

 residues and one water molecule for nucleophilic attack at the 5’ phosphate of the 

target RNA. Figure adapted from bacterial RNase T active site (Hsiao et al., 2011). 
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Members of the DEDD family contain four acidic catalytic residues that chelate two 

Mg
2+

 ions and coordinate a water molecule for nucleophilic attack on the phosphate bond of 

nucleic acids (Beese and Steitz, 1991a; 1991b; Zuo et al., 2007). RNase T exonucleases contain a 

DEDDh catalytic domain with a conserved histidine residue that acts as a general base and 

deprotonates the chelated water molecule for nucleophilic attack (Figure 3.5 B). The bacterial 

RNase T protein forms a homodimer and is involved in the maturation of tRNAs, 5S and 23S 

rRNA, and other noncoding RNAs (Li and Deutscher, 1995; Li et al., 1998; 1999). In S. 

cerevisiae the RNase T class has five members, Rex1p (RNH70), Rex2p, Rex3p, Rex4p and 

Pan2p (Figure 3.6). The Rex1-Rex4 proteins have been described in rRNA, tRNA and small 

nuclear noncoding RNA metabolism. Rex1p was demonstrated to trim the 3’ ends of tRNAs, 5S, 

23S (Copela et al., 2008; Ozanick et al., 2009; Piper and Stråby, 1989; Piper et al., 1983; 1987). 

In addition, Van Hoof et al. reported that deletion of Rex1p affected 5.8S rRNA, U5L snRNA and 

RNase P maturation (van Hoof et al., 2000). In the same study Rex2 was shown to also affect 

processing of 5.8S rRNA, RNase P, U4 and U5S/L snRNA; and Rex3 trimmed RNase MRP, P, 

U5L snRNA and 5.8S rRNA (van Hoof et al., 2000). Rex4p has been reported in ITS1 processing 

(Faber et al., 2004). In higher eukaryotes additional RNase T families evolved, namely the Eri1 

family (ERI1-3), the ISG20 family (ISG20, ISG20L2, AEN), and the ssDNA/ssRNA-specific 

TREX1 family involved in ssDNA 3’ end repair (TREX1-2) (Stetson et al., 2008; Yuan et al., 

2015). 



118 

Figure 3.6 Phylogenetic tree of DEDDh RNA exonucleases. Phylogenetic tree generated from 

multiple sequence alignments of DEDDh RNA exonucleases across human (black), mouse (blue), 

Xen. laevis (green), D. melanogaster (red), S. cerevisae (brown). The NEF-sp and its paralog 

REXO1 family are highlighted in red. Branch lengths are scaled according to sequence identity. 

Very few RNase T class members have been characterized in higher eukaryotes. PAN2 is 

cytoplasmic, nonessential for viability, and regulated mRNA stability through deadenylating the 

long (~200 nts) poly(A) tail of mRNAs; however, it does not efficiently remove the last 20-25 

nts, a process which is catalyzed by the Ccr4-Not complex (Wolf and Passmore, 2014). Eri1 was 

originally discovered to have a negative regulatory effect on siRNAs in C. elegans (Kennedy et 

al., 2004). In S. pombe Eri1 was shown to negatively regulate the RNA-induced silencing (RITS) 

complex (Buhler et al., 2006; Iida et al., 2006). In mouse and C. elegans Eri1 trims 5.8S rRNA as 

the final maturation step in the cytoplasm (Ansel et al., 2008; Gabel and Ruvkun, 2008). 

Metazoan Eri1 also trims the polyuridine tails of histone mRNAs (Dominski et al., 2003; Hoefig 
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et al., 2013). Furthermore, Eri1 affects miRNA homeostasis and Eri1-/- knockout mice show a 

twofold increase in total miRNA abundance (Thomas et al., 2012; 2014). The other two Eri 

family members, Eri2 and Eri3, remain uncharacterized. Interferon stimulated exonuclease gene 

20 kDa (ISG20) was initially identified as interferon- or double-stranded RNA induced 

exonuclease (Espert et al., 2004; Gongora et al., 1997). ISG20 was found to specifically degrade 

single-stranded viral RNA (Espert et al., 2003) and was shown to associate with snRNAs and 

snoRNAs in the nucleolus and Cajal body, suggesting a role of ISG20 in snRNA/snoRNA and 

rRNA maturation (Espert et al., 2006). The nucleolar exonuclease ISG20L2 has been shown to 

trim 7S rRNA precursor transcripts (Coute et al., 2007; Henras et al., 2014). The third member of 

the ISG20 family, ISG20L1 was renamed to nuclear apoptosis enhanced nuclease (AEN) as it 

was initially characterized as p53 induced RNA exonuclease, which degrades both double and 

single-stranded RNA and DNA in the nucleus (Kawase et al., 2008).  

The REX1-4 family remains largely uncharacterized in higher eukaryotes. Only REXO2 

has been described as oligoribonuclease in mitochondrial RNA and DNA turnover, where it 

shows exonuclease activity for small (≤ 5 nts) oligomers and appears to have similar in function 

to its bacterial homolog, the ORN nuclease (Bruni et al., 2013; Nguyen et al., 2000).  

3.1.12 Drosophila testis and ovarian development  

To characterize the role of NEF-sp in gonad development we used Drosophila melanogaster as a 

model system. Figure 3.7 illustrates the developmental stages of germ cell development in the 

context of the anatomical structures of female and male gonads of Drosophila. 
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Figure 3.7 Drosophila melanogaster testis and ovary development. (A) Drosophila testis 

development: Adult testes form a coiled tube with the seminal vesicle at the basal end and the 

apical tip forming the hub with the germline stem cell (GSC) niche. Spermatogenesis occurs 

throughout larval and adult life, and all stages of differentiation are represented in a single adult 

testis. GSCs divide asymmetrically to self-renew themselves and produce a spermatogonium. The 

gonialblast undergoes four rounds of mitosis with incomplete cytokinesis and is encapsulated by 

two somatic cyst cells. The resulting 16-cell cyst enters two meiotic divisions with incomplete 

cytokinesis yielding 64 interconnected haploid round spermatids. During terminal spermatid 

differentiation, major morphological changes take place: spermatids elongate, nuclei condense 

and migrate to the posterior end; and actin-based cones form an individualization complex that 

drives expulsion of the cytoplasmic contents into cystic bulges, which grow in size as they 

increasingly collect more material during their travel away from the nuclei towards the spermatid 

tail. The thereby formed waste bag is subsequently degraded (Steller, 2008; White-Cooper, 2010). 

Confocal image shows actin staining (Phalloidin, red), DNA (Hoechst, blue), proteoasome (b5-

GFP, green). Figure courtesy Sigi Benjamin. (B) Drosophila ovary development: Egg-chamber 

development begins in the germarium. At the anterior tip, specialized somatic follicle cells create 

a niche that supports 2-3 GSCs. The GSCs divide asymmetrically to produce two daughter cells, a 

cystoblast and a daughter stem cell that remains in the niche. The cystoblast goes through four 

rounds of mitosis that give rise to 16 germline cells; these remain connected as a result of 

incomplete cytokinesis. Of the 16 cystoblast cells, one differentiates into the oocyte and enters 

meiosis, while the other 15 become polyploid nurse cells. Follicle cells then surround the 16-cell 

cyst and the oocyte moves into the most posterior position. At this point, the nascent egg chamber 

buds off the germarium to form stage 1. In stages 2–7 nurse cells undergo polyploidization, 

follicle cells go through mitotic division and the size of the egg chamber increases. As the egg 

chamber continues to grow, it is pushed further posterior within the ovary as successive egg 

chambers bud off from the germarium. Egg chambers remain connected to each other by chains 

of stalk cells. Polar cells, specialized follicle cells, start to differentiate at each end of the egg 

chamber. They stop dividing soon after they become specified, while all other follicle cells 

continue to divide until stage 6. The oocyte begins to accumulate yolk at stage 8. By stage 10, the 

oocyte occupies half the total volume of the egg chamber. The nurse cells nourish the oocyte by 

transferring cytoplasm. In the final few hours of oogenesis, the nurse cells undergo apoptosis and 

the follicle cells produce the eggshell. Figure adapted from (Montell, 2003). 
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Drosophila melanogaster testis is a long tube that coils at the basal end around a seminal 

vesicle. The stem cell niche is located at the apical tip of the testis, also called the hub (Figure 3.7 

A). At the hub, germ stem cells (GSCs) divide asymmetrically to generate one cell that remains 

the hub and a daughter gonialblast that is displaced from the niche and differentiates. Each 

gonialblast is surrounded by two somatic cyst cells, which arise through asymmetric division 

from cyst stem cells. A gonialblast undergoes four rounds of mitotic divisions to produce a cluster 

of 16 spermatogonial cells. The mitotic divisions are synchronized and cytokinesis incomplete, 

resulting in 16 cells interconnected through cytoplasmic bridges (ring canals). A cytoplasmic, 

germline-specific membranous structure, the fusome, branches throughout the connected mitotic 

cells and regulates mitotic divisions (stained by 1B1, probing for the adducing-like protein hts) 

(Lin et al., 1994). These 16 spermatogonial cells progress through premeiotic S phase and then 

undergo a prolonged G2 phase in which the cells grow substantially. Genes that are needed for 

the development of spermatocytes and spermatids are transcribed at this time (de Cuevas and 

Matunis, 2011). Two meiotic divisions finally lead to 64 round spermatids in incomplete 

cytokinesis, which enter terminal differentiation. During spermatid elongation, histones become 

replaced with protamines, the nuclei condense and transform into needle-shaped structures and 

migrate towards the seminal vesicle, where they form the spermatid head. Spermatid terminal 

differentiation begins as actin cones form around the nuclei. The actin cones move along the cyst 

from the nuclei along the length of the cyst removing excess cytoplasm and organelles into a 

cystic bulge. At the end of the individualization process, excess cellular material is deposited in a 

waste bag and each mature spermatid is enclosed by its own membrane (Fuller, 1998) (Figure 3.7 

A). Male gonad development starts during embryogenesis. Mitotic divisions are completed at the 

end of 2
nd

 instar larval development and wild type testes have undergone all four mitotic divisions 

forming the 16-cell cyst (Sheng et al., 2009). Importantly, transcription stops at the end of 

meiosis and posttranscriptional regulation, including RNA processing, nuclear RNA export, 
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translation and RNA decay become critical for controlling protein levels during subsequent stages 

of sperm development both in mice and Drosophila (Bettegowda and Wilkinson, 2010).  

Each Drosophila ovary is composed of 12 to 16 ovarioles. In each ovariole, stem cells are 

located in the germarium, which forms the most apical structure, followed by the developing egg 

chambers, which are arranged in a linear fashion with the most mature egg chamber at the most 

distal end (Eliazer and Buszczak, 2011; Kirilly and Xie, 2007) (Figure 3.7 B). The germarium 

contains three types of stem cells, germline stem cells (GSCs), somatic stem cells (SSCs) and 

escort stem cells (ESCs). GSCs undergo asymmetric self-renewing divisions; the daughter is 

displaced away from the niche and differentiates. The newly formed cystoblast undergoes four 

mitotic divisions with incomplete cytokinesis to form an interconnected 16-cell cyst. 

Differentiated ESCs wrap around the cystoblasts after they move away from the niche and fully 

encase them until the 16-cell stage. At the 16-cell stage, ESCs are replaced by somatic epithelial 

follicle cells, and the 16-cell cystoblast buds off the germarium as individual egg chamber (stage 

1) (Montell, 2003). The follicle cells are produced by 2-3 SSCs located in the midway of the

germarium. Stage 1 is reached relatively late during 2
nd

 instar development. As a consequence 2
nd

 

instar female gonads are ~10-fold smaller than male gonads (Kerkis, 1931; Toomey et al., 2013).  

Of the 16 germline cells, one differentiates into the oocyte and enters meiosis, while the other 15 

become polyploid nurse cells, which provide nutrients to the oocyte. The nurse cells nourish the 

oocyte by transferring cytoplasm. Stages 2–7 (between 5-7 days of larval development) are 

characterized by polyploidization of the nurse cells (through endocyclic divisions), mitotic 

division of the follicle cells and increases in the size of the egg chamber (Montell, 2003; Toomey 

et al., 2013; Williamson and Lehmann, 1996). The oocyte begins to accumulate yolk at stage 8, 

mostly provided by the cytoplasmic contents of the nurse cells. By stage 10, the oocyte occupies 

half the total volume of the egg chamber. In the final few hours of oogenesis, the nurse cells 

undergo apoptosis and the follicle cells produce the eggshell (Montell, 2003).  
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3.2 Methods 

3.2.1 Fly stocks 

Flies were kept at a 12-h light/dark cycle. All crosses were performed at 22-25°C, unless stated 

otherwise. The following stocks were used for this study (Bloomington Drosophila Stock Center 

(BDSC) and Vienna Drosophila Resource Center (VDRC) number (#) given in parentheses): 

PBac{PB}CG8368 (Exelixis at Harvard Medical School), CG8368
M100

 (BDSC #1306), CG8368 

P{KK101144}VIE-260B (VDRC #108563), Dbp73D (DDX51, VDRC #108310), CG5033 

(BOP1, BDSC #35020), CG42666 (REXO1, BDSC #33666), Nop5 (BDSC #55262), Rps3 

(BDSC #31625), CG8414 (NOL9, BDSC #44435), white (BDSC #33623), PAN2 (BDSC 

#53249), Dis3 (VDRC #108013), Rrp6 (VDRC #108548), CG6833 (VDRC #104314), CG6937 

(NIFK, BDSC 57467), Drosha (VDRC #108026, knockdown viable), Rs1, (DDX27, BDSC 

#32363), pUf68 (BDSC #25951) CG12877 (VDRC #20265, knockdown viable). The sequencing 

strain (Dmel WGS sequence, BDSC #2057) was used as wild type control. Two genetic mutants 

PBac{RB}CG12877
e00300

 and CG12877
f00666

 were used for knockout analysis of CG12877 

(REXO1). RpS2-GFP CB02294, RpL13A CC01920, RpL10Ab CB02653 protein trap lines were 

a gift from A. Spradling (Buszczak et al., 2007) and were crossed into dNEF-sp
C04255

 and dNEF-

sp
M100

 mutant backgrounds. UAS-GFP-RpL11 and UAS-RFP-RpL26 lines were a gift from P. 

DiMario (Rosby et al., 2009) and were crossed with a Tubulin-Gal4 (TubGal4) driver line. For 

additional genetic mapping of the C04255 and M100 mutants we used complementation mapping 

with the deficiency lines Df(3L)BSC411 (BDSC #24915, cross was lethal) and Df(3L)BSC410 

(BDSC #24914, cross was viable) to confirm that the region causing lethality was encompassing 

the dNEF-sp genetic locus.  
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3.2.2 Genetic mapping of dNEF-sp mutants 

Total DNA was isolated from homozygous mutant larvae and sequencing strain control larvae 

using the Roche genomic DNA extraction kit (Roche). To confirm the PiggyBac transposon 

insertion in C04255, PCR fragments were amplified with specific primers within the PiggyBac 

transposon and within the coding region of dNEF-sp. To identify point mutations in M100, the 

entire coding region was PCR amplified and PCR products were sent for DNA sequencing 

(Genewiz) and analyzed in SeqMan Pro (LaserGene).  

 

3.2.3 Generation of transgenic dNEF-sp rescue lines 

For the generation of the dNEF-sp pUAST-attB (FBmc0003002) constructs the following primers 

were used for amplification of the dNEF-sp ORF: forward 5’- 

GGAATTGGGAATTCATGAAGGAACATATGTCCACCAA; reverse 5’-

GAGCCGCGGCCGCCTAACTTTCCATAGTCTGATTCGATC. For introduction of point 

mutations in the catalytic site following primers were used (and their reverse complement):  

5’-CAGGAGAACATCGATGGTCGAGATTCCATTGAGGATTCGC; 

5’- CGCAGTCCTATGTTCGGCGTTGCATGTGAAATGTGTCACACGGA; 

5’-CGCAGTCCTATGTTCGGCGTTGATTGTGCAATGTGTCACACGGA; 

5’-CAGGAGAACATCGATGGTGCAGATTCCATT GAGGATTCGC. 

Two genomic constructs were cloned into the pattB plasmid: forward 6.5 kb: 

TGGGAATTCGTAACACATACCATCCATGTTG; forward 4.7 kb: 5’-

TGGGAATTCGGCGTCATCGCTGAGATC; reverse: 5’- 

GAGCCGCGGCCGCTAGTGATCCTGACCAGGGCTT. Primers were designed so that they 

included the promoter region of both or one isoform, respectively. Both constructs were sufficient 

for rescue of lethality. The human NEF-sp ORF was amplified from human cDNA and cloned 

into pUAS-attB using following primers: hNEF-sp-pUAS-forward: 5’- 
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ATCCGAATTCATGGAGCCAGAGAGGGAAGGGA; hNEF-sp-pUAS-reverse: 5’-

AGTGCGGCCGCTCACGAACACAGGCCTGGGCCA; GFP cDNA and FLAG/HA cDNA was 

PCR amplified and cloned with NdeI into a natural N-terminal NdeI restriction site in dNEF-sp.  

GFP-forward: 5’-AAACATATGGTGAGCAAGGGCGAGG; GFP-reverse: 5’- 

TGGACATATGAAGCTTCTTGTACA; FLAG/HA-forward: 5’- 

AAACATATGGACTACAAGGACGACGA; FLAG/HA-reverse: 5’- 

GCTTGGTGGACATATGTGATATCTGGTTCA. The cDNA product was inserted at the N-

terminus of the cloned dNEF-sp genomic construct with NdeI restriction digest according to 

standard protocols. PCR amplified inserts were cloned into the attB vector using EcoRI and Not1 

restriction digest according to standard protocols. pUAS-attB and pattB DNA constructs were 

sent for injection to Bestgene Inc., and using the phiC31 integrase transgenesis system (Bischof et 

al., 2007), and site-specifically integrated to generate transgenic flies at the 25C7 landing site in 

the attP40 strain.  

3.2.4 Clonal analysis of RNAi clones 

For the generation of RNAi clones UAS-shRNA-dNEF-sp/Cyo;Sb/TM6B males were crossed to 

yw hsFlp;Sco/Cyo;UAS#Red47a#1tub<+GFP<Gal4/TM6B females, and embryos were heat 

shocked after 24 hrs egg laying at 37°C for 1 hr. Non-TM6B 3
rd

 instar larvae were dissected for 

clonal analysis. 

3.2.5 In vivo shRNA knockdown 

UAS-shRNAs were crossed to Sp/Cyo;TubGal4/TM6B.
 
Second instar larvae were collected after 

72 hrs and dissected for immunostaining and RNA in situ hybridization. UAS-GFP-

RpL11/Cyo;TubGal4/TM6B was crossed to the shRNA lines above and 2
nd

 instar larvae were 

further processed for RNA-sequencing or dissected for immunofluorescent staining as described.  
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3.2.6 Immunofluorescence and microscopy 

Adult flies and 2
nd

 or 3
rd

 instar larvae were dissected in PBS at room temperature. Tissues were 

fixed in 4% paraformaldehyde/PBS solution for 30 min at room temperature and permeabilized 

with PBS/Triton-X100 0.2% for 30 min, followed by blocking with 5% normal goat serum in 

PBS/Triton-X100 0.2% for 30 min at room temperature. Primary antibodies were incubated 

overnight at 4°C in 5% normal goat serum in PBS/Triton-X100 0.2%, tissues were washed at 

least 3x 10 min in PBS/Triton-X100 0.2% before they were incubated for 1-2 hrs with AlexaFluor 

secondary antibodies (1:500), Hoechst dye (1:1000), and Alexa-Phalloidin dye (1:300) in 5% 

normal goat serum in PBS/Triton-X100 0.2%. Tissues were washed in PBS/Triton-X100 0.2% 

for 45 min and mounted with VectaShield mounting media. Images were taken with a Zeiss LSM 

710 confocal microscope. 

3.2.7 RNA in situ hybridization 

Larvae were dissected in PBS and tissues fixed in 4% paraformaldehyde/PBS solution for 1 hr at 

4°C. Tissues were permeabilized in PBS-Triton-X100 0.2% for 30 min before incubation with 

hybridization buffer (75 mM Tris-HCl pH 8.5, 50% (v/v) formamide, 1 M NaCl, 1 x Denhardt’s 

reagent, 250 µg/ml Baker’s yeast, 500 µg/ml salmon sperm DNA, 2.5 mM Chaps, 0.5% (v/v) 

Tween-20) for 30 min at room temperature. Alexa-647-fluor- or Alexa-488-conjugated LNA 

probes were added to the prehybridization solution at a final concentration of 20 nM and tissues 

were incubated overnight at 45 °C. After hybridization, samples were washed in wash buffer I (75 

mM Tris-HCl pH 8.5, 50% (v/v) formamide, 250 mM NaCl, 0.1% (v/v) Tween-20) and wash 

buffer II (75 mM Tris-HCl pH 8.5, 50 mM NaCl, 0.1% (v/v) Tween-20) for 30 min each. Tissues 

were incubated with PBS-Triton-X100 0.2% and Hoechst dye (1:1000) for 30 min, washed 3x 10 

min with PBS-Triton-X100, and mounted in VectaShield mounting media. Images were taken 

with a Zeiss LSM 710 confocal microscope. LNA probe sequences were based on the validated 
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Northern blot probes, synthesized and labeled in the laboratory by C. Bognanni (5= LNA-A, 

7=LNA-G, 8=LNA-T, 6=amino-modifier-C6-PDA): 3’ETS (repetitive sequence in trailer): 5’- 

6T7TTTGGCTACTCTT7ATAAAA6; 3’ETS-2 (specific region in trailer): 5’- 

6AAATT7ATGACGAGCT7TTTG6; 28S: 5’- 6TCGAATCATCAA7CAAAGGATAAGC6; 

18S: 5’- 6CAA7CATATAACTACT7GCAGG6; ITS1: 5’- 6CACCATTTTACTG7CATA-

TATCAATTCCTTCAATAAATG6. 

3.2.8 Cell culture methods 

S2 cells: S2 cells were maintained at 25°C in Schneider’s insect medium, supplemented with 10% 

fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin in 15-cm cell culture dishes.  

Sf9 cells:  Sf9 cells were maintained at 25°C in supplemented Grace’s Insect Medium 

(supplemented with 10% FBS, 0.1% Pluronic-F68, 100 U/ml penicillin, 100 µg/ml streptomycin) 

in spinner flasks. HEK293 cells: FlpIn T-REx HEK293 were maintained as described in Chapter 

2 and (Spitzer et al., 2013). Expression of NEF-sp proteins was induced by supplementing 

medium with 1 mg/ml
 
doxycycline for 16 hrs prior to any analysis. 

3.2.9 Generation of stable cell lines 

HEK293 cell lines: dNEF-sp, mNEF-sp and hNEF-sp were amplified from Drosophila total fly 

cDNA, mouse and human testis cDNA and cloned into pENTR4 using the BP clonase 

recombinase system. Drosophila dNEF-sp (CG8368) has a singular ORF, the ORFs of mNEF-sp 

(2610020H08Rik) isoform NM_028129.2 and hNEF-sp (LOC81691) isoform NM_030941.2 

were amplified. The resulting pENTR4 vector was subsequently recombined into the 

pFRT/TO/FLAG/HA-DEST destination vectors using Gateway LR recombinase according to 

manufacturer’s protocol (Invitrogen).  Following primers were used: dNEF-sp-forward:  
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5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGGAACATATGTCCACCAA; 

dNEF-sp-reverse: 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAACTTTCCA-

TAGTCTGATTCGATC; mNEF-sp-forward: 5’-GGGGACAAGTTTGTACAAAAAAG-

CAGGCTTCATGAAAACATTTCACTTCCCC; mNEF-sp-reverse: 5’-GGGGACCACT-

TTGTACAAGAAAGCTGGGTCCTAGGCCAGGGTGCGACC; hNEF-sp-forward:  

5’-GTACAAAAAAGCAGGCTTCATGGAGCCAGAGAGGGAAGGGACCGA; hNEF-sp 

reverse: 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACGAACACAGGCCTGG-

GCCAG. Cell lines were established according to the manufacturer’s protocol for the generation 

of stable cell lines using the FlpIn system (Invitrogen) (see Chapter 2). 

3.2.10 T7 in vitro transcription and shRNA-mediated knockdown in S2 cells 

Four primers were designed to amplify a 500 nts template, 2 forward and 2 reverse primers. To 

amplify ssRNA strands into each direction the forward primer contained the T7 promoter and the 

reverse lacked the T7 promoter sequence; this ensured transcription from the PCR template into 

one direction only. A 500 nt segment was selected within the ORF and amplified from 100 ng 

Drosophila cDNA in a 100 µl PCR reaction. For amplification of the sense strand the primer 

pairs [CG8368-sense-T7, CG8368-antisense] were used, for amplification of the antisense strand 

the primer pairs [CG8368-sense, CG8368-antisense-T7] were used. The PCR product was diluted 

1:50 in water. 10 µl diluted PCR product were incubated in a 200 µl reaction with T7 RNA 

polymerase at 37°C for 24 hrs  [T7 reaction mix: 128 µl H2O, 20 µl T7 reaction buffer (400 mM 

Tris-HCl pH 7.9, 10 mM spermidine, 260 mM MgCl2, Triton X-100 0.1%), 40 µl 5x NTP 

(A/C/G/UTP=5/5/8/2 mM), 1 µl DTT (1 M), 1 µl T7 RNA polymerase (1U/µl)]. The T7 

amplification product was purified by RNeasy Mini Kit (Qiagen). RNA strands were annealed by 

incubating sense and antisense strands at 500 nM final concentration each in 10 mM Tris-HCl pH 

7.5, 20 mM NaCl solution, heating them for 1 min at 95°C and letting them cool down overnight 



130 

at room temperature. Primers used: CG8368-sense-T7: 5’-

GCGTAATACGACTCACTATAGCAGCACGAGCGCAACGAGAAGA; CG8368-antisense-

T7:  5’-GCGTAATACGACTCACTATAGCAGGTTCTGGATGTCGGTTAGAA; CG8368-

sense: 5’-CAGCACGAGCGCAACGAGAAGA; CG8368-antisense: 5’- 

CAGGTTCTGGATGTCGGTTAGAA.  

3.2.11 Western blot analysis 

For Western blots on whole tissues approximately ~50-100 µg dissected tissues or total 

larvae/flies were lysed in lysis buffer [50 mM HEPES-KOH pH 7.4, 150 mM NaCl, 0.05% 

Triton-X100, complete EDTA-free protease inhibitor cocktail (Roche)] using a 1 ml tissue 

grinder. Lysates were cleared by centrifugation at >12,000 g for 10 min at 4°C. Protein 

concentrations of supernatants were determined by BCA assay (Pierce). 40 µg lysate was mixed 

with 4x sample buffer (200 mM Tris-HCl, pH 6.8, 200 mM dithiothreitol (DTT), 8% SDS, 24% 

glycerol, 0.04% bromphenol blue) and incubated for 2 min at 95°C. Samples were separated by 

SDS-PAGE for 1 hr at 30 mA per gel, using standard SDS Tris base-glycine running buffer. After 

electrophoresis, proteins were blotted onto nitrocellulose membranes (Hybond-ECL, GE Life 

Science), pre-wetted in transfer buffer (25 mM Tris base, 190 mM Glycine, 20% MeOH, 0.05% 

SDS), and semi-dry transferred (Bio-Rad) at 250 mA for 1 hr. Protein membranes were taken 

through a standard immunoblot protocol followed by enhanced chemiluminescent detection 

(Crescendo ECL, Millipore) using a Lumimager (Fuji, LAS-3000). For Western blots on 

HEK293, S2 or Sf9 cells lysates were similarly processed either in Triton-X100 buffer [50 mM 

HEPES-NaOH pH 7.4, 150 mM NaCl, 0.05% Triton-X100, complete EDTA-free protease 

inhibitor cocktail (Roche)] or NP-40 buffer [50 mM HEPES-KOH pH 7.2, 150 mM KCl, 0.5% 

(v/v) NP-40, 0.5 mM DTT, complete EDTA-free protease inhibitor cocktail (Roche)]. 
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3.2.12 Immunoprecipitations 

Immunoprecipitations were carried out for Western blot analysis and mass spectrometric 

identification of protein interaction partners. For a typical FLAG immunoprecipitation 1-5 ml cell 

pellet of HEK293 or S2 cells was lysed in 3 volumes of lysis buffer [S2 lysis buffer: 50 mM 

HEPES-NaOH pH 7.4, 150 mM NaCl, 0.05% Triton-X, complete EDTA-free protease inhibitor 

cocktail (Roche), HEK293 lysis buffer: 50 mM HEPES-KOH pH 7.2, 150 mM KCl, 0.5% (v/v) 

NP-40, 0.5 mM DTT, complete EDTA-free protease inhibitor cocktail (Roche)] and incubated for 

30 min on ice. Lysates were cleared by centrifugation at 12,000 g at 4°C for 30 min. Per 5 ml cell 

lysate 50 µl magnetic Dynabeads Protein G coupled (Invitrogen) were affinity-conjugated to 25 

µl of FLAG antibody (1 mg/ml, M2, Sigma-Aldrich) in 200 µl PBS-Tween-20 0.1% at room 

temperature for 30 min. The beads were washed 2x in PBS-Tween-20 0.1% and incubated with 

the lysate on a rotating wheel for 1 hr at 4°C. If the immunoprecipitation experiment was 

intended for mass spectrometry, prior to immunoprecipitation lysates were RNase digested with 

RNase T1 at a final concentration of 1 U/µl RNase T1 (Fermentas) at 22°C for 15 min. After 

immunoprecipitation, samples intended for Western blot analysis were washed 3x in wash buffer 

(lysis buffer minus detergent). Samples submitted for mass spectrometry were washed 3x in IP 

wash buffer [50 mM HEPES-KOH pH 7.5, 300 mM KCl, 0.05% (v/v) NP-40, 0.5 mM DTT, 

complete EDTA-free protease inhibitor cocktail (Roche)] and taken through a second RNase T1 

digest. In the second RNase T1 digest beads were resuspended in one bead volume (50 µl) IP 

wash buffer and incubated with RNase T1 to a final concentration of 100 U/µl at 22°C for 15 

min. After the second digest beads were washed 2x in IP wash buffer and affinity-bound 

FLAG/HA-NEF-sp protein was eluted with FLAG-peptide in a 200x FLAG peptide elution 

reaction (60 µg FLAG peptide per 50 µl beads, Sigma-Aldrich). FLAG peptide was added to IP 

wash buffer in a final elution volume of 60 µl, and FLAG/HA protein was eluted on a rotating 

wheel at 4°C for 1 hr. The supernatant was transferred, mixed with 20 µl 4x SDS loading dye 
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(200 mM Tris-HCl, pH 6.8, 200 mM dithiothreitol (DTT), 8% SDS, 24% glycerol, 0.04% 

bromophenol blue), and incubated for 2 min at 90°C. 5 µl of the elution mixture were used for 

Western blot analysis. For mass spectrometric analysis 40 µl of the elution was separated on a 

Nupage 4-12% Bis-Tris SDS-PAGE (Invitrogen), and the gel stained with Colloidal Blue 

(Invitrogen) according to the manufacturer’s instructions. For Western blot analysis beads were 

resuspended with 50 µl SDS loading dye and incubated at 90°C for 2 min. 5 µl of supernatant 

was loaded onto an SDS polyacrylamide gel and separated by gel electrophoresis.  

3.2.13 Antibodies 

Immunofluorescent staining: The following antibodies were used (dilutions noted in 

parentheses): mouse monoclonal anti-Hts (1:20, 1B1) and rat monoclonal anti-VASA (1:20) 

(Developmental Studies Hybridoma Bank, Iowa), rabbit monoclonal anti-Fibrillarin (1:500, 

EPR10823(B), abcam), rabbit polyclonal anti-phospho-Histone H3 (Ser 10) (1:50, Upstate), 

rabbit polyclonal anti-phospho-H2Av pS137 (1:500, Rockland), Alexa-488, Alexa-546, and 

Alexa-647 (Molecular Probes) fluorescence-conjugated secondary antibodies were used at 1:500 

dilution.  

Western blot analysis: Following primary antibodies were used (dilutions noted in parentheses): 

rabbit polyclonal anti-dNEF-sp (1:1000 affinity-purified serum), rabbit monoclonal anti-

Fibrillarin  (1:1000, EPR10823(B), abcam), mouse monoclonal anti-Tubulin (DM1A) (1:1000, 

Sigma-Aldrich), mouse monoclonal anti-HA (1:1000, HA-7, Sigma-Aldrich, 1:1000, Covance, 

MMS-101P). Following secondary antibodies were used: HRP conjugated polyclonal goat anti-

Armenian hamster heavy and light chain conjugated to horseradish peroxidase (HRP) (1:5000, 

Jackson ImmunoResearch), polyclonal goat anti-mouse light chain conjugated to HRP (1:2000, 1 

mg/ml, Southern Biotechnology Associates, Fisher), polyclonal goat anti-mouse and anti-rabbit 

conjugated to HRP (1:5000, Dako). 
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3.2.14 Development of monoclonal antibodies 

3.2.14.1 Standard ELISA 

Sf9 baculoviral purified mNEF-sp protein (denatured) was used in standard ELISAs; as negative 

control we used FMRP protein, which was also purified from Sf9 cells [gift of M. Ascano 

(Ascano et al., 2012b)]. The antigen was diluted in 5.2 ml binding buffer (final concentration 1 

µg/ml antigen, but concentration for general assays ranges from 0.1 µg/ml-100 µg/ml depending 

on antigen, sensitivity, purity, etc.). Binding buffer: 0.1 M NaHCO3 pH 8 (8 ml 0.2M Na2CO3, 17 

ml 0.2M NaHCO3, 25 ml H2O). Per well 50 µl antigen solution was plated with a multi-channel 

pipette into protein-binding plates designed for ELISA (Nunc Maxisorb Immuno plates). Plates 

were sealed and incubated at 4°C overnight. The residual binding solution was flicked out and 

dried on paper towels, rinsed 3x with wash buffer (PBS-Tween 0.1%) and filled with 100-150 µl 

blocking buffer (PBS-Tween 0.1%, 1% BSA, 0.2% azide). The plates were incubated at room 

temperature for 1 hr or overnight at 4°C. Blocking solution was removed and 50-100 µl antibody 

solution (1:10-1:10,000 of bleeds, for final screening bleeds were diluted 1:100 as determined by 

previous test ELISAs, and 1:10 dilution of hybridoma supernatants in blocking buffer) for 1-2 hr 

at room temperature. As controls following was included: (a) sera from terminal bleed (positive 

control), (b) known reactive monoclonal antibody (mouse anti-FLAG, M2, Sigma) (positive 

control), (c) negative pre-immune bleed (negative control), (d) fusion blank (negative control), (e) 

HT fusion media negative control. Both the antigen of interest and the control antigen were 

screened under these conditions. Plates were rinsed off with wash buffer 3x and incubated with 

50 µl secondary antibody solution (antibody in 1:5000 dilution in blocking buffer) per well for 1 

hr at room temperature (goat anti-Armenian hamster heavy and light chain conjugated to horse 

radish peroxidase (HRP), Jackson ImmunoResearch, goat anti-mouse κ-chain conjugated to HRP 

(1 mg/ml), Southern Biotechnology Associates, Fisher). Secondary antibody was flicked off and 

the plates rinsed 4x with wash buffer. The liquid was flicked off and the plates dried on paper 
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towels. For ELISA development 50 µl TMB substrate solution was added (Turbo TMB, BioFx, 

Sci-Quest) and the plates were incubated for 2-10 min. 50 µl 2N Sulfuric acid was added to stop 

the reaction. Plates were read on a SpectraMax 190 microplate reader (Molecular Devices) at 450 

nM and analyzed using the Softmax Pro software (Molecular Devices).  

3.2.14.2 Sandwich ELISAs 

This assay was done to screen supernatants of hybridoma clones, identifying clones that 

recognized native, folded mNEF-sp protein. Since mNEF-sp was insoluble and could only be 

purified in denaturing conditions from bacterial and Sf9 baculoviral expression systems, but was 

soluble in HEK293 cells, we needed this assay to screen hybridomas at a high throughput scale to 

detect clones that recognized the native, folded protein, so that these clones could also be used in 

immunoprecipitation assays. Blocking buffer and wash solution were the same as in standard 

ELISA conditions. The capture antibody used for coating was diluted at 1 µg/ml (can range from 

1-5 µg/ml per assay) in 5.2 ml binding buffer. The capture antibody should come from a species 

other than the immunized animal; in this case we used rabbit anti-FLAG monoclonal antibody 

(F7425, Sigma). Coating and blocking was performed as in standard ELISA. For antigen 

capturing, final concentration of antigen should range between 100 ng/ml to 20 µg/ml total 

protein depending on the purity of sample. In our case we used total HEK293 lysate expressing 

doxycycline induced mNEF-sp protein and as negative control we coated plates with uninduced 

HEK293 lysate. 50 µl FLAG/HA-mNEF-sp HEK293 cell lysate (5 µg/µl lysate concentration) 

was added per well and the supernatant incubated for 1 hr at room temperature. Supernatants 

were flicked out and the wells washed 3x with wash buffer. In the primary incubation step plates 

were incubated with 50 µl supernatant solution (1:100 bleeds, 1:10 hybridoma supernatants, same 

controls were used as in standard ELISA) per well for 1-2 hr at room temperature. Supernatants 

were flicked off the plates, plates were washed 3x with wash buffer, and dried on paper towels. 
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Secondary antibodies are usually used in 0.3-1µg/ml or a 1:3000 dilution of polyclonal anti-sera, 

diluted in PBS-Tween 0.1% (not in blocking solution as presence of azide may interfere with the 

enzymatic activity of the peroxidase). To detect binding of the hybridomas to mNEF-sp, we 

selected a secondary antibody detecting Armenian hamster heavy and light chain (goat anti-

Armenian hamster heavy and light chain conjugated to horseradish peroxidase (HRP), Jackson 

ImmunoResearch, goat anti-mouse κ-chain conjugated to HRP (1 mg/ml), Southern 

Biotechnology Associates, Fisher). In our case all secondary antibodies were used in 1:3000 

dilution in PBS-Tween 0.1%. 50 µl of antibody solution was added to each well and incubated for 

1 hr at room temperature. The secondary antibody solution was removed by flicking off the 

supernatant onto paper towels, plates were washed 3x in PBS-Tween 0.1%, dried and incubated 

with 50 µl Turbo TMB solution (Turbo TMB, BioFx, Sci-Quest) per well for 10 min at room 

temperature. After 10 min the reaction was quenched with 50 µl 2N sulfuric acid. Plates were 

read in a SpectraMax 190 microplate reader (Molecular Devices) at 450 nm and the data analyzed 

with the Softmax Pro software (Molecular Devices).  

3.2.14.3 Immunoprecipitations with hybridoma supernatants 

In these immunoprecipitations the goal was to determine which hybridoma clone supernatant was 

able to immunoprecipitate mNEF-sp protein from doxycycline induced HEK293 cell lines. A 

mixture of protein A/G agarose beads was used for the conjugation to Armenian hamster 

hybridoma fusions as hamster IgGs show higher binding affinity to protein A versus G (F. Weiss-

Garcia personal communication and online information by ThermoScientific on Protein A/G 

binding characteristics). For each hybridoma supernatant 50 µl A/G beads (Pierce, 

ThermoScientific) were used per immunoprecipitation. Beads were washed 2x with 1 ml PBS-

Tween 0.1% and collected by centrifugation at 1,000 g for 1 min.  Beads were resuspended in 450 

µl doxycycline induced FLAG/HA-mNEF-sp HEK293 lysate (10 µg/µl, measured by BCA 
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assay) and 150 µl hybridoma supernatant or 5 µl pre- or terminal bleeds were added to the bead 

lysate. The lysate was incubated on a rotating wheel for 2 hrs at 4°C. As negative control beads 

with lysate minus hybridoma supernatants and beads incubated with blank fusion were used. As 

positive control mouse monoclonal anti-FLAG antibody was used in 1:100 dilution (1 µg/ml, M2, 

Sigma-Aldrich), and 1:100 dilution of terminal bleed (5 µl). After immunoprecipitation the beads 

were washed 5x with 1 ml PBS-Tween, and 40 µl 2x SDS buffer was added to yield a final 

volume of ~60 µl. The suspension was incubated for 2 min at 95°C. The supernatant was resolved 

by SDS-PAGE and Western blot analysis was carried out as previously described, probing for the 

presence of FLAG/HA-mNEF-sp protein with mouse monoclonal anti-HA antibody (1:1000, 

16B12, Covance). For probing against the mouse monoclonal FLAG antibody polyclonal goat 

anti-light chain mouse Peroxidase-AffiniPure antibody was used (1:2000, Jackson 

Immunoresearch lab), for probing against the hamster hybridoma fusions goat anti-Armenian 

hamster heavy and light chain conjugated to horseradish peroxidase (HRP) was used (Jackson 

ImmunoResearch, goat anti-mouse κ-chain conjugated to HRP (1 mg/ml), Southern 

Biotechnology Associates, Fisher). Signal was detected by enhanced chemiluminescent detection 

(Crescendo ECL, Millipore) using a Lumimager (Fuji, LAS-3000).  

3.2.14.4 Validation of clones by Western blot analysis 

In this final screen we tested the supernatant of hybridoma clones, which were positive in all 

previous tests, to see whether they also could recognize mNEF-sp in Western blot analysis. 50 µg 

doxycycline induced mNEF-sp HEK293 lysate (5 µg/µl lysate concentration as determined by 

BCA assay), as well as uninduced HEK293 control lysate, was separated on SDS-PAGE and 

transferred by Western blot onto a nitrocellulose membrane as previously described. Membranes 

were stained by Ponceau S stain (Sigma-Aldrich) to assess equal transfer, and cut into pieces such 

that one induced and one induced HEK293 lysate lane was side-by-side. Membranes were taken 
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through a standard Western blot analysis protocol as previously described. As primary antibody 

solution hybridoma supernatants were diluted 1:2 in PBS-Tween 0.1% and incubated for 1 hr at 

room temperature. As positive control one strip was incubated with monoclonal mouse anti-HA 

(1:1000, HA-7, Sigma-Aldrich), and with terminal bleed (1:100). Secondary polyclonal goat anti-

Armenian hamster conjugated to HRP (1:2000, Jackson Immuno Research) was used for 

detecting signal in the hybridoma bleeds, and secondary polyclonal goat anti-mouse HRP-

conjugated antibody (1:5000, Dako) was used to probe against the HA monoclonal antibody 

positive control. Secondary antibodies were incubated for 1 hr at room temperature, membranes 

washed in PBS-Tween 0.1% for 30 min and signal detected by enhanced chemiluminescent 

detection (Crescendo ECL, Millipore) using a Lumimager (Fuji, LAS-3000).  

3.2.15 Development of polyclonal antibodies 

Full-length 6xHis-tagged-dNEF-sp protein was purified from baculoviral Sf9 expression as 

described. Polyclonal antisera were generated in two rabbits TX2078 and TX2079 (Covance). For 

Western blot analysis affinity-purified TX2079 serum was used (1:1000). 

3.2.16 Protein quantification  

Protein concentration of cell lysates was quantified using bicinchoninic acid assay (BCA assay, 

Pierce), and using a bovine serum albumin (BSA) standard curve (1, 2, 5, 10, 15, 20 µg BSA). 

Absorbances were measured at A562. Protein concentrations of recombinantly purified proteins 

were assessed by in-gel quantification in reference to a BSA standard curve.   

3.2.17 Recombinant protein purification from E. coli 

mNEF-sp was insoluble and degraded in BL21-CodonPlus(DE3)-RIL. Full-length protein could 

only be co-purified under denaturing conditions with smaller degradation products. dNEF-sp and 
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hNEF-sp proteins were unstable in bacteria and gave no full-length products. mNEF-sp protein 

was purified from bacteria solely for antibody generation and injected into Armenian hamsters. 

For injection the protein could be denatured and had to be stored glycerol-free, and after dialysis 

it was snap frozen and stored at -80°C prior to injection. mNEF-sp was cloned into the 

HisSUMO-pET28a bacterial expression vector (Novagen). The plasmids containing the DNA 

inserts of interest were transformed into E. coli strain BL21- CodonPlus(DE3)-RIL (Stratagene) 

grown in Luria-Bertrani (LB) medium supplemented with 30 mg/mL kanamycin. BL21(DE3)-

RIL expressing pET28a-mNFE-sp protein were grown to OD280 0.5 at 37°C before IPTG 

induction at 1 mM final concentration. Induced BL21(DE3) were grown overnight at 37°C before 

cells were harvested and the cell pellet flash frozen and stored at -80°C. Cells were lysed in lysis 

buffer (100 mM Tris HCl pH 8, 500 mM NaCl, 5 mM MgCl2, 10 mM imidazole, 2 mM 2-

mercaptoethanol, 50 µg/ml lysozyme) for 30 min on ice and sonicated. The lysate was cleared by 

centrifugation at 12,000 g for 30 min at 4°C. The supernatant was discarded, the pellet 

resuspended in loading buffer (100 mM Tris HCl pH 8, 500 mM NaCl, 5 mM MgCl2, 10 mM 

imidazole, 8M urea) and batch-purified, incubating the solution with 2 mL Cobalt resin (HisPur 

Cobalt IMAC resin, ThermoScientific) for 1 hr at 4°C. The resin was washed with 12x column 

volumes lysis buffer, 6x column volumes wash buffer I (100 mM Tris HCl pH 8, 500 mM NaCl, 

5 mM MgCl2, 30 mM imidazole, 8M urea), 6x column volumes wash buffer II (100 mM Tris HCl 

pH 8, 500 mM NaCl, 5 mM MgCl2, 70 mM imidazole, 8M urea) and eluted in 6 column volumes 

elution buffer (100 mM Tris HCl pH 8, 500 mM NaCl, 5 mM MgCl2, 150 mM imidazole, 8M 

urea). The protein was dialyzed in 1 L dialysis buffer (100 mM Tris HCl pH 8, 500 mM NaCl, 5 

mM MgCl2, 10 mM imidazole), snap frozen and stored at -80°C.  
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3.2.18 Recombinant protein purification from Sf9 cells 

PCR-amplified ORFs of the Drosophila wild type and the DADAH dNEF-sp transgenic mutant 

constructs (see section 3.2.3) were recombined by BP recombinase into pENTR4 and then 

recombined into the pDEST10 baculoviral expression vector using the Gateway LR recombinase. 

Baculoviral production and amplification was performed as described in the Bac-to-Bac Manual 

(Invitrogen). Sf9 cells were used for recombinant virus production, amplification and expression 

of recombinant dNEF-sp proteins. Recombinant viruses were amplified to ~2-10^8 plaque-

forming units per ml titer. 1 × 10^9 Sf9 cells were infected at a multiplicity of infection (MOI) of 

5 and placed back into fresh Supplemented Grace’s Insect Medium (supplemented with 10% 

FBS, 0.1% Pluronic-F68, 100 U/ml penicillin, 100 µg/ml streptomycin) into a spinner flask at a 

final concentration of 1 × 10^6 cells per ml medium for 3–4 days prior to collection. 5 ml cell 

pellets were lysed in lysis buffer [50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl2, 10 mM 

imidazole, 10% glycerol, 0.1% Triton-X100, 1x EDTA-free Protease Inhibitor Cocktail (Roche)] 

for 30 min at 4°C. The lysate was cleared by centrifugation at 19,000 g for 30 min at 4°C and 

filtered through a 5-µm membrane (Pall). The supernatant was incubated with 2 ml Cobalt resin 

(HisPur Cobalt IMAC resin, ThermoScientific) on a rotating wheel for 2 hrs at 4°C. The resin 

was washed with 12 column volumes wash buffer-10 (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 

mM MgCl2, 10 mM imidazole, 10% glycerol) and 6 column volumes wash buffer-30 (50 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl2, 30 mM imidazole, 10% glycerol). The protein 

was eluted in 6 column volumes with elution buffer-150 (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 5 mM MgCl2, 150 mM imidazole, 10% glycerol). Fractions were flash frozen in 50% 

glycerol and stored at -80°C. 
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3.2.19 Transient protein expression in S2 cells 

ORFs of HA/FLAG-dNEF-sp wild type and HA/FLAG-dNEF-sp
DEDAH

 catalytic dead mutant 

were cloned into pAc5.1/V5-His A (addgene). The dNEF-sp ORF was amplified from the pUAS-

attB injection constructs in a 2-step PCR introducing an N-terminal HA/FLAG tag into both 

mutant and wild type proteins. (FLAG-dNEF-sp-forward: 5’-

GACTACAAGGACGACGATGACAAGATGAAGGAACATATGTCCAC; HA/FLAG-forward: 

5’-TCAGAATTCATGTACCCTTATGACGTGCCCGATTACGCTGACTACAAGGAC; dNEF-

sp-reverse: 5’-TGCGGCCGCCTAACTTTCCATAGTCTGATTCGATCCG.) The ORF was 

double digested with EcoRI and NotI following standard cloning procedures. Cells were grown in 

15 cm dishes. At ~80% S2 cell confluency 15 µg HA/FLAG-dNEF-sp-wt-pAc5.1 or Ha/FLAG-

dNEF-sp
DEDAH

-pAc5.1 was transfected with 30 µl TransIT-Insect transfection reagent (Mirus) in 

1.5 ml serum-free medium according to the manufacturer’s instructions. Cells were harvested 

after 48 hrs and expression was verified by Western blot analysis probing against the HA antigen.  

3.2.20 RNA extraction and cDNA preparation 

50 µg cells or 2
nd

 instar larvae or dissected ovaries and testes where directly homogenized in 1 ml 

TRIzol (Life Technologies) and total RNA was isolated according to the manufacturer’s protocol. 

Poly(dT) amplified cDNA was prepared from 5 µg total RNA, using oligo(dT) amplification and 

the Superscript III First Strand synthesis kit following the manufacturer’s instructions 

(Invitrogen).  

3.2.21 RNA and DNA phenol/chloroform extraction and ethanol precipitation 

One volume of phenol/chloroform/isoamyl alcohol (25:24:1, phenol buffered at pH 4.3 for RNA, 

phenol buffered at pH 7.4 for DNA) was added to one volume of an RNA/DNA solution and 

vortexed vigorously for 15 sec. The phases were separated by centrifugation at 12,000 g at 4°C 
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for 2 min. The upper aqueous layer was removed to a new tube and re-extracted with an equal 

volume of ice-cold chloroform. The mixture was vortexed for 15 sec and the phases were 

separated by centrifugation, 12,000 g at 4°C for 2 min. The upper aqueous layer was removed and 

added to a new tube, and the salt concentration adjusted to a final of 0.3 M NaCl. 3 volumes of 

100% EtOH were added to the solution, mixed thoroughly, and stored at -20°C for 10 min (long 

RNAs/DNAs) or 1 hr/overnight (short RNAs/DNAs). RNA/DNA was precipitated by 

centrifugation at 12,000 g at 4°C for 30 min. The supernatant was removed and the pellet 

dissolved in 10-50 µl water.  

3.2.22 NEF-sp PAR-CLIP 

For small-scale PAR-CLIP tests in HEK293 cells, five 15-cm plates were grown and processed as 

previously described in Chapter 2. After protein separation by SDS-PAGE, instead of gel 

electroporation, crosslinked RNA-protein complexes were transferred onto a nitrocellulose 

membrane (HighBond ECL, GE Healthcare Life Sciences) in a semi dry transfer system with 1x 

transfer buffer (25 mM Tris base, 190 mM Glycine, 20% MeOH, 0.05% SDS) at 250 mA for 1 

hr. The membrane was exposed for 1 hr on a phosphorimaging screen. For PAR-CLIP in S2 cells, 

pellets expressing dNEF-sp wt and mutant and untransfected control cells were lysed in 3 

volumes of Triton-X100 lysis buffer [50 mM HEPES-NaOH pH 7.4, 150 mM NaCl, 0.05% 

Triton-X, complete EDTA-free protease inhibitor cocktail (Roche)] for 30 min on ice. Lysates 

were cleared by centrifugation at >10,000 g for 30 min at 4°C. The remaining part of the protocol 

was followed as previously described.  

3.2.23 In vitro RNA nuclease assays 

For 5’ end radiolabeling of oligonucleotides, 100 pmoles of RNA or DNA oligonucleotides were 

incubated with 5 pmoles of γ-
32

P ATP and 10 units of T4 PNK (NEB) in 1 x T4 PNK buffer (70 



142 

mM Tris-HCl pH 7.6, 10 mM MgCl2, 5 mM DTT) in a 20 µl reaction for 15 min at 37°C; 

followed by addition of 1,000 pmoles of non-radiolabelled ATP and incubation for another 5 min. 

To generate circular RNAs, ssRNAs were labeled as described, phenol/chloroform extracted and 

ethanol precipitated, and self-ligated by incubating them with T4 Rnl1 (0.2 µg/µl) in 50 µl of 

buffer containing 50 mM Tris-HCl pH 7.6, 10 mM MgCl2, 10 mM β-mercaptoethanol, 0.2 mM 

ATP, 0.1 mg/ml acetylated BSA, 15% DMSO for 1 hr at 37°C. All reactions were stopped by 

addition of 1 volume of stop buffer (8 M urea, 10 mM EDTA, bromophenol blue). Labeled 

oligoribonucleotides were separated on a 18% polyacrylamide/ 8M urea gel at 28 W for 1 hr, 

eluted with 400 µl 0.3 M NaCl solution overnight, and ethanol precipitated. Exonuclease assays 

were performed in 50 mM KOAc, 20 mM Tris-OAc pH 7.9, 10 mM MgOAc, 1 mM DTT (NEB 

buffer 4) in the presence of 1 pmol 5’-
32

P-labeled oligomers and 20 or 25 nM recombinant protein 

in 50 µl total reaction volume. Samples were incubated at 25°C and 10 µl aliquots were taken at 

1, 5, 10 and 30 min and mixed directly with stop mix. We used commercially available bacterial 

RNase T (ExoT, NEB) (0.2U) and laboratory-purified (20 nM) C3PO [gift from M. Ascano (Tian 

et al., 2011)] as exonucleolytic and endonucleolytic enzyme control. Samples were loaded on a 

18% polyacrylamide/ 8M urea gel, run for 1 hr at 28 W, and exposed on a phosphorimaging 

screen.   

3.2.24 Northern Blot analysis 

5 µg of total RNA was heated for 5 min at 65°C, snap cooled and separated the RNA on a 1.2% 

formaldehyde agarose gel in MOPS running buffer (200 mM MOPS, 50 mM NaOAc, 10 mM 

EDTA) for 3 hrs at 75 V. As single-stranded RNA size marker we used Ambion Millenium RNA 

marker. The gel was incubated for 30 min in an alkaline solution (50 mM NaOH, 10 mM NaCl) 

and neutralized for 15 min in 0.1 M Tris-HCl pH 7.0.  RNA was transferred to a Zeta-Probe GT 

membrane in 20x SSC (Na3Citrate 2H2O, 3M NaCl) in a downward-blotting procedure for 1.5 
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hrs. Transfer efficiency was assessed with a methylene blue solution (0.04%, methylene blue 

hydrate, 0.5 M NaOAc). Membranes were UV-crosslinked and incubated with 20 ml 

hybridization buffer (5x SSC, 1% SDS, Dextran sulfate 10 %, formamide 25 %, 250 µg/ml 

Baker’s yeast RNA) for 1 hr at 65°C. 30 pmol oligonucleotide probes were 5’end labeled as 

previously described and purified using an Illustra MicroSpin G-25 column. Radioactive probes 

were added to the prehybridized membrane solution for 1 hr at 65°C, and then incubated 

overnight at 37°C. The membrane was washed with 2x SSC/1% SDS and 0.2x SSC/1% SDS 

solutions for 30 min each at 37°C before it was exposed on a phophorimaging screen for 1 hr. 

Membranes were stripped in 0.1x SSC/0.5% SDS at 85°C for 1 hr and reprobed for all probes. 

Following oligonucleotide probes were used: 5’ETS: 5’-TTCGAACAATGCGAGGTCGGCAA; 

ITS1 (Zhang et al., 2014): 5’-CACCATTTTACTGGCATATATCAATTCCTTCAATAAATG;  

3’ETS-repeat: 5’- TGTTTGGCTACTCTTGATAAAA; 3’ETS-1: 5’-AAATTGATGACGAGC 

TGTTTG; 28Sa: 5’-ACTTAGGACCGACTAACTCGTGA; 28Sb: 5’-TCGAATCATCAAGC 

AAAGGATAAGC; 18S: 5’-CAAGCATATAACTACTGGCAGG; 7SL: 5’-TGGAAGGTT 

GGCAGCTTCTGTAATCA. 

3.2.25 RNA extraction and Illumina total RNA and mRNA-seq 

2
nd

 instar larvae or dissected ovaries and testes were directly homogenized in 1 ml TRIzol with a 

tissue grinder and total RNA was isolated according to the manufacturer’s protocol. poly(A) 

purification and total RNA cDNA library construction was performed using the TruSeq version 

1.5 kit (Illumina). cDNA was barcoded using the Illumina Multiplexing Sample Preparation 

Oligonucleotide kit and analyzed an Illumina HiSeq 2000 in a 100-base-pair (bp) single-end 

sequencing run.  
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3.2.26 Hydro-seq 

19-nt 19.39 (5’-CGUACGCGGGUUUAAACGA) and 24-nt 24.60 (5’-

CGUACGCGGAAUAGUUUAAACUGU) oligo size markers were 
32

P-5’end-labeled with 

radioactive ATP by PNK as described.  The RNA size markers contain a PmeI restriction 

endonuclease recognition site (underlined). After PCR-amplification the cDNA libraries were 

digested with PmeI to avoid sequencing of the size markers. Briefly, size markers were 

individually radiolabeled in a 10 µl reaction containing 1 µM RNA, 10 U T4 polynucleotide 

kinase and 50 µCi γ-
32

P-ATP  (6,000 Ci/mmol) at 37 ºC for 15 min. The labeled size markers 

were separated on a 15% polyacrylamide/8M urea gel, gel extracted in 0.3 M NaCl solution at 

4°C overnight, and ethanol precipitated. RNA was redissolved in 10 µl water and 19-nt and 24-nt 

marker were combined 1:100 in water. A known amount of calibrator RNA was added to the 

experiments to follow the success of the library preparation. The calibrator oligoribonucleotides 

have no match to the human or mouse genome. 0.5 fmol each of the ten following calibrator 

oligoribonucleotides were added to 2 µg of total RNA. The preparation of a calibrator cocktail 

requires the use of carrier oligonucleotide to prevent surface adsorption during preparation of the 

dilution series in the nanomolar concentration range (11-nt oligodeoxynucleotide 11.6, 5’-

TCGAAGTATTC). Following calibrator RNA sequences were used (p, 5'-monophosphate): 01: 

5’-pGUCCCACUCCGUAGAUCUGUUC; 02: 5’-pGAUGUAACGAGUUGGAAUGCAA; 03: 

5’-pUAGCAUAUCGAGCCUGAGAACA; 04: 5’-pCAUCGGUCGAACUUAUGUGAAA; 05: 

5’-pGAAGCACAUUCGCACAUCAUAU; 06: 5’-pUCUUAACCCGGACCAGAAACUA; 07: 

5’-pAGGUUCCGGAUAAGUAAGAGCC; 08: 5’-pUAACUCCUUAAGCGAAUCUCGC; 09: 

5’-pAAAGUAGCAUCCGAAAUACGGA; 10: pUGAUACGGAUGUUAUACGCAGC.  

7 ml of carrier solution containing 500 nM 11-nt carrier of DNA oligo 11.6 was prepared in 

water. (The carrier is necessary to prevent surface adsorption during dilution and storage of low 

concentrations of calibrator RNA oligos.) 50 µl of a calibrator cocktail containing 1 µM of each 
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calibrator RNA oligo was prepared. The calibrator cocktail was diluted 1:10 in carrier solution 

resulting in a calibrator concentration of 0.1 µM each (50 µl calibrator solution plus 450 µl of 

carrier). The calibrator cocktail was diluted further 1:100 in carrier solution resulting in a final 

RNA oligo calibrator concentration of 1 nM each. Following pre-adenylated 3’ adapter sequences 

were used (L, 3' aminolinker blocking group; rApp, 5’ terminal adenosine residue connected via a 

5’, 5’-diphosphate bridge to the 5’OH of the 5’ nucleotide, which activates the adapter for 

ligation): 3’ pre-adenylated RNA adapter: rAppNNNNNTCGTATGCCGTCTTCTGCTTG-L, 

where NNNNN: 26.75, TCACT; 26.76, TCATC; 26.77, TCCAC; 26.78, TCCGT; 26.79, 

TCCTA; 26.80, TCGAT; 26.81, TCGCG; 26.82, TCTAG; 26.83, TCTCC; 26.84, TCTGA; 

26.85, TTAAG; 26.89, TAACG; 26.90, TAATA; 26.91, TAGAG; 26.92, TAGGA; 26.93, 

TATCA; 26.94, TGATG; 26.95, TGTGT; 26.96, TTACA; 26.98, TTGGT. The adapters each 

contain a unique pentamer barcode sequence at the 5’ end (bold and underlined) and were 

preadenlyated according to a preadenylation protocol established in the laboratory. The 5’ RNA 

adapter 26.68 had following sequence: 5’-GUUCAGAGUUCUACAGUCCGACGAUC. The 

primers for amplification of the barcoded cDNA library used were the following: 5’ adapter 

primer 44.32: 5’-AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA; 3’ 

adapter primer 21.929: 4’-CAAGCAGAAGACGGCATACGA.  

Alkaline Hydrolysis: 0.3 µg of total RNA was subjected to partial alkaline hydrolysis in a 

mixture of 10 mM Na2CO3 and 10 mM NaHCO3 for 5 min at 90°C.  

Dephosphorylation: Fragmented RNA was dephosphorylated with 10 U calf intestinal alkaline 

phosphatase (CIP) in dephosphorylation buffer (20 mM Tris-OAc pH 7.9, 50 mM KOAc, 10 mM 

MgOAc, 100 µg/ml BSA) for 1 hr at 37°C, phenol chloroform extracted and ethanol precipitated.  

Re-phosphorylation: RNA was re-phosphorylated with T4 polynucleotide kinase (PNK) in 

reaction buffer (70 mM Tris-HCl pH 7.6, 10 mM MgCl2, 5 mM DTT) for 1 hr at 37°C, phenol 

chloroform extracted and ethanol precipitated. The RNA was redissolved in 8.5 µl water. 
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Subsequent steps were identical to a small RNA library preparation protocol previously described 

in Hafner et al. (Hafner et al., 2012) and are in detail described below.   

3’ adapter ligation: Re-phosphorylated RNA (in 8.5 µl water) was incubated with 8.6 µl 3’-

ligation mix [2 µl of 10x RNA ligase buffer without ATP (0.5 M Tris-HCl, pH 7.6, 0.1 M MgCl2, 

0.1 M 2-mercaptoethanol, 1 mg/ml acetylated BSA (Sigma)], 6 µl 50% aqueous DMSO, 0.5 µl of 

1 nM of each calibrator cocktail and 0.1 µl of 1:100 dilution of the 5'-
32

P-labeled length marker 

oligoribonucleotide mix), and 2 µl 3’adapter (different adapters for different samples), and 

incubated at 90ºC for 1 min to denature any RNA secondary structures. The samples were cooled 

down on ice, 1 µl Rnl2(1-249)K227Q (1 µg/µl) added and incubated on ice at 4ºC overnight. As 

ligation control 2 µl of the 1:100 diluted length marker was mixed with 6.5 µl of water and 

processed separately. To precipitate and stop the 3’ligation reaction 3x the total volume of the 

combined 3'-adapter ligation reactions of absolute ethanol was added sequentially to each tube 

and the reaction transferred until all samples were pooled. Ethanol addition ensured stopping the 

reaction by deactivation of Rnl2(1-249)K227Q. To the pooled samples a 3 M NaCl solution was 

added in a 1/10 of the total volume to achieve a final 0.3 M NaCl concentration. The reaction was 

precipitated at -20ºC for 1 hr or overnight, and the RNA pellet collected by centrifugation in a 

tabletop centrifuge at 4ºC at maximum speed (approx. 14,000 g) for 30 min. The supernatant was 

discarded and the pellet dried by vacuum centrifugation. The RNA pellet was dissolved in 15 µl 

water per pooled library, mixed with 15 µl formamide stop mix (98.8% formamide, 1% (v/v) 0.5 

M Na2 H2EDTA, pH 8.0, 0.2% Bromophenol blue), and heated at 90ºC for 1 min to denature 

RNA secondary structures. The samples were loaded on a 15% polyacrylamide/8M urea gel and 

separated at 28 W for 45 min. The gel was exposed on a phosphorimaging screen to visualize the 

ligation product. The ligated product (at ligated size marker control length) was excised from the 

gel, the ligated RNAs eluted from the gel in 400 µl 0.3 M NaCl solution by incubating the tube 

overnight at 4ºC under constant agitation (on the thermomixer shaking at 11,000 rpm). The RNA 
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was ethanol precipitated as previously described. The RNA pellet was vacuum dried and 

dissolved in 9 µl water.  

5’ adapter ligation: To the ligated product 9 µl of 5’ ligation mix was added (1 µl of 100 µM 5'-

adapter 26.68, 2 µl of 10x RNA ligase buffer with ATP and 6 µl 50% aqueous DMSO), the RNA 

mixture was incubated at 90ºC for 1 min to denature RNA secondary structures and the reaction 

immediately cooled on ice for 2 min. 2 µl of T4 RNA ligase 1 (Rnl1) (1 µg/µl, Fermentas) was 

added, the reaction mixed gently and incubated for 1 hr at 37 ºC. To stop the reaction 20 µl of 

denaturing formamide stop mix was added and the samples incubated for 1 min at 90ºC. Samples 

were directly loaded onto a 12% polyacrylamide/8M urea gel and separated at 28W for 45 min. 

The gel was exposed on a phosphorimaging screen and gel pieces of the size of the 5’ ligation 

product (as assessed by the ligation control) were excised. The RNA was eluted in 400 µl 0.3 M 

NaCl solution (approximately 3x the gel piece volume), 1 µl of 100 µM 3'-primer 21.929 was 

added as carrier and the ligated RNAs eluted from the gel by incubating the solution overnight at 

4ºC under constant agitation (on the thermomixer shaking at 11000 rpm). The RNA was ethanol 

precipitated, the pellet collected by centrifugation and air dried.  

Reverse transcription: Reverse transcription was performed using the SuperScript III reverse 

transcriptase (Invitrogen) reaction kit. The RNA pellet was dissolved in 5.6 µl water.  The control 

length marker ligation product was carried forward as control. The RNA was denatured by 

incubating the tube for 30 sec at 90ºC and transferring the tube to a 50ºC incubator. 8.7 µl of the 

RT reaction mix were added (1.5 µl 0.1 M DTT, 3 µl 5x first-strand buffer (250 mM Tris-HCl pH 

8.3, 375 mM KCl, 15 mM MgCl2, 100 mM DTT, buffer provided by the manufacturer), and 4.2 

µl 10 mM each dNTPs) to each sample and incubated for 3 min at 50ºC.  0.75 µl of Superscript 

III reverse transcriptase (Invitrogen) was added and the reaction incubated for 30 min at 42ºC. 

After the RT reaction, the RNA template was hydrolyzed by adding 40 µl of 150 mM KOH/20 

mM Tris base and incubated for 10 min at 90ºC. The solution was neutralized by addition of 40 
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µl of 150 mM HCl and the pH adjusted to a range of 7.5 (monitored on pH paper). The pH 

solution should be slightly alkaline to not inhibit the subsequent PCR amplification.  

PCR amplification: 10 µl of the cDNA solution, 0.5 µM of each primer (0.5 µl of each 100 µM 

primer 21.929 and 44.32), 10 µl 10x dNTP mix (2 mM each dNTP), 10 µl 10x PCR buffer (100 

mM Tris-HCl, pH 8.0, 500 mM KCl, 1% Triton-X100, 20 mM MgCl2, 10 mM 2-

Mercapthoethanol), 68 µl water and 1 µl of Taq DNA polymerase (5 U/µl) were mixed to 

perform a standard 100 µl PCR with Taq polymerase. As control a no-template control PCR 

reaction was performed with H2O to check for DNA contamination in the reaction mixture. 

Enough master mix was prepared to have four 100 µl PCR reactions per sample (pilot PCR and 

large-scale PCR). For the cDNA amplification following PCR conditions were chosen: 45 sec at 

94ºC denaturation step, 85 sec at 50ºC annealing, 60 s at 72ºC polymerase extension. To 

determine the number of cycles for the final library amplification a 100 µl pilot PCR was 

performed. 10 µl aliquots were removed every other cycle following cycle number 10 until cycle 

28 by temporarily putting the PCR cycler on hold at the end of the 72ºC step. The PCR aliquots 

were mixed with 5x DNA loading dye (0.2% bromophenol blue, 0.2% xylene cyanol FF, 50mM 

EDTA pH 8, 20% Ficoll type 400) and analyzed on a 2.5% agarose gel in 0.5x TBE buffer for 2 

hrs at 180 V. The optimal cycle number was determined by choosing the cycle number 

approximately 5 cycles below the PCR saturation threshold. Limiting the amplification cycles to 

the exponential phase was important to minimize sequence-specific distortions of some sequences 

amplifying better than others and leading to distortions in the RNA sequence profiles, commonly 

referred to as clonal amplification. After determining the optimal cycle, 3 large scale PCR 

reactions were carried out per sample, the PCR products pooled, and a 5 µl aliquot removed for 

analysis on a 2.5% agarose gel. The remaining product was phenol/chloroform extracted and 

ethanol precipitated by adding 30 µl 3 M NaCl solution, adding 1 volume of neutral 

Phenol/chloroform/IAA and vortexing the mixture for 30 sec. The phases were separated by 
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centrifugation at 14,000 g for 2 min. The aqueous supernatant was transferred to a new tube and 

re-extracted with 1 volume of chloroform to remove residual phenol. The mixture was vortexed 

for 30 sec and separated by centrifugation at 14,000 g for 2 min. The aqueous supernatant was 

transferred to a new tube and ethanol precipitated by adding 3 volumes of 100% ethanol and 

incubating the solution at -20ºC for 1 hr or overnight.  The DNA pellet was collected by 

centrifugation at 14,000 g for 30 min at 4ºC. The ethanol supernatant was removed. The DNA 

pellet was not air dried to prevent denaturation of DNA and directly dissolved in 20 µl PmeI 

reaction mix. Denaturation and subsequent re-annealing of a complex sequence pool will result in 

imperfect rehybridization and formation of DNA duplexes with internal bulges that might 

compromise PmeI digestion.  

PmeI digest of size marker sequences: In a final step the 19-nt and 24-nt size markers in the 

samples were PmeI digested to not lead to overrepresentation of size markers in the sequencing 

reaction. Per reaction following PmeI digest mix was prepared: 2 µl 10x PmeI buffer (NEB 

Cutsmart buffer: 20 mM Tris-acetate pH 7.9, 50 mM Potassium Acetate, 10 mM Magnesium 

Acetate, 100 µg/ml BSA, 17.5 µl of water and 0.5 µl (5 U) of PmeI (NEB). The DNA pellet was 

directly dissolved in PmeI reaction mix and incubated at 37ºC for 2 hrs. The reaction mix was 

mixed with 20 µl 5x DNA loading dye, loaded onto a 2.5% agarose gel and run in 0.5x TBE 

buffer for 2 hrs at 180 V until 5’-adapter-3’-adpater ligation product could be sufficiently 

separated from the cDNA library. The cDNA library product was excised from the gel and gel 

purified using the QiaQuick gel purification kit (Qiagen). The final cDNA library was eluted in 

30 µl water and submitted for Illumina sequencing.  

 

3.2.27 RNA-seq data analysis 

RNA-seq libraries were adapter extracted and aligned against the Drosophila melanogaster 

genome dm3 with BWA or tophat2 (for poly(A) and total RNA-seq) in standard settings (Li and 
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Durbin, 2009). Hydro-seq and total RNA-seq libraries were hierarchically aligned against 

separately created indexes of different RNA classes, according to their relative abundance in the 

cell: (1) rRNA, (2) tRNA, (3) snRNA/snRNA, (4) transposons, (5) miRNA and other short 

ncRNAs, (6) mRNAs. Library and transcript normalized rpkm count values were calculated 

separately for each alignment category and their correlation presented as scatterplots in R. 

Alignments against the full 47S rRNA precursor were done using the NCBI GenBank M21017.1 

reference transcript. Further downstream analysis was performed in R. Rpkm values for poly(A)-

mRNA –seq were calculated using cufflinks2 (Trapnell et al., 2012a) and HTSeq (Anders et al., 

2015). Differential gene expression was calculated with DEseq (Anders and Huber, 2010) and 

further downstream analysis was carried out in R. Gene Ontology [using the DAVID functional 

annotation database (Ashburner et al., 2000; Huang et al., 2008)] and GOrilla (Eden et al., 2009) 

analyses were performed using the cuffdiff output data, selecting genes with adjusted p-values of 

≤0.05. 
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3.3 Results 

3.3.1 The NEF-sp nuclease family has a unique structural domain organization in 

vertebrates 

The NEF-sp nuclease family possesses one distant S. cerevisiae homolog, the RNA exonuclease 

Rex1p (RNH70). However, the homologous relationship between them is not close and the 

human REXO1 family represents the main homolog by sequence conservation and evolutionary 

distance. Examining the phylogenetic tree of DEDDh RNase T nucleases, NEF-sp proteins 

branch off as a distinct, newly evolved protein family (Figure 3.6). NEF-sp proteins contain one 

RNase T exonuclease domain, which is conserved across eukaryotes and gained at the vertebrate 

level two RNA-recognition motif domains (RRMs), which are absent in invertebrates and lower 

eukaryotes (Figure 3.8).  

Figure 3.8 NEF-sp domain conservation across eukaryotes. Schematic domain organization of 

NEF-sp proteins scaled according to protein length for human NEF-sp, mouse, Xenopus, 

Drosophila and the S. cerevisiae homolog Rex1p. Protein length [in amino acids (aa)], predicted 

molecular weight (in kDa), and percentage identity to the human NEF-sp protein are shown.  

This structural domain combination of a catalytic RNA exonuclease domain and two 

single-stranded RNA binding domains is unique across the genome (Gerstberger et al., 2014a). 

The recent evolutionary acquisition of two RRM domains in NEF-sp homologs in vertebrates 

might suggest an increasing requirement for affinity or specificity to recognize target RNAs.  

To characterize the role of NEF-sp in RNA processing, we chose to investigate its 

function biochemically and genetically in Drosophila melanogaster as this provided a tractable 
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and well-established model system for gonad development. Due to the structural differences in 

NEF-sp proteins at the vertebrate level we also started initial characterizations of human NEF-sp 

in HEK293 cells and generated a monoclonal antibody against the mouse NEF-sp homolog for 

future genetic and biochemical studies. In the following chapters I will first describe the work 

performed in human cell lines on hNEF-sp and the generation of a monoclonal antibody against 

the mouse homolog mNEF-sp, before I describe the full characterization of Drosophila dNEF-sp 

and its in vivo phenotypes and targets.  

3.3.2 Recombinant protein purification of NEF-sp and generation of stable cell lines  

In order to study the in vitro RNase activities and to raise antibodies against NEF-sp proteins 

several overexpression and purification strategies were pursued to generate recombinant human, 

mouse and Drosophila NEF-sp proteins. We used bacterial and baculoviral expression in Sf9 

insect cells (Army worm). The human isoform 1 of NEF-sp (NM_030941.2), mouse isoform 2 

NEF-sp (NM_028129.2), and the Drosophila CG8368 ORFs were cloned into the bacterial 

expression vector pET28a-HisSUMO with an N-terminal cleavable HisSUMO tag and into the 

baculoviral pDEST10 N-terminal His6 vector using the Bac-to-Bac expression system 

(Invitrogen). Bacterial expression and purification of NEF-sp proteins was not successful for 

either human and Drosophila NEF-sp proteins and they were already degraded before lysis. 

Expression constructs were switched to Glutathione S-transferase (GST) N-terminal tags, and 

lengths of expression constructs varied, but none of the tested conditions produced stable protein, 

monitored by Western blot analysis and Commassie staining. Only mNEF-sp protein was stably 

expressed in bacteria, although degraded fragments of mNEF-sp protein were already observed 

before lysis and co-purified (Figure 3.9 A). mNEF-sp protein was insoluble and could only be 

purified under denaturing conditions. We switched to baculoviral expression of NEF-sp proteins 

in Sf9 cells. In this expression system mNEF-sp protein was expressed at full length, but also 
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showed unstable fragments before lysis (Figure 3.9 B). Insoluble in Sf9 cells, mNEF-sp could 

only be purified under denaturing conditions. The dialyzed mNEF-sp protein purified from 

bacterial and baculoviral expression was further used for injection into Armenian hamsters and 

screening for monoclonal antibodies against the mNEF-sp protein. Human NEF-sp protein was 

unstable in Sf9 cells in vivo and its purification was not further pursued (Figure 3.9 C).  

Figure 3.9 Recombinant expression of human, mouse and Drosophila NEF-sp. (A) 

Commassie gel and anti-His Western blot (anti-His) of recombinant HisSUMO-mNEF-sp protein 

expressed in BL21(DE3)-RIL E. coli strain. (B) Same as in (A) for recombinant His-mNEF-sp 

protein expressed with baculoviral expression in Sf9 cells. (C) Western blot analysis of Sf9 

lysates with baculoviral expression of human NEF-sp and mNEF-sp protein. (D) Commassie gel 

of recombinant His-dNEF-sp protein purified from Sf9 cells. (E) Western blot (anti-HA) of 

HEK293 stable cell line clones expressing doxycycline-induced mNEF-sp and dNEF-sp protein.  



154 

Drosophila NEF-sp protein could be successfully expressed and purified under native 

conditions in Sf9 cells and displayed nuclease activity in vitro (Figure 3.9 D, Figure 3.23-3.24). 

Lastly, using the FlpIn system, stable HEK293 cell lines expressing doxycycline inducible N-

terminally FLAG/HA tagged hNEF-sp, mNEF-sp, and dNEF-sp protein were successfully 

generated (Figure 3.9 E). These cell lines served as tool for testing and validating antibodies in 

the hybridoma screen, for subcellular localization studies, and for PAR-CLIP RNA-crosslinking 

experiments. 

3.3.3 Pilot PAR-CLIP of hNEF-sp in HEK293 cells 

Predominantly expressed in gonads, human NEF-sp is expressed at low levels in HEK293 cells. 

Using doxycycline-inducible overexpression of FLAG/HA protein we investigated the 

localization and RNA-binding activity of hNEF-sp. The human FLAG/HA-NEF-sp protein 

localized to nucleoli (Figure 3.10 A). Applying 4-SU crosslinking in vivo (PAR-CLIP), I assessed 

the RNA-crosslinking efficiency of hNEF-sp, visualizing the crosslinked and radioactively 

labeled RNA fragments by phosphorimaging. While a crosslinking band at the expected ~100 

kDa could be detected, the intensity was very low and not high enough above background to 

pursue with a full cDNA library preparation (Figure 3.10 B).  
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Figure 3.10 Localization and RNA-crosslinking of hNEF-sp. (A) Immunofluorescence of 

doxycycline-induced hNEF-sp, and non-induced HEK293 cells as control. hNEF-sp shows 

nucleolar localization. (B) Phosphor image and Western blot analysis of crosslinked, 

radiolabeled, and immunoprecipitated hNEF-sp in a small-scale PAR-CLIP.  

We reasoned that the observed low crosslinking efficiency may be due to either low 

abundance of the in vivo targets of NEF-sp in HEK293 cells, or because RNA interactions of 

hNEF-sp nuclease with its targets were highly transient or had low affinity and did not allow 

sufficient crosslinking intensity.   

3.3.4 Generation and characterization of a monoclonal antibody against mNEF-sp 

To study the role of mammalian NEF-sp proteins in gonad development one needs a suitable in 

vivo system in which knockouts can be generated and RNA targets easily isolated. Knockout 

mouse embryonic stem cells for mNEF-sp exist, generated by genome-wide gene knockout 

consortiums, but we needed high affinity biochemical reagents to isolate and characterize mNEF-

sp in vivo. Thus, we decided to raise a monoclonal antibody against the mNEF-sp protein isoform 

2 (RefSeq transcript ID NM_028129.2), which could immunoprecipitate native RNA-protein 

complexes of mNEF-sp. Monoclonal antibodies allow, in contrast to polyclonal antibodies, 
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selective, and epitope-specific immunoprecipitation of protein-RNA complexes in vivo from cells 

and tissues. Immunoprecipitation-grade antibodies are difficult to make and often researchers 

resort to high affinity tags of proteins to isolate their protein of interest. The advantage of an 

immunoprecipitation-grade monoclonal antibody is that it enables isolation of RBP complexes in 

vivo without relying on laborious knock-in affinity tags, which may affect target and protein 

complex affinity. This project was done in collaboration with the monoclonal antibody core 

facility at Memorial Sloan Kettering Research Center, who isolated antibody-secreting B cells 

from immunized animals and fused them with a myeloma cell line, a type of B-cell tumor. These 

hybrid cells or hybridomas can be maintained in vitro and will continue to secrete antibodies with 

a defined specificity. An overview of the general procedure for monoclonal antibody generation 

is shown in Figure 3.11 (Greenfield, 2014).  
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Figure 3.11 Outline of the stages in hybridoma production. (A) Animals are injected with an 

antigen preparation. Once a good humoral response (titer) has appeared in the immunized animal 

a screening procedure is developed and fusion started. The sera from test bleeds are used to 

develop and validate the screening procedure. Several days before the fusion, animals are boosted 

with a sample of the antigen. For the fusion, antibody-secreting cells are prepared from the 

immunized animal, mixed with the myeloma cells, and fused. After the fusion, cells are diluted in 

selective medium (hypoxanthine-aminopterin-thymidine medium (HAT), selection medium 

usually used for selection of immortal, fused hybridomas) and plated in multiwell tissue culture 

dishes. Hybridomas are ready to test beginning 1 week after the fusion. Cells from positive wells 

are expanded and then single-cell-cloned. (B) Hybridoma cells grow at approximately the same 

rate and tissue culture supernatants from all fusions are usually ready to screen within a few days 

of one another. This makes screening the most labor-intensive part of hybridoma production. 

Approximately one week after the fusion, colonies of hybrid cells are ready to screen. During the 

screening supernatants of growing hybridomas are tested for the presence of the desired 

antibodies. Successful fusions generally produce between 200-20,000 hybridoma colonies, on 

average ~1000 colonies. Typically, the first wells are ready to screen on day 7-8 and most of the 

wells need to be screened within 4-5 days. In our hybridoma generation we devised two primary 

screens per week, which were followed by secondary validations each subsequent day. Positive 

wells are expanded and frozen; selected colonies are chosen for further subcloning. Figure 

adapted from (Greenfield). 



158 



159 

HisSUMO- and His-mNEF-sp protein purified from BL21(DE-3)RIL and baculoviral Sf9 

cells was injected in four injections into Armenian hamsters to raise an immune response. Before 

starting the hybridoma fusions, I tested humoral responses of each hamster against mNEF-sp by 

standard and sandwich ELISA. In standard ELISA, response of all test bleeds was screened for 

baculoviral purified His-NEF-sp protein, indicating the highest response titer for hamster 3 

(Figure 3.12 A). As negative control baculoviral purified human FMRP protein was used [a gift 

of M. Ascano (Ascano et al., 2012b)]. Since mNEF-sp protein could only be purified under 

denaturing conditions, we reasoned that standard ELISA may predominantly over-represent 

clones that recognized epitopes of the denatured protein. However, for IP-grade hybridoma 

antibodies, we needed to isolate clones, which also recognized the folded, native protein in an 

immunoprecipitation-like assay. Thus, as second screen we decided to use sandwich ELISAs to 

screen the test bleeds and select clones, which recognized FLAG-bound, HEK293 doxycycline-

induced, native mNEF-sp protein. This assay also had the advantage that mNEF-sp had a 

different affinity tag than the injected protein, thus clones recognizing the His tag were excluded. 

By sandwich ELISAs hamster 2 test bleeds showed the highest response for mNEF-sp, and we 

decided to use hamster 2 for clonal fusion (Figure 3.12 B).  
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Figure 3.12 Results from different screens for mNEF-sp immunized hamsters. (A) Standard 

ELISA using Sf9 purified recombinant mNEF-sp and FMRP antigen as negative control. Bleeds 

were tested in serial dilution, shown here 1:10,000 dilution. Tested in ELISA with mNEF-sp: pre-

bleed (orange), test bleed 1 (TB1, red), test bleed 2  (TB2, blue), test bleed 3 (TB3, green). 

Control with FMRP: pre-bleed (brown), TB1 (yellow), TB2 (light green), TB3 (black). (B) 

Sandwich ELISA: coated with rabbit monoclonal anti-FLAG, incubated with doxycycline 

induced mNEF-sp HEK293 cell lysate and incubated with 1:50 dilution test bleeds: TB3 (dark 

blue) and pre-bleed (light blue). (C) Western blot analysis (anti-HA) on immunoprecipitated 

FLAG/HA-mNEF-sp inducibly expressed in HEK293 cells. Shown are total lysate control (-) and 

(+) doxycycline induction in lane 1 and 2. Lane 3-8 show immunoprecipitations of FLAG/HA-

mNEF-sp protein from doxycycline induced mNEF-sp HEK293 cells using test bleed TB3 and 

pre-bleed in 1:50 dilution. mNEF-sp isoform NM_028129.2 runs at ~50 kDa.  
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Test bleeds of all hamsters were able to immunoprecipitate FLAG/HA-mNEF-sp from 

HEK293 cells (Figure 3.12 C, shown here are hamsters 2-4).  

For our screening strategy of hybridoma clones we developed a triage-screen (Figure 

3.13). First, supernatants of all clones were tested in parallel in standard. Second, positive clones 

were selected for further validation for their immunoprecipitation quality by sandwich ELISAs 

and immunoprecipitation and supernatants were used to immunoprecipitate doxycycline-induced 

FLAG/HA-mNEF-sp protein from HEK293 cells. Immunoprecipitated FLAG/HA-mNEF-sp 

protein was detected by Western blot analysis against the HA peptide epitope. The hybridoma 

fusion cultures were tested from three separate pulls for their performance in the triage screen. 

Only the clones that tested positive by standard ELISA were selected for sandwich ELISA and 

immunoprecipitation.  
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Figure 3.13 Hybridoma screening strategy. Bacterial and baculoviral purified mNEF-sp 

antigen was injected into four hamsters. In the pre-screening the hamster with highest titer 

response was selected. After a final boost with Sf9 purified mNEF-sp protein B cells were fused 

with myeloma cells to create stable hybridoma colonies. In screen 1 hybridoma cultures were 

tested by standard ELISA with denatured Sf9 purified mNEF-sp antigen. All positive hits were 

tested in screen 2 by sandwich ELISA of FLAG/HA-mNEF-sp protein and in screen 3 by 

immunoprecipitation with hybridoma supernatants conjugated to agarose-Protein A/G beads. 

After three repeats of the triage screen positive hybridoma cultures were frozen in liquid nitrogen 

and two hybridoma cultures further subcloned to isolate single clones. The subcloned colonies 

went through the same triage screen and were also validated by standard Western blot analysis.  
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Of the 2,376 hybridoma cultures (approximately 6,000 hybridomas), 161 tested positive 

in standard ELISA, 74 of those were only positive in standard ELISA and showed no signal in 

sandwich ELISA or immunoprecipitation, 23 tested positive in all three assays, 61 in standard 

ELISA and immunoprecipitation, and 3 in standard and sandwich ELISA but were negative in 

immunoprecipitations. Based on these results, we froze 27 hybridoma cultures and selected 2 for 

further subcloning (Table 3.1, Figure 3.14).  

Table 3.2: Summary of screened hybridoma cultures. 
Screen Total tested 

Cultures screened 2,376 

Hybridomas ~6,000 (~2.5 per well) 

Standard ELISA (+) 161 

Standard ELISA (+), sandwich ELISA (+), IP (+) 23 

Standard ELISA (+), sandwich ELISA (-), IP (-) 74 

Standard ELISA (+), sandwich ELISA (+), IP (-) 3 

Standard ELISA (+), sandwich ELISA (-), IP (+) 61 

Frozen cultures/ pools  27 

Subcloned 2 

03D01 and 23F05 were selected for further subcloning, as these showed the highest 

immunoprecipitation quality, assessed by semi-quantitative Western blot analysis (Figure 3.14). 
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Figure 3.14 Selected results from hybridoma screening. (A) Immunoprecipitation screening 

results for a selection of hybridoma cultures from screen 3. Hybridoma supernatants are incubated 

with FLAG/HA mNEF-sp lysates in 1:10 dilution and conjugated to Protein A/G agarose beads. 

Shown are Western blots probing against HA peptide, to assess loading blots are reprobed for 

Protein A/G bound Armenian hamster IgG. The stars indicate the two clones (23F05 and 03D01), 

which were selected for subcloning. (+/-, +/-, +/-) indicates whether the clone tested previously 

positive in (1) standard ELISA, (2) sandwich ELISA, and (3) immunoprecipitation assay. The 

plus behind the brackets indicates how strong the overall response was. (B) (i) Semi-

quantification of Western blot signal from (A) for immunoprecipitated mNEF-sp protein 

normalized over anti-Armenian hamster IgG signal (light blue), (ii) further normalization of the 

signal in (i) over the final test bleed response. Selected colonies for subcloning are marked with a 

star. (C) Same as (A) for a selection of subclones. (D) Validation of subclones recognizing 

FLAG/HA-mNEF-sp in Western blot analysis (hybridoma supernatants are used in dilution 1:10). 
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3.3.5 Generation and characterization of a polyclonal antibody against dNEF-sp 

We decided to raise a polyclonal antibody against the Drosophila melanogaster dNEF-sp protein. 

This allowed quantification of the protein in vivo, but was more time efficient and since I had 

generated an in vivo FLAG/HA-dNEF-sp transgenic fly (see section 3.3.7) we did not rely on a 

dNEF-sp-specific immunoprecipitation-grade antibody. Recombinant dNEF-sp protein, purified 

from Sf9 cells, was sent for injection into two rabbits (Covance). Anti-sera responses against 

dNEF-sp were tested in HEK293 cells expressing doxycycline inducible FLAG/HA-dNEF-sp 

(Figure 3.15). Sera were highly potent and could be used in 1:20,000 dilution to specifically 

detect the antigen in 40 µg lysates (shown here are dilutions 1:5,000). To minimize background 

detection of other insect proteins, the polyclonal sera were further affinity-purified with 

recombinant dNEF-sp protein and the resulting eluate used in 1:1000 dilution for Western blot 

analysis of Drosophila lysates.   

Figure 3.15 Characterization of a polyclonal antibody against dNEF-sp. Recombinant 

baculoviral Sf9 purified His-dNEF-sp protein was injected into two rabbits to generate a humoral 

response. Specificity of bleeds was validated with doxycycline-inducible dNEF-sp HEK293 cell 

lines. (A) Response of pre-bleed, test bleed 1 (TB1), and test bleed 2 (TB2) for rabbit 2078 tested 

on doxycycline-induced FLAG/HA-dNEF-sp HEK293 total cell lysates and FLAG-

immunoprecipitated protein. (B) Same as in (A) for rabbit 2079.  

3.3.6 Immunoprecipitation of the mNEF-sp homolog in testis 

I tested the supernatants of the subcloned for immunoprecipitation of mNEF-sp protein from 

mouse liver and testis lysates. Unlike the known RefSeq isoform predictions, I detected a specific 

protein band at ~80-90 kDa in testis lysates. This putative testis-specific isoform was in the 
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expected size range of NEF-sp proteins from other organisms. mNEF-sp (official gene name 

2610020H08Rik) has currently two annotated isoforms in the RefSeq NCBI annotation. Isoform 

2 is predicted to be 479 amino acids long and did not have a predicted RRM domain by Pfam and 

SMART structural domain predictions, while isoform 1, 445 amino acids long, possessed one 

RRM domain instead of two (Figure 3.16 A). 

Figure 3.16 Immunoprecipitation of mNEF-sp from testis and liver lysates. (A) mNEF-sp 

isoforms defined by Ensembl and RefSeq. RNase T domains (red), and RRM domains (green) are 

highlighted. (B) Hybridoma supernatant clone 23F5-E7 was used for immunoprecipitation (IP) of 

mNEF-sp from liver and testis.   Immunoprecipitated mNEF-sp was probed detected by Western 

blot (WB) with clone 23F5-A7. (C) Genome Browser representation of RNA-seq read alignments 

from liver and testis at the mNEF-sp locus (2610020H08Rik).   
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NEF-sp proteins across mammals and vertebrates are usually ~700 amino acids long and 

have a molecular weight of ~90 kDa (including rat). Hence, the deviance in size of the mouse 

homolog predicted by RefSeq seemed surprising, but we decided at the start of the project to 

work with isoform 1 as this appeared to be the closest related homolog (Figure 3.16 A). Given the 

unexpected immunoprecipitation results, we re-examined other genome annotations and detected 

recent updates of the Ensembl genome consortium, which included a new, longer isoform of 

mNEF-sp that was consistent with our biochemical results. This additional isoform (isoform 3) 

was 759 amino acids long, contained two predicted RRM domains C-terminal to the RNase T 

domain and had a predicted molecular weight of 86.5 kDa (Figure 3.16 B). By domain structure, 

weight and protein length, it was closest to other mammalian NEF-sp proteins. This isoform 

remains currently not listed in the RefSeq genome annotation, but it is supported by Uniprot data. 

To confirm whether the observed protein band could correspond to the longest predicted isoform, 

I analyzed published adult mRNA-seq data from mouse testis and liver and assessed read 

abundances for the different isoforms (You et al., 2015) (Figure 3.16 C). Isoform 3 was highly 

abundant in adult testis but not expressed in the liver. Together, given the RNA-seq and 

immunoprecipitation data, we concluded that isoform 3 is the dominant isoform of mNEF-sp in 

testis and based on our results we revised our homology annotation for NEF-sp proteins in Figure 

3.8 to include the longest isoform of mNEF-sp as the representative isoform.  

This section concludes the studies on the mammalian homologs of NEF-sp. Much of this 

work was done in parallel to the work on Drosophila melanogaster dNEF-sp. Because of the 

complexity and time needed for each organism, I decided to shift my focus entirely on the full 

characterization of the physiological function and targets of dNEF-sp for the remaining part of the 

project.   
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3.3.7 Characterization of Drosophila dNEF-sp genetic mutants 

The dNEF-sp (CG8368) gene is located on the 3
rd

 chromosome in Drosophila melanogaster 

(Figure 3.17 A). One genetic mutant, C04255, contained a PiggyBac (PB) transposon insertion 

into the 5’ UTR of isoform CG8368-a and the first intron of isoform CG8368-b and was 

previously generated by the Harvard Exelixis collection (location of the PB insertion is shown in 

Figure 3.17 A). I confirmed the correct location of the PB by PCR using a transposon-specific 

primer in the forward and a gene-specific primer in the reverse direction (Figure 3.17 B). 

Homozygous mutants were lethal during second instar larval development. We confirmed that 

lethality was due to mutations in the cytogenetic region 65B3-65C1, (~135 kb) by crossing 

C04255 to the deficiency lines Df(3L)BSC410 (deletion of 64E7;65B3, 3L:5770673;3L:6490185) 

and Df(3L)BSC411 (deletion of 65A2;65C1, 3L:5975960;3L:6625626-6625629). Crosses of 

C04255 to Df(3L)BSC411, which had a 650 kb segment deleted encompassing the dNEF-sp gene 

locus, were lethal, while complementation of C04255 to the Df(3L)BSC410 deficiency line, 

containing a deletion overlapping with Df(3L)BSC411 except for a 135 kb region, did not affect 

viability. Next, we screened a number of previously generated ethyl methanesulfonate chemical 

mutagenesis lines deposited in the Drosophila Bloomington Stock center (DBSC), which had 

mutations in the 65C-65D cytogenetic band, but had previously not been further genetically 

mapped (Anderson et al., 1995). Complementation of C04255 with one of the mutants, M100, 

was lethal, suggesting that this mutant also caused loss-of-function of dNEF-sp. Similar to 

C04255, M100 homozygous mutants were lethal at the second instar larval stage. Crosses to the 

genetic deficiency lines gave the same results as above. Sequencing of M100 within the coding 

region of dNEF-sp identified two missense mutations in the ORF; one of the mutations, a 

glutamate to lysine substitution (E497K) located four amino residues away from the conserved 

catalytic histidine in the RNase T domain presumably causes the loss-of-function of dNEF-sp 

(locations of nucleotide substitutions shown in Figure 3.17 A).  
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Figure 3.17 Characterization of dNEF-sp mutants. (A) Genomic map of the dNEF-sp gene, 

mRNA isoforms, and protein. The RNase T domain is highlighted in green, catalytic DEDDh 

residues are shown in orange, the location of the nucleotide substitutions in mutant M100 and the 

resulting amino acid changes are shown in red. The PiggyBac insertion is shown for dNEF-sp 

mutant C04255 (blue). (B) Verification of PiggyBac transposon insertion in mutant C04255 into 

the predicted site at the dNEF-sp locus. (C) Expression of dNEF-sp mRNA in mutants M100, 

C04255, and wild type 2
nd

 instar larvae. (D) dNEF-sp protein levels in mutants and wild type 2
nd

 

instar larvae. Loading controls are tubulin and the nucleolar snoRNP component Fibrillarin (Fib). 

Genotypes are highlighted in blue (C04255, dNEF-sp
PB

) and red (M100, dNEF-sp
E497K

). dNEF-sp 

Genotypes: heterozygotes: dNEF-sp
M100

/TM6B and dNEF-sp
C04255

/TM6B; homozygotes: dNEF-

sp
M100

/dNEF-sp
M100

 and dNEF-sp
C04255

/dNEF-sp
C04255

, wild type: sequencing strain.  

 

Finally, to generate transgenic flies, I cloned the full-length ORF of dNEF-sp into the 

pUAS-attB plasmid and, in addition, generated four genomic pattB rescue constructs. Two of 

these genomic rescue constructs contained the genomic dNEF-sp region including either a 3 or 

1.7 kb promoter region and the genomic region 1 kb region downstream of the 3’UTR. In 

addition, I created two genomic, N-terminal tagged dNEF-sp rescue constructs by inserting GFP 

or FLAG/HA-tags into the 3 kb genomic construct at the start of the dNEF-sp ORF, the N-



170 

terminus of dNEF-sp protein. The pUAS-attB and pattB constructs were send for injection and 

were specifically inserted at 25C7 cytogenetic site on the second chromosome using the phiC31 

integrase transgenesis system (Bischof et al., 2007). All genomic dNEF-sp transgenic lines 

rescued lethality of dNEF-sp mutants and produced adult flies in both mutants. Expression of the 

dNEF-sp ORF alone (pUAS-attB-dNEF-sp) under the actinGal4 driver also rescued lethality. 

Poly(A) mRNA-seq of homozygous mutants and wild type 2
nd

 instar larvae showed that in 

C04255 mutants mRNA levels were close to depleted, while in M100 mutants mRNA levels were 

similar to wild type (Figure 3.17 C). Western blot analysis of protein levels in homo- and 

heterozygous mutants and wild type controls showed that heterozygous mutants had protein 

levels similar to wild type larvae. In contrast, homozygous C04255 mutant protein levels were 

undetectable by Western blot analysis, while M100 mutants had consistently higher protein 

levels, suggesting some posttranscriptional compensation mechanism of M100 homozygous 

mutants to produce more dNEF-sp protein, which nevertheless is not functional (Figure 3.17 D).   

3.3.8 dNEF-sp is a nucleolar/nuclear protein and translocates to the cytoplasm during 

terminal differentiation in testis development 

In contrast to the mRNA abundances, dNEF-sp protein was predominantly expressed in both 

male and female gonads in adult flies, but also expressed highly during early embryogenesis. To 

investigate the localization of dNEF-sp, I studied the in vivo localization of GFP-dNEF-sp in the 

transgenic GFP-dNEF-sp fly rescue, expressing GFP-dNEF-sp under its endogenous promoter. In 

Drosophila testis GFP-dNEF-sp was expressed in GSCs and mitotic cells, as well as during 

terminal spermatocyte differentiation (Figure 3.18 B). In mitotic gonialblasts and GSCs dNEF-sp 

was localized to the nucleolus. In contrast, dNEF-sp abundance was highest during terminal 

spermatocyte differentiation, where it localized in the cytoplasm and was concentrated 

predominantly to the individualization complexes, localizing in a distinct pattern in opposite 
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polarity to the actin cones (Figure 3.18 B). This pattern was unique to dNEF-sp and unlike other 

rRNA biogenesis and ribosomal proteins, and may suggest an active role for dNEF-sp during 

terminal differentiation. In ovaries dNEF-sp was highly expressed throughout the tissue in the 

germarium in GSCs and cystoblasts, and highest expressed in the nuclei of oocytes, nurse cells, 

and follicle cells (Figure 3.18 C). dNEF-sp expression was not restricted to gonads and was 

ubiquitously expressed at low level in the nucleolus and nucleus of somatic tissues (Figure 3.18 

D). 
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Figure 3.18 dNEF-sp is predominantly expressed in the gonads. (A) Expression of dNEF-sp 

and the nucleolar marker Fibrillarin (Fib) assessed by Western blot analysis on total 40 µg tissue 

lysates. (B-D) In vivo localization of GFP-dNEF-sp. Shown are GFP-dNEF-sp (green), phalloidin 

(PL, magenta or red), 1B1 in testes (red) and Vasa in ovaries (red), and DNA (Hoechst, blue). 

Localization of GFP-dNEF-sp is also shown in gray scale images. (B) Localization of dNEF-sp in 

testis. Shown are (i,i’) whole testis, (j,j’) hub region with GSCs, and (k,k’) mitotically dividing 

gonialblasts, (l,l’,m,m’) the individualization complex during terminal differentiation with 

punctate localization of dNEF-sp in the leading edge of the actin cones. (C) In vivo localization of 

GFP-dNEF-sp in ovaries. (i,i’) dNEF-sp is localized to the nuclei of the oocyte, nurse cells and 

somatic follicle cells. (j,j’) Localization of dNEF-sp in nuclei of GSCs and gonialblasts in the 

germarium (red arrow in j’). (D) GFP-dNEF-sp is predominantly expressed in nucleoli in somatic 

tissues. Expression for (i,i’) salivary glands, (j,j’) foregut, (k,k’) eye lobe and imaginal discs. 

Genotypes: GFP-dNEF-sp/Cyo; Sb/TM6B.  
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3.3.9 Homozygous mutants show gonad developmental defects 

dNEF-sp homozygous mutant larvae were developmentally delayed by 24-48 days, but organs 

looked generally morphologically normal in somatic tissues compared to wild type larval tissues 

at the same developmental stage. We reasoned that defects in dNEF-sp mutants would most 

strongly accumulate in the tissues of highest expression, i.e. during testis development, and 

therefore decided to investigate early phenotypes in homozygous mutant testes during 2
nd

 instar 

larval development, their latest developmental stage before death. By confocal microscopy 

mutant gonads were smaller in size and arrested in the first or second mitotic divisions (as 

assessed by the level branching of connected fusomes in mitotic cells) and they also had fewer 

cells compared to wild type 2
nd

 instar male gonads (Figure 3.19 A). These results demonstrated 

that dNEF-sp was required for testis development and that dNEF-sp mutants were arrested in 

early mitosis. 

Figure 3.19 dNEF-sp mutant gonads are developmentally arrested. (A) Second instar larval 

male gonads. (i,i’) dNEF-sp
C04255

/dNEF-sp
C04255

 homozygous mutant (j,j’) wild type. DNA is 

shown with Hoechst dye in blue, the 1B1 fusome marker in green. 1B1 staining is separately 

shown in grayscale images. (B) Schematic representation of the mitotic developmental program 

in Drosophila testis development. GSCs asymmetrically divide to produce one stem cell daughter 

cell and one gonialblast cell. The gonialblast migrates from the hub and undergoes 4 mitotic 

divisions. Stages of mutant and wild type 2
nd

 instar larval gonad development are highlighted in 

red. Genotypes: dNEF-sp
C04255

/dNEF-sp
C04255

, wild type: sequencing strain.   
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3.3.10 Developmental arrest in testes and ovaries of actinGal4 rescued dNEF-sp adult 

mutants 

To investigate gonad developmental defects in adult flies, I rescued the lethality in somatic cells 

by transgenic expression of UAS-dNEF-sp under the actinGal4 driver in both mutants. The UAS 

promoter works inefficiently in the germline (Brand and Perrimon, 1993), thus actinGal4 UAS-

dNEF-sp rescued flies effectively lack dNEF-sp expression in germ cells. I examined mutant 

adult testes and ovaries after 3, 7, and 14 days (Figure 3.20). Homozygous adult mutant testes 

showed phenotypic variation. Severely affected testes were arrested in mitosis, and instead of 

being confined to the hub, mitotic cells were spread throughout the entire organ (Figure 3.20 A). 

Phosphorylation of histone H3 levels showed that mutant testes did not enter meiosis (Figure 3.20 

B). Furthermore, H2Av phosphorylation levels, a marker of DNA double-stranded breaks, 

indicated that also genomic stability was affected in mutant testes (Figure 3.20 C). In Drosophila 

males do not undergo meiotic recombination, thus double-stranded DNA breaks are entirely due 

to genomic instability. Over time, fewer cysts went through mitosis and testes became 

morphologically thinner (Figure 3.20 D-E).  
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Figure 3.20 dNEF-sp mutant adult testes arrest in mitosis. (A-E) dNEF-sp mutants are lethal, 

but transgenic expression of dNEF-sp in the soma rescues this lethality and permits the recovery 

of adult flies that lack dNEF-sp in germ cells. These flies display defects in growth and the cell-

cycle progression gonads. Shown are Phalloidin (green), Hoechst (blue), individual marker (red). 

Individual developmental markers are shown separately in grayscale images. Genotypes of 

rescued mutants: actin-Gal4/UAS-dNEF-sp, dNEF-sp
C02455

/dNEF-sp
M100

. (A) dNEF-sp mutant 

testes are thinner and show continuous mitotic divisions with the fusome branching throughout 

the entire testicular tube (1B1). (B) Serine 10 phosphorylated histone H3 (PH3) marks meiotic 

divisions. Mutant testes show fewer meiotic nuclei. Wild type testes enter meiosis as detected by 

the 32 PH3-stained meiotic nuclei. (C) Histone H2Av phosphorylation (H2Av) is a marker for 

double-stranded DNA breaks, genomic instability and apoptosis (Fernandez-Capetillo et al., 

2004; Kotova et al., 2011). H2Av phosphorylation levels are increased in mutant testis compared 

to wild type, indicating an increase in genomic instability in dNEF-sp mutants. (D-E) 1B1 and 

Fibrillarin (Fib) stainings after 7 and 14 days in wild type, genomic rescue of dNEF-sp mutants 

(full rescue) and actinGal4 UAS-dNEF-sp rescued mutants (germ cell loss). dNEF-sp mutants 

show progression in mitosis beyond the hub throughout the entire testis (1B1, green) and the 

nucleolar marker Fib (red) shows continuous staining, also marking mitotic cells. Genotypes: 

mutant: actinGal4/UAS-dNEF-sp, dNEF-sp
M100

/dNEF-sp
C04255

; genomic rescue: 1.5kb-dNEF-sp, 

dNEF-sp
M100

; wild type: sequencing strain.  



177 



178 



179 

Homozygous mutant females were sterile and had rudimentarily developed ovaries. 

Morphologically, the oocyte was placed correctly and expression of the germ cell marker Vasa in 

mutants was the same as in control wild type ovaries. H2Av phosphorylation, a marker of dsDNA 

breaks, did not show any difference to wild type, indicating that genomic integrity of mutant 

ovaries was not compromised as observed for mutant testes. However, mutant oocytes did not 

fully develop, leading to homozygous females having >10 fold smaller, rudimentarily developed 

ovaries. Ovaries displayed egg-chamber degeneration and arrested at stage 4-6 of oocyte 

development. Moreover, complete GSCs loss occurred over time, indicating that dNEF-sp was 

essential for germ cell development (Figure 3.21 A-B). We recognized that the presented ovarian 

phenotypes resembled previously described ovarian defects for loss-of-function of the ribosomal 

protein RpS2 (Cramton and Laski, 1994) (Figure 3.21 C), suggesting that dNEF-sp might also be 

involved in a ribosome-related process.  
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Figure 3.21 dNEF-sp mutant adult ovaries are growth arrested. (A, B) Mutant ovaries are 

smaller than wild type and arrest at developmental stage 4-6. Organization of oocytes and nurse 

cells are positioned normally, expression of the germ cell marker Vasa (red) is normal, no 

physical deformities are observed, but oocyte and nurse cell growth is impaired and cells become 

apoptotic at stage 4-6. (A) Mutant and wild type ovaries after 3 days. Mutant ovaries are 10-100- 

fold smaller and degenerate, entering apoptosis at stage 4-6. Vasa (red) expression and position of 

oocyte, as well as the number of nurse cells are normal compared to wild type.  (B) Loss of egg 

chambers becomes more severe over time; ovarioles contain only the germarium and stage 1 egg 

chambers. (C) Ovarian phenotype for the string-of-pearls (RpS2) gene characterized by Cramton 

et al. (Cramton and Laski, 1994) shows similarity to the dNEF-sp loss-of-function phenotype. 

Genotypes: mutant: actinGal4/UAS-dNEF-sp, dNEF-sp
M100

/dNEF-sp
C04255

; wild type: sequencing 

strain. 
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In summary, the mutant phenotypes suggested a pivotal role of dNEF-sp in early gonad 

development, but they did not address why high dNEF-sp protein levels were observed in later 

stages post meiosis during terminal differentiation of spermatocytes. Since neither the biological 

role nor the molecular mechanisms were known for dNEF-sp, I focused my attention for the 

remaining study on the early gonadal and somatic roles of dNEF-sp in order to elucidate the 

essential function of dNEF-sp in general RNA metabolism.   

 

3.3.11 The catalytic RNase T domain of dNEF-sp is required for viability in vivo  

The predicted DEDDh RNase T exonuclease domain in the NEF-sp protein family is highly 

conserved across organisms and requires a divalent metal cation for activity (Zuo and Deutscher, 

2001) (Figure 3.22 A). To test whether the catalytic activity of NEF-sp was essential for viability, 

I genetically complemented C04255 and M100 mutants with UAS-dNEF-sp transgenic flies, for 

which different catalytic residues were mutated to alanine in the RNase T domain. All catalytic 

residues were required for survival and none of the tested constructs, which contained a single or 

double alanine mutation, could rescue lethality (Figure 3.22 B). Substitution of the catalytic 

histidine residue (H) to an arginine (R), an amino acid change present in the mouse NEF-sp 

homolog, rescued homozygous larvae to 3
rd

 instar, suggesting that substitution to arginine gave 

still partially active dNEF-sp protein. Therefore, we concluded that mNEF-sp is most likely a 

functional RNA exonuclease, despite a substitution of the catalytic histidine to arginine. The 

results demonstrated that the RNA exonuclease activity of dNEF-sp, and not a secondary protein 

association, was essential for survival. 
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Figure 3.22 Multiple sequence alignment of conserved NEF-sp active site residues. (A) 

Scheme of the structural domain organization of NEF-sp proteins across yeast, D. melanogaster, 

Xen. laevis, human and mouse and Clustal Omega alignment of the conserved RNase T domain. 

Conserved catalytic acidic residues (DEDD) are highlighted in orange, the general base histidine 

residue is highlighted in yellow. (B) Viability test rescuing lethality of mutants with actin-Gal4 

UAS-dNEF-sp constructs with substituted residues in the catalytic side.  
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3.3.12 dNEF-sp displays single-stranded RNase activity in vitro 

To verify the catalytic activity of dNEF-sp in vitro, I purified the recombinant full-length dNEF-

sp protein and the catalytic dead mutant (dNEF-sp
DADAH

, section 3.3.2) and carried out DNA and 

RNA oligomer cleavage assays. Cleavage assays were carried out for both wild type and mutant 

full-length proteins with 18mer sequences. dNEF-sp showed selective 3’-5’ exonucleolytic 

degradation of RNA, while DNA was not degraded (Figure 3.23 A). RNA cleavage of dNEF-sp 

displayed preference for pyrimidine bases (C and U) over purine bases (A) (Figure 3.23 D-F). As 

previously characterized for other DEDDh RNase T nucleases, RNA cleavage activity of dNEF-

sp was dependent on the presence of divalent cations (Mg
2+

) in the active site and the reaction 

was inhibited in the presence of EDTA (Figure 3.23). Cleavage assays with circularized RNAs 

demonstrated that dNEF-sp could not endonucleolytically process circularized ssRNA (Figure 

3.24 A-B). 
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Figure 3.23 RNase in vitro assays show specificity of dNEF-sp for ssRNA. In vitro RNA 

exonuclease assays of recombinant wild type and DADAH mutant dNEF-sp protein. RNase 

activity of the recombinant nucleases was tested for a selection of 5’-
32

P-labeled RNA and DNA 

18-mer oligo(deoxy)ribonucleotides at 20-25 nM enzyme concentration in a time series (0-30/60 

min). Control = no enzyme added, control EDTA = dNEF-sp wt protein in presence of EDTA (50 

mM). (A) Activity of dNEF-sp wild type and mutant protein for poly-adenosine RNA and DNA 

substrate at 20 nM enzyme concentration. (B) Same as in (A) for poly-cytosine RNA and DNA 

substrates. (C) Same as in (A) for poly-uridine and poly-thymidine. (D) Quantification of the 

degradation of substrates at 25 nM protein concentration measured in (E) and (F). Intensity 

measurements are normalized to the intensity of the 1 min time point for each experimental 

condition. (E) Comparison of nucleolytic activity of dNEF-sp wild type and mutant protein at 25 

nM concentration for poly-cytosines versus poly-adenosine-cytosine oligomer. (F) 

Exonucleolytic activity of dNEF-sp wild type and mutant protein for poly-uridine and poly-

adenosine RNA and DNA oligomers. DNA is not a processed substrate, dNEF-sp DADAH 

mutant is inactive, addition of EDTA inhibits enzymatic activity of wild type dNEF-sp protein 

(control EDTA). 
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Figure 3.24 dNEF-sp has no endonucleolytic activity. (A-B) In vitro RNA nuclease assays of 

recombinant wild type and DADAH mutant dNEF-sp protein and commercial RNA exonuclease 

T (ExoT, NEB). RNase activity of the recombinant nucleases was tested for a selection of 5’-
32

P-

labeled RNA and DNA 18-mer single-stranded and circularized oligo(deoxy)ribonucleotides at 

20-25 nM enzyme concentration in a time series of 0-30 min. (A) (i) Activity of dNEF-sp wild 

type and mutant protein for circularized poly-adenosine RNA and at 25 nM enzyme 

concentration. (ii) Same as in (i) for circularized poly-cytosine RNA substrates. (iii) Same as in 

(i) for circularized poly-uridine oligomers. (B) High-resolution sequencing gel for the comparison 

of nucleolytic activity of dNEF-sp wild type and mutant protein, as well as the RNA 

endonuclease C3PO as control (gift of M. Ascano) at 20 nM concentration for poly(C) ssRNA, 

ssDNA and circularized RNA 18mers. Final concentration of substrate is 100 nM per reaction.  
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3.3.13 The 3’ ETS of the 47S rRNA precursor accumulates in dNEF-sp mutants 

To identify processing defects of dNEF-sp targets in the homozygous mutants in vivo we 

employed next generation sequencing of total RNA isolated from wild type and dNEF-sp genetic 

mutant larvae. The localization of dNEF-sp to the nucleolus, as well as the mutant phenotypes 

observed in adult ovaries, suggested a role in rRNA biogenesis. Previous literature on the family 

member RNH70 (Rex1p) indicated that the S. cerevisiae nuclease was involved in the processing 

of a variety of noncoding RNA substrates, including tRNAs, snRNAs, and snoRNAs (Copela et 

al., 2008; Ozanick et al., 2009; Piper and Stråby, 1989; Piper et al., 1983; 1987; van Hoof et al., 

2000). Thus we considered that, if dNEF-sp was a functional homolog of Rex1p, dNEF-sp could 

process small nuclear noncoding RNAs. In addition, the selective upregulation of dNEF-sp in 

gonads indicated a gonad-specific specific role, putatively in germline-specific noncoding RNA 

metabolism such as the piRNA pathway (Siomi et al., 2011). 

To analyze differential expression of long and short coding and non-coding RNAs, and 

also to investigate highly structured transcripts, we combined the poly(A) mRNA-seq and total 

RNA sequencing (Illumina TruSeq) protocols with an established small RNA cloning protocol 

(Hafner et al., 2012), for which we included an alkaline hydrolysis step to fragment total RNA 

prior to library preparation (“Hydro-Seq”) (developed by D. Briskin, M. Brown, T. Farazi, T. 

Tuschl, Methods 3.3). The latter RNA-sequencing method allowed us to investigate nuclear 

noncoding RNAs not covered by conventional RNA-seq protocols. tRNAs, snRNAs and 

snoRNAs have a size range between ~100-150 nt length, but current RNA sequencing 

methodologies, such as the Illumina TruSeq protocol, are optimized for size ranges between 200-

300 nts and do not appropriately cover RNAs of smaller sizes. Therefore, to capture small 

noncoding RNAs between 20-100 nts, we needed read coverage of shorter RNAs. Using alkaline 

hydrolysis, we include a fragmentation step of total RNA, selecting RNA of 20-30 nt-long 
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segments, before proceeding with adapter ligation and library preparation of small RNAs as 

previously described (Hafner et al., 2012).  

I analyzed gene expression of abundant noncoding RNAs by annotating all sequence 

reads in a hierarchical fashion, starting from the most abundant RNAs (rRNAs) to the less 

abundant ones (in descending order: 1= rRNA, 2=tRNA, 3=snRNA/snoRNA, 

4=transposon/repeats, 5=miscRNA (miRNAs, other ncRNAs). Detecting differential expression 

of rRNA genes can be challenging, as rRNA sequences are highly heterogeneous and lie within 

repetitive regions of the genome (Kominami et al., 1981; Sylvester et al., 1986; Tautz et al., 

1988). As a result current genome annotation databases, such as Flybase, RefSeq or Ensembl, are 

poorly curated and incomplete in their rRNA annotations. In addition, expression changes within 

regions of the large rRNA precursor transcript can be difficult to detect in the presence of the 

highly abundant, mature rRNAs. Failing initially to detect differential expression changes in 

rRNAs, we decided to create our own rRNA alignment index by selecting annotated Drosophila 

melanogaster rRNA sequences on NCBI and Flybase and blast them against the NCBI nucleotide 

database, thereby adding sequence-related insect rRNA sequences from the NCBI nucleotide 

database (Altschul et al., 1990). Hierarchical alignment against the most abundant RNAs showed 

specific upregulation of dNEF-sp mutants for rRNAs, one snoRNA cluster, and few transposons 

(Figure 3.25 A). 
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Figure 3.25 RNA-sequencing reveals accumulation of the ribosomal precursor 3’ETS in 

dNEF-sp mutants. (A) Hydro-seq scatterplots for different abundant noncoding RNAs. (i) NCBI 

and BLAST created rRNA sequences (ii) annotated tRNAs with +/- 20 nt extensions, (iii) Flybase 

annotated snRNAs and snoRNAs, (iv) Flybase annotated transposons. Mutant C04255 (dark 

orange), mutant M100 (bright orange), wild type control (black). (B-C) Log2 fold changes of read 

coverage and log10 read coverage along the 47S rRNA precursor. Mutant C04255 (dark orange), 

mutant M100 (bright orange), wild type control (grey), dNEF-sp genomic rescue (dark blue). (B) 

(i) Hydro-seq fold changes and coverage. (ii) Total RNA-seq fold changes and coverage. (C) (i) 

Total RNA-seq fold changes and coverage for adult actinGal4 UAS-dNEF-sp rescued mutant 

testes. (ii) poly(A) RNA-seq fold changes and coverage for adult actinGal4 UAS-dNEF-sp 

rescued mutant ovaries. (D) Total RNA-seq scatterplots for long abundant noncoding RNAs. 

Mutant C04255 (dark orange), mutant M100 (bright orange), wild type control (black). (i) rRNA 

reference, (ii) Flybase transposon annotation. Genotypes: heterozygotes: dNEF-sp
M100

/TM6B and 

dNEF-sp
C04255

/TM6B; homozygotes: dNEF-sp
M100

/dNEF-sp
M100

 and dNEF-sp
C04255

/dNEF-sp
C04255

, 

wild type: sequencing strain.  
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Using the new reference index I could detect more than 10-fold upregulation of specific 

rRNA regions within the 3’ETS of the 47S precursor [Figure 3.25 A(i)]. When visualizing the 

read coverage along the full 47S rRNA precursor transcript, I detected, reproducibly across 

datasets, a significant 200-1000 upregulation of the 3’ ETS in mutants (Figure 3.25 B). 

Visualization of the fold changes along the complete precursor at each nucleotide position 

revealed that fold change differences were highest closest to the mature 3’ end of 28S (200-1000 

fold), and smallest at the 5’ end of the 47S precursor (4-fold). In wild type 2
nd

 instar larvae the 

intergenic region between the 28S rRNA 3’ end and 18S rRNA 5’ end was close to undetectable 

with 0-5 reads on average along the entire region. In mutants the intergenic region was fully 

covered with several hundred reads directly downstream of the 3’ end of 28S, which slowly 

decreased towards the 5’ETS [Figure 3.25 B (i)]. The continuous decrease in 3’ETS coverage 

downstream of the 28S mature rRNA end supported an exonucleolytic trimming process instead 

of a precise cleavage event within the 3’ ETS intergenic region. We also noticed a smaller 

increase (4-fold) in the ITS1 and 5’ETS regions, which we attributed to an accumulation of the 

47S precursor. As expected, the processing defects were also observable by Illumina total RNA 

sequencing, however read coverages were less contiguous, most likely due to the presence of 

extensive secondary structures not resolved by the Illumina protocol, a higher number 

mismatches against the reference sequence due to sequencing errors in longer reads and 

nucleotide polymorphisms [Figure 3.25 B (ii)]. Despite a role of the yeast REX1 family member 

in 5S rRNA exonucleolytic trimming (Piper et al., 1983), we did not detect any differences in 

abundance or 3’ end length of 5S rRNAs for dNEF-sp mutants.  

Gene expression of other abundant noncoding RNAs, such as tRNAs (extended by +/-20 

nts), snoRNAs/snRNAs, transposon transcripts and annotated short noncoding RNAs (ncRNAs. 

e.g. miRNAs, piRNAs) did not show any significant differences in the relative abundance, except 

for one snoRNA cluster Me28S-G1083 and a few transposon groups (Copia, Cr1a, R1A1), which 
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were upregulated in mutants. The Me28S-G1083a-d C/D box snoRNA family of four snoRNAs is 

a conserved snoRNA family in humans (SNORD80) and S. cerevisae (snR60) (Yoshihama et al., 

2013). The Drosophila Me28S-G1083a-d (FBgn0082935) cluster is located in the Nop60b gene 

and predicted to methylate 28S rRNA at position G1083 (Huang et al., 2005; Riccardo et al., 

2007; Yoshihama et al., 2013). While the Me28S-G1083a-d cluster was expressed at low levels in 

wild type larvae (~100 library normalized read counts), it was reproducibly ~15-30 fold higher 

expressed (~1,500-3,000 library normalized read counts) in dNEF-sp mutants. However, although 

this was consistently observed for both mutants, we did not observe a similar upregulation after 

RNAi knockdown of dNEF-sp (next section). We also detected upregulation of a number of 

transposons, most notably Copia, which we also found to be upregulated in RNAi knockdowns of 

other rRNA processing factors (next section). We conclude that these are upregulated in response 

to cellular stress or rRNA processing defects.  

3.3.14 In vivo RNAi knockdown of dNEF-sp and Ddx51 accumulate extended 3’ETS 

precursors 

To test whether 3’ ETS extension was specific for dNEF-sp or whether upregulation could also be 

observed for other rRNA biogenesis factors, I selected a number of transgenic RNAi fly lines 

with genomically integrated short hairpin RNAs (UAS-shRNAs) and expressed these 

constitutively under the TubGal4 driver. Only transgenic lines for which knockdown was lethal at 

the 1
st
 or 2

nd
 instar larval stage were selected. This served as an internal control that shRNA 

knockdown was strong enough to cause a physiological effect on rRNA processing. The choice of 

this in vivo system was important, as in a previous dsRNA-mediated knockdowns of dNEF-sp in 

S2 cells (>10 fold depletion) I could not detect the accumulation of the 3’ETS in the rRNA 

precursors after 3 days incubation and cell viability was not affected (Figure 3.26 A). Tin contrast 

to the cell culture system, in vivo shRNA knockdown of dNEF-sp and other known rRNA 
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biogenesis factors resulted in 1
st
 or 2

nd
 instar larval death, confirming their essential function in 

vivo. Thus, screening for loss of viability ensured that the shRNA knockdown was strong enough 

to accumulate pre-RNA processing defects.  

To compare pre-rRNA processing defects resulting from loss-of-function dNEF-sp with 

the loss of other rRNA biogenesis components, I selected rRNA biogenesis factors characterized 

to be involved in the processing at different sites of the rRNA precursor (e.g. pre-18S, -5.8, -28S 

maturation). The following pre-rRNA processing factors were chosen, which did not possess 

RNA nuclease activity: CG5033 (homolog of mammalian BOP1 and yeast ERB1, required for 

processing of the 32S precursor to give mature 28S rRNA (Strezoska et al., 2000), CG8414 

[homolog of mammalian NOL9, involved in 5’-3’ 5.8S rRNA trimming (Heindl and Martinez, 

2010)], CG6937 [homolog of mammalian NIFK and yeast NOP15, involved in ITS1 processing 

(Tafforeau et al., 2013)], RpS3 (ribosomal protein, associates with early pre-90S ribosomal 

complexes), nop5 [homolog of mammalian NOP58, the box C/D snoRNP methylase, required for 

18S rRNA processing, accumulates the large 47S, and the 18S 34S and 30S precursors (Dragon et 

al., 2002; Tafforeau et al., 2013; Wu et al., 1998)]. In addition, we chose a number of RNA 

nucleases, such as the RNA exosome catalytic 3’-5’ exonucleolytic subunits, Dis3 and Rrp6, 

known to trim 5.8S precursor 3’ ends (Briggs et al., 1998), and two members of the DEDDh RNA 

nuclease family CG8414 (homolog of mammalian REXO4), and CG42666 (homolog of 

mammalian REXO1 and closest homolog to yeast Rex1) (Figure 3.26 B-F). In vivo shRNA 

knockdowns of the other two Rex family members in Drosophila melanogaster, CG12877 

(homolog of yeast Rex1p) and CG10214 (mammalian REXO2 homolog, yeast Rex2p) were 

viable (either because of insufficiently strong knockdowns or nonessentiality of the gene) and 

excluded from the analysis. Furthermore, the homologs of the two characterized protein factors 

involved in mammalian 28S rRNA 3’ETS end processing, DEAD box helicases DDX51 

(Drosophila homolog Dbp73D) and DDX27 (Drosophila homolog Rs1) were also chosen 
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(Kellner et al., 2015; Srivastava et al., 2010). For both genes shRNA knockdowns were lethal. As 

negative controls the non-essential RNase T-class PAN2 3’-5’ exonuclease, involved in poly(A) 

deadenylation, and the Drosophila non-essential white gene were chosen.   

Accumulation of the 3’ ETS was specific for dNEF-sp and Dbp73D (Figure 3.26 F). We 

did not detect processing defects for Rs1 under the tested conditions (Figure 3.26 G). None of the 

other rRNA biogenesis factors showed extended 3’ETS, but they did display accumulation at 

different sites or changes in overall abundance, which in some cases were easier to detect by 

Northern Blot than RNA-seq (Figure 3.26 B-G, Figure 3.28). None of the tested RNA 

exonucleases, including the RNA exosome components Dis3 and Rrp6 had an effect on 3’ETS 

removal (3.26 H). Under the tested conditions we also could not detect any involvement of the 

paralogous DEDDh RNA exonucleases (CG42666, CG12877) in 3’ETS trimming (Figure 3.26 

H). For all tested factors, including dNEF-sp, we could not detect significant differential 

expression of tRNAs, snRNAs, snoRNAs, or small noncoding RNAs (Figure 3.26 B). 
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Figure 3.26 Total RNA-seq and Hydro-seq of RNAi knockdowns of rRNA processing 

factors show a unique function of dNEF-sp in 3’ETS removal. (A) dsRNA-mediated 

knockdown of dNEF-sp in S2 cells. (i) Western blot of dsRNA knockdown in S2 cells. dNEF-sp 

is depleted >10 fold, the star marks an unspecific protein band which serves as internal loading 

control. (ii) Hydro-seq log2 fold changes of the 47S precursor for dNEF-sp knockdown and 

control. (B-E) In vivo RNAi mediated by UAS-shRNA expression under the TubGal4 driver for 

dNEF-sp and selected ribosomal biogenesis genes. (B) Log10 Hydro-seq scatterplots for different 

abundant noncoding RNAs for dNEF-sp and selected ribosomal processing and control genes. (i) 

NCBI and BLAST created rRNA sequences (ii) annotated tRNAs with +/- 20 nt extensions, (iii) 

Flybase annotated snRNAs and snoRNAs, (iv) Flybase annotated transposons. shRNA 

knockdown of dNEF-sp (orange), mutant M100 (bright orange), PAN2 control (black), RpS2 

(dark blue), nop5 (light blue), CG81414 (homolog of human NOL9, red), splicing factor pUf68 

(control, grey), CG6833 (homolog of human REXO4, light green), CG5033 (homolog of human 

BOP1, violet), CG42666 (homolog of human REXO1), plotted in correlation to shRNA 

knockdown of the white gene as control (white). (C-D) Log2 fold changes of read coverage over 

shRNA knockdown of white (control) across the 47S ribosomal precursor and log10 read 

coverage. (C) Hydro-seq fold changes and coverage for the same genes and color code as in (B). 

(D) Total RNA-seq fold changes and coverage for dNEF-sp (orange), RpS3 (dark blue), nop5 

(light blue), CG6937 (NIFK), pUF68 (grey), CG6833 (light green), CG42666 (dark green). (E) 

Total RNA-seq scatterplots for long abundant noncoding RNAs for shRNA knockdowns shown 

in (D). (i) rRNA reference, (ii) Flybase transposon annotation, plotted in correlation to shRNA 

knockdown of white (shRNA w). (F-H) Total RNA-seq scatterplots for rRNAs (in log10 scale), 

log10 coverage along the 47S rRNA precursor with magnified 28S-3’ETS border, and log2 fold 

change difference plots along the 47S rRNA precursor for a number of shRNA in vivo 

knockdowns under the TubGal4 driver. For all D. melanogaster genes the human homolog is 

given in apprentices. (F) rRNA biogenesis factors: dNEF-sp (orange), Dbp73D (DDX51) (red), 

nop5 (NOP58) (blue), CG6937 (NIFK) (green), control white (black), control sequencing strain 

(grey). (G) dNEF-sp (orange), Rs1 (DDX27) (red), CG5033 (BOP1) (blue), RpS3 (green), 

CG8414 (NOL9), control white (black), control sequencing strain (grey). (H) dNEF-sp (orange), 

Dis3 (red), Rrp6 (blue), CG6833 (REXO4), CG12877 (REXO1), control white (black), PAN2 

(grey). Genotypes: UAS-shRNA/Cyo, TubGal4/+ or +/Cyo, TubGal4/UAS-shRNA. (I) Left 

panel: mRNA-seq levels (in rpkm) of white and other gene knockdowns under the TubulinGal4 

driver. Known genes involved in rRNA biogenesis or belonging to RNA exonuclease families 

were selected and compared to mRNA expression levels of dNEF-sp
E497K

 and dNEF-sp
PB

 

mutants. All selected knockdowns (except for white, PAN2, selected controls, and drosha) caused 

death at the first or second developmental larval stage. Right panel: Relative repression of genes 

in the respective knockdowns compared to control white shRNA knockdown larvae.  
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Upregulation of a number of transposons was observed in knockdowns of dNEF-sp and 

other rRNA biogenesis factors. Most upregulated were the transposons Copia, INE1 and accord. 

Environmental stress is known to activate transposons such as Copia, and the expression may be a 

consequence of cellular stress or increased genomic instability induced by defects in rRNA 

biogenesis (Capy et al., 2000; Strand and McDonald, 1985). 

3.3.15 Loss-of-function of dNEF-sp does not affect mRNA expression 

To investigate changes in mRNA metabolic pathways in dNEF-sp loss-of-function mutants I 

conducted differential gene expression analysis from mRNA-seq data of knockdowns of dNEF-sp 

(3 biological replicates) and the white gene (2 biological replicates). This had the advantage that, 

in contrast to mRNA-seq comparisons of the genetic mutants C04255 and M100, these had the 

same genetic background in all experiments and therefore less expression noise compared to 

control conditions. dNEF-sp expression was downregulated 10-fold in dNEF-sp knockdowns in 

all three biological replicates (control ~20  rpkm, dNEF-sp RNAi ~2 rpkm). dNEF-sp 

knockdowns displayed less than 250 genes differentially expressed genes as assessed by different 

differential gene expression analysis methods (cuffdiff and DEseq/HTSeq) (Anders and Huber, 

2010; Trapnell et al., 2012b). Only 223 genes showed significant differential expression (q value 

≤ 0.05); of these 121 were upregulated while 102 were downregulated compared to white controls 

(Figure 3.27 A). Most enriched Gene Ontology and REACTOME pathways for upregulated genes 

were involved in cellular stress, immune and humoral response, and DNA repair (Ashburner et 

al., 2000; Croft et al., 2014). Most significantly, the components of the nonhomologous end 

joining (NHEJ) dsDNA repair pathway, the MRN complex [including Rad50, meiotic 

recombination 11 (mre11), and Nibrin (Nbs) (Ciapponi et al., 2006; van den Bosch et al., 2003)], 

as well as replication protein A 70 (RpA-70/Ku70), and Ku80 (XRCC5 homolog) (Fell and 

Schild-Poulter, 2015) were upregulated ~6-fold in mutants (Figure 3.27 D). Of the 102 
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downregulated genes most annotated ones were involved in cuticle/chitin production pathways, 

lipid digestions, as well as a number of (metallo-)peptidases were enriched. 

Figure 3.27 Differential mRNA expression upon dNEF-sp knockdown in Drosophila second 

instar larvae. (A) MA plot (log2 ratios over log10 mean average between the groups) of mRNA 

gene expression for dNEF-sp over white knockdown calculated with cuffdiff (Trapnell et al., 

2012a). (B) Upregulated in mutants, enriched pathways in Gene Ontology pathway analysis. (C) 

GOrilla analysis of differentially expressed genes in dNEF-sp knockdown 2
nd

 instar larvae (Eden 

et al., 2009). (D) Components of the nonhomologous healing and end joining (NHEJ) dsDNA 

damage repair pathway are upregulated by mRNA-seq more than 4-fold in dNEF-sp knockdown 

2
nd

 instar larvae. Shown are the mRNA expression of NHEJ components in rpkm for the control 

white (black) and dNEF-sp (grey) shRNA knockdowns (left panel), and their relative fold change 

expression in mutants over wild type (right panel).  

In conclusion, surprisingly few protein-coding genes were differentially expressed in 

mutants versus wild type larvae. These were involved in pathways related to energy supply, 

cytotoxic stress response and dsDNA repair (Figure 3.27 B). This data agreed with our previous 
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finding that dsDNA breaks increased in mutant testes (Figure 3.20). The majority of protein-

coding genes, including genes involved in ribosomal biogenesis, did not change in their 

expression. Thus, we concluded that loss-of-function of dNEF-sp does not globally influence 

mRNA expression pathways and interpret the observed expression changes as a result of a 

general cell stress in response to deficient rRNA biogenesis, increased genomic instability, and 

deficient energy supply. 

 

3.3.16 Northern Blot analysis shows rRNA precursor intermediates accumulate with a 

distribution of sizes 

RNA-sequencing gave an unbiased view of genomic targets and allowed the detection of 

processing defects. However, in its two-dimensional information content it is difficult to estimate 

the accumulation of different intermediates and precursors of different sizes as seen in rRNA 

biogenesis. To address the size distribution of the 3’ETS misprocessed transcripts I carried out 

Northern blot analysis on total RNA isolated from 2
nd

 instar larvae to (1) confirm the defects 

detected by RNA-seq and (2) to gain further insights into the size distribution of the rRNA 

precursors. Probes specific to the 3’ETS showed a specific signal for homozygous larvae in both 

mutants. Misprocessed rRNA precursors showed a range of products between ~6 and 9 kb in size 

(by ssRNA size ladder), and around 2.5 kb. These corresponded to the full size 7.3 kb precursor 

and the 4.6 kb precursor intermediate b (containing ITS1, 5.8S, ITS2, and 28S) and the mature 

28Sb rRNA (2.3 kb) (Long and Dawid, 1980) (Figure 3.28 A,B). Insect rRNAs contain a 

hydrolytic cleavage site in the center of 28S rRNA that generates two 28S fragments, 28Sa and 

28Sb, which run at similar electrophoretic mobility as 18S rRNA (Jordan, 1975) (Figure 3.2). 

Confirming the RNA-seq results, misprocessed intermediates did not have a defined size, but 

displayed a continuous size range. Fragments with length of the ~28Sb rRNA were longer in 

length, above the correctly processed mature 28Sb rRNA. 
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Figure 3.28 dNEF-sp mutants accumulate a distribution of rRNA precursor intermediates. 

Northern Blot analysis of rRNA precursors in mutant 2
nd

 instar larvae. (A) (i) Location of 

Northern blot probes are shown on the 47S pre-rRNA precursor in the 5’ETS, ITS1, mature 18A 

and 28S rRNA, 3’ETS (unique sequence, labeled 3’ETS specific), 3’ETS (repetitive sequence 

within the 3’ETS, labeled 3’ETS repeat); (ii) sizes of different 28S rRNA precursors (A to C). (B) 

Northern Blot of both genetic mutants of dNEF-sp, RNA is loaded from homozygotes (-/-), 

heterozygotes (-/+) and wild type control 2
nd

 instar larvae. Blot was stripped and reprobed for all 

probes. (C-D) Northern Blots of shRNA-mediated knockdowns of known ribosomal RNA 

processing genes [CG6937 (MKI67IP), nop5, RpS3, CG8414 (NOL9)], known factors involved 

in 28S pre-RNA 3’ maturation:  Dbp73D (DDX51) and Rs1 (DDX27). Also tested is total RNA 

isolated from shRNA knockdowns of the RNA exosome nucleases Rrp6 and Dis3. In (C) shRNA 

knockdowns are also compared with the genetic loss-of-function dNEF-sp mutants (homozygous 

M100 and C04255). shRNA knockdown of the white gene and the polyA mRNA-specific 

DEDDh RNA exonuclease Pan2 serve as controls. Genotypes: heterozygotes: dNEF-

sp
M100

/TM6B and dNEF-sp
C04255

/TM6B; homozygotes: dNEF-sp
M100

/dNEF-sp
M100

 and dNEF-

sp
C04255

/dNEF-sp
C04255

, wild type: sequencing strain. shRNA knockdowns: UAS-shRNA/Cyo, 

TubGal4/+ or +/Cyo; TubGal4/UAS-shRNA. 
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From the processing patterns it remains unclear whether 28S rRNA processing 

continuous at the 5’ end keeping the extended 3’ETS trailers until the final step or whether the 2.3 

kb fragments of 28Sb rRNA is the result of an early hydrolytic cleavage of the misprocessed 

precursor. Because of the hydrolytic cleavage of insect 28S rRNA one cannot unequivocally 

exclude either, however, we found that this effect was specific for dNEF-sp and not observed for 

Dbp73D RNA helicase, the Ddx51 homolog involved in 28S rRNA processing (Figure 3.28 C), 

which may suggest that 28S rRNA processing can partially continue to the 28Sb product.   

As detected by RNA-seq, processing defects were several fold stronger for the transposon 

insertion line C04255 compared to the EMS point mutant M100. Furthermore, probes specific to 

ITS1 revealed the accumulation of 4.6 kb precursors. In mammals and yeast, maturation of the 5′ 

end of the 5.8S rRNA is coordinated with formation of the 3′ end of the 25S/28S rRNA and both 

events are coupled (Henras et al., 2014). The accumulation of the ITS1 (Figure 3.28 B-C) and 

ITS2 suggest a partial coupling of 5’ end 5.8S and 3’ end 28S formation in Drosophila similar to 

U8 snoRNA-mediated processing described in Xen. laevis (Peculis and Steitz, 1993).   

Comparison of pre-rRNA processing defects in shRNAs knockdowns for the panel of 

rRNA biogenesis factors and dNEF-sp showed a similar accumulation of extended 3’ETS 

precursors in the shRNA mediated knockdown of dNEF-sp. Notably, by Northern Blot analysis 

some defects on pre-rRNA processing were easier to detect than in a two-dimensional 

representation resulting from the RNA-seq analysis. Perhaps in a tiling array-like method, 

selecting short regions within the rRNA precursors and mapping RNA-seq read abundances 

against these will allow comparisons of the relative rRNA precursor ratios. Accumulation of 

intermediates was observed for all tested biogenesis factors, confirming that knockdown of the 

selected proteins led to pre-rRNA processing defects (Figure 3.28 C). Furthermore, Dbp73D also 

displayed a range of accumulated 3’ETS extended precursors at 9 kb, confirming an early role of 

Dbp73D in 3’ETS removal (Figure 3.28 C). In contrast to dNEF-sp, accumulation of 
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intermediates of 6 and 2.5 kb were not observed for Dbp73D knockdowns, suggesting that dNEF-

sp and Dbp73D action are not coupled and some defective precursors can be further processed in 

dNEF-sp mutants.  

 

3.3.17 dNEF-sp crosslinks to RNA in vivo  

To investigate whether dNEF-sp binds RNA in vivo, I designed several transient transfection 

constructs of dNEF-sp with a mutated catalytic domain and an N-terminal HA/FLAG-tag, which 

allowed immunoprecipitation of the tagged protein using a monoclonal anti-FLAG antibody. 

Colloidal blue staining could detect immunoprecipitated and FLAG-eluted HA/FLAG-dNEF-sp 

protein (Figure 3.29 A). Immunoprecipitation of 4-SU labeled RNA-protein complexes followed 

by RNA radiolabeling (PAR-CLIP) showed that dNEF-sp protein immunoprecipitated 

crosslinked RNA (Figure 3.29 B). A second endogenous and highly abundant protein in S2 cells, 

recognized by FLAG monoclonal antibodies, was also immunoprecipitated and displayed an 

RNA crosslinking band (Figure 3.29 B). Currently, large-scale PAR-CLIP and protein mass 

spectrometry experiments are underway to identify bound RNA fragments and protein complexes 

by next generation sequencing and quantitative mass spectrometry. In addition to confirming the 

direct binding of NEF-sp to the 3’ETS and identifying additional RNA targets transcriptome-

wide, PAR-CLIP analysis will elucidate the consensus binding motif required for dNEF-sp to 

recognize its targets. Overall, our analysis will characterize the interactions of dNEF-sp with its 

targets and protein partners and define the molecular complex during ribosome biogenesis.  
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Figure 3.29 dNEF-sp crosslinks RNA in vivo. Immunoprecipitation of HA/FLAG-dNEF-sp 

mutants and untransfected S2 cells as control. (A) Colloidal Blue staining of FLAG-

immunoprecipitated and FLAG peptide- eluted dNEF-sp
DEDAH

 protein and control untransfected 

S2 cells. Residual antibody eluted is marked with a star. An unknown protein of ~50 kDa is 

known to immunoprecipitate with FLAG antibody from S2 cells (Miyoshi et al., 2013). (B) (i) 

Western blot of FLAG immunoprecipitates crosslinked S2 cell lysates expressing dNEF-sp
DADAH

 

mutant protein and untransfected S2 cells. (ii) Phosphorimage of RNA-radiolabeled FLAG 

immunoprecipitates from (i). 

3.3.18 dNEF-sp mutant cells accumulate unprocessed 3’ETS in the nucleolus and display 

increased nucleolar size 

While examining
 
second instar larval tissues we noticed an increased nucleolar size in 

homozygous mutant gut cells. In agreement with this observation a previous screen for regulators 

of nucleolar size in S2 cells had found that dNEF-sp knockdown increased nucleolar size 2-fold 

(Neumuller et al., 2013). To measure the extent to which nucleolar structure was affected in 

dNEF-sp deficient cells in vivo, we used clonal expression of RNAi mediated by shRNA 

knockdowns. shRNA knockdown of dNEF-sp under the hsFlp-tubGal4 driver resulted in 4-fold 

increase of the nucleolus in NEF-sp knockdown cells (Figure 3.30 A).  
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Figure 3.30 Loss-of-function of dNEF-sp increases nucleolar size in Drosophila 2
nd

 instar 

larvae. (A) hsFlp-mediated shRNA knockdown of dNEF-sp in mid gut cells of 2
nd

 instar larvae. 

Cells expressing UAS-shRNA against dNEF-sp also express UAS-Red47. (i) Confocal 3-color 

image of mutant and wild type mid gut cells. Mutant cells are red (RFP), the nucleolus is marked 

with Fibrillarin (Fib, green), the nucleus stained with Hoechst dye (blue). (i’) Nuclear staining 

with Hoechst shows increased nucleolar size (absence of Hoechst) for shRNA mediated RNAi 

knockdown cells (marked with red arrows). (j) Quantification of the ratio of nuclear/nucleolar 

area size for wild type and mutant cells in mid gut cells. Wild type cells usually have a ratio Area 

(nucleus)/ Area (nucleolus) 8:1, while mutant cells display a ratio of 2:1, i.e. in mutant cells the 

nucleolus occupies half of the nucleus and is ~4 times larger than in wild type cells. (B) 

Fluorescent RNA in situ hybridization probing against the repeat sequence in the 3’ETS (red) in a 

dNEF-sp mutant background expressing RpS2-GFP (green). Hoechst dye is shown in blue. In 

homozygous mutants the unprocessed 3’ETS is retained in the nucleolus, which increases in size. 

In heterozygous mutants (viable, no phenotypes), no unprocessed 3’ETS can be detected and 

nucleolar size is unchanged. Genotypes: (A) hsFlp; UAS-shRNA dNEF-sp (P{KK101144}VIE-

260B)/Cyo, UAS#Red47a#1 tub<+GFP<Gal4/TM6B. (B) homozygotes: RpS2-GFP/Cyo, dNEF-

sp
C04255

/dNEF-sp
C04255

; heterozygotes: RpS2-GFP/Cyo, dNEF-sp
C04255

/TM6B.  

Since the Northern Blot results indicated aberrant 28S fragments close to the size of 

mature 28S rRNA, we were curious to see whether loss-of-function of dNEF-sp resulted in 

misprocessed 28S rRNAs being exported to the cytoplasm or whether these aberrant 28S 

precursor transcripts were retained in the nucleolus. Therefore, to assess 3’ETS export we 

synthesized in situ LNA probes specific to a repeated sequence within 3’ETS, which allowed a 

natural amplification of the signal. RNA fluorescent in situ hybridization (RNA FISH) 

experiments showed specific signal of the extended 3’ETS region only in homozygous mutants, 
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where it was exclusively confined to the nucleolus, while no signal was detected in heterozygous 

larvae. Hence, aberrant 3’ETS-extended 28S rRNA precursors were not exported from the 

nucleolus. The increase in nucleolar size may therefore be the result of the accumulation of 

incorrectly processed 3’ETS fragments (Figure 3.30 B).  

3.3.19 Loss-of-function of dNEF-sp impairs ribosome export 

In order to determine whether misprocessing also affects ribosome export we combined a RpS2-

GFP reporter line with our mutant backgrounds (Buszczak et al., 2007). Heterozygote flies, which 

were essentially wild type in viability and phenotype, displayed predominantly cytoplasmic 

localization of the GFP-tagged ribosomal proteins (Figure 3.31). In contrast, homozygous 

mutants showed nuclear/nucleolar retention of RpS2-GFP and retention of RpL13A-GFP, 

although nucleolar retention of Rpl13A was only found in few mutant cells. Nucleolar retention 

of RpS2-GFP most strongly accumulated in foregut cells, but was also observed in other tissues, 

such as salivary glands and fat cells (Figure 3.31 A-C). RNA FISH against the 3’ETS showed that 

the 3’ETS strongly accumulated in these tissues (Figure 3.31 D-F). In addition to an increased 

nucleolus, overall cell morphology was also deformed and nuclei were larger relative to the cell 

body (Figure 3.31 D). In all tissues, processing defects of the 3’ETS affected export of the small 

ribosomal subunits (RpS2-GFP) and showed stronger nucleolar staining of 18S rRNA (Figure 

3.31 D-E). RNA FISH against mature 28S rRNA did not show, apart from a larger nucleolar size 

in homozygous mutants, significant nucleolar accumulation in mutants (Figure 3.31 F). Together 

with the data on RpL13A, these results suggested to us that the observed phenotypes of 3’ETS 

misprocessing took place early in rRNA biogenesis, thereby affecting the export of the small 

ribosomal subunit first.  
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Figure 3.31 Ribosome export is impaired in dNEF-sp mutants. (A-B) RpS2-GFP protein trap 

in the dNEF-sp mutant backgrounds shows nucleolar/nuclear retention of RpS2-GFP in 

homozygous mutants. In heterozygous mutants (no phenotypes, viable) RpS2-GFP is exported to 

the cytoplasm. Shown are RpS2-GFP (green) and DNA staining (Hoechst, blue). (A) (i,i’) dNEF-

sp
C04255

/dNEF-sp
C04255

, fat body; (j,j’) dNEF-sp
C04255

/TM6B, fat body. (B) (i,i’) dNEF-

sp
M100

/TM6B, salivary glands; (j,j’) dNEF-sp
M100

/dNEF-sp
M100

, salivary glands. (C) In vivo 

localization of RpL13A-GFP in the C04255 dNEF-sp mutant background shows 

nucleolar/nuclear retention of RpL13A-GFP in homozygous mutants for some cells, foregut. (D-

E) RNA FISH of the 3’ETS (red) and mature 18S rRNA (green) in foregut cells in homozygous 

and heterozygous C04255 mutants. 18S rRNA shows nucleolar accumulation, the misprocessed 

3’ETS RNA is not exported. Cells show increased nucleolar size and altered nuclear and overall 

cell morphology. (F) RNA FISH of the 3’ETS (red) and mature 28S rRNA (green) shows nuclear 

retention of the 3’ETS, but unaltered distribution of mature 28S rRNA.  
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28S rRNA is incorporated into the large ribosomal subunit and the small and large subunits 

are exported in separate pathways, with the small subunit undergoing export more rapidly (Figure 

3.1). In light of our data, we interpret the observed nucleolar retention of the small ribosomal 

subunit that either removal of 3’ETS takes place early on in rRNA biogenesis and thus faulty 

processing affects early biogenesis or, alternatively, that accumulation of defective 3’ETS 

precursors sends a negative feedback to halt export of the small ribosomal subunit. 

3.4 Discussion 

3.4.1 3’-5’ exonucleolytic trimming of the 3’ETS of 47S pre-rRNA is a conserved 

mechanism across lower and higher eukaryotes 

In this chapter I identified and characterized the DEDDh 3’-5’ RNA exonuclease dNEF-sp and 

showed that it is involved in the exonucleolytic trimming of the 3’ETS rRNA precursor. I 

characterized the function of dNEF-sp in vivo and in vitro and showed that 3’ETS removal is an 

essential process in Drosophila melanogaster. In absence of dNEF-sp and other factors required 

for 3’ETS removal, such as Dbp73D (DDX51), misprocessed rRNA precursor transcripts 

accumulate in the nucleolus and impair ribosome export to the cytoplasm. Through an unbiased 

RNA sequencing approach, profiling small and large noncoding RNAs, we investigated abundant 

noncoding RNAs transcriptome-wide and studied targets and regulatory effects of dNEF-sp and 

other ribosomal RNA processing factors. I found that dNEF-sp is unique in its role of removing 

the 3’ETS in Drosophila melanogaster. The conserved expression and nucleolar localization of 

the Drosophila and human NEF-sp homologs may imply a conserved function of NEF-sp 

proteins in higher eukaryotes. Contrary to previous models of 28S rRNA 3’ end maturation, we 

find that 3’-5’ exonucleolytic trimming is an essential process during 28S rRNA biogenesis in 

higher eukaryotes. dNEF-sp is the enzyme responsible for 28S rRNA 3’ end trimming and 

generation of mature 28S rRNA ends in Drosophila melanogaster.  In S. cerevisiae the distant 
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homolog of NEF-sp, Rex1p, generates the mature 28S rRNA 3’ end by exonucleolytically 

trimming the 28S rRNA precursors after co-transcriptional cleavage of Rnt1p that releases the 

37S rRNA precursor [Figure 3.31 A (i)]. Future studies of the human and mouse NEF-sp 

homologs, which have been briefly started here, will be needed to answer the role of NEF-sp in 

mammalian rRNA biogenesis, its tissue-specific expression, and how its domain divergence from 

lower to higher eukaryotes has evolved to recognize its RNA targets. Furthermore, biochemical 

purifications of the protein complex of NEF-sp are the next steps to yield a molecular 

understanding of the recruitment and processing factors involved in 3’ETS removal and to 

delineate the precise mechanism of release of the 47S rRNA precursor. 

In higher eukaryotes, a direct endonucleolytic cleavage is thought to occur, in which 

cleavage is guided by the C/D box snoRNA U8 (Peculis, 1997). The enzymatic factor catalyzing 

such cleavage has not been characterized so far and the mammalian and the Drosophila homologs 

of Rnt1p, Drosha, do not have a role in 3’ETS cleavage (Chong et al., 2008; Smibert et al., 2011). 

The DEAD box helicase Ddx51 has previously been shown to be required for correct 3’ end 

processing by unwinding and releasing U8 snoRNA from 5.8S-28S-binding (Srivastava et al., 

2010) [Figure 3.31 A (ii)]. In agreement with the mammalian Ddx51 function, we find that the 

function of the Drosophila homolog Dbp73D is conserved and knockdown of Dbp73D displays 

3’ETS processing defects similar to dNEF-sp [Figure 3.31 A (iii)].  
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Figure 3.32 Current view of 28S rRNA 3’ end maturation in S. cerevisiae, humans, and 

Drosophila. (A) Schematic comparison of 28S rRNA 3’ end maturation in S. cerevisiae, human 

and Drosophila. (i) In S. cerevisiae Rnt1p endonucleolytically cleaves the 3’ETS and releases the 

37S precursor transcript. Rex1p trims the residual 3’ETS overhangs to generate the mature 3’ end 

of 28S rRNA. (ii) In humans and other mammalians, as well as in Xenopus laevis, a homologous 

endonucleolytic cleavage reaction by the Rnt1p homolog DROSHA has not been identified, and 

cleavage or processing factors maturing the 3’end of 28S rRNA remain uncharacterized. U8 

snoRNA is known to basepair to 28S rRNA and guides a proposed direct endonucleolytic 

cleavage reaction at the 3’ end of 28S rRNA. The DEAD box helicase DDX51 is required for 

unwinding of U8 snoRNA and release of the rRNA precursor. DDX27 has been implicated in 

3’ETS end definition and knockdowns of DDX27 display precursors, which extend beyond the 

defined end of the 3’ETS. (iii) In Drosophila melanogaster, a conserved U8 snoRNA homolog 

has been identified. This study shows that the DDX51 homolog Dbp73D is functionally 

conserved and knockdowns display, like the mammalian DDX51 protein, extended 3’ETS 

precursors in D. melanogaster. Loss-of-function dNEF-sp mutants accumulate extended 3’ETS 

rRNA precursors, showing that dNEF-sp exonucleolytic processing is a required step in 28S 

3’end maturation in D. melanogaster. (B) RNA secondary structure of the mature 3’ end of 

human and Drosophila 28S rRNA show that the nucleotides at the mature 3’ end differ, however 

secondary structure remains conserved. Figure adapted from (Anger et al., 2013).  



214 

Our study provides a fresh perspective on 28S rRNA biogenesis in higher eukaryotes. 

Previous works suggested a model in which a precise endonucleolytic cleavage event at the 28S-

3’ETS transition released the mature 3’ end of 28S rRNA, guided by U8 snoRNA. However, our 

data clearly supports a model that requires exonucleolytic trimming to generate mature 3’ends of 

28S rRNAs, similar to S. cerevisae. The conserved base-pairing interactions of U8 snoRNA may 

ensure the required specificity to define the mature 28S rRNA end. In support of such a 

mechanism, in vivo transcripts have been found to readily extend beyond the T1 site in Xenopus 

laevis and previous work found that endonucleolytic cleavage was followed by rapid 

exonucleolytic trimming to generate the 40S precursors (Labhart and Reeder, 1986). Processing 

at the cleavage site of mature 28S 3’ ends (T1) in Xenopus laevis (the mature 28S 3’ end site) also 

takes place in vitro in fractions of impure albumin serum, suggesting that the nucleolytic reaction 

requires little or none sequence specificity to generate the mature 28S 3’ ends (Labhart and 

Reeder, 1986). Given the heterogeneity and lack of conservation of 3’ETS sequences across 

organisms (Figure 3.31 B), an exonucleolytic mechanism may also be preferred over an 

endonucleolytic cleavage, which requires specific base pair recognition and conservation.  

3.4.2 The role of tissue-specific levels of rRNA biogenesis factors 

dNEF-sp exhibits high tissue specificity, which is conserved across metazoans. Every cell needs 

to synthesize rRNAs abundantly and general pre-rRNA processing factors involved in cleavage 

and maturation of rRNAs usually do not show regulated gene expression across tissues. Thus the 

restricted expression of one of its essential rRNA processing factor is mechanistically unexpected 

and points towards tissue-specific regulation of rRNA biogenesis.  

Posttranscriptional gene regulation of rRNA modifications in different cell types and 

tissues is known to lead to cell-type specific variations in processing pathways and rRNA 

intermediates. Heterogeneity of rRNA modifications and changing ratios of 5.8SS/L rRNA in 
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different cell types are among the reported examples (Lafontaine, 2015; Mullineux and 

Lafontaine, 2012). Furthermore, tailoring translational efficiency of ribosomes to specific mRNA 

targets by tissue-specific incorporation of ribosomal proteins (or in response to cytosolic stress) 

has also recently been reported (Kondrashov et al., 2011; Vesper et al., 2011; Zhang et al., 

2015b). However, tissue-specific regulation of rRNA biogenesis remains currently unknown.  

The tissue-specific expression of dNEF-sp may suggest (1) a tissue-specific 

regulation/function or targets of dNEF-sp or (2) 28S rRNA 3’ end maturation requires the 

involvement of other nucleases, which have overlapping specificities. In our study we have not 

found tissue-specific RNA targets of dNEF-sp. Maturation of the 3’ETS through several RNA 

exonuclease with some overlapping specificity would allow tissue-specific regulation of 28S 

rRNA maturation through e.g. signaling pathways that modulate activity of rRNA biogenesis 

factors. Thereby they can directly influence posttranscriptional processing steps in rRNA 

biogenesis according to the demands of the specific cell type or tissue. However, in this study, we 

could not identify any overlapping specificities of NEF-sp and its family paralogs, or other 3’-5’ 

RNA exonucleases, such as those of the RNA exosome Rrp6 and Dis3, which have been 

described in 5.8S 3’ end maturation. In conclusion, we find that, at present, the role of dNEF-sp 

in 3’ETS maturation of 28S rRNA is unique.  
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4 Conclusion 

In this short chapter I aim to provide a brief summary and highlight unanswered questions this 

work raises. In chapter 2, I studied characteristics of PTGR from a genome-wide perspective. The 

central role of PTGR in cellular metabolism can be appreciated by considering the large number 

of proteins interacting with RNA. Over 1,500 of the 20,500 unique human proteins are directly 

contributing to PTGR. RBPs form many distinct families with few members and human RBPs 

can be grouped into ~1,100 paralogous families related by greater than 20% sequence identity.  

The complexity of PTGR was established early in evolutionary time scales. The earliest 

common ancestor of metazoans had a set of ~200 RBPs (Kerner et al., 2011), and of the ~1,100 

human RBP families ~600 families have homologs in yeast. Consistent with their high degree of 

conservation, most RBPs (98%) do not display highly tissue-specific expression, but they are 

abundant and make up to 25% of the expressed transcripts encoding for cellular proteins. 

Interestingly, dysregulation of ubiquitous and general components in PTGR often shows highly 

tissue-specific phenotypes; for instance defects involving mRBPs are most frequently associated 

with neurological diseases, especially of the peripheral nervous system.  

Given that the common RBD folds have been characterized and the majority of RBPs do 

not fall into large families, novel RBPs are most probably singular or have recently evolved 

RNA-binding activity independent of their family. This makes RBP prediction challenging and 

leaves experimental approaches as the most suitable strategy for their identification. Genome-

wide experimental methods such as covalent RNA-protein cross-linking coupled with high-

throughput sequencing to identify RNA target sites, or combined with mass spectrometric 

approaches to identify proteome-wide RBPs cross-linked to RNAs, will advance these efforts 

towards the elucidation of novel RBP and with increasing sensitivity of these experimental 

approaches, the number of RBPs is likely to grow. Based on our current collective data and recent 

experimental genome-wide studies, which added less than <50 novel RBPs to our census, we 
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believe that most RBPs or their homologs (>95%) have been identified and we will see fewer 

novel discoveries in the future. Even at present though, the precise biological functions and RNA 

targets for the majority (>50%) of the known human RBPs have not been characterized. For 

example, rRNA and tRNA-biogenesis components and their targets are often inferred by 

homology, as well as many of the proteins with canonical RBDs have not been characterized in 

humans. Some of the RNA regulatory processes, such as noncoding RNA maturation pathways, 

control of RNA transport, the role of RNA modifications, sensing of intracellular RNA, RNA as 

structural component for genome organization (Ding et al., 2012) or regulation (Cech and Steitz, 

2014), as well as mechanisms of RNA/RNP clearance, remain poorly understood. Thus, the main 

challenges in the field are the characterization of these processes and the mechanisms leading to 

human disease.  

Much of the dynamics and the integration of co-regulatory functions of RBPs in PTGR 

regulation remain to be elucidated. We are still in the process of profiling the targets and binding 

affinities for most RBPs. In the future, with a more detailed knowledge of targets and co-

regulated expression of RBPs in developmental processes, we can begin to study their integration 

into different regulatory pathways, and ask questions on how for example signaling pathways and 

innate immunity are connected to RNA metabolism and neuroplasticity (Figure 2.11). 

Stoichiometries and time scales strongly determine regulatory outcome, thus studying dynamic 

assembly processes in RBP regulation will be important to understand the final outcome in gene 

expression control.  

Through in silico investigation of novel PTGR factors I identified and characterized two 

unknown proteins, the RG/RGG-rich RBP FAM98A and the conserved 3’-5’ RNA exonuclease 

NEF-sp. Our findings shed light on one of the members of the poorly characterized DEDDh 

RNase T exonuclease class and investigated in detail the mechanism of 3’ETS 28S rRNA 

maturation in higher eukaryotes. We show here that 28S rRNA undergoes exonucleolytic 



218 

trimming, a process conserved from yeast to higher eukaryotes. Still the question remains how the 

pre-rRNA precursor transcript is released from RNA Pol I in higher eukaryotes: is a separate 

endonucleolytic cleavage required or is transcription termination, followed by rapid 

exonucleolytic trimming, sufficient to release the precursor transcript? The latter would explain 

the absence of a homologous enzymatic function of the Rnt1p homolog Drosha. The evolution of 

a distinct RNA endonuclease, which carries out 3’ETS nucleolytic cleavage in higher eukaryotes, 

but not in S. cerevisiae, seems unlikely for a highly conserved mechanism such as rRNA 

biogenesis. Perhaps an intrinsic nucleolytic mechanism of the Pol I complex, in combination with 

other protein factors, could carry out an equivalent cleavage reaction.  

Our work also raises the question of the tissue-specific requirement for high levels of 

NEF-sp in germ cells. NEF-sp could either function in gonad-specific regulation of rRNA 

biogenesis or serve an additional gonad-specific function in different noncoding RNA regulatory 

pathways. In addition, the distinct subcellular localization of dNEF-sp during terminal 

differentiation points to a specific role of NEF-sp in the final stages of spermatid differentiation. 

Given the structural differences between the Drosophila and vertebrate NEF-sp proteins, 

the characterization of NEF-sp in higher organisms will be important to understand its function 

and conservation. NEF-sp is a relatively newly expanded RNA nuclease family that evolved from 

an old RNase T family. What is the role of the newly evolved RRM domains? None of the other 

DEDDh RNA exonuclease members or any other RNA exonucleases share structural similarities 

with NEF-sp proteins, making it a unique enzymatic protein family. Furthermore, how are the 

domain differences between invertebrates and vertebrates explained and how does that alter target 

recognition? It remains to be asked whether substrates are directly recognized through the RBDs 

of NEF-sp or whether NEF-sp is recruited by additional regulatory factors.  

Finally, it is likely that 3’ETS exonucleolytic trimming is executed by several RNA 

exonucleases, as redundancies in exonucleolytic trimming have been observed for several pre-
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rRNA substrates, such as e.g. 5’exonucleolytic trimming of 5.8S pre-rRNA through Rrp17 and 

Xrn1 (Oeffinger et al., 2007).  

Another interesting aspect of this project has been to understand the role of RNA 

exonucleases regulating pre-rRNA maturation. As one of the earliest steps in rRNA maturation, 

3’ETS exonucleolytic trimming regulates rRNA production. In contrast to one specific RNA 

endonucleolytic event, the utilization of a number of RNA exonucleases allows for a complex 

posttranscriptional control of rRNA processing. The control of a number of exonucleases to carry 

out this processing step allows for fine-tuning of rRNA biogenesis in response to cellular needs. 

This may also have implications for dysregulated rRNA biogenesis in human diseases. Hence, the 

study of tissue-specific processing in rRNA biogenesis and its regulation in different 

developmental processes opens up an interesting field of PTGR in the future.  
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5 Appendix of Tables 

Table 5.1 Canonical RNA-binding domains 
Domain Description 

RRM RNA recognition motif, single-strand RNA (ssRNA)-binding (Cléry et al., 2008) 

KH KH-homology domain, ssRNA-binding (Grishin, 2001; Lunde et al., 2007) 

DEAD DEAD and DEAH box helicase motif, unwinds RNA (and DNA) (Rocak and Linder, 2004) 

dsrm Double-stranded dsRNA binding motif (Lunde et al., 2007) 

zf-CCCH Zinc finger motif type C-x8-C-x5-C-x3-H, ssRNA-binding (Krishna et al., 2003; Lunde et al., 2007) 

zf-C2H2_jaz JAZ dsRNA-binding protein zinc-fingers, dsRNA-binding (Krishna et al., 2003; Lunde et al., 2007) 

zf-CCHC Zinc knuckle, C-x2-C-x4-H-x4-C, ssRNA-binding (Krishna et al., 2003; Lunde et al., 2007) 

zf-RanBP RNA-binding Ran-binding-protein-like zinc finger (Krishna et al., 2003; Lunde et al., 2007) 

zf-nanos Zinc finger domains found in the eukaryotic proteins RBP families Nanos and Xcat-2 (Krishna et al., 

2003; Lunde et al., 2007) 

Zf-U1 Zinc finger motif found in several U1 small nuclear ribonucleoprotein C (U1-C) proteins (Krishna et 

al., 2003; Lunde et al., 2007) 

LSM LSM (Like Sm) domain is found in snRNP complexes, bind A/U rich regions (Wilusz and Wilusz, 

2005) 

SAP (SAF-A/B, Acinus and PIAS) motif, RNA/DNA-binding domain (Aravind and Koonin, 2000) 

YTH YTH (YT521 homology) domain, ssRNA-binding, conserved aromatic residues within the ß-stands of 

the YTH domain similar to RRM, PUA, and OB-fold structures (Zhang et al., 2010) 

SAM Sterile alpha motif, 4-5-helical bundle of two orthogonally packed alpha-hairpins, ssRNA-binding 

(Kim and Bowie, 2003) 

La La protein RBD; alpha/beta fold that comprises a winged-helix motif, ssRNA-binding (Kenan and 

Keene, 2004) 

PWI ~80 amino acid module with PWI tri-peptide located in N-terminal region, found at the N or C terminus 

of RBPs, generally found in association with RRM and RS RBDs (Szymczyna et al., 2003) 

PABP C-terminal domain in polyadenylate-binding protein, involved in homodimerization (Derry et al., 2006) 

S1, S1-like S1 ssRNA-binding domain, found in ribosomal proteins, similar to cold shock domain (Lunde et al., 

2007) 

SMN Survival of motor neuron gene (SMN) contains a Tudor domain (SMN domain), which facilitates 

SMN-Sm protein interaction in the assembly of spliceosomal uridine-rich small nuclear 

ribonucleoprotein (Selenko et al., 2001) 

PUA Pseudouridine synthase and archaeosine transglycosylase domain often found in RNA modification 

enzymes and ribonucleoprotein complexes, ssRNA-binding (Pérez-Arellano et al., 2007) 

Surp Commonly found in splicing factors, ssRNA-binding domain, alpha-helical (Kuwasako et al., 2006) 

PAZ Piwi Argonaut and Zwille (PAZ) domain, posttranscriptional silencing domain, binds siRNAs (Meister, 

2013) 

Piwi Piwi domain (P-element induced wimpy testis), posttranscriptional silencing domain, dsRNA guide 

hydrolysis of ssRNA (Meister, 2013) 

CSD Cold-shock domain, ssRNA/ssDNA binding (Mihailovich et al., 2010) 

Agenet Tudor-like domain found in FMRP and other RBPs, putative RBD, tandem Agenet-like domains 

preferentially recognize trimethylated peptides in a sequence-specific manner, four-stranded 

antiparallel beta sheet (Adinolfi et al., 2003; Maurer-Stroh et al., 2003) 

TUDOR Tudor domain, found in Tudor proteins, Tudor proteins are in complexes with RBPs (Siomi et al., 

2010) 

PUF Tandem repeat of eight domains, ssRNA-binding domain (Wang et al., 2001; Zamore et al., 1997) 

TROVE TROVE (Telomerase, Ro and Vault) domain is a module of ~300-500 residues that is found in TEP1 

and Ro60 the protein components of three ribonucleoprotein particles (Bateman and Kickhoefer, 2003) 

THUMP Thiouridine synthases, methylases and pseudouridine synthases, α/β fold, RNA-binding 

(Aravind and Koonin, 2001b) 
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Table 5.2 Pfam RNA-binding and RNA-related domains 
Index Pfam Domain Count Index Pfam Domain Count 

1 RRM_1 178 401 PRP1_N 1 

2 DEAD 62 402 PRP21_like_P 1 

3 zf-CCCH 45 403 PRP3 1 

4 RRM_6 43 404 PRP8_domainIV 1 

5 KH_1 38 405 PTS_2-RNA 1 

6 RRM_5 35 406 Paf67 1 

7 GTP_EFTU 21 407 Pept_tRNA_hydro 1 

8 dsrm 21 408 Pescadillo_N 1 

9 zf-CCHC 20 409 PolyA_pol 1 

10 LSM 19 410 Pox_MCEL 1 

11 GTP_EFTU_D2 17 411 ProRS-C_1 1 

12 HA2 17 412 Prp18 1 

13 G-patch 15 413 Prp19 1 

14 IBN_N 14 414 Prp31_C 1 

15 RnaseA 13 415 RAI1 1 

16 SAP 13 416 RAM 1 

17 TUDOR 13 417 RNA_GG_bind 1 

18 KOW 12 418 RNA_POL_M_15KD 1 

19 MMR_HSR1 12 419 RNA_bind 1 

20 zf-C2H2_jaz 12 420 RNA_pol 1 

21 RNase_T 11 421 RNA_polI_A34 1 

22 MIF4G 10 422 RNA_pol_I_A49 1 

23 NTF2 9 423 RNA_pol_N 1 

24 PAM2 9 424 RNA_pol_Rpb1_1 1 

25 PAZ 9 425 RNA_pol_Rpb1_2 1 

26 RBM1CTR 9 426 RNA_pol_Rpb1_3 1 

27 zf-RanBP 9 427 RNA_pol_Rpb1_4 1 

28 Anticodon_1 8 428 RNA_pol_Rpb1_5 1 

29 CSD 8 429 RNA_pol_Rpb1_R 1 

30 GTP_EFTU_D3 8 430 RNA_pol_Rpb2_1 1 

31 HGTP_anticodon 8 431 RNA_pol_Rpb2_3 1 

32 Piwi 8 432 RNA_pol_Rpb2_4 1 

33 R3H 8 433 RNA_pol_Rpb2_5 1 

34 RNase_Zc3h12a 8 434 RNA_pol_Rpb2_6 1 

35 Ribosomal_L7Ae 8 435 RNA_pol_Rpb2_7 1 

36 S1 8 436 RNA_pol_Rpb4 1 

37 Xpo1 8 437 RNA_pol_Rpb5_C 1 

38 tRNA-synt_2b 8 438 RNA_pol_Rpb5_N 1 

39 Exo_endo_phos 7 439 RNA_pol_Rpb6 1 

40 La 7 440 RNA_pol_Rpb8 1 

41 Nol1_Nop2_Fmu 7 441 RNase_H 1 

42 PAP_assoc 7 442 RNase_H2-Ydr279 1 

43 RNase_PH 7 443 RNase_H2_suC 1 

44 W2 7 444 RNase_HII 1 

45 tRNA-synt_1 7 445 RNase_P_p30 1 

46 tRNA_SAD 7 446 ROKNT 1 

47 zf-C2H2 7 447 RRF 1 

48 zf-met 7 448 RRM_4 1 

49 APOBEC_N 6 449 RRP7 1 

50 A_deamin 6 450 RRS1 1 

51 MA3 6 451 RTC 1 

52 RAP 6 452 RTC_insert 1 

53 RNase_PH_C 6 453 RVT_1 1 

54 Surp 6 454 Ribonuc_L-PSP 1 

55 tRNA_anti-codon 6 455 Ribonuc_P_40 1 

56 Brix 5 456 Ribonucleas_3_3 1 

57 DZF 5 457 Ribonuclease_T2 1 

58 FtsJ 5 458 Ribosomal_L12 1 

59 PARP 5 459 Ribosomal_L13e 1 

60 PWI 5 460 Ribosomal_L14e 1 

61 Tap-RNA_bind 5 461 Ribosomal_L15e 1 

62 YTH 5 462 Ribosomal_L17 1 
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63 tRNA-synt_2 5 463 Ribosomal_L18ae 1 

64 AF-4 4 464 Ribosomal_L19 1 

65 Beta-Casp 4 465 Ribosomal_L19e 1 

66 CAF1 4 466 Ribosomal_L20 1 

67 CRM1_C 4 467 Ribosomal_L21e 1 

68 DND1_DSRM 4 468 Ribosomal_L21p 1 

69 Dus 4 469 Ribosomal_L23eN 1 

70 EFG_IV 4 470 Ribosomal_L27 1 

71 IF4E 4 471 Ribosomal_L27e 1 

72 Lactamase_B 4 472 Ribosomal_L28 1 

73 OAS1_C 4 473 Ribosomal_L29 1 

74 PABP 4 474 Ribosomal_L29e 1 

75 PIH1 4 475 Ribosomal_L31e 1 

76 PIN_4 4 476 Ribosomal_L32e 1 

77 PUA 4 477 Ribosomal_L32p 1 

78 PseudoU_synth_2 4 478 Ribosomal_L33 1 

79 RF-1 4 479 Ribosomal_L34 1 

80 Ribosomal_L30 4 480 Ribosomal_L34e 1 

81 S4 4 481 Ribosomal_L35Ae 1 

82 SUI1 4 482 Ribosomal_L35p 1 

83 THRAP3_BCLAF1 4 483 Ribosomal_L36 1 

84 tRNA-synt_1b 4 484 Ribosomal_L36e 1 

85 tRNA-synt_2c 4 485 Ribosomal_L37 1 

86 2OG-FeII_Oxy_2 3 486 Ribosomal_L37ae 1 

87 AKAP95 3 487 Ribosomal_L37e 1 

88 Ago_hook 3 488 Ribosomal_L38e 1 

89 CBF 3 489 Ribosomal_L40e 1 

90 CBFNT 3 490 Ribosomal_L41 1 

91 Calreticulin 3 491 Ribosomal_L5 1 

92 DUF2414 3 492 Ribosomal_L50 1 

93 DUF2465 3 493 Ribosomal_L5_C 1 

94 DcpS_C 3 494 Ribosomal_L6 1 

95 EST1_DNA_bind 3 495 Ribosomal_L6e 1 

96 FXR1P_C 3 496 Ribosomal_L6e_N 1 

97 FYTT 3 497 Ribosomal_L9_N 1 

98 Fox-1_C 3 498 Ribosomal_S13 1 

99 IF-2B 3 499 Ribosomal_S13_N 1 

100 LSM14 3 500 Ribosomal_S16 1 

101 LUC7 3 501 Ribosomal_S19 1 

102 MBD 3 502 Ribosomal_S19e 1 

103 Methyltransf_31 3 503 Ribosomal_S21 1 

104 Nop 3 504 Ribosomal_S21e 1 

105 Nucleoplasmin 3 505 Ribosomal_S24e 1 

106 PAP_RNA-bind 3 506 Ribosomal_S25 1 

107 PseudoU_synth_1 3 507 Ribosomal_S26e 1 

108 PurA 3 508 Ribosomal_S27 1 

109 RIG-I_C-RD 3 509 Ribosomal_S28e 1 

110 RIO1 3 510 Ribosomal_S30 1 

111 RMMBL 3 511 Ribosomal_S3Ae 1 

112 RNB 3 512 Ribosomal_S3_C 1 

113 RS4NT 3 513 Ribosomal_S6 1 

114 Ribonuc_2-5A 3 514 Ribosomal_S6e 1 

115 Ribosomal_60s 3 515 Ribosomal_S7e 1 

116 Ribosomal_L1 3 516 Ribosomal_S8 1 

117 Ribosomal_L10 3 517 Rpp20 1 

118 Ribosomal_L16 3 518 Rpr2 1 

119 Ribosomal_L18e 3 519 Rrp15p 1 

120 Ribosomal_L3 3 520 Rsm1 1 

121 Ribosomal_S10 3 521 RtcB 1 

122 Ribosomal_S18 3 522 S10_plectin 1 

123 Ribosomal_S4e 3 523 SAP18 1 

124 RrnaAD 3 524 SART-1 1 

125 S1-like 3 525 SBDS 1 

126 SMN 3 526 SBDS_C 1 

127 Sas10_Utp3 3 527 SF3a60_bindingd 1 
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128 SpoU_methylase 3 528 SF3b1 1 

129 Suf 3 529 SF3b10 1 

130 TAP_C 3 530 SHQ1 1 

131 THUMP 3 531 SHS2_Rpb7-N 1 

132 TruB_N 3 532 SIP1 1 

133 UPF0020 3 533 SLBP_RNA_bind 1 

134 Utp12 3 534 SNase 1 

135 cwf21 3 535 SR-25 1 

136 eIF-1a 3 536 SRA1 1 

137 eIF-5a 3 537 SRP14 1 

138 tRNA-synt_1c 3 538 SRP19 1 

139 tRNA-synt_His 3 539 SRP40_C 1 

140 tRNA_m1G_MT 3 540 SRP72 1 

141 zf-RNPHF 3 541 SRP9-21 1 

142 zf-U1 3 542 SURF6 1 

143 zf-nanos 3 543 SUV3_C 1 

144 AARP2CN 2 544 Sen15 1 

145 AKAP7_NLS 2 545 Seryl_tRNA_N 1 

146 AXH 2 546 Slu7 1 

147 Aconitase 2 547 Snurportin1 1 

148 Aconitase_C 2 548 Sof1 1 

149 Alba 2 549 Spt4 1 

150 B3_4 2 550 Ssu72 1 

151 Bin3 2 551 Sua5_yciO_yrdC 1 

152 CPSF_A 2 552 Symplekin_C 1 

153 Caprin-1_C 2 553 THOC7 1 

154 Clp1 2 554 TRM13 1 

155 CwfJ_C_1 2 555 TYW3 1 

156 CwfJ_C_2 2 556 Telomerase_RBD 1 

157 Cwf_Cwc_15 2 557 Thg1 1 

158 DALR_1 2 558 Tho2 1 

159 DCP1 2 559 Thoc2 1 

160 DRY_EERY 2 560 Transformer 1 

161 DUF1387 2 561 Transposase_22 1 

162 DUF1897 2 562 Trm112p 1 

163 DUF2051 2 563 U1snRNP70_N 1 

164 ECR1_N 2 564 U3_assoc_6 1 

165 EF1_GNE 2 565 U3snoRNP10 1 

166 EST1 2 566 U5_2-snRNA_bdg 1 

167 Endonuclease_NS 2 567 U6-snRNA_bdg 1 

168 FDF 2 568 UPF0086 1 

169 FDX-ACB 2 569 UPF0113 1 

170 FRG1 2 570 UPF1_Zn_bind 1 

171 Fcf1 2 571 UTP15_C 1 

172 Fibrillarin 2 572 Upf2 1 

173 GCD14 2 573 Urb2 1 

174 GUCT 2 574 Urm1 1 

175 Gar1 2 575 Utp11 1 

176 HABP4_PAI-RBP1 2 576 Utp13 1 

177 HEXIM 2 577 Utp21 1 

178 HnRNPA1 2 578 Vault 1 

179 IF-2 2 579 WGG 1 

180 INT_SG_DDX_CT_C 2 580 Wyosine_form 1 

181 L51_S25_CI-B8 2 581 XendoU 1 

182 LsmAD 2 582 eIF-3_zeta 1 

183 MRP-S27 2 583 eIF3_N 1 

184 MT-A70 2 584 eIF3_subunit 1 

185 Mago_nashi 2 585 eIF3g 1 

186 Met_10 2 586 efThoc1 1 

187 NOP5NT 2 587 mRNA_cap_C 1 

188 NOT2_3_5 2 588 mRNA_cap_enzyme 1 

189 NUC153 2 589 mTERF 1 

190 Nop25 2 590 rRNA_processing 1 

191 Nop52 2 591 tRNA_Me_trans 1 

192 PAT1 2 592 tRNA_U5-meth_tr 1 
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193 PDCD9 2 593 tRNA_bind_2 1 

194 PRP38 2 594 tRNA_int_end_N2 1 

195 PRP4 2 595 tRNA_int_endo_N 1 

196 PTH2 2 596 tRNA_synt_1c_R1 1 

197 PUF 2 597 tRNA_synt_1c_R2 1 

198 RNA_pol_L_2 2 598 z-alpha 1 

199 RNase_P_Rpp14 2 599 zf-C3H1 1 

200 RRM_3 2 600 zf-C3HC 1 

201 ResIII 2 601 zf-CCHC_2 1 

202 Ribonuclease_3 2 602 zf-FPG_IleRS 1 

203 Ribosom_S12_S23 2 603 zf-TRM13_CCCH 1 

204 Ribosomal_L11 2 604 2OG-FeII_Oxy 0 

205 Ribosomal_L11_N 2 605 2_5_RNA_ligase 0 

206 Ribosomal_L13 2 606 3_5_exonuc 0 

207 Ribosomal_L14 2 607 5_3_exonuc 0 

208 Ribosomal_L18p 2 608 5_3_exonuc_N 0 

209 Ribosomal_L2 2 609 ANTAR 0 

210 Ribosomal_L22 2 610 APOBEC_C 0 

211 Ribosomal_L22e 2 611 APO_RNA-bind 0 

212 Ribosomal_L23 2 612 ASCH 0 

213 Ribosomal_L24e 2 613 Agenet 0 

214 Ribosomal_L28e 2 614 Arb1 0 

215 Ribosomal_L2_C 2 615 Arb2 0 

216 Ribosomal_L30_N 2 616 AviRa 0 

217 Ribosomal_L39 2 617 B2 0 

218 Ribosomal_L4 2 618 BDHCT 0 

219 Ribosomal_L44 2 619 BRK 0 

220 Ribosomal_S11 2 620 BTV_NS2 0 

221 Ribosomal_S14 2 621 CAT_RBD 0 

222 Ribosomal_S15 2 622 CM1 0 

223 Ribosomal_S17 2 623 CM2 0 

224 Ribosomal_S17e 2 624 CPDase 0 

225 Ribosomal_S2 2 625 CRS1_YhbY 0 

226 Ribosomal_S27e 2 626 DALR_2 0 

227 Ribosomal_S4 2 627 DEAD_assoc 0 

228 Ribosomal_S5 2 628 DUF1325 0 

229 Ribosomal_S5_C 2 629 DUF1669 0 

230 Ribosomal_S7 2 630 DUF1866 0 

231 Ribosomal_S8e 2 631 DUF446 0 

232 Ribosomal_S9 2 632 DbpA 0 

233 SID-1_RNA_chan 2 633 EIAV_Rev 0 

234 SM-ATX 2 634 Ebola_NP 0 

235 SRP54 2 635 EndoU_bacteria 0 

236 SRP54_N 2 636 Endonuclea_NS_2 0 

237 SRRM_C 2 637 Fibrillarin_2 0 

238 SYF2 2 638 FlbT 0 

239 Smg4_UPF3 2 639 FmrO 0 

240 SpoU_sub_bind 2 640 GAD 0 

241 TGT 2 641 GIIM 0 

242 TRM 2 642 GidB 0 

243 TROVE 2 643 HA 0 

244 Translin 2 644 Helicase_Sgs1 0 

245 TruD 2 645 IF2_N 0 

246 Tudor-knot 2 646 Init_tRNA_PT 0 

247 Utp14 2 647 KH_3 0 

248 XRN_N 2 648 KH_4 0 

249 eIF-3c_N 2 649 KH_5 0 

250 eIF-5_eIF-2B 2 650 L31 0 

251 eIF2A 2 651 Lactamase_B2 0 

252 eIF2_C 2 652 Leu_Phe_trans 0 

253 eRF1_1 2 653 MKT1_C 0 

254 eRF1_2 2 654 MKT1_N 0 

255 eRF1_3 2 655 MRL1 0 

256 rRNA_proc-arch 2 656 MRP 0 

257 tRNA-synt_1c_C 2 657 MetRS-N 0 
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258 tRNA-synt_1d 2 658 Methyltrans_RNA 0 

259 tRNA-synt_1e 2 659 Mtr2 0 

260 tRNA-synt_1g 2 660 N-Term_TEN 0 

261 tRNA-synt_2d 2 661 NRDE-2 0 

262 tRNA_bind 2 662 NSP10 0 

263 tRNA_int_endo 2 663 NSP13 0 

264 zf-CCCH_2 2 664 Nab2 0 

265 zf-U11-48K 2 665 Nab6_mRNP_bdg 0 

266 AAR2 1 666 Nol1_Nop2_Fmu_2 0 

267 AD 1 667 Nsp1 0 

268 ARS2 1 668 Nup35_RRM 0 

269 AdoMet_MTase 1 669 Nup35_RRM_2 0 

270 Arg_tRNA_synt_N 1 670 PAZ_siRNAbind 0 

271 B5 1 671 PIN 0 

272 BOP1NT 1 672 PIN_2 0 

273 BUD22 1 673 PIN_3 0 

274 Btz 1 674 PNPase_C 0 

275 Bud13 1 675 PORR 0 

276 Bystin 1 676 PP_M1 0 

277 CMS1 1 677 Pet127 0 

278 CNPase 1 678 Phe_tRNA-synt_N 0 

279 CPL 1 679 PolyG_pol 0 

280 CPSF73-100_C 1 680 Pox_ATPase-GT 0 

281 CWC25 1 681 Pox_Rap94 0 

282 Cgr1 1 682 Pox_mRNA-cap 0 

283 DAP3 1 683 Pox_polyA_pol 0 

284 DBP10CT 1 684 ProRS-C_2 0 

285 DBR1 1 685 ProSAAS 0 

286 DCP2 1 686 Queuosine_synth 0 

287 DHHA1 1 687 RIX1 0 

288 DKCLD 1 688 RMF 0 

289 DNA_RNApol_7kD 1 689 RNA12 0 

290 DRIM 1 690 RNA_Me_trans 0 

291 DUF1604 1 691 RNA_bind_2 0 

292 DUF1693 1 692 RNA_helicase 0 

293 DUF1917 1 693 RNA_lig_T4_1 0 

294 DUF2040 1 694 RNA_ligase 0 

295 DUF2356 1 695 RNA_polI_A14 0 

296 DUF2363 1 696 RNA_pol_3_Rpc31 0 

297 DUF2638 1 697 RNA_pol_A_CTD 0 

298 DUF2650 1 698 RNA_pol_A_bac 0 

299 DUF382 1 699 RNA_pol_I_TF 0 

300 DUF947 1 700 RNA_pol_L 0 

301 DcpS 1 701 RNA_pol_Rbc25 0 

302 EF1G 1 702 RNA_pol_Rpa2_4 0 

303 EF_TS 1 703 RNA_pol_Rpb1_6 0 

304 EIF4E-T 1 704 RNA_pol_Rpb1_7 0 

305 EIF_2_alpha 1 705 RNA_pol_Rpb2_2 0 

306 EMG1 1 706 RNA_pol_Rpb2_45 0 

307 EXOSC1 1 707 RNA_pol_Rpc34 0 

308 Ebp2 1 708 RNA_pol_Rpc4 0 

309 Endonuclease_5 1 709 RNA_pol_Rpc82 0 

310 Es2 1 710 RNA_pol_Rpo13 0 

311 FTO_CTD 1 711 RNA_pol_delta 0 

312 FTO_NTD 1 712 RNA_replicase_B 0 

313 Fcf2 1 713 RNaseH_C 0 

314 Fip1 1 714 RNase_E_G 0 

315 GEMIN8 1 715 RNase_P_pop3 0 

316 GIDA_assoc_3 1 716 RPM2 0 

317 GLE1 1 717 RRM 0 

318 GN3L_Grn1 1 718 RRM_2 0 

319 GatB_Yqey 1 719 RSD-2 0 

320 Gcd10p 1 720 RSS_P20 0 

321 Gemin6 1 721 RVT_2 0 

322 Gemin7 1 722 RdRP 0 
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323 Glu-tRNAGln 1 723 RdRP_1 0 

324 HAT 1 724 RdRP_2 0 

325 HGTP_anticodon2 1 725 RdRP_3 0 

326 HRDC 1 726 RdRP_4 0 

327 HVSL 1 727 RdRP_5 0 

328 HnRNP_M 1 728 RdgC 0 

329 INTS2 1 729 Rho_N 0 

330 INTS5_C 1 730 Rho_RNA_bind 0 

331 INTS5_N 1 731 Ribonuclease 0 

332 IPPT 1 732 Ribonuclease_BN 0 

333 Img2 1 733 Ribonuclease_P 0 

334 Isy1 1 734 Ribosomal_L25p 0 

335 KH_2 1 735 Ribosomal_L31 0 

336 Kin17_mid 1 736 Ribosomal_L9_C 0 

337 Lactamase_B_4 1 737 Ribosomal_S20p 0 

338 Las1 1 738 Ribosomal_S22 0 

339 Lsm_interact 1 739 Ribosomal_S23p 0 

340 MIF4G_like 1 740 Ribosomal_S30AE 0 

341 MIF4G_like_2 1 741 Ribosomal_S3_N 0 

342 MPP6 1 742 Ribosomal_S4Pg 0 

343 MRP-63 1 743 Rif1_N 0 

344 MRP-L27 1 744 RimK 0 

345 MRP-L28 1 745 RimM 0 

346 MRP-L46 1 746 RnaseH 0 

347 MRP-L47 1 747 Rsm22 0 

348 MRP-L51 1 748 S1-P1_nuclease 0 

349 MRP-S22 1 749 SEN1_N 0 

350 MRP-S23 1 750 SPOUT_MTase 0 

351 MRP-S24 1 751 Se-cys_synth_N 0 

352 MRP-S26 1 752 SelA 0 

353 MRP-S28 1 753 SelB-wing_1 0 

354 MRP-S31 1 754 SelB-wing_2 0 

355 MRP-S32 1 755 SelB-wing_3 0 

356 MRP-S33 1 756 She2p 0 

357 MRP-S35 1 757 SnAPC_2_like 0 

358 MRP_L53 1 758 SpoU_methylas_C 0 

359 MTS 1 759 Stb3 0 

360 Maelstrom 1 760 Suppressor_P21 0 

361 Mago-bind 1 761 THP2 0 

362 Methyltransf_15 1 762 TPP1 0 

363 Methyltransf_8 1 763 TSNR_N 0 

364 Methyltrn_RNA_3 1 764 TilS 0 

365 Mitoc_L55 1 765 TilS_C 0 

366 Mpp10 1 766 Trm56 0 

367 Myb_Cef 1 767 TruB-C_2 0 

368 NMD3 1 768 TruB_C 0 

369 NOB1_Zn_bind 1 769 U3_snoRNA_assoc 0 

370 NOC3p 1 770 Utp8 0 

371 NOG1 1 771 UvrD-helicase 0 

372 NOGCT 1 772 VAR1 0 

373 NUC129 1 773 Val_tRNA-synt_C 0 

374 NUC173 1 774 Vmethyltransf 0 

375 NUC205 1 775 Vmethyltransf_C 0 

376 NUDIX_2 1 776 WT1 0 

377 NUFIP1 1 777 XS 0 

378 NUFIP2 1 778 cwf18 0 

379 Noc2 1 779 dsRNA_bind 0 

380 Nop10p 1 780 eIF3_p135 0 

381 Nop14 1 781 eIF_4EBP 0 

382 Nop16 1 782 eIF_4G1 0 

383 Nop53 1 783 mRNA_triPase 0 

384 Not1 1 784 nsp7 0 

385 Not3 1 785 nsp8 0 

386 Npa1 1 786 nsp9 0 

387 Nrap 1 787 rRNA_methylase 0 
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388 OB_RNB 1 788 tRNA-Thr_ED 0 

389 P68HR 1 789 tRNA-synt_1f 0 

390 PC4 1 790 tRNA-synt_2e 0 

391 PHAT 1 791 tRNA_NucTran2_2 0 

392 PHF5 1 792 tRNA_NucTransf2 0 

393 PMC2NT 1 793 tRNA_anti 0 

394 PNPase 1 794 tRNA_anti-like 0 

395 POP1 1 795 tRNA_deacylase 0 

396 POPLD 1 796 tRNA_lig_CPD 0 

397 PPR 1 797 tRNA_lig_kinase 0 

398 PRO8NT 1 798 tRNA_synt_2b 0 

399 PROCN 1 799 tRNA_synt_2f 0 

400 PROCT 1 
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Table 5.3 RBP census 

Supplementary table  S3 at: 

http://www.nature.com/nrg/journal/v15/n12/full/nrg3813.html#supplementary-information 
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Table 5.4 Most abundant RBDs in the human proteome 
Domain  Description 

RRM RNA recognition motif, single-strand RNA (ssRNA)-binding 

RG/RGG RG/RGG box repeats are arginine glycine rich low complexity regions, may bind RNA or act as 

protein-protein interaction domains in shuttling 

DEAD DEAD and DEAH box helicase motif, unwinds RNA (and DNA) 

zf-CCCH Zinc finger motif type C-x8-C-x5-C-x3-H, ssRNA-binding 

KH KH-homology domain, ssRNA-binding 

GTP_EFTU, 

GTP_EFTU_D2, 

GTP_EFTU_D3 

GTP-elongation factor family, proteins usually consist of 3 structural domains, 2 oligonucleotide 

binding domains (D2 and D3) and a GTP-binding domain 

dsrm Double-stranded RNA binding motif 

zf-CCHC Zinc knuckle, C-x2-C-x4-H-x4-C, ssRNA-binding 

LSM LSM (Like Sm) domain is found in snRNP complexes, bind A/U rich regions 

OB_NTP_bind Oligonucleotide/oligosaccharide-binding (OB)-fold, found in DEAD-box helicases in association with 

HA2 domain, regulates helicase activity through RNA binding 

HA2 Helicase-associated domain, found in RNA helicases 

G-patch G-patch domain, ~48 amino acids with 6 conserved glycines, found in RBPs 

IBN_N Importin-beta N-terminal domain, RNA transport or RBP transport proteins 

SAP (SAF-A/B, Acinus and PIAS) motif, RNA/DNA-binding domain 

TUDOR Tudor domain, found in Tudor proteins, Tudor proteins are in complexes with RBPs 

RnaseA RNase A domain, ssRNA endonuclease 

zf-C2H2_jaz JAZ dsRNA-binding protein zinc-fingers, dsRNA-binding 

MMR_HSR1 50S ribosome-binding GTPase domain, found in RBPs 

KOW KOW (Kyprides, Ouzounis, Woese) motif, found in a variety of ribosomal proteins 

RNase_T RNase T ssRNA exonuclease domain 

MIF4G MIF4G [Middle domain of eukaryotic initiation factor 4G (eIF4G)], RNA- (and DNA-) binding 

zf-RanBP RNA-binding Ran-binding-protein-like zinc finger 

NTF2 Nuclear transport factor 2 (NTF2) domain, found in RNA export factors 

PAZ Piwi Argonaut and Zwille (PAZ) domain, posttranscriptional silencing domain, binds siRNAs 

RBM1CTR C-terminal region found in hnRNPs 

PAM2 PABP-interacting motif PAM2, found in RBPs 

Xpo1 exportin 1 domain, RNA transport or RBP transport proteins 

S1 S1 ssRNA-binding domain 

HGTP_anticodon Anticodon binding domain, found in aminoacyl-tRNA synthetases 

tRNA-synt_2b tRNA synthetase class II core domain (G, H, P, S and T), core catalytic domain of tRNA synthetases  

Piwi Piwi domain (P-element induced wimpy testis ), posttranscriptional silencing domain, dsRNA guide 

hydrolysis of ssRNA 

CSD cold-shock domain, ssRNA/ssDNA binding 

Ribosomal_L7Ae domain found in ribosomal proteins L7Ae/L30e/S12e/Gadd45 

RNase_Zc3h12a ssRNA endonuclease domain found in Zc3h12a proteins, member of the NYN domain family 

Anticodon_1 tRNA anticodon-binding domain, found in tRNA synthetases 

R3H R3H domain, R-x3-H conserved core, binds ssRNA/ssDNA 
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Table 5.5 TF census 

Supplementary Table S4 at: 

http://www.nature.com/nrg/journal/v15/n12/full/nrg3813.html#supplementary-information 
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