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ABSTRACT

Context. The Ophiuchus cloud complex is one of the best laboratories to study the earlier stages of the stellar and protoplanetary disc
evolution. The wealth of accurate astrometric measurements contained in the Gaia Data Release 2 can be used to update the census of
Ophiuchus member candidates.
Aims. We seek to find potential new members of Ophiuchus and identify those surrounded by a circumstellar disc.
Methods. We constructed a control sample composed of 188 bona fide Ophiuchus members. Using this sample as a reference we
applied three different density-based machine learning clustering algorithms (DBSCAN, OPTICS, and HDBSCAN) to a sample drawn from
the Gaia catalogue centred on the Ophiuchus cloud. The clustering analysis was applied in the five astrometric dimensions defined by
the three-dimensional Cartesian space and the proper motions in right ascension and declination.
Results. The three clustering algorithms systematically identify a similar set of candidate members in a main cluster with astrometric
properties consistent with those of the control sample. The increased flexibility of the OPTICS and HDBSCAN algorithms enable these
methods to identify a secondary cluster. We constructed a common sample containing 391 member candidates including 166 new
objects, which have not yet been discussed in the literature. By combining the Gaia data with 2MASS and WISE photometry, we built
the spectral energy distributions from 0.5 to 22 µm for a subset of 48 objects and found a total of 41 discs, including 11 Class II and
1 Class III new discs.
Conclusions. Density-based clustering algorithms are a promising tool to identify candidate members of star forming regions in large
astrometric databases. By combining the Gaia data with infrared catalogues, it is possible to discover new protoplanetary discs. If
confirmed, the candidate members discussed in this work would represent an increment of roughly 40–50% of the current census of
Ophiuchus.
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1. Introduction

Star forming regions (SFR) composed of hundreds of pre-main
sequence (PMS) stars are natural laboratories to learn about
the early stages of the stellar evolution process. These places
are crucial to study the birth sites of planets as a significant
fraction of PMS stars are surrounded by protoplanetary discs.
Understanding and identifying the mechanisms driving the evo-
lution of these discs is key to explain how planetary systems
are formed (e.g. Morbidelli & Raymond 2016). With this goal
in mind several teams have observed large populations of proto-
planetary discs in various SFRs across a range of wavelengths
(e.g. Cieza et al. 2018; Dent et al. 2013; Evans et al. 2009;
Haisch et al. 2001). Analyses of extensive disc samples (and their
⋆ Full Tables 3, A.1, and A.4 are only available at the CDS via anony-

mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://
cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/626/A80

stellar hosts) have revealed trends such as the disc mass-stellar
mass relation (Andrews et al. 2013; Ansdell et al. 2016; Pascucci
et al. 2016) and the decrement of disc mass in millimeter-sized
grains with stellar age (Ansdell et al. 2017; Ruíz-Rodríguez et al.
2018). A general limitation of these studies is the lack of a com-
plete census of the members of the region under analysis. Such
a census is also desirable (among many other reasons) to assess
the impact of the environment over the observed disc properties
because, for instance, stellar fly-bys are expected to affect disc
sizes, shapes, and masses (Bate 2011, 2018; Cuello et al. 2019).

Identifying the members of any SFR is a difficult task hin-
dered by various causes. Nearby (<400 pc from Earth) regions
generally occupy large areas (≥1 deg2) on the projected sky, and
therefore, it is observationally expensive to study these regions
with classical observatories. Furthermore, the late spectral type
objects that populate these regions are difficult to detect and
characterise as a consequence of their intrinsic lower luminosity,
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and the same applies to any young stellar object (YSO) that has
a very high extinction. Early works took advantage of the strong
X-ray activity and accretion driven Hα emission of PMS stars to
detect these objects using X-ray observatories and Hα objective
prism surveys (e.g. Montmerle et al. 1983; Walter et al. 1994;
Wilking et al. 1987). More recently, the use of astrometric mea-
surements has made it possible to identify or confirm hundreds
of members of several SFRs and young associations using dif-
ferent methods (Bruijne 1999; Malo et al. 2013; de Zeeuw et al.
1999). The advent of the Gaia mission (Gaia Collaboration 2016)
is revolutionising this (and many other) field(s), allowing for the
detection of new candidate members of different stellar popula-
tions by means of accurate astrometric measurements. In a few
remarkable cases, a direct inspection by eye of the Gaia astrom-
etry can even reveal the members of a stellar cluster (e.g. the
Pleiades example in Brown et al. 2016; Taylor 2017). However,
in practice complex algorithms are needed to identify the mem-
ber candidates based on the astrometric properties of the studied
sample (e.g. Gagné et al. 2018). This becomes increasingly dif-
ficult when processing large catalogues such as the Gaia Data
Release 2 (DR2; Lindegren et al. 2018).

The so-called unsupervised machine learning (ML) clus-
tering algorithms are a collection of software tools developed
to identify patterns or clusters in unlabelled databases. Within
these algorithms there are multiple approaches to the problem
of cluster detection, such as centroid-based algorithms (e.g. the
k-means algorithm; Lloyd 1982), distribution-based clustering
(e.g. Gaussian-mixture models), or density-based algorithms
(for an overview of clustering analysis in astronomy see e.g.
Feigelson & Babu 2012, their Chap. 3.3 and references therein).
The latter are well-suited to identify arbitrarily shaped clusters
that can be broadly described as overdensities in a lower density
space. An advantage of the density-based algorithms is that no
prior knowledge about the analysed dataset is needed. In other
words, the user does not need to know the number of clusters
present in the dataset, and these algorithms do not assume any
particular distribution (such as one or multiple Gaussians) when
associating the data points with a cluster. Density-based spatial
clustering of applications with noise (DBSCAN; Ester et al. 1996)
stands out as one of the most famous algorithms in many disci-
plines, and it is becoming popular in astronomy (e.g. Beccari
et al. 2018; Bianchini et al. 2018; Caballero & Dinis 2008;
Castro-Ginard et al. 2018; Joncour et al. 2018; Hague et al. 2019;
Tramacere & Vecchio 2013; Wilkinson et al. 2018). There are
a number of modifications or improvements of DBSCAN and,
among those, the ordering points to identify the clustering struc-
ture (OPTICS; Ankerst et al. 1999) and the hierarchical density-
based spatial clustering of applications with noise (HDBSCAN;
Campello et al. 2013) algorithms are becoming popular owing
to their recognised performance to detect various types of clus-
ters. However, to date their use in the astronomical literature is
still negligible except for a few cases (e.g. Costado et al. 2017;
Katz et al. 2017; Kimm et al. 2018; Sans Fuentes et al. 2017).

In this paper we use the DBSCAN, OPTICS, and HDBSCAN
algorithms to identify potential members of the Ophiuchus SFR
(hereafter ρ Oph) in a sample drawn from the Gaia DR2 cat-
alogue (Brown et al. 2018). With average distance and age
estimates ranging from 120 to 140 pc and 2 to 5 Myr, respec-
tively (Wilking et al. 2008, and references therein), ρ Oph has
been the subject of numerous studies (e.g. Andrews et al. 2009;
Andrews & Williams 2007; Cheetham et al. 2015; Cox et al.
2017; Erickson et al. 2011; Mamajek 2008; Wilking et al. 2008).
Recently, 289 discs in this cloud have been observed with ALMA
aiming to study in detail the different evolutionary stages of

the protoplanetary discs (Cieza et al. 2018). The ρ Oph region
is located at the foreground of the southeastern edge of the
Upper Scorpius (hereafter USco) subgroup of the large Sco-Cen
OB association (de Geus et al. 1989; de Zeeuw et al. 1999).
Both USco and ρ Oph have similar proper motion distributions
(Mamajek 2008), and it has been proposed that the star for-
mation in ρ Oph was triggered by a supernova event in USco
(de Geus 1992; Erickson et al. 2011; Preibisch et al. 2002). A
major difference between both regions is their age and evolution-
ary stage. While the ρ Oph region is rich in molecular gas, has
a very high optical extinction, and star formation is still ongo-
ing, the opposite is found in the ∼10 Myr old USco (Pecaut
et al. 2012; Pecaut & Mamajek 2016; Wilking et al. 2008).
Given the youth of ρ Oph, its members have similar velocity
distributions and they are concentrated in a relatively compact
region of the Galaxy. In other words, the cloud members should
appear clustered in the multi-dimensional space defined by their
spatial coordinates and kinematic parameters when compared
to the field stellar population. We applied the clustering algo-
rithms in the five-dimensional space defined by the three spatial
coordinates and two kinematical parameters given by the proper
motions on right ascension µα∗1 and declination µδ. By compar-
ing their results we aim to reduce the selection biases inherent
to each algorithm and therefore construct a robust sample of
ρ Oph members candidates. The samples used for our study are
described in Sect. 2. In Sect. 3 we describe our methodology and
apply the three algorithms to our Gaia sample. This section fin-
ishes by presenting a sample of sources simultaneously identified
by the three algorithms. In Sect. 4 we discuss the properties of
this sample and we use infrared photometry to identify a set of
objects showing warm dust emission associated with a circum-
stellar disc. A summary and conclusions are given in Sect. 5,
while extra figures and tables are shown in the appendix.

2. Sample construction

2.1. Initial sample

We begun by compiling a list of ρ Oph member candidates iden-
tified as such by means of optical spectroscopy, X-ray emission,
or Spitzer photometry. To do so we considered the 316 objects
listed by Wilking et al. (2008), the sample discussed by Erickson
et al. (2011) (135 objects), and the catalogue of ρ Oph YSO can-
didates observed by Spitzer during the Cores to Disks Legacy
program (Evans et al. 2003) and presented by Dunham et al.
(2015) (292 objects). The online versions of these catalogues,
hosted by the VizieR service, include a SIMBAD (Wenger et al.
2000) ID associated with each object. We used these IDs to
obtain the corresponding Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006) IDs. There are no 2MASS counterparts
for 2 objects in the Wilking et al. (2008) catalogue, 1 object
from Erickson et al. (2011), and 10 objects from Dunham et al.
(2015), and these 13 sources are not considered in our study.
After accounting for duplicates we obtained our initial sample,
which contains 465 objects. This sample is listed in Table A.1.

2.2. Control sample

With the 2MASS IDs of our initial sample at hand we run
an identity cross-match Astronomical Data Query Language
(ADQL; Osuna et al. 2008) query between our initial sample and
the Gaia DR2 catalogue using the 2MASS-Gaia matched table

1 µα∗ = µα cos δ, where µα =
α1−α2

∆t
is the apparent movement in right

ascension α in a given time interval ∆t and δ is the object declination.
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(gaiadr2.tmass_best_neighbour) available on the Gaia
archive2. This approach is advantageous compared to a sky
cross-match by coordinates as there is no need to transform the
2MASS coordinates from the J2000 to the J2015.5 epoch3. Our
query returned 304 sources. The missing objects are generally
fainter at J band (and therefore probably fainter at G band) than
the detected objects (see Fig. A.1). The results listed on the DR2
catalogue (such as the right ascension α, the declination δ, the
parallax ̟, and the proper motions in right ascension and decli-
nation µα∗ and µδ) are obtained through a complex data analysis
process that relies on treating each observed source as a single,
“well behaved” star (the five-parameter model; see Lindegren
et al. 2012, 2018). Binaries and YSOs, which are typically vari-
able and can appear as extended sources at optical wavelengths,
can be problematic for the astrometric solution. Therefore, we
applied a selection criteria to extract the sources with high
quality astrometry. First, we removed the objects with parallax
signal to noise̟/σ̟ < 10 and visibility periods4

≤7 to produce
an astrometrically precise and reliable dataset (see Lindegren
et al. 2018; Arenou et al. 2018). Second, we only extracted
the sources whose observations are consistent with the five-
parameter model. To do so, we applied the current quality criteria
described in the Gaia technical note GAIA-C3-TN-LU-LL-124-
015 that is based on an empirical analysis of the Gaia DR2
data. This analysis introduces the renormalised unit weight error
(RUWE), which is a reliable indicator of the goodness-of-fit of
the astrometric solution. Using the RUWE as a quality index is
especially useful for samples containing very red stars, such as
the low-mass and extinct PMS stars in ρ Oph. We extracted the
sources with RUWE < 1.40 as recommended by this study.

This astrometrically cleaned sample contains 197 objects.
We generated its histogram distributions over ̟, µα∗ , and µδ,
applying the Bayesian approach derived by Knuth (2006) that
optimises the bin widths based on the data distribution and that
is implemented in Astropy (Robitaille et al. 2013). Through-
out this paper we use mas and mas yr−1 as the reference units
for the parallaxes and proper motions, respectively, and all the
histograms are constructed by applying the same methodology.
These histograms show bell-shaped distributions with a few
objects located far away from the histogram peaks (Fig. A.2).
We removed these outliers by considering only the objects with
5<̟< 9 and −20<µα∗ < 0. The 9 objects excluded by this filter
are listed in Table A.2. Given their parallaxes and proper motions
we consider these as background objects instead of ρ Oph mem-
bers. Our final sample, hereafter called control sample, contains
188 targets. There are Gaia radial velocities for 7 of the objects,
which have an average value of vrad =−7.7± 2.4 km s−1. This
sample occupies a sky region extending from [245.3◦ : 249.9◦]
in right ascension and [−25.4◦ : −22.9◦] in declination, and has
an average parallax of ̟= 7.1± 0.4. The average astrometric
properties of the control sample are listed in Table 1 and its

2 https://www.cosmos.esa.int/web/gaia/data-release-2
3 The astrometric source parameters in the Gaia DR2 are referred to the
J2015.5 epoch. Throughout this paper we use the same convention. For
a detailed description on coordinates transformations, see for example
Sect. 3.1.7 in the Gaia DR2 online documentation at https://gea.
esac.esa.int/archive/documentation/GDR2/
4 As explained in the DR2 archive documentation, a visibility period
is a group of observations separated from other groups by four or more
days. See http://gea.esac.esa.int/archive/documentation/
GDR2/index.html
5 See https://www.cosmos.esa.int/web/gaia/dr2-known-

issues and http://www.rssd.esa.int/doc_fetch.php?
id=3757412

Table 1. Mean and standard deviation (1σ) of the control sample.

Stats α δ ̟ µα∗ µδ
(◦) (◦) (mas) (mas yr−1) (mas yr−1)

Mean 246.8 −24.3 7.1 −7.2 −25.5
Sigma 0.6 0.5 0.4 2.0 1.7
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Fig. 1. WISE image of the Oph region in a square-root stretched scale
Fig. 1. WISE image of the ρ Oph region in a square-root stretched scale
with RGB colours mapped to 22, 4.6, and 3.4 µm. The control sam-
ple members are represented as yellow rings. The white dashed ring
encompasses the area queried in the Gaia server. The saturated blue
star towards the south is α Scorpii (a.k.a. Antares).

parallax and proper motion histograms are shown in Fig. A.3.
Following Bailer-Jones (2015) we computed the individual dis-
tances as d = 1/̟ since the parallax fractional error of this
sample is lower than 10. This way we obtained an average dis-
tance of d = 141.2+8.4

−7.5
pc to this sample, where the uncertainty is

dominated by the intrinsic dispersion of the dataset. In short, this
sample contains 188 bonafide members of the ρ Oph cloud that
can be used as a reference sample. The control sample members
are labelled in Table A.1 with a “Y” in the control column.

2.3. Gaia sample

In order to create a large sample to search for potential new
members of ρ Oph we run an ADQL cone search on the Gaia
server centred at [247.0◦,−24.0◦] in [α, δ] with a search radius of
r= 3.5◦ chosen to generously encompass the control sample (see
Fig. 1). We imposed a parallax range from [5 : 9] and parallax
signal to noise S/N > 10. This query returned 2814 targets that
were reduced to 2300, including the 188 objects of the control
sample, after applying the quality selection criteria described in
Sect. 2.2. This sample, labelled hereafter as the Gaia sample,
contains radial velocity values for 236 sources with an aver-
age value of vrad =−6.9± 31.8 km s−1. Figure 2 shows a zoom
in of the µα∗ versus µδ of the Gaia sample; the control sample
members are overlaid on top as small magenta circles. There is
an evident overdensity of sources around the centre of the plot.
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Fig. 2. Zoom-in of the proper motions of the Gaia sample repre-
sented with grey circles. Their diameter roughly equals the average error
on µα∗ (0.35 mas yr−1), which is larger than the average error in µδ
(0.23 mas yr−1). The control sample members are represented as small
magenta circles.

This overdensity seems to contain two different regions or clus-
ters: one with most of its members located around [−7.5,−25],
and the second roughly centred at [−12,−21] in [µα∗ , µδ]; these
are labelled as “Cluster 1” and “Cluster 2” in Fig. 2, respec-
tively. The control sample members are mostly concentrated in
Cluster 1.

3. Analysis

3.1. Basic concepts of density-based clustering

It is not straightforward to discriminate between the diffuse
cluster(s) with no sharp boundaries and the population of back-
ground or foreground objects shown in Fig. 2. As mentioned in
the introduction, there are multiple software tools that are able to
identify clusters embedded in large databases. We chose to use
the family of density-based clustering algorithms because they
are especially well suited to detect arbitrarily shaped clusters,
and by construction these algorithms are not limited to detect
clusters having a particular data distribution such as a Gaussian.
We applied and compared three different density-based cluster-
ing algorithms: DBSCAN, OPTICS, and HDBSCAN. To date DBSCAN
is one of the most popular density-based clustering algorithms
and its strong impact on the data mining research community
is well recognised6. Since its original publication by Ester et al.
(1996) several clustering algorithms have been developed aiming
to improve its performance and currently there are many options
available in the related literature. In this work we chose to use the
OPTICS and HDBSCAN algorithms because their clustering anal-
ysis is based on the hierarchical density structure of the data,
which improves the performance of DBSCAN when analysing
datasets with strong density gradients. The three algorithms that

6 https://www.kdd.org/News/view/2014-sigkdd-test-of-

time-award#

we used can be freely downloaded from the web repositories that
we provide in the next subsections.

For our study we considered three spatial and two kinematic
dimensions, with the former defined in Cartesian coordinates as

X = d · cos δ cosα, (1)

Y = d · cos δ sinα, (2)

Z = d · sin δ, (3)

where d is the distance computed as the inverse of the par-
allax. Given the low fraction of objects with radial velocity
measurements in our Gaia sample we restricted the kinematic
dimensions to the proper motions µα∗ and µδ. Before applying
the clustering analysis the input dataset must be normalised to
ensure that the data dispersion across the processed dimensions
is comparable. To do so we used the Standard Scaler (with an
Euclidean metric) implemented in the Python Machine Learn-
ing library scikit-learn (Pedregosa et al. 2011), ensuring that the
mean and variance of the data across each dimension are 0 and
1, respectively.

In the following lines we introduce the fundamental concepts
used by the DBSCAN, OPTICS, and HDBSCAN algorithms. Clus-
ters can be broadly described as localised and arbitrarily shaped
regions of an N-dimensional space with an excess of points per
volume unit. In other words, the density in the neighbourhood of
each cluster point must exceed some threshold value. The points
that do not satisfy this condition do not belong to the cluster
and are classified as noise. Two hyperparameters7 can be used to
describe this density threshold: first, ǫ or EPS-distance, which is
the distance between two points in the N-dimensional space, and
second, mPts, which is the minimum amount of points that are
needed to form a cluster. A cluster can contain core and border
points and by definition a cluster must contain at least one core
point. The cores are the points having at least mPts neighbours
within a distance d = ǫ. Border points are separated by a distance
d ≤ ǫ from a core point; they are directly density-reachable. Bor-
der points also have a number of neighbours n < mPts; i.e. they
are less dense than core points. Points separated by distances
d ≫ ǫ belong to the same cluster if they are density-reachable,
that is, if there is a chain of points p1, ..., pn such that pi+1 is
directly density-reachable from pi. Figure 3 illustrates these con-
cepts. Below we present the results of our analysis starting with a
basic description of each algorithm. For a thorough description
of the clustering algorithms we refer to the specialised litera-
ture (e.g. Ankerst et al. 1999; Campello et al. 2015; Ester et al.
1996).

3.2. DBSCAN

The DBSCAN8 code is one of the most widely used density-
based clustering algorithms. Originally introduced by Ester et al.
(1996), this algorithm relies on the ǫ and mPts hyperparameters
to find arbitrarily shaped clusters of constant density. The algo-
rithm results strongly depend on these input parameters and the
user may have to select the mPts and ǫ using a trial and error
approach.

We begin with the qualitative approach proposed by Ester
et al. (1996) to identify optimal mPts and ǫ values to find clus-
ters in the data. Their method consists in inspecting by eye the
so-called sorted k-distance plot, which shows the distance to the
kth nearest neighbour (the k-distance) for each point with all

7 In ML jargon these are the parameters specified by the user before
the clustering algorithm begins the learning process.
8 We use the scikit implementation by Pedregosa et al. (2011).
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Fig. 3. Fundamental concepts used by DBSCAN and OPTICS.
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Fig. 4. Left: k-distance plots of the Gaia sample for different k (or
equivalently mPts) values. The grey rectangle encompasses the step-like
slope change in the curves (see text). Right: zoom-in of the k= 130 case
with the bottom of the step-like slope change indicated by the dashed
lines.

the points sorted out by decreasing k-distance. By construction,
the points that belong to a cluster containing k members have a
lower distance to their closest k-neighbours than the noise points.
Therefore, a compact cluster containing n ≥ k points creates an
abrupt decrement in its sorted k-distance plot. The k-distance at
which the curve reduces again its slope corresponds to the opti-
mal ǫ to identify a cluster using mPts= k. This way, examining
these curves for different k values allows us to identify pairs of ǫ
and mPts hyperparameters.

We generated a set of k-distance curves for k ranging between
[80 : 200]. A careful look reveals a step-like slope change
located at point ∼2065 for k values ranging between [100 : 160],
as indicated by the grey shaded region in the left panel of Fig. 4.
To find the appropriate ǫ values for the different k values (and

Table 2. Explored hyperparameters and number of cluster elements
identified by each algorithm.

Algorithm mPts Eps Elements Control (%)

DBSCAN 100 0.373 492 155 (82.4)
DBSCAN 130 0.418 524 156 (83.0)
DBSCAN 160 0.455 552 158 (84.0)

OPTICS 14 0.245 451 157 (83.5)
OPTICS 16 0.259 494 157 (83.5)
OPTICS 18 0.265 497 159 (84.6)

HDBSCAN 21 – 427 153 (81.4)
HDBSCAN 35 – 502 163 (86.7)
HDBSCAN 50 – 462 158 (84.0)

Notes. The fifth column indicates the number of control sample
members found; the percentage is indicated inside a parenthesis. For
HDBSCAN the first column corresponds to the mCls.

equivalently, for different mPts) we computed the first and second
order derivatives of the sorted k-distance curves. Given the den-
sity distribution of our dataset we had to resample and smooth
the k-distance curves with a Gaussian kernel to isolate the 2nd-
order derivative maxima with sampling and smoothing values
varying with mPts. After finding the pairs of ǫ and mPts values
for different mPts we run DBSCAN. The algorithm identifies one
single cluster dominated by a population of stars with astromet-
ric distributions consistent with those of our control sample.
The results of this exploration for three representative cases
and their corresponding histogram distributions in parallaxes
and proper motions are listed in Table 2 and presented in Fig. 6
(top row), respectively. The histograms in µα∗ show a secondary
peak at µα∗ approximately −12.5, which becomes increasingly
significant with mPts. A similar behaviour is observed in the µδ
distribution, which shows a secondary peak at µδ approximately
−23 and is most evident for mPts = 100. The number of cluster
elements varies by ∼10% within the explored range.

3.3. OPTICS

By construction, all the clusters found by DBSCAN in a given
dataset have roughly the same density. Furthermore, this algo-
rithm struggles to identify all the members in clusters with
strong density gradients, such as a cluster composed of a very
dense core surrounded by a low density “halo”. The hierarchical
clustering algorithm OPTICS9 (Ankerst et al. 1999) attempts to
overcome these issues by focussing on the density-based clus-
tering structure of the data. The OPTICS algorithm constructs
clusters of different densities by exploring a range of ǫ values
and working like an expanded version of DBSCAN.

As a first step, OPTICS finds the densest regions of the cluster
and stores this information into two variables named core dis-
tance and reachability distance. The former is the distance from
a core point to its closest mPtsth neighbour, and the latter is the
smallest distance that makes a point density-reachable from a
core point. For a given value of mPts OPTICS classifies the points
according to their reachability distance from the densest part of
the cluster. This is reflected in the so-called reachability plot,
which shows a series of characteristic valleys, each associated
with a potential cluster. The bottom of the valley corresponds
to the densest cluster region and the width of the valley roughly

9 We use the pyclustering (v0.8.1) implementation by Novikov (2018).
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Fig. 5. Left: reachability distance plots of the Gaia sample computed
for a range of mPts. Right: zoom-in of the mPts = 16 case, highlighting
the location of the first and last points of the main valley.

scales with the number of cluster elements. The shape of the
valley depends on the density distribution of the cluster and
the entire dataset. As a second step, OPTICS is executed with
the mPts and ǫ hyperparameters derived from the reachability
curves as explained below.

Following Ankerst et al. (1999) we explored the reachabil-
ity curves for mPts ranging between [10 : 20]. All the curves
show a wealth of substructure in the form of multiple local nar-
row valleys that smoothly disappear with increasing mPts. The
curves also show a main and a secondary (less pronounced) val-
ley (Fig. 5, left panel). We did a first exploration of the two
clusters associated with these valleys (see below). The secondary
valley is produced by a cluster with ∼180 elements and has aver-
ages ̟= 6.3± 0.2, µα∗ =−10.6± 1.2, and µδ =−21.4± 1.4. Its
members are part of the Cluster 2 shown in Fig. 2 and only one
of the control sample members is part of this cluster. On average,
the astrometric properties of this secondary cluster are different
from those of the control sample and, at first sight, they are con-
sistent with a population of USco stars located in the background
of our control sample. We defer a detailed analysis of this clus-
ter to a separate and dedicated study. In what follows we focus
our discussion on the main valley and its associated cluster, as
this one has astrometric properties similar to those of the control
sample. In the explored range the shape of the valley is similar to
the “case B” described by Ankerst et al. (1999) in their Sect. 4.3
(see also their Figs. 17 and 18). The valley shows a local plateau
at its beginning (labelled as starting of the cluster; SoC), which
has similar y-coordinates as the cluster end; this end appears as
an abrupt decrement in the curve and is labelled as reachabil-
ity end (Reach End in the right panel of Fig. 5). In this case,
the appropriate ǫ to extract the cluster for mPts= 16 corresponds
to the y-coordinates of the reachability end, that is, ǫ = 0.259.
The beginning and end of the main valley are clearly detected
for mPts ranging between [14 : 18], and therefore we restrict
our analysis to this range. This way we derived the ǫ values for
the corresponding mPts and then executed OPTICS using these
hyperparameters. As representative cases we consider those in
which the reachability end is clearly detected. Those are listed
in Table 2, and their corresponding histograms in parallax and
proper motions are shown in Fig. 6 (central row). All the cases
produce a similar outcome with a variation in cluster elements
<10%. The histogram distributions show a secondary peak at
µα∗ ∼−12.5 and µδ ∼−23.

3.4. HDBSCAN

A drawback of both DBSCAN and OPTICS is the potential dif-
ficulty in finding optimal ǫ and mPts values. In high-density
datasets it can be complicated to identify unambiguously the
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Fig. 6. Histogram distributions of the cluster identified by DBSCAN
(top) and the main cluster identified by OPTICS (centre) and HDBSCAN
(bottom) for different hyperparameters (see legend and Table 2). The
control sample is represented with grey bars.

step-like slope change in the k-distance curves used by DBSCAN
and the first and last points of the valleys in the reachability-
distance plots generated by OPTICS. The hierarchical algorithm
HBDSCAN10 (Campello et al. 2013, 2015) requires one single
hyperparameter to operate (the “minimum cluster size” mCls,
conceptually similar to mPts), and it therefore simplifies the
task of finding appropriate hyperparameters. Similar to OPTICS,
HDBSCAN can identify clusters with different densities and it is
sensitive to the density gradients inside a cluster.

The HDBSCAN algorithm is much more complex than DBSCAN
and OPTICS and therefore we briefly describe its main steps,
referring to Campello et al. (2015) for a thorough description
of the algorithm. First, the low-density and noise points are
identified by computing the “mutual reachability distance”. This
quantity is the maximum of three distances for each pair of data
points A and B: the core distance to the kth point for A and
B, and the metric distance between A and B. Second, HDBSCAN
uses the mutual reachability distance to identify and classify
the densest points of the dataset according to their relative den-
sity. The points are grouped into clusters through a multi-stage
process that involves generating the minimum spanning tree of
the mutual reachability distances, computing the data points
density hierarchy, and creating a hierarchical condensed clus-
ter tree. Apart from identifying the clusters in a given dataset,
HDBSCAN uses the condensed cluster tree to assign a membership
probability to each member of a cluster.

We set the probability threshold to the maximum, i.e. we
only considered cluster members with 100% associated mem-
bership probability, and we then explored the range of mCls
values from [20 : 100]. For mCls >58 HDBSCAN does not find

10 We use the implementation by McInnes et al. (2017).
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Table 3. First 5 entries of the combined sample (532 members) described in Sect. 3.5.

α δ ̟ µα∗ µδ source_id Control DOH
(deg) (deg) (mas) (mas yr −1) (mas yr−1)

243.3719939 −23.1855471 7.2072955 −8.8893582 −25.4157242 6242554649124043520 N YNN
243.7959809 −23.3786153 7.1327026 −15.5389965 −24.4785008 6050385511522948096 N YNN
243.8016470 −23.3127069 7.1572953 −8.8631422 −26.3450177 6050388913137070848 N YNY
243.8311704 −25.6701140 7.4134597 −9.1980374 −27.1873024 6048740710844628864 N YNN
243.8642421 −22.6577711 7.1951507 −10.8897003 −24.8620069 6242599763466335104 N YNY

Notes. The sixth column is the Gaia DR2 source_id. The entire table is provided at the CDS. The control column indicates if a target is part of
the control sample following a Yes/No nomenclature. All the coordinates are given in J2015.5 epoch (as in Gaia DR2).

any cluster, while for mCls between [20 : 58] the algorithm sys-
tematically identifies a main and secondary cluster. After a first
exploration we find that the secondary cluster has between 30
and 50 elements, none of which are included in the control sam-
ple. As with OPTICS, the members of this secondary cluster have
proper motions consistent with those of Cluster 2 in Fig. 2 (with
averages ̟= 6.3± 0.1, µα∗ =−10.7± 0.9, and µδ =−21.3± 1.3).
As explained before, in this paper we focus our attention on the
main cluster found by HDBSCAN because its astrometric proper-
ties are consistent with those of the control sample. For mCls
ranging from [20 : 58] the number of cluster members mostly
oscillates around 460. As representative outputs we consider
those listed in Table 2 as, excluding a few cases with number
of elements <200, those encompass the minimum, maximum,
and roughly average number of elements of the main cluster.
The corresponding histograms are shown in Fig. 6 (bottom row).
The proper motion distributions show two secondary peaks at
approximately −12.5 in µα∗ and approximately −23 in µδ, albeit
these peaks are less pronounced than in the DBSCAN and OPTICS
cases.

3.5. Common sample

The three algorithms previously discussed find a population of
objects with astrometric properties (excluding the yet unknown
radial velocity) consistent with those of the control sample, and
additionally OPTICS and HDBSCAN find a secondary cluster with
different average properties. As explained in Sect. 3.3, the fact
that DBSCAN does not find this smaller cluster probably reflects
one of the main weaknesses of this algorithm, which is its lack
of sensitivity to find clusters with different densities in the same
dataset. Regarding the main cluster of our sample, the algorithm
outputs are slightly different and the cluster size is sensitive to
the chosen algorithm and corresponding hyperparameters (see
Table 2). On average, each algorithm recovers roughly 84% of
the control sample. It is therefore not straightforward to decide
which algorithm and hyperparameter combination produces the
most reliable sample of potential ρ Oph members. To over-
come this difficulty we merged the results listed in Table 2,
conservatively choosing the cluster combination that produces
the smaller output in terms of elements. That is, we combined
the DBSCAN output obtained for mPts = 100, the OPTICS output
with mPts= 14, and the HDBSCAN output with mCls = 21. After
accounting for duplicates the merged cluster (labelled hereafter
as combined sample) contains 532 sources, 164 of which are
included in the control sample. In this cluster there are 59 sources
only detected by DBSCAN , and 13 sources only detected by
OPTICS and other 13 only by HDBSCAN. Table 3 lists the mem-
bers of this sample and includes a column labelled as “DOH”

(acronym for DBSCAN–OPTICS–HBDSCAN), which indicates the
algorithm(s) that detect each member using a “Y/N” nomen-
clature. For example, if a source is detected only by DBSCAN
its DOH value is “YNN”, while the DOH value of a member
detected by OPTICS and HDBSCAN is “NYY”. From this com-
bined sample we extracted the sources simultaneously identified
by the three algorithms (i.e. those with DOH= “YYY”). Here-
after we focus our analysis on this common sample that contains
391 sources, 148 of which belong to the control sample.

The common sample contains 243 potential Ophiuchus
member candidates that were not included in the three catalogues
used to construct the control sample described in Sect. 2.2.
In order to gather further information about these sources, we
queried the SIMBAD database using as identifier the Gaia DR2
source_id. This query returned 77 objects, that is, to date
166 objects in our common sample do not appear linked to
any publication according to the SIMBAD service. Combining
the results obtained by Kraus & Hillenbrand (2007), Luhman &
Mamajek (2012), and Rizzuto et al. (2015), we find that 43 tar-
gets out of the 77 known objects have been associated with the
USco subgroup of the Scorpius-Centaurus OB association.

4. Results

4.1. Astrometric properties

The sky-projected distribution of the common sample is shown
in Fig. 7 superimposed on the extinction map produced by the
COMPLETE project (Ridge et al. 2006) applying the NICER
algorithm (Lombardi & Alves 2001) to 2MASS observations.
Nearly one-third of the common sample objects (125 sources)
are found within a distance r ≤ 0.6◦ from the extinction peak
(roughly at α, δ= 246.7◦,−24.5◦) of the main dark cloud of
Ophiuchus, the Lynds 1688 dark cloud (L1688; see e.g. Wilking
et al. 2008). Most of these objects (113) are also included in the
control sample. The apparent lack of sources at the innermost
core of this cloud is most likely a consequence of the very high
extinction exceeding AV > 20 at this location. We do not find a
significant correlation between the distances to each object (indi-
cated by the rainbow colour bar) and the sky-projected location
of the sample.

Figure 8 shows the proper motions of the common sample
(plotted as small cyan circles) overlaid on the zoomed-in distri-
butions of the Gaia sample (as grey circles). As in Fig. 2, the
diameter of the grey circles equals the average error on µα∗ of
the Gaia sample. The 40 control sample sources not included in
the common sample are plotted as small magenta circles. Most
of the common sample members are concentrated around the
apparent cluster located at higher µα∗ values (Cluster 1 in Fig. 2),
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but a non-negligible fraction of these members are also found
in the apparent cluster located towards lower µα∗ and higher µδ
values (Cluster 2 in Fig. 2). The parallax and proper motion his-
tograms of the common sample are shown in Fig. 9. The three
distributions deviate from a single bell-shaped distribution and
the parallax histogram shows two separate peaks at ̟= 7.0 and
̟= 7.2. The parallax distribution is narrower than the control
sample counterpart (̟ ∈ [6.7 : 7.7] versus ̟ ∈ [5.7 : 8.5]). By
computing the distance as the inverse of the parallax, we obtain
an average distance of d = 139.4+4.1

−3.8
pc to the common sample.
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Fig. 9. Histogram distributions of the common sample (see Sect. 3.5).
A two-Gaussian fit is shown as a solid line superimposed on the proper
motion histograms.

Table 4. Mean and FWHM of the Gaussian fits shown in Fig. 9 for the
main and secondary Gaussians (upper and lower halves, respectively).

µα∗ µδ
(mas yr−1) (mas yr−1)

Mean −6.9± 0.1 −25.4± 0.1
FWHM 3.2± 0.1 3.4± 0.1

Mean −10.4± 0.5 −21.6± 0.1
FWHM 4.8± 0.8 1.0± 0.4

Notes. The errors are the 1σ uncertainties of the fit.

Table 5. Mean and standard deviation (1σ) of the common sample
across different dimensions.

Dimension Value

α 246.2◦ ± 0.8
δ 23.9◦ ± 0.8
̟ 7.2± 0.2 mas
µα∗ −8.0± 2.2 mas yr−1

µδ −25.2± 1.9 mas yr−1

X 132.1± 3.8 pc
Y −15.8± 1.4 pc
Z 41.9± 2.6 pc

Notes. The Cartesian coordinates are given in the Galactic reference
frame (X, Y , and Z point towards the Galactic centre, the direction of
the Galactic rotation, and the North Galactic Pole, respectively).

The difference in parallax ranges means that the common sam-
ple members are distributed in a localised spatial region with
distances ranging from [130 : 150] pc, whereas the control sam-
ple occupies a spatial region with distances ranging between
[118 : 176] pc. The proper motion histograms show a secondary
peak or shoulder at µα∗ ∼−12 and µδ ∼−21, as expected from
Fig. 8. We fitted a combination of two Gaussian profiles to
the µα∗ and µδ distributions using a Levenberg–Marquardt algo-
rithm; the fit did not converge for the parallax distribution. The
fits are shown as a solid (combined fit), dashed (main Gaussian),
and dotted (secondary Gaussian) lines overlaid on the histograms
in Fig. 9. The mean and full width at half maximum (FWHM)
of the Gaussian fits and the average astrometric properties of the
common sample are listed on Tables 4 and 5, respectively.

It is likely that our common sample contains members of the
USco region given the similarity between the proper motions of
USco and ρ Oph, the proximity between these two regions, and
the large extension of USco across the sky (e.g. Mamajek 2008;
Preibisch et al. 2002; Preibisch & Mamajek 2008). We used the
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USco control sample with trigonometric parallaxes discussed by
Galli et al. (2018) to compare the astrometric properties of both
samples. The average parallax and proper motions of the USco
sample (̟= 7.1± 0.5, µα∗ =−11.7± 3.1, and µδ =−23.9± 1.9)
are indicated by the blue vertical dot-dashed lines in Fig. 9. The
average µα∗ of the USco sample coincides with the secondary
peak of the µα∗ histogram distribution of our common sample,
which we attribute to the presence of USco stars in our sample.

4.2. Colour magnitude diagram

Fundamental properties like stellar masses or ages can be esti-
mated from a colour magnitude diagram (CMD), if the extinction
for each object is known. There are photometric measurements
for all the objects in our common sample in the three Gaia
bands (broad G and the two narrower GBP and GRP; Brown et al.
2018) bands, but the extinction is estimated for only 95 of these
objects and has an average value of AG = 1.7± 0.6. As noted by
Andrae et al. (2018) the Gaia extinctions are not accurate at the
individual star level. Most importantly for our particular case,
the effective temperatures and extinctions listed on the Gaia
DR2 are based on a naked stellar model that does not include the
contribution from the dust in the SFR or the protoplanetary discs
that probably surround an important fraction of the common
sample sources. Therefore, we looked for published extinction
values of our sources. Dunham et al. (2015) gave extinction
values in the V band, AV, for 83 objects with an average value
of AV = 6.0± 4.0. Rizzuto et al. (2015) estimated AV for another
20 objects with an average value of AV = 0.9± 0.6. The large
difference between both studies is because, by construction,
the sample by Dunham et al. (2015) is composed of YSOs
surrounded by discs, while the sample discussed by Rizzuto
et al. (2015) is dominated by objects without detected discs.
Combining both studies we obtain AV estimates for 26% of the
sources in the common sample that have an average extinction
of AV = 5.0± 4.1. Using the Gaia DR2 extinction coefficients
listed in the filter profile service provided by the Spanish Virtual
Observatory (SVO11; Rodrigo et al. 2012) this average value
translates into AG = 4.7. As the individual extinctions for most of
the sources remain unknown to date, we opted for constructing
an extinction uncorrected CMD. For this purpose we used the
G and GRP bands, as their characteristic error is lower than in
the GBP band; for our entire sample we obtain a δG, δGRP, and
δGBP of 0.002, 0.007, and 0.04 mags, respectively. We used
the individual parallaxes to compute the absolute magnitudes
for each source as M =m + 5(log10̟ + 1). We computed the
extinction vector using the previously mentioned average AG to
get a rough idea of the extinction effect. Figure 10 shows the
obtained diagram; the common sample is plotted as small cyan
circles superimposed on the grey circles that represent the Gaia
sample. As in Fig. 8, the 40 sources that belong to the control
sample but not included in the common sample are shown as
magenta small circles. Except for a few objects, the common
sample occupies a separate region in this plot, as expected if this
sample is significantly younger than the rest of the stars in the
Gaia sample. Given the high extinction of the ρ Oph region the
common sample is most likely composed of objects located in
the near side of the cloud surface, as those in the inner regions
of the cloud are probably too obscured to be detected by Gaia.
Median ages for ρ Oph members at the cloud surface range
from 2 to 5 Myr (Wilking et al. 2008). To put our sample in
context we gathered the BT-Settl/CIFIST (Baraffe et al. 2015)

11 https://svo.cab.inta-csic.es/main/index.php
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a subset of sources (see Sect. 4.2).

and Parsec (Marigo et al. 2017) stellar evolutionary models for
stellar masses below and above 1.4 M⊙, respectively. The 2 and
5 Myr isochrones drawn from these models are shown as a
solid and a dashed blue line overlaid on the CMD, respectively,
while the evolutionary tracks for three different stellar masses
(0.1, 0.5, and 1.4 M⊙) are indicated by orange thick lines. Most
of the common sample objects are located above the isochrone.
Similarly, the bulk of the common sample (∼90% of it) lies
below the 0.5 M⊙ evolutionary track.

4.3. Potential discs

Given the youth of ρ Oph, a large fraction of our common
sample members might be surrounded by protoplanetary discs.
The presence of such a disc, as well as its evolutionary stage,
can be inferred from the warm dust emission at infrared wave-
lengths. We used the crossmatched tables provided by the Gaia
consortium (available in the Gaia archive) gaiadr1.tmass_
original_valid and gaiadr2.tmass_best_neighbour to
obtain the near-infrared photometry for the common sam-
ple sources. By combining these two tables we retrieved the
2MASS photometry for 382 sources. We then repeated the same
procedure but using the gaiadr2.allwise_best_neighbour
and gaiadr1. allwise_original_valid tables to obtain the
mid-infrared photometry measured by the Wide-Field Infrared
Survey Explorer (WISE; Wright et al. 2010), retrieving observa-
tions for 332 sources. All the retrieved 2MASS photometry has
quality flag “A” at the three bands, but this is not the case for the
WISE photometry. Therefore, before combining these outputs
we disregarded the objects with photometric quality flags dif-
ferent than “A” or “B” at any of the WISE bands. Furthermore,
we only considered objects with contamination and confusion
flags (cff) equal to “0” in all WISE bands, and with extended
source flags (ex) lower than 2. At this stage, we inspected by eye
the WISE images of every source to remove those affected by
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artefacts. The WISE band 4 photometry can be strongly affected
by background emission, which might be mistakenly associ-
ated with the warm dust emission produced by a circumstellar
disc (Kennedy & Wyatt 2012). To minimise this potential con-
fusion we used the Astropy/photutils package to perform
aperture photometry to measure the signal to noise at the peak
of the WISE band 4 image of each source. We used an aper-
ture mask with radius rap = 12′′ to measure the peak emission
and a sky aperture ring of rin = 20′′ and rout = 25′′ to estimate
the background signal; both apertures were centred on the Gaia
DR2 coordinates (α and δ) for each source. We filtered out all
the sources with peak emission S/N ≤ 4. Applying this selec-
tion criteria we finally obtained a sample of 48 sources, of
which 25 belong to the control sample, with 2MASS and WISE
photometry.

We combined the Gaia photometry with the infrared pho-
tometry to build up the spectral energy distributions (SEDs) for
the 48 sources previously selected. To convert from magnitudes
to flux units (Jy) we retrieved the effective wavelengths and zero
points (ZP) for each photometric band from the SVO. The total
uncertainty of the fluxes was computed as the quadratic sum of
the errors associated with the photometric extraction process,
ZP, and systematic errors. The Gaia photometric uncertainties
are negligible compared to those from the 2MASS and WISE.
The largest source of uncertainties are the systematic errors asso-
ciated with the WISE photometry, which is tied to the Spitzer
photometric calibration (Jarrett et al. 2011). In this work we
adopt an absolute calibration uncertainty of 5% for the W1, W2,
and W3 bands, and 10% for the W4 band. Given the broad wave-
length coverage of the WISE filters, a colour correction must be
applied when transforming magnitudes to fluxes. For each source
we computed the α flux slope (Fν ∼ να) for the different WISE
bands and then applied the correction factors following Section
VI of the Explanatory Supplement to the WISE All-Sky Data
Release Products12.

Traditionally, the protoplanetary discs have been classified
according to the infrared slope of their SED defined as

αIR =
log(λ1Fλ1

) − log(λ0Fλ0
)

log(λ1) − log(λ0)
, (4)

where λ1 and λ0 correspond to ∼2 and ∼22 µm (Lada & Wilking
1984; Lada 1987). This way, objects with αIR > 0.3 (i.e. those
with an increasing SED towards the mid-infrared) are labelled
as Class I and are associated with YSOs surrounded by a pri-
mordial envelope and massive, little evolved disc. Objects with
−0.3 > αIR > −1.6 are classified as Class II sources and rep-
resent a more evolved stage during the disc evolution, while
those with 0.3 > αIR > −0.3 are classified as flat SED sources
and show intermediate properties between the Class I and II
stages (Greene et al. 1994). Objects with αIR < −1.6 are clas-
sified as Class III and they are associated with tenuous discs.
Applying this criteria and using the Ks (λeff ∼ 2.2 µm) and W4
(λeff ∼ 22.1 µm) bands, we find 36 Class II and 12 Class III
objects within the 48 objects with infrared photometry contained
in the common sample. This traditional classification is useful
and allows for comparison with previous works, but it has some
limitations (see e.g. Cieza et al. 2007; Merín et al. 2010). In par-
ticular, as already noted by Evans et al. (2009), the Class III
encompasses two different types of objects: those surrounded
by a tenuous disc, and those with no detectable infrared excess
(i.e. bare photospheres). Inspecting the computed SEDs we find

12 http://wise2.ipac.caltech.edu/docs/release/allsky/

expsup/sec4_4h.html
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Fig. 11. Colour–colour plot of the common sample with high quality
infrared photometry. The dotted line indicates the traditional boundary
between the Class II and III stages. The vertical dashed line separates
bare photospheres from Class III discs.

several of these objects within the Class III of our sample. There-
fore, we applied an extra classification based on the infrared
slope between ∼12 and ∼22 µm (αW34). We classify as bare pho-
tospheres the Class III objects with αW34 <−1.6, and reclassify
the Class III objects as those with αIR <−1.6 and αW34 >−1.6.
Using this classification scheme we identify 7 bare photospheres
and 5 Class III sources, as reflected in Fig. 11. Therefore, we
find a disc fraction of ∼85% in this subsample of 48 objects.
Bearing in mind the strong selection biases of our sample, we
note that this high disc fraction is consistent with an age of
∼2 Myr according to different studies (e.g. Ribas et al. 2015;
Fedele et al. 2010; Mamajek 2009). A table with the photom-
etry for these 48 objects is given in Table A.4 and is available
at the CDS. This table contains a “status” keyword that indi-
cates if a disc is included in the control sample (labelled as
control), or if the disc has currently no references in the SIMBAD
service (labelled as new). We find 12 new discs, 11 of which
have Class II SEDs and 1 of which have Class III SED (Gaia
DR2 #6051732000945974912). The SEDs for these 12 new discs
are shown in Fig. 12, and their corresponding WISE W4 images
are shown in Fig. A.5. We note that the disc around the Gaia
DR2 #6050899361406000000 source shows a strong increase
towards 22 µm characteristic of a disc with a large dust depleted
inner cavity as in for example Sz 91 (Canovas et al. 2015, 2016;
Tsukagoshi et al. 2014).

5. Summary and conclusions

In this work we have used three density-based clustering algo-
rithms (DBSCAN, OPTICS, and HBDSCAN) to identify potential
new members of the ρ Oph region in the Gaia DR2 catalogue.
The members of the same SFR have similar proper motions and
spatial distributions, so these ML algorithms are well suited to
detect new member candidates.
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Fig. 12. Spectral energy distributions of the 12 new discs detected. The title indicates their Gaia DR2 source ID. The panels are ordered
by increasing αW34 slope. Object #6051732000945974912 is the only Class III disc of this subsample, as the rest are Class II discs. Source
#6050899361406000000 shows the characteristic SED shape of a disc with a dust depleted inner cavity.

We began by constructing a comprehensive sample of Ophi-
uchus members previously identified by Wilking et al. (2008),
Erickson et al. (2011), and Dunham et al. (2015). Table A.1 lists
the 465 elements of this catalogue. We then used the 2MASS
source IDs of these objects to cross-match them against the
Gaia DR2 catalogue. We obtained a control sample composed of
188 elements by applying the quality selection criteria described
in Sect. 2.2 and removing the outliers. This catalogue of bona
fide members, which may be useful for future studies of the
ρ Oph cloud, is accessible via Table A.1 through the Control
keyword. We then downloaded the Gaia DR2 sources contained
within a circular area of r= 3.5◦ centred on ρ Oph and with
5<̟< 9, a region large enough to encompass the entire con-
trol sample (Fig. 1). We imposed the quality selection criteria
outlined in Sects. 2.2 and 2.3, and then separately applied the
DBSCAN, OPTICS, and HDBSCAN algorithms to the five astro-
metric dimensions (XYZ Cartesian coordinates and the proper
motions µα∗ and µδ) of this sample. The DBSCAN code systemat-
ically finds one large cluster consistent with the control sample
astrometric properties, while OPTICS and HDBSCAN identify two
clusters, the largest of which has astrometric properties similar
to those of the control sample (Fig. 6). Discussing in detail the
properties of the secondary cluster is out of the scope of this
paper, and we defer its analysis to a separate study. The size
of the main cluster depends on the algorithm hyperparameters,
ranging from 427 to 552 elements. On average, the algorithms
recover ∼84% of the control sample as shown in Table 2. By
combining the different algorithm outcomes we constructed the
minimum common sample. This sample, presented in Table 3,
contains 391 candidate members of ρ Oph including 148 con-
trol sample elements and 166 sources that, to date, have no
reference in the literature according to SIMBAD. Seventy-seven

sources appear associated either with ρ Oph or USco (i.e. Cieza
et al. 2007; Cheetham et al. 2015; Luhman & Mamajek 2012;
Rizzuto et al. 2015). The average distance to the common sample
(d = 139.4+4.1

−3.8
pc) is consistent, within error bars, with previ-

ous distance estimates towards the ρ Oph cloud (Makarov 2007;
Mamajek 2008; Ortiz-León et al. 2017, 2018).

In Sect. 4.1 we analysed the astrometric properties of the
common sample. The parallax distribution is narrower than that
of the control sample, ranging from [6.7 : 7.7] and showing
a double peak at ̟= 7.0, 7.2. The proper motion histograms
show double Gaussian-like profiles with main and secondary
peaks at −6.9± 0.1 and −10.4± 0.5 in µα∗ , and −25.4± 0.1 and
−21.6± 0.1 in µδ (Figs. 8 and 9, and Table 4). The extinction
uncorrected CMD is shown in Fig. 10 and discussed in Sect. 4.2.
The CMD suggests that the common sample is dominated by
objects younger than 5 Myr with masses below 0.5 M⊙, which
agrees with previous studies of this cloud (Wilking et al. 2005;
Erickson et al. 2011), but we are cautious about our conclusions
given the large uncertainty associated with the (yet unknown)
extinction of these sources. Finally, in Sect. 4.3 we constructed
the SEDs from optical to mid-infrared wavelengths for the subset
of 48 objects with high quality photometry in the Gaia, 2MASS,
and WISE bands. We identified 36 Class II, 5 Class III objects,
and 7 bare photospheres by applying a colour selection criteria
(Fig. 11). Their photometry, along with their SED Class and a
flag indicating if the object has no references in SIMBAD, is
given in Table A.4. Twelve of these objects have no references
on the SIMBAD service and show strong infrared emission, and
their SEDs are shown in Fig. 12. Their corresponding WISE W4
maps are presented in Fig. A.5.

This work reflects the potential of applying modern ML tech-
niques to identify young stellar populations in huge astronomical
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catalogues such as the Gaia DR2. Our results show that the
DBSCAN, OPTICS, and HDBSCAN algorithms identify a similar
population of potential members of the ρ Oph SFR. All of these
algorithms recover roughly 84% of the control sample and the
number of elements of the main cluster found does not present
strong variations when comparing the different algorithm out-
puts. The lack of a complete census of bonafide members of
ρ Oph prevents us from performing a quantitative analysis to
decide which algorithm is the more adequate to find potential
member candidates in this cloud. We therefore choose to focus
our analysis in the minimum-sized common sample composed
of the cluster elements simultaneously found by the three algo-
rithms. This common sample contains fewer elements than the
clusters identified by each method separately (391 members ver-
sus, e.g. 427 for HDBSCAN with mPts = 21; see Table 2), so it is
possible that because of our rather conservative approach we are
missing potential cluster members. Nevertheless, the entire list
of candidate members found by the three algorithms is given in
Table 3 with the hope that this sample will be useful for future
studies by the community.

We are cautious about the possible generalisation of our
analysis to other SFRs or stellar associations. While some
regions have a very compact spatial distribution (e.g. IC 348,
Ruíz-Rodríguez et al. 2018, and references therein), others are
distributed across several parsecs (e.g. USco, Galli et al. 2018;
Preibisch & Mamajek 2008), and furthermore some present a
rich and complex spatial substructure (like Taurus, Joncour et al.
2018). Therefore, it is possible that the agreement in the outputs
produced by DBSCAN, OPTICS, and HDBSCAN when analysing
ρ Oph is not reached when analysing other regions with different
geometry and dynamics.

These tools are especially useful when the region under study
is affected by a high extinction that hinders a sample selection
from a CMD (as in e.g. Goldman et al. 2018). However, we are
aware of a number of limitations of our study. To begin with,
none of the algorithms discussed in this work take into account
the measurement uncertainties and, as shown through our anal-
ysis, the outcomes are sensitive to the hyperparameters given by
the user. We attempted to overcome these issues by combining
the results of the three algorithms and focussing our analysis
on the minimum size common sample of the multiple cases listed
in Table 2. Another caveat to consider is that SFRs are very com-
plex environments and a fraction of their components might not
be located in a cloud core but in a stream or filament-like spatial
structure (André et al. 2010). This is indeed the case for ρOph; at
least two prominent filaments seem to departure from the L1688
dark cloud (Ridge et al. 2006). This complex spatial distribution
makes it more difficult for the clustering algorithms to iden-
tify the cloud members, and that can explain why the applied
algorithms recovered ∼84% of the sample rather than the entire
control sample. This can also explain the narrow range in the par-
allax distribution of the common sample when compared to that
of the control sample. A third important caveat is that, given the
proximity in terms of parallax and coordinates, it is possible that
a fraction of the stars in our sample was formed in the ∼10 Myr
old USco region (Pecaut et al. 2012; Pecaut & Mamajek 2016).
The remarkable overlap between the average µα∗ of the USco
sample discussed by Galli et al. (2018) and the secondary peak
found in the µα∗ histogram of our common sample, together with
the fact that 43 members of the common sample have been asso-
ciated with USco, is an indicative of this possible contamination.
A potential way to discern the nature of these sources would be
to analyse the radial velocities, which we have not included in our
study given the lack of measurements in the Gaia DR2. Future

data releases are expected to include more radial velocity mea-
surements and therefore will become ideal catalogues to repeat
studies like this one. In the meantime, the brighter objects of
the common sample could be followed up with spectroscopy in
order to determine their effective temperatures and extinctions,
and therefore to estimate their ages and masses; this would also
help to constrain their parental region.

It is not surprising that none of the studied objects with
infrared photometry belong to the earlier Class 0 and I stages.
These objects are very embedded and extinct, and therefore they
are relatively difficult targets for Gaia. The 12 discs that we
discovered are good candidates to be directly imaged at opti-
cal and near-infrared wavelengths with high-contrast instruments
such as SPHERE (Beuzit et al. 2008) at the Very Large Tele-
scopes (VLT), and at submillimeter and longer wavelengths with
the ALMA observatory. Given the high fraction of circumstel-
lar discs that we found in our subset of 48 targets (∼85%), the
objects discussed which lack infrared photometry are promis-
ing targets to search for discs with future infrared facilities such
as the James Webb Space Telescope (JWST) and proposed mis-
sions such as the Space Infrared Telescope for Cosmology and
Astrophysics (SPICA).
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Appendix A: Additional tables and figures
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Fig. A.1. Apparent J band magnitude histograms of the initial sample.
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Fig. A.2. Parallax and proper motion histograms of the astrometrically
cleaned sample. We note the few outliers located far away from the
histogram peaks.
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Fig. A.3. Same as Fig. A.2 but for the control sample (obtained after
removing the outliers listed in Table A.2 from the astrometrically
cleaned sample).

Table A.1. Extract of the initial sample presented in Sect. 2.1.

2MASS Refs. Control DR2 Source ID

16261949-2437275 1, 2, 3 Y 6049122310095142656
16262083-2428395 1, 3 N
16262096-2408468 3 Y 6049357429490158336
16262097-2408518 1, 2 Y 6049357433785068672
16262138-2423040 1, 3 N

Notes. The entire table is available at the CDS. Five targets have dupli-
cate Gaia source_id: 2MASS J16222099-2304025, 2MASS J16233609-
2402209, 2MASS J16253958-2426349, 2MASS J16275565-2444509,
and 2MASS J16282373-2441412. These duplicates are removed when
applying the selection criteria described in Sect. 2.2, but we keep them
in the table for consistency.
References. (1) Wilking et al. (2008), (2) Erickson et al. (2011), and
(3) Dunham et al. (2015).
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Fig. A.4. Same as Fig. A.2 but for the Gaia cleaned sample.

Table A.2. Objects excluded from the control sample.

2MASS ID ̟ µα∗ µδ
(mas) (mas yr−1) (mas yr−1)

16293441-2452292 8.9451 −37.9989 −118.5701
16442882-2412242 2.1726 −1.8833 −5.9312
16245652-2459381 1.4977 −7.6758 −3.7136
16265752-2446060 10.2548 56.4965 −59.1305
16282516-2445009 13.1651 −52.7356 −62.1384
16244802-2440051 38.5067 −85.4146 −152.0051
16260302-2423360 7.4456 −20.1836 −26.7646
16273052-2432347 9.3827 84.3542 −41.9827
16273714-2359330 2.0953 4.7860 4.0732

Notes. They appear as outliers on the bell-shaped histograms shown in
Fig. A.2.

Table A.3. Objects in the common sample with published AV and Gaia
DR2 AG values (see Sect. 4.2).

DR2 Source ID Ref. AV AG

(mag) (mag)

6046062364938324608 1 4.2 0.8
6047590243721186688 1 4.4 2.6
6049067776894321024 1 3.9 1.3
6049094616145974272 1 6.3 2.2
6049095406419962112 1 7.9 1.9
6049101866050768384 1 2.9 1.9
6049118388788178816 1 4.0 2.8
6049122310095142656 1 1.6 2.2
6049142410542091648 1 4.5 2.8
6049161514556593920 1 15.9 2.0
6049162545348745984 1 10.8 2.1
6049331526542488064 1 6.6 2.0
6049367398109200256 1 6.3 1.4
6050172068822858624 1 0.0 0.7
6050204641855013376 1 3.9 1.3
6050345001390940160 2 0.6 0.8
6050487456864139392 2 0.9 1.6
6050626201483958400 1 2.0 2.3
6050644102907664640 1 1.9 0.9
6050681211424993280 1 4.3 2.1
6051734990243252096 1 2.2 1.9
6051764573978499200 2 0.8 0.9

References. (1) Dunham et al. (2015), (2) Rizzuto et al. (2015).
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Table A.4. Extract from the photometry table.

source_id G_Flux BP_Flux RP_Flux J_Flux H_Flux Ks_Flux W1_Flux W2_Flux W3_Flux W4_Flux SED_Class Status
(W m−2) (W m−2) (W m−2) (W m−2) (W m−2) (W m−2) (W m−2) (W m−2) (W m−2) (W m−2)

6046026394590627840 6.38E-15 1.62E-15 1.52E-14 3.75E-14 3.26E-14 2.17E-14 8.44E-15 5.24E-15 2.02E-15 1.68E-15 Class II New
6047564611356188288 3.76E-15 4.11E-16 1.06E-14 7.34E-14 1.05E-13 8.79E-14 4.43E-14 2.88E-14 7.53E-15 5.38E-15 Class II Control
6047569834036585728 4.24E-14 1.35E-14 9.17E-14 2.50E-13 2.80E-13 2.02E-13 9.91E-14 7.08E-14 3.23E-14 2.90E-14 Class II Control
6047573849829430656 4.76E-16 1.25E-16 1.73E-15 2.22E-14 3.37E-14 3.57E-14 2.09E-14 1.64E-14 7.72E-15 5.90E-15 Class II Control
6047584810585556480 2.84E-13 1.38E-13 5.05E-13 8.85E-13 9.02E-13 5.70E-13 2.10E-13 9.12E-14 6.38E-15 1.19E-15 Photosphere Other
6048982328524443136 1.37E-14 3.06E-15 3.17E-14 1.03E-13 1.21E-13 8.26E-14 3.21E-14 1.64E-14 5.10E-15 4.35E-15 Class II New
6048993461079183488 1.90E-14 5.35E-15 4.19E-14 1.14E-13 1.27E-13 8.41E-14 3.05E-14 1.61E-14 1.06E-14 8.60E-15 Class II New
6049011053265501056 8.30E-12 7.89E-12 9.48E-12 8.26E-12 5.20E-12 3.10E-12 1.04E-12 4.58E-13 2.62E-14 4.57E-15 Photosphere Other
6049043832452569728 5.25E-15 8.75E-16 1.33E-14 4.73E-14 4.34E-14 3.43E-14 1.55E-14 9.87E-15 2.83E-15 2.01E-15 Class II New
6049045000683707392 5.56E-14 2.21E-14 1.09E-13 2.31E-13 2.31E-13 1.63E-13 7.03E-14 3.93E-14 1.03E-14 7.28E-15 Class II Other

Notes. This entire table is available at the CDS.

6050514120021417728 6051732000945974912 6050574730599548288 6049043832452569728 6048993461079183488

6046026394590627840 6048982328524443136 6050352010777437952 6051738701094968960 6050978182646139392

6050953649792653312 6050899361406000000

Fig. A.5. WISE W4 maps of the 12 new discs shown in Fig. 12. The black line encompasses the aperture mask used to find the emission peak
associated with the disc (r= 12′′), and the red lines indicate the ring area used to estimate the background emission (rin = 20′′, rout = 25′′; see
Sect. 4.3). All the images are 1.5′ × 1.5′ in size, and the white panels indicate the Gaia DR2 source ID.
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