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Abstract. In this paper, we present a walking approach for the Nao robot that
improves the agility and stability of the robot when walking on a flat surface
such as the soccer field used in the Standard Platform League. The gait uses the
computationally inexpensive model of an inverted pendulum to generate a target
trajectory for the center of mass of the robot. This trajectory is adapted using
the observed real motion of the center of mass. This approach does not only allow
compensating the inaccuracies in the model, but it also allows for reacting to
external perturbations effectively. In addition, the method aims at facilitating a
preferably fast walk while reducing the load on the joints.

1 Introduction

Since 2008, the humanoid robot Nao [4] that is manufactured by the French company
Aldebaran Robotics is the robot used in the RoboCup Standard Platform League. The
Nao has 21 degrees of freedom (see Fig. 4). It is equipped with a 500 MHz processor, two
cameras, an inertial measuring unit, sonar sensors in its chest, and force-sensitive resistors
under its feet. The camera takes 30 images per second while other sensor measurements
are delivered at 100 Hz (50 Hz until 2009). The joints can be controlled at the same time
resolution, i. e. walking means to generate 100 sets of 21 target joint angles per second.

Since the beginning of 2010, Aldebaran Robotics provides a gait for the Nao [4] that,
although being a closed-loop walk, only takes the actual joint angles into account, not
the measurements of the inertial measurement unit in Nao’s chest. Thus the maximum
speed reachable with the walk provided is still severely limited. As delivered by the man-
ufacturer, it is approximately 10 cm/s. For RoboCup 2008, Kulk and Welsh designed an
open-loop walk that keeps the stiffness of the joints as low as possible to both conserve
energy and to increase the stability of the walk [9]. The gait reached 14 cm/s although it
was based on the previous walking module provided by Aldebaran Robotics. Two groups
worked on walks that keep the Zero Moment Point (ZMP) [13] above the support area
using preview controllers. Both implement real omni-directional gaits. Czarnetzki et al.
[1] reached speeds up to 20 cm/s with their approach. In their paper, this was only done in
simulation. However, at RoboCup 2009 their robots reached similar speeds on the actual
field, but they seemed to be hard to control and there was a certain lack in robustness,
i. e., the robot fell down quite often. Strom et. al [12] modeled the robot as an inverted
pendulum in their ZMP-based method. They reached speeds of around 10 cm/s.
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In [6], [11], and [5], we already presented a robust closed-loop gait for the Nao. The
active balancing used in the approach is based on the pose of the torso of the robot. In
addition, we also presented an analytical solution to the inverse kinematics of the Nao,
solving the problems introduced by the special hip joint of the Nao, i. e. dealing with the
constraint that both legs share a degree of freedom in the hip. The gait presented in this
paper is a continuation of this work.

The main contribution of this paper is presenting a computational inexpensive way
for using the inverted pendulum model with dynamic phase duration for modeling a
fast but omnidirectional and responsive walk and to use the same model to react to
perturbations. Hence in addition to previous works, the focus is placed on using sensor
feedback to observe the state of the robot and to adjust the inverted pendulum model to
the observed state in order to improve the stability of the walk. The resulting walk is one
of the fastest omnidirectional walks implemented on the Nao so far.

The structure of this paper is as follows: in the next section, modeling the walking
robot as an inverted pendulum to control position and speed of its center of mass is
discussed. In Section 3, the integration of sensor feedback is presented. Section 4 discusses
the results achieved, followed by Section 5, which concludes the paper and gives an outlook
on future work.

2 Using the Inverted Pendulum to Create Walking Motions

Generating a walking motion for humanoid robot basically means to create a sequence
of joint angle sets, where each joint angle set will be executed successively. To be able
to create a single set and a series of joint angles, a method is required to represent the
state and the change of the state of the robot while it is walking. The approach presented
in this paper reduces the model of the robot to its center of mass and uses the position
and desired velocity of the center of mass to describe the state of the robot. The change
of the state is described by determining a trajectory for the movement of the center of
mass. From the position of the center of mass, the actual joint angles are determined
by generating an additional trajectory for the position of the nonsupporting foot and by
applying inverse kinematics to both legs (details are given in [5]).

To describe the movement of the center of mass, the 3-Dimensional Linear Inverted
Pendulum Mode (3D-LIPM) [7] is used, which provides an approximation of a physically
respectable model for the motion of the center of mass. In addition, changes in rotation,
as they occur while rotating on the spot or while walking along a curve, are ignored.
Hence, the position and velocity of the center of mass on a plane of height h in parallel
to the ground relative to the origin of the inverted pendulum (see Fig. 1) are given by

x(t) = x0 · cosh(k · t) + ẋ0 ·
1

k
· sinh(k · t) (1)

ẋ(t) = x0 · k · sinh(k · t) + ẋ0 · cosh(k · t) (2)

where k =
√

g
h , g is the gravitational acceleration (≈ 9.81 m

s2 ), x0 ∈ R2 is the position of
the center of mass relative to the origin of the inverted pendulum at t = 0, and ẋ0 ∈ R2

is the velocity of the center of mass at t = 0. A point under the currently supporting foot
is used as origin of the inverted pendulum (see Fig. 6).
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Fig. 1. An inverted pendulum in the three-
dimensional space with fixed height h.

Fig. 2. An inverted pendulum attached to an
obliquely forwards walking simulated model of
the Nao.

In a single support phase, the inverted pendulum defines the motion of the center of
mass according to its position and velocity relative to the origin of the inverted pendulum.
Hence at the beginning of a single support phase, the position and velocity of the center of
mass should be in a state that leads to the proper position and velocity for the next single
support phase (of the other leg). The origin of the inverted pendulum should thereby be
placed as close as possible to an optimal position under the foot (see Fig. 6). Since the step
sizes to be performed can be chosen without severe constraints, the movement of the center
of mass has to be adjusted for each step so the origins of the inverted pendulums used fit
to the feet positions that are defined by the step sizes. Most walking approaches applied
on the Nao [12, 3, 1] use a short double support phase for accelerating or decelerating the
center of mass to achieve such an adjustment. To maximize the possible range that can be
covered within a phase, the single support phase should make up as much as possible of
the whole step phase to reduce the accelerations that are necessary for shifting the foot.
Hence, the approach presented in this paper aims on eliminating the need of a double
support phase, while keeping the origins of the inverted pendulums close to their optimal
positions.

Even though no double support phase is used, a method to manipulate the movement
of the center of mass is required. Therefore, the point in time for altering the support leg
is used to control the velocity of the center of mass in the y-direction (see Fig. 3 for the
system of coordinates used). To control the velocity in the x-direction, the origin of the
inverted pendulum is shifted along the x-axis towards the elongated shape of the feet (see
Fig. 6). This way the velocity of the center of mass can be manipulated enough to cover
a specific distance (step size) while swinging from one leg to the other.

2.1 The System of Coordinates

Walking is a sequence of single support phases. In this paper, the symbols used to describe
the current single support phase have no extra markings, while the symbols used to
describe the following single support phase are dashed (e. g. x vs. x̄). For each new single
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Fig. 3. The coordinate system Q used in this
paper for describing the center of mass and
the inverted pendulum origin positions.

Fig. 4. Schematic view of the kinematic chain
of the Nao. Each black dot marks a joint with
up to 3 degrees of freedom. The bigger, red
dot marks the center of mass position.

support phase, a new coordinate system Q (see Fig. 3) is used to describe the set points
of the center of mass and the feet positions. The origin of the inverted pendulum has the
distance r ∈ R2 on the x-y-plane from the origin of Q̄. This distance remains (almost)
constant within a single support phase. The origin of Q is located between both feet so
that a step size s̄ describes the offset from the origin of Q to the origin of Q̄ (see Fig. 5
and Fig. 6) where Q̄ is the coordinate system Q of the upcoming single support phase. If
the robot walks in place, the step size is 0 and Q is the same as Q̄.

2.2 Computing Step Durations

To apply the functions (1) and (2) for generating walking motions, a definition of the
point in time t = 0 is required to determine when to alter the support leg. t = 0 is defined
as the inflection point of the pendulum motion where the y-component of the velocity
is 0 ((ẋ0)y = 0). The position of the center of mass at this point (x0)y is an arbitrary
parameter and has a value of greater or lower than 0 depending on the active support
leg. Since (ẋ0)y = 0, the function

xy(t) = (x0)y · cosh(k · t) (3)

in the range t ≥ tb and t ≤ te can be used to compute the y-component of the center
of mass position relative to the origin of the inverted pendulum. A single support phase
starts at t = tb (tb < 0) and ends at t = te (te > 0).

If the nonsupporting foot should be placed with a distance of r̄y + s̄y − ry to the
supporting foot at the end of the single support phase (see Fig. 7) and if x̄(t̄) and ¯̇x(t̄)
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Fig. 5. y-z-cross section of the coordinate sys-
tem used for the altering inverted pendulums.
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Fig. 6. x-y-cross section showing the step size
s̄ and the inverted pendulum origins r and r̄.
The small gray circle marks the foot position
that is also referred as optimal inverted pen-
dulum origin. The dotted line marks allowed
inverted pendulum origins.

are position and velocity of the center of mass relative to the next pendulum origin, the
point in time to alter the support leg can be determined by finding the ending of a single
support phase te where:

(x(te))y − (x̄(t̄b))y = r̄y + s̄y − ry (4)

(ẋ(te))y = (¯̇x(t̄b))y (5)

The ending of a single support phase te and a matching beginning of the next single
support phase t̄b cannot be found by simply solving equation (4) and (5) for te and t̄b.
This is not possible since it cannot be assumed that the functions (x(t))y and (x̄(t̄))y
are symmetric. To handle this problem an iterative method (see Algorithm 1) is used, in
which te is initially guessed. The equation (5) can be transformed into

t̄b =
1

k̄
· arcsinh

(
(x0)y · k · sinh(k · te)

(x̄0)y · k̄

)
(6)

to compute a value for t̄b that matches to the guessed te. The guessed te can then be
refined using the velocity of the center of mass at te and the length (x(te))y − (x̄(t̄b))y.

2.3 Walking Forwards and Backwards

Up to now, the length of a single support phase and the y-component of the center of
mass position at every point in time can be determined. To cover a step size s̄x, the origin
of the inverted pendulum of the next single support phase should be placed in a distance
of r̄x− s̄x−rx from the origin of the current inverted pendulum. In addition, the velocities
of the center of mass relative to each pendulum origin should be equal at the point in
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Fig. 7. Two facing inverted pendulum pendulums used to cover step size s̄y.

Algorithm 1 Computing te and t̄b
1: te ← initial guess
2: repeat

3: t̄b ← 1
k̄
· arsinh

(
(x0)y·k·sinh(k·te)

(x̄0)y·k̄

)
4: y ← (x0)y · cosh(k · te)− (x̄0)y · cosh(k̄ · t̄b)
5: ẋte ← k · (x0)y · sinh(k · te)
6: ∆te ← r̄y+s̄y−ry−y

2·ẋte

7: te ← te +∆te
8: until |∆te| ≤ desired precision (e. g. 0.0001 s)

9: t̄b ← 1
k̄
· arsinh

(
(x0)y·k·sinh(k·te)

(x̄0)y·k̄

)

time when the support leg alternates. So, analogically to the equations (4) and (5) for
the y-direction, the following equations should apply in the x-directions:

(x(te))x − (x̄(t̄b))x = r̄x + s̄x − rx (7)

(ẋ(te))x = (¯̇x(t̄b))x (8)

Two properties are planned ahead for the next single support phase. On the one hand,
the position of the origin of the inverted pendulum should be optimal, so that r̄x = 0.
On the other hand, the center of mass should be exactly over the next pendulum origin
(x̄(0))x = 0 at t = 0. The latter is substantiated on simple forward walking (s̄x = 0) where
−tb = te, so that (x̄(0))x = 0 guarantees an evenly distributed center of mass motion that
allows using optimal inverted pendulum origins (rx and r̄x = 0) when walking with a
constant step size. In order to cover a distance of s̄x, the origin of the inverted pendulum
rx of the current single support phase is chosen in a way that equation (7) applies.

When the center of mass has the position xtb and velocity ẋtb relative to the origin of
Q at the beginning of a single support phase, rx can be computed by using the following
linear system of equations:
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r + x0 · cosh(k · t) + ẋ0 · sinh(k·t)
k = xt

x0 · k · sinh(k · t) + ẋ0 · cosh(k · t) = ẋt
x0 · k · sinh(k · te) + ẋ0 · cosh(k · te) − x̄0 · k̄ · sinh(k̄ · t̄b) − ¯̇x0 · cosh(k̄ · t̄b) = [0, 0]T

r + x0 · cosh(k · te) + ẋ0 · sinh(k·te)
k − x̄0 · cosh(k̄ · t̄b) − ¯̇x0 · sinh(k̄·t̄b)

k̄
− s̄ = r̄

(9)
It is not only possible to compute rx using the linear system of equations (9), but also

to compute (x0)x and (ẋ0)x, so that a complete set of pendulum parameters (r, x0 and
ẋ0) can be determined.

Depending on the desired step size s̄, position xtb , and velocity ẋtb of the center of
mass at the beginning of the single support phase, the absolute value of rx can reach
values that would shift the pendulum origin out of the convex hull of the foot or out
of a range that can be considered to ensure a stable walk. Hence, a computed rx can
be limited and an alternative value for s̄x can be computed using the linear system of
equations (9) as well. This allows making sure that only step sizes are used that result in
inverted pendulum origins close enough to the optimal positions. |rx| can be capped to
only a few millimeters (e. g. 4 mm), to reduce the possible acceleration and deceleration
of walking speeds and to improve the stability of the walk.

3 Balancing

The results of a walk generated solely using the center of mass trajectory as described
in Section 2 are not convincing. It might be possible to find parameters that keep the
robot upright and that allow slow locomotion, but it is obvious that the model alone is
not suitable to keep the walk permanently stable. Furthermore, the robot is not capable
to react on perturbations of any kind.

Without balancing the trajectory of the center of mass is static and can only be
executed as it was computed before. In the case that an external perturbation affects the
robot or when the model used is simply not precise enough to represent the dynamics of
the robot, the motion of the center of mass does not follow the trajectory as intended and
the robot may fall in any direction. There are several approaches to handle this problem.
As soon as a deviation in the motion of the center of mass is detected, a counteraction can
be executed to bring the center of mass back to the desired position. Another approach is
to compute a slightly modified trajectory for the center of mass to continue the deviated
motion according to the inverted pendulum model and to adjust future steps to the
deviated motion. The walk presented in this paper uses the second approach. Using the
first approach, it is hardly possible to compensate a perturbation completely, but it is
quite useful to prevent the error from increasing with further movement of the center of
mass. The advantage of the second approach is that it acts in a more farsighted manner.
If an error is in the system, it is absorbed to continue the intended step as stable as
possible. But at first, both approaches require observing the actual position of the center
of mass to detect an error.

3.1 Observing the Center of Mass

For determining an observed position of the center of mass, a four-dimensional (simple)
Kalman filter [8] is used for the x and y-components of the position and the velocity of the
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center of mass. It is actually implemented using two independent two-dimensional Kalman
filters. Estimating the z-component is left out, since the 3D-LIPM used can not handle
any dynamic pendulum heights. Instead of computing the sensor readings for a predicted
center of mass position, the error ∆xi between the expected center of mass position xei
relative to Q and the measured center of mass position xmi at time ti are computed and
used as innovation. The expected center of mass position is computed using x(t) with the
inverted pendulum parameters of the current single support phase. The measured center
of mass position xmi is basically computed by using an estimated orientation of the robot
torso and the kinematic chain to the supporting foot that is constructed using the joint
angle sensor readings of the Nao.

xei = r + x(ti) (10)

∆xi = xmi − xei (11)

The Kalman filter uses xei and the function ẋ(ti) with the inverted pendulum parameters
of the current single support phase as the predicted state µi

′. The covariance Σi
′ of

the predicted state is computed as in an ordinary four-dimensional Kalman filter that
estimates a position and a velocity of an object in two-dimensional space with a process
noise Σεi.

µi
′ =


(xei)x
(xei)y
(ẋ(ti))x
(ẋ(ti))y

 , Σi
′ = A ·Σi−1 ·AT +Σεi with A =


1 0 ∆ti 0
0 1 0 ∆ti
0 0 1 0
0 0 0 1

 , ∆ti = ti − ti−1

(12)
The Kalman gain Ki for the innovation ∆xi can be computed assuming covariance Σmi

for the measurement xmi.

Ki = Σi
′ · CT · (C ·Σi

′ · CT +Σmi)
−1 with C =

[
1 0 0 0
0 1 0 0

]
(13)

And finally, the filtered position xf i, the filtered velocity ẋf i, and the updated covariance
Σi can then be computed.

µi =


(
xf i
)
x(

xf i
)
y(

ẋf i
)
x(

ẋf i
)
y

 = µi
′ +Ki ·∆xi, Σi = Σi

′ −Ki · C ·Σi
′ (14)

The parameters of the Kalman filters, i. e. the assumed process noise Σεi and the
deviation of the computed error Σmi, can control how much sensor feedback is used to
correct the pendulum parameters (see Section 3.2). Using a small process noise and a
large deviation of the computed error results in only little corrections according to the
measured position of the center of mass.

3.2 Correcting the Inverted Pendulum Parameters

The filtered position xf i and the filtered velocity ẋf i of the Kalman filter that estimates
the true position and velocity of the center of mass are used to re-determine the parameters
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of the inverted pendulum of the current single support phase. Since the prediction of
the natural motion of the center of mass is based on the pendulum parameters, the
main purpose of the correction is to improve the prediction in the next iteration. So the
pendulum parameters r, x0, ẋ0, and ti are re-determined to find a pendulum function
that fits to the estimated position and the estimated velocity of the center of mass:

r′ + x′(ti
′) = xf i (15)

ẋ′(ti
′) = ẋf i (16)

The y-component (x0)y
′

of the center of mass at the point in time t = 0 as well
as the corrected current time ti

′ can be computed using the estimated position and the
estimated velocity. (x0)y

′
is calculated by using equation (3) and its derivation:

(xf )y − ry ′ = (x0)y
′ · cosh(k′ · ti′) (17)

(ẋf )y = (x0)y
′ · k′ · sinh(k′ · ti′) (18)

Equation (17) can be solved for k′ ·ti′ and inserted into (18) to solve the resulting equation
for (x0)y

′
:

(x0)y
′

=

√
((xf i)y − ry ′)2 −

(ẋf i)y
2

k′2
(19)

ti
′ can then be computed by solving equation (18) for ti

′:

ti
′ =

1

k′
· arcsinh

(
(ẋf )y

k′ · (x0)y

)
(20)

Given the corrected y-component of the pendulum position at t′ = 0 (which is possibly
shifted to t = 0) a corrected point in time te

′ for the ending of the current single support
phase can be computed using the iterative method as described in Section 2.2 with the
current step size s̄. The x-components of the estimated position xf i and the estimated
velocity ẋf i can be used for computing the corrected pendulum origin rx

′ and the other

pendulum parameters (x0)x
′

and (ẋ0)x
′

by using the linear system of equations (9).

3.3 Controlling the Predicted Positions of the Center of Mass

A general problem with balancing a walk is that the sensor readings are not in sync
with the controlled joint angles. On the Nao, 40 ms or 4 cycles in the walk generation
process elapse until a reaction from a joint angle request becomes recognizable. Hence, a
pendulum motion in sync with the measurements is considered at first. At this frame, the
estimated position and the estimated velocity of the center of mass are used to compute
the corrected pendulum parameters. To control a position of the center of mass xpi, the
position of the center of mass 40 ms in the future is predicted according the corrected
pendulum parameters. If the 40 ms exceed the ending of the current single support phase,
the pendulum parameters of the next single support phase are used instead:

xpi =

{
r′ + x′(ti

′ + 40ms) if ti
′ + 40ms < te

′

s̄+ r̄ + x̄(t̄′b + ti
′ + 40ms− te′) otherwise

(21)
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Fig. 8. The progressing filtering process of the position of the center of mass. The position of
the center of mass xf i is used to look 10 ms ahead to compute a predicted position xei+1 that is
then used together with the measured position xmi+1 to compute the filtered position xf i+1. The
controlled position of the center of mass xpi+1 is then computed based on the filtered position
xf i+1.

4 Results

To find parameters for the gait, the robot was walking in a stationary position and
some initial parameters were slightly changed to minimize the average error between
expected and measured center of mass position and to result in a preferably constant and
smooth motion from side to side (see Fig. 9). Some parameters define the stance and the
motion with values such as the height of the center of mass above the ground, the offset
between both feet (normally 10 cm because of the robot’s leg design), the step height,
and the magnitude of a step-bound rotation around the x-axis to simplify the center
of mass shifting to a side. Furthermore, there are parameters that define the motion of
the inverted pendulum such as the pendulum width (x0)y, the position of the optimal
pendulum origin within a foot ry, and the assumed height of the pendulum h, which
can be chosen independently from the actual position of the center of mass to adjust the
inverted pendulum model to the actual dynamics of the robot. The parameters can be
chosen by hand or with an automatic method such as the Particle Swarm Optimization
[2] that uses the averaged error between the expected and the measured position of the
center of mass to rate the quality of a set of parameters.

The walking parameters used in the work presented aim at compromising between
a maximum walking speed and a minimum load on joints. Hence, the center of mass is
located quite high at 262 mm over ground, so that thigh and lower leg stand with an
obtuse angle to each other to reduce the load on the knee joint. This can be a huge
advantage when the Nao should stand or walk for a long period of time, since the knee
joint can overheat quickly at a sharper angle due to the higher load (e. g. in less than 20
minutes, i. e. the duration of a game). Another advantage of the high center of mass is
that—compared to a lowered stance—smaller changes in the joint angles are necessary to
reach target foot positions that are far away. But a drawback of the high center of mass is
that the maximum reachable target foot distance is more limited by the maximum length
of a leg.

Using the best performing parameters found so far, the robot reaches 31 cm/s forwards
with a step size of 7 cm, 12 cm/s sideways with a step size of 8 cm, 22 cm/s backwards,
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Fig. 9. A plot showing the y-component of the
measured (red) and expected (black) center of
mass position while the robot was walking on
the spot. The motion of the robot is steady
although the average error appears to be im-
mense (4.26 mm).
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Fig. 10. A plot showing the y-component
of the measured (red) and expected (black)
center of mass position when the robot was
pushed from the side. The expected center of
mass position chases the measured position
and the walk stabilizes quickly.

and 92◦/s when rotating on the spot. At full speed, the average error of the position
of the center of mass in the y-direction is 7.76 mm. The error is smaller with reduced
walking speed (e. g. 5.88 mm at 10 cm/s forwards). With reduced walking speed, the gait
is also substantially more robust against perturbations. The correction of the inverted
pendulum parameters causes the motion of the center of mass to adjust quickly to the
expected trajectory (see Fig. 10).

5 Conclusions and Future Work

In this paper, we present a robust closed-loop gait for the Nao robot. The gait uses
the center of mass as simplified representation of the walking robot and a model for the
movement of this center of mass that is based on two alternating inverted pendulums. The
model allows eliminating the need of a double-support phase by dynamically adjusting
the point in time at which the support leg alternates. Thus, the load on the joints for
bridging over larger distances can be reduced.

In addition, we have suggested a method for estimating the actual position and the
actual velocity of the center of mass. We have explained how the estimate can be used
for correcting the inverted pendulum model. The correction does not only allow using the
inverted pendulum model on real hardware without perfect joint calibration, but it also
adds robustness against perturbations such as forces exerted on the robot. The maximum
speed achieved could be increased in comparison to the results of previous works.

Work that was already started for RoboCup 2010 and is still ongoing is to add a
mechanism to learn the difference between the inverted pendulum model and the real
dynamics of the robot. Furthermore, we plan to extend the walking engine to a general
motion engine that, e. g., will also integrate dynamic kicks as presented by [10]. This will
significantly improve the robot’s ability to dribble the ball and speed up the transitions
between walking and kicking.
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2010: Robot Soccer World Cup XIV. pp. 109–120. No. 6556 in Lecture Notes in Artificial
Intelligence, Springer (2011)
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