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3~p, either F(nh) = 0 or $n(nh) = 0. Thus the sum on the right-hand side of 
equation (3) is identically zero. Combining equation (3) with equation (2), we 
have the desired result. 

* The research for this paper was supported by the United States Air Force under Contract 
No. AF18(600-685) monitored by the Office of Scientific Research. 

1 A discussion of the problem along with the necessary references will be found in Harry Pol
lard, "The Harmonic Analysis of Bounded Functions," Duke Math. / . , 20, 499-512, 1953. 

2 See ibid. 
3 See S. Bochner, Fouriersche Integrate (Leipzig, 1932), p. 33. 
4 The Levitan polynomial. See N.I. Achieser, Approximationstheorie (Berlin, 1953), p. 146. 
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Introduction.—This paper presents a central limit theorem for a sequence of 
dependent random variables 

Xi, A 2, . . . 

The assumptions required are the usual assumptions on second and 2 + 6 order 
moments and a strong mixing condition. The theorem is of interest for two reasons. 
All general central limit theorems for dependent random variables formalize in 
some sense a heuristic notion of A. Markoff to the effect that one expects a central 
limit theorem to hold for Xh X2, . . . , if the random variables behave more like 
independent random variables the farther they are separated (assuming that ap
propriate moments exist). An interesting discussion of this intuitive notion is 
given in S. Bernstein's paper on the central limit theorem.1 The strong mixing 
condition used in this paper seems to he a more intuitively appealing formalization 
of this notion than most others. The condition is also of interest because it is a 
strong version of the mixing condition encountered in ergodic theory (see Hopf,2 

p. 35). 
The Mixing Condition.—The mixing condition is assumed to hold for sets of the 

form 

akr < XkT < bkr, r = 1, . . . , $, (1) 

where ki < . . . < ks. Given any two such sets A and B, introduce the following 
notion of distance d(A, B) between them. Consider the smallest interval contain
ing the indices of the random variables in terms of which A is defined. Call this 
interval 1(A). In the case of set (1), this interval is [kh k8]. The distance d(A, B) 
is set equal to the distance between the intervals 1(A) and 1(B). Note that d(A, B) 
does not satisfy the usual properties of a distance; for example, one may have d(A, 
B) > d(A, C) + d(B, C) for some set C. The strong mixing condition is satisfied 
by the sequence of random variables Xh X2,..., if 
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\P(A n B) - P(A) P(B)\ <f(d(A, B)) (2) 
for all sets A, B of form (1), where f(n) is a function defined for n = 0, 1, 2, . . . , 
and decreasing to zero as n -► o°. 

77ie Central Limit Theorem,—Assume that the mean values EX% = 0, as one 
could in any case subtract the mean values EXk from the random variables Xk, 
respectively. The assumptions are 

1. E E Xtf^hib-a) 
j = a I 

as b — a —*■ co, where h(m) | «> as m -* » ; 

E E xj 
2 + 5 

= o(h(b - a)1+*/2 

as fe — a -> oo for some 8 > 0. 
2. The strong mixing condition (2) is satisfied by the sequence of random 

variables Xh X 2 , . . . 
Introduce the following notation: 

j = 1 
rpn + (r - l)qn 

Ur= £ Xj, 
j = (r - D(Pn + qn) + 1 

r(pn + fln) 
Vr = E ** 

J = r̂ n + (r — l)$n + 1 
r - 1, . . • , &, 

where fc(pn + <?») = ft. The numbers k1 pn} gw will be chosen in such a way that 
Vnjqnjk^ oo andgn /2>n-^0asn-^ co. 

We expect to show that 

Vkh(Pn) 
is asymptotically normally distributed. Now 

El ' /2 
k 

E 
F r 

Vkh(Pn) 
< * # 1 / ! | F r | 2 

'i Vkh(Pn) 

(kh(qn) 
~ A(p„))'A" 

Choose the sequences qn, p„, k such that 

kh(qn) 
h(Pn) 

— 0. 

Then 
k 

E 
VM(PB) 
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in probability as n -* °°. It can therefore be neglected in further computations. 
We shall later see that this can be done. 

Set 

Or. n(x) = P 
Wkh{ 

and let the set 

<mr8 < Ur 

Vkh(Pn) 

where mT is an integer. Note that 

= < 4, 
Pn) ' 

< (mr + 1)5> = A(r, n, mr, 5), 

E P( fl A( r , n ,m ,5 ) ) < p ( E - 7 = = < « ) < 
(nit +...+ tnk + k) < x \r = 1 / V = 1 V kh(pn) ' 

k 

(3) 

(»»1 + . 
£ p ( fl A(r,n,mT)5)) 

. . + mO« < * V = 1 / 

LEMMA 1 

z/4 = (k/e)*. 
Now 

E 

P 1 max 
\r = 1,. . . , k 

UT 

Wkh{Pn) 
> ««) < e 

max 
r = \,...,k 

Ur 
Vkh(pn)\ 

2 

< E 
k 

E 
r = 1 

t/r 
VM(P„) 

< h. 

The result is obtained by an application of the Tchbycheff inequality. 
LEMMA 2 

(m 
E P ( {) A(r, n, to,, &)) - E n P(A(r,n,mr,6))\ 

+ . . . + mk)8 < x \r = 1 / ( m i + . . . + wu-)« < x r = 1 | 

- ( ! ' ) ' /(?.) + 2e. 

The probability contributed by all the sets f| A{r, n, mT) 8) for which max 
r = 1 

I / 1 * 
| UT/vkh(pn)\ > tk is at most e. Consider the sets f) A(r, ny mr, 8) for which 

r = I 

max | Ur/y/kh{pn) \ < tk. By repeated application of condition (2), one can see 
that 

( fl Mr, n, mry 8)) - n P(A(r, n, mr, 8)) 
\r = 1 / r = 1 

< kf(qu). 

Since there are (2tk/8)k sets of this form, we obtain the desired inequality. 
Let 

Gi. n * • • • * Gk, n (X) 
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be the convolution of G\, n(x), . . . , Gk, n(x). Note that 

Gi. n * . . . * Gkt n(x) < E n P(A(r, n, mr, 6)) 
(mi + • • • + mk)S <> x r = 1 / j \ 

<Gl,n*...*Gkin(x + kg) 

and 

(? , , „* . . .*<?* .„ (x - fc5)< £ n P(A(r, n, «, , a)) 
(mi + . . . + m* + *)« ^ * r = 1 /g\ 

Now (?i, n * . . . * Gk> n{x) tends to the normal distribution as n -* <» if fc —► oo. 
We want to let fc, pn, gn -► »f kpn ~ n, and kd -► 0 in such a way that 

fc(f*)*/(g»)-o 

h(Pn) 
Set 5 = 1/fc2. Then A; 5 ->- 0. Since 

(6) 

(7) 

k 
- ( ; ) " ' 

it follows that 

j b ^ y - jb«/»+ i^<*«c*, 

where (7 = 2/61/l. The function / can always be chosen in such a way that /(n) > 
1/n for all n. If k is chosen so that 

* < [-log/(?„)]*A, (8) 
clearly condition (6) will be satisfied. 

Now 

h(n) ~ E\ 
i = i *»© 

by the Minkowski inequality. But then 

k2 1 
h{n) h(pn)' 

Thus 

kh(qn) < k%{qn) 
KVn) ~ h(n) 

Condition (4) will then be satisfied if 

h(qn) = ° (^r) 
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Sequences k, pnj g„, -► °°, kpn ~ n can be chosen so that conditions (8) and (9) are 
satisfied and hence conditions (6) and (7) are satisfied. On using inequalities (3), 
(4), and (5) and Lemma 2, we see that 

* U 
E T r = 1 Vkh(pn) 

is asymptotically normally distributed. Since 

£ Vr 
r = i Vkh(pn) 

in probability as n —► °° y it follows that 

y/kh(pn) 

is asymptotically normally distributed. 
Remarks.—The result obtained includes the result of Hoffding and Robbins.3 

It would be of very great interest to see how much stronger the notion of a strong 
mixing condition is than that of an ordinary mixing condition in the case of a 
strictly stationary process. 

1 S. Bernstein, "Sur l'extension du theoreme limite du calcul des probability aux sommes do 
quant i ty dependents ," Math. Ann., 97, 1-59, 1927. 

2 E. Hopf, Ergodentheorie ("Ergebnisse" series). J. Springer, Berlin, 1937. 
3 W. Hoffding and H. Robbins, "The Central Limit Theorem for Dependent Random Vari

ables," Duke Math. / . , 15, 773-780, 1948. 
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