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Abstract—In this paper, we study (Q > x), the tail of
the steady-state queue length distribution at a high-speed mul-
tiplexer. In particular, we focus on the case when the aggregate
traffic to the multiplexer can be characterized by a stationary
Gaussian process. We provide two asymptotic upper bounds for
the tail probability and an asymptotic result that emphasizes
the importance of the dominant time scale and the maximum
variance. One of our bounds is in a single-exponential form
and can be used to calculate an upper bound to the asymptotic
constant. However, we show that this bound, being of a single-
exponential form, may not accurately capture the tail probability.
Our asymptotic result on the importance of the maximum vari-
ance and our extensive numerical study on a known lower bound
motivate the development of our second asymptotic upper bound.
This bound is expressed in terms of the maximum variance of
a Gaussian process, and enables the accurate estimation of the
tail probability over a wide range of queue lengths. We apply
our results to Gaussian as well as multiplexed non-Gaussian
input sources, and validate their performance via simulations.
Wherever possible, we have conducted our simulation study using
importance samplingin order to improve its reliability and to
effectively capture rare events. Our analytical study is based on
extreme value theory, and therefore different from the approaches
using traditional Markovian and Large Deviations techniques.

Index Terms—Asymptotic upper bound, Gaussian process,
queue lenght distribution, strong asymptotics.

I. INTRODUCTION

A DVANCES in lightwave communication technol-
ogy have enabled high-speed networks, such as the

asynchronous transfer mode(ATM) networks, to support
various real-time applications. Statistical multiplexing is
very important in such networks, since it increases network
efficiency by allowing a large number of applications to
share network resources (e.g., buffer space and link capacity).
However, when these resources are shared, there also exists
the possibility of excessive congestion, which could impact the
quality of the underlying applications. Therefore, a network
has to be designed and controlled based on certain measures
that reflect the degree of the expected congestion in the
network. A fundamental measure of congestion that we study
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in this paper is , the tail of the steady-state buffer
occupancy (queue length) distribution at a multiplexer.

The tail probability has been extensively studied,
but usually can be computed exactly only for a limited class
of queuing systems. Further, even for traffic sources (such as
the Markov arrival processes(MAP) or Markov modulated
fluid (MMF) Processes) for which exact analytical techniques
have been developed [14], [22], one quickly runs into classical
computational infeasibility problems when the number of
multiplexed traffic sources is increased [13], [31]. At the same
time, analyzing the queuing system with many multiplexed
sources is extremely important, since real networks are ex-
pected to support a large number of heterogeneous network
applications. To address this problem, a large-scale effort
has been devoted to the study of the asymptotic behavior
of the tail probability, and a number of approximations for

have been developed (see [27] for a recent overview
of queuing analysis in broadband networks). We next briefly
overview related work on the asymptotics of .

Large deviationtechniques have been developed on gen-
eral mathematical settings and are used to investigate the
asymptotic behavior of . For instance, in [19],

the following asymptotic log-similarity ( ) relation has been
obtained for in considerable generality:1

(1)

Here if , and
means . The positive constant in
(1) is typically called theasymptotic decay rateand can
be easily obtained even when the number of traffic sources
being multiplexed is very large. Therefore, this result has lead
researchers to propose the well knowneffective bandwidth
(EB) approximation (e.g., see [8] and
references therein for more about the EB approximation and
its theoretical foundation). However, the great generality of
the large deviation techniques comes at a cost: the asymptotic
relation in (1) captures only the leading (fastest decaying)
term in . For example, there are an infinite
number of functions such as and , which

1This result has been extended to the queues serving long-range dependent
input processes (see [15]) in which case, the tail probability may not be
asymptotically exponential (even in a log-similar sense). This paper focuses
on Gaussian processes but does not cover long-range dependency. Readers
that are interested in our work are referred to a more recent study of the tail
probability for long-range dependent Gaussian processes [10].
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are significantly different from but can replace in
(1) to result in another valid log-similar relation.

To alleviate the poor “resolution” of log-similarity, a
stronger form of asymptotics has also been developed for
different classes of queuing systems. These asymptotics show
that (1) can be significantly strengthened to obtain a similarity
( ) relation (e.g., see [1], [2], [20], [32]); i.e.,

(2)

Here, is a positive constant called theasymptotic constant.
From this stronger asymptotic relation, theasymptotic approx-
imation , has been suggested for large
values of (e.g., see [1], [2], [13], [20]). Unlike the EB
approximation (which can also be obtained by setting
above), it has been shown that the asymptotic approximation
does account for statistical multiplexing. The reason is that the
effect of statistical multiplexing is captured by the asymptotic
constant [13], [31], and not by the asymptotic decay rate

. Unfortunately, unlike the asymptotic decay rate, the
exact value of the asymptotic constant cannot usually be
determined (especially when a large number of traffic sources
are multiplexed). Hence, methods have been developed to
approximate for special cases (e.g., see [2], [13], [16], [31]).

In this paper, we focus on the case when the input process
is stationary Gaussian. Gaussian process modeling is useful
for two main reasons. First, Gaussian processes have sev-
eral appealing properties. For example, independent Gaussian
processes are closed under superposition, and any stationary
Gaussian process can be completely specified by its mean and
autocovariance. Therefore, unlike the case of MMF processes,
analyzing a queue with a large number of Gaussian input pro-
cesses is no more difficult than analyzing a queue with a single
Gaussian input process. Second, and more importantly, the
large bandwidth (compared to the bandwidth required by a typ-
ical network application) of high-speed networks make it a nat-
ural approximation for the aggregate input process. Due to the
huge capacity of network links, hundreds or even thousands of
network applications are likely to be served by a multiplexer.
Therefore, even when the traffic from each individual appli-
cation cannot be characterized by a Gaussian process, by ap-
pealing to thecentral limit theorem,the aggregate traffic to the
multiplexer can be effectively modeled as a Gaussian process.

Such queues (fed by a stationary Gaussian input process)
have recently received some attention (e.g., see [2], [9], [25],
[26]). We already know from [19], that the log-similarity rela-
tion (1) holds for Gaussian processes. The excellent work by
Addie and Zuckerman [2] strengthens this result by showing
that for fairly general discrete-time Gaussian sources, the tail
probability is in the form of (2). They also suggest possible
approximations of the asymptotic constant. In [26], Norros
provides an approximation to determine the tail probability for
the special case offractal Brownian motion.In this case, the
asymptotic behavior of the tail probability is not in the form
of (2).

We will provide two asymptotic upper bounds for
for a large class of Gaussian processes for which (2) holds. Our
approach is quite novel: it is based onextreme value theory
for Gaussian processes [4] and is different from traditional

Markovian or large deviation techniques. One of our bounds
is of a single exponential form and results in an accurate
upper boundto the asymptotic constant . For the reason
mentioned earlier, this bound (as an accurate estimate for the
asymptotic constant) is important in effectively exploiting the
statistical multiplexing gain. Further, since the upper bound is
obtained as a simple expression in terms of the autocovariance
function of the input process, it gives us important insights into
the relationship between the correlation structure of an input
process and its queuing behavior. In spite of the theoretical
value of our single-exponential asymptotic upper bound, we
show that it suffers from the same limitation inherent in all
single-exponential based approximations for ; when
the tail probability converges to its asymptote slowly, a single
exponential approximation may fail to accurately approximate

even for fairly large values of . To address this
problem, we introduce another asymptotic upper bound which
is asymptotically similar to the first bound, but also accurately
captures the tail probability over a wide range of queue lengths

. The development of the second asymptotic upper bound is
motivated by our past numerical studies on a well known lower
bound2 and a theoretical result (Theorem 2). This theoretical
result also serves to emphasize the importance of the dominant
time scale in queuing analysis for Gaussian sources. We further
provide an extensive numerical study involving importance
sampling and actual video traces to demonstrate the accuracy
of our analytical results.

Here, we should distinguish our work in this paper from
some results in the literature. All of the above discussion
(including the work in this paper) is about “-asymptotics”
i.e., the asymptotic behavior of , as the queue length

increases. There has been recent work that focuses on the
asymptotic behavior of when the number of sources,
the queue length, and the service rate are all proportionally
sent to infinity (e.g., [6], [25]). We classify these studies as-
asymptotics, where represents the number of sources in the
system. In particular, Montgomery and De Veciana [25] have
significantly strengthened the corresponding log-similarity re-
lation in [6] using the Bahadur–Rao asymptotics, and obtained
asymptotic bounds for the tail probability. However, note that

-asymptotics considers a limit in a different direction from
that in -asymptotics. Therefore, results in -asymptotics
cannot be extended to-asymptotics (andvice versa) unless
very strong properties such as uniformity of convergence can
be shown (which is usually not the case). Hence, the results
in this paper belong to a different category, from those in

-asymptotics.
As an important final note, due to space limitations, we do

not provide any proofs to the theoretical results in this paper.
Interested readers are referred to our technical report [11].

II. PRELIMINARIES

A. Fluid Queue Model

We model a high-speed statistical multiplexer by an infinite
buffer fluid queue shown in Fig. 1. The fluid queue consists of

2As will be described in Section IV, approximations equivalent to this lower
bound have already been suggested (e.g., see [25], [27]).
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Fig. 1. A typical fluid queue model.

a server that drains the fluid from the buffer at a constant rate
, and a fluid input that fills the buffer at a rate. The fluid

input corresponds to the aggregate arrival process to a high-
speed multiplexer, and corresponds to the rate at which fixed
size packets (such as ATM cells) are transmitted onto the link.
Consequently, , the amount of fluid in the buffer at time,
represents the number of cells in the multiplexer.

Depending on the index set, from which the time index
takes its value, a fluid queue is classified as either a continuous-
time fluid queue or a discrete-time fluid
queue . In this paper, we only
consider discrete-time fluid queues, although equivalent results
can also be obtained for the continuous-time case [12].

In a discrete-time fluid queue, the evolution of , the
amount of fluid in the buffer, can be expressed by Lindley’s
equation:

(3)

where is the net amount of fluid input at time
and . In [24], it has been shown under

some mild assumptions (such as the stationarity and ergodicity
of and the stability condition, i.e., ), that the
distribution of determined by (3) converges to a unique
limiting distribution (the steady-state queue distribution) as

goes to infinity, regardless of the initial condition . In
addition, it has been shown that the supremum distribution of

defined by , is equal
to the steady-state queue length distribution, i.e.,

(4)

This relation, which originally comes from [24], has played
a key role in obtaining a number of important results on the
steady-state queue length (or waiting time) distribution.

From here on, throughout this paper, we focus on the cases
for which the aggregate arrival process (and hence ) can
be characterized by a stationary Gaussian process.

B. Important Notations and Definitions

Let denote the autocovariance function of the sta-
tionary Gaussian net input process (note that

since we set the service rate to a constant).
It is easy to see from the definition of , that it is also a
Gaussian process. The mean and autocovariance function of

can be computed in terms of and as
, and

. By a change of variables , the variance

of can be expressed as a weighted sum of , i.e.,
Var .

Note that Var can also be expressed in terms of
Var , the (general-

ized) index of dispersion for counts(IDC) by the relation
Var . Assuming that the net input
process is stationary Gaussian, its distribution is completely
determined by either and , or and Var .
Therefore, this paper also falls into the classification of
queuing analysis based on the mean and the index of dispersion
of the input traffic (e.g., [18], [34]).

For notational simplicity, for each , we define a new
stochastic process . It then
follows that for any and any

if and only if (5)

Hence, from (4), we have

. Note that for each, is a centered Gaussian process,
and its autocovariance function is given by

Further, , the variance of , can be written as

Var

(6)

Henceforth, we let denote . Moreover, we
do not specify the index range when it includes the entire
domain of . For example, represents the supremum of

Var over (the index omitted

in ), and represents the supremum of over
. We now list three important conditions on ,

and state three important propositions (we provide detailed
proofs in [11]) which will be referred to later in the paper:

and (C1)

(C2)

and

(C3)

Proposition 1: Let and be two nonnegative sequences
such that and as . Then,
under condition (C1),

where . In particular,
Var .
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Proposition 2: Define to be the time at which
attains its maximum . Then, under condition (C1),

Proposition 3: Under condition (C1),
.

It should be mentioned that (C1)–(C3) characterize a fairly
large class of Gaussian processes. Condition (C1) is mainly on
the absolute summability of the autocovariance function of the
input process. Hence, a sufficient condition for (C1) [assuming

] is that there exists an such that
for all sufficiently large . It should be noted that

condition (C1) can be thought of as the boundary between the
processes that exhibit long-range dependence and those that do
not (see [5], [23] for the definition and properties of long-range
dependence and/or self-similarity). In other words, under this
condition the tail probability satisfies (2) with and
some finite constant [2].

Condition (C2) is on the absolute summability of a weighted
autocovariance function of the input process. This condition
is somewhat more restrictive than (C1), and satisfied if there
exists an such that , for all sufficiently
large .

While (C1) and (C2) are related to the decay rate of an
autocovariance function, condition (C3) is related to its shape
and sign. Roughly speaking, (C3) is satisfied when , the
autocovariance function of an input process, is positive for
most values of . The class of input processes characterized
by (C3) is very important for the analysis of network delay,
since positive autocovariance is related to the bursty nature of
an input process, which in turn is the main cause of network
congestion.

III. SINGLE EXPONENTIAL ASYMPTOTIC UPPERBOUND

In this section, we introduce our first asymptotic up-
per bound for expressed as an exponential
function of , and illustrate its theoretical importance. We
say that asymptotically bounds from above if

. We also briefly discuss its
performance as an approximation for through
numerical examples.

It should be noted here that Simonian [33] has derived an el-
egant upper bound in an integral form for general continuous-
time fluid queues fed by input processes having density
function. However, in spite of its significant theoretical value,
the upper bound usually results in a fairly complicated expres-
sion when it is evaluated for a specific fluid queue. Moreover,
the asymptotic behavior of this upper bound has only been
shown to be exponential for theOrnstein–Uhlenbeckprocess.
For more general processes we do not even know if the
bound is asymptotically log-similar to the tail probability, thus
limiting its practical value.

In contrast, the asymptotic upper bound for that
we introduce in this section is in a simple exponential form
which can easily be obtained from the mean and autocovari-
ance of the net input Gaussian process. Although it is not a
global upper bound, but an asymptotic upper bound, it is of

both theoretical and practical importance, as will be discussed
shortly.

This section proceeds as follows. We first make some
interesting observations by time-scaling the stochastic process

. These observations provide some insight on the behavior
of and point us in the development of our
asymptotic upper bound.

A. Interpretation of Time-Scaling

Consider a continuous-time stochastic process defined
for each as , where denotes the
largest integer that is smaller than or equal to. The stochastic
process is simply an interpolated (by holding its value
for a period of length ) and scaled (in time) version of

, that is enforced to attain its maximum variance around
, as (see Proposition 2). From the definition of

, the following can easily be verified:

(7)

(from Proposition 1) (8)

Since is a centered Gaussian process for each , (8)
implies that, as ,

in distribution (9)

where is the standard Brownian motion process.
Now, we briefly move our attention to continuous-time

fluid queues. For continuous-time fluid queues, continuous-
time stochastic processes , , and can be defined
in an analogous way to their discrete-time counterparts:

and

Here, is a stochastic process with stationary increments
and negative drift such that represents the
net input into a fluid queue during the interval , and

. Remember that the results
[including (7)] obtained for discrete-time fluid queues can
also be derived for continuous-time fluid queues [12]. Also,
note that if we set (which corresponds
to an uncorrelated input process) would have the same
distribution as . This fact together with (7) and (9) indicates
that as increases, behaves as if the fluid queue is
driven by a completely uncorrelated input process, regardless
of the correlation structure of the actual input process.

This phenomenon can be intuitively interpreted as follows.
From Proposition 2, , the time at which ( ) is most
likely to be larger than increases linearly with .
Therefore, as increases, eventually becomes significantly
larger than the time scale over which the net input process
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is correlated. As a result, the effect of the correlated input
process is negligible on the time scale of , and
behaves as if the input is an uncorrelated Gaussian process
(with the same value of as the original input process).
For instance, let be an i.i.d. Gaussian process and let

. Then, although is not
correlated, is a correlated process. However, if we compare
the two partial sums, and over a much
larger time scale (say ) than the time scale over which

is correlated, the difference,
between these sums becomes very minor. Therefore, we can
expect that these two partial sums will exhibit very similar
stochastic behavior for such large values of.

The above discussion suggests the following simple approx-
imation for the tail probability:

from (7)

from (9)

ever

e.g., see [29, p. 199](10)

Since in (1) and (2) has been shown to be [2],
[19], (10) corresponds to the famous EB approximation. This
means that to go beyond the EB approximation and obtain
some information about the asymptotic constant in (2), more
than the limiting distribution of has to be considered.
The asymptotic upper bound that we now introduce, can be
obtained by capturing the way in which the variance of
converges to its limiting value.

B. Single-Exponential Asymptotic Upper Bound

By observing how the variance of converges to that
of around the time ( , from Proposition 2) at
which the variance of attains its maximum, we get the
following theorem.

Theorem 1: Under conditions (C1)–(C3),

where .
Proof: Refer to [11, Theorem 3.2].

Theorem 1 gives us an exponential asymptotic upper bound
to the tail probability

. Further, since it has been shown under condition (C1)
that (2) holds for stationary Gaussian input processes with

[2], Theorem 1 also provides us with an upper
bound to the asymptotic constant . The
asymptotic upper bound accounts for statistical multiplexing
in the sense that the bound for the asymptotic constant de-
creases exponentially when more sources are multiplexed. For
instance, consider a fluid queuing system servingidentical
input processes with an infinite buffer and a fixed service rate

per input, and let denote the corresponding
tail probability. Then, the bound for the asymptotic constant

of can be written as where
, , and are defined by the first two moments of a single

input process and the service rateper input. Note that the
bound decreases exponentially as increases. Therefore, if
we quantitatively define statistical multiplexing gain as the
reciprocal of the asymptotic constant, then this gain increases
at leastexponentially with the system size. This result, in fact,
supports the behavior of the asymptotic constant that has been
observed in empirical studies (e.g., see [13, eq. (1.6)]).

The form of the upper bound to the asymptotic constant
gives us more insight into the queuing behavior for stationary
Gaussian input processes. It is well known that, in con-
junction with , determines the asymptotic decay rategiven
in (2) [2], [19]. Further, the limiting value of the IDC of an
input process [i.e., ] can also be
expressed in terms of [3]. Therefore can be thought of
as a measure of the “burstiness” of the input process, which
is invariant to filtering or finite time-shifting of the arrival
process. For example, let be a sequence that sums
to 1, and consider a linear smoothing system which delays
the portion of the input at time by . Then, the
output process can be expressed as a convolution ofand
the input process , i.e., . From this
relation, the autocovariance function of can be computed as

. Hence,
we have

In other words, since the system does not impose an infinite
amount of delay (that is, ), the autocovariance
function of the input process and that of the output process
have the same sum. On the other hand, could
be quite different from . In other words, the
parameter is not invariant to filtering or finite time-shifting,
and many autocovariance functions with the samemay have
very different values of . Now, consider two nonnegative
autocovariance functions and having the same
sum . The autocovariance function has most of its mass
distributed close to , while has its mass spread over
a wider range of. In this case, it is obvious from the definition
of , that will have a smaller value of than .
In other words, for the same amount of total burstiness in the
arrival process, the more the burstiness is spread over time, the
larger is the corresponding value of. Hence, from our bound
to the asymptotic constant, the larger is the eventual statistical
multiplexing gain. This implies that for a given constraint
on the tail probability, by spreading the burstiness over time
(e.g., the familiar smoothing concept [30]), we can get better
statistical multiplexing gain. In the following section, we will
show just how dramatic the difference in this gain can be for
two different Gaussian processes having the same value of.
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Fig. 2. The exact tail probability and the asymptotic upper bound for a
Gaussian input process with autocovariance functionC�(l) = 200� 0:95jlj.

Fig. 3. The exact tail probability and the asymptotic upper bound for a
Gaussian input process withC�(l) = 100� 0:9jlj + 60� 0:98jlj.

C. Numerical Examples and Discussion

In this section, we experimentally investigate the perfor-
mance of the asymptotic upper bound as an approximation to
the tail probability. To validate our results numerically, we
use theImportance Samplingsimulation technique described
in [7] (see [21] for a general overview of Importance Sampling
techniques). We have calculated 95% confidence intervals for
each tail probability estimated via simulation by the method of
batch mean. However, to not unnecessarily clutter the figures
we only show confidence intervals when they are larger than
±20% of the estimated tail probability.

Example 1: In this example, we consider fluid queues fed
by two different Gaussian input processes. In particular, in
Figs. 2 and 3, we show the exact tail probability and the
asymptotic upper bound for two Gaussian input processes
with the autocovariance functions and

, respectively, for six different values of
. Note that these autocovariance functions are nonnegative

and vanish exponentially asincreases, so that they satisfy
conditions (C1)–(C3). Therefore, from Theorem 1, an expo-
nential asymptotic upper bound for the tail probability can be
computed for these two Gaussian sources. As one can see in
Fig. 2, for large , the asymptotic upper bound parallels the
tail probability for all values of . This is not a surprising
result because both the asymptotic upper bound and the tail
probability are asymptotically exponential with the same decay
rate. Therefore, the logarithmic error between the bound and

Fig. 4. The exact tail probability, the EB approximation, and the asymptotic
upper bound for a Gaussian input process withC�(l) = 104 � 0:99jlj +
64:14� 0:999jlj + 31:86� 0:9999jlj when� = 33:33.

the tail probability will eventually converge to a finite value.
Further note that the bound matches the simulation results
quite well. This indicates that the limiting error will be fairly
small, and that , the upper bound for the
asymptotic constant is an accurate estimate of the asymptotic
constant. The same observations can be made in Fig. 3; the
asymptotic upper bound parallels the tail probability as
increases and the difference between the bound and the exact
tail probability is less than an order of magnitude for large
enough values of . However, in Fig. 3, the asymptotic upper
bound fails to approximate the tail probability for small queue
lengths ( 500) for , 42.86. This is because the tail
probability in Fig. 3 converges to its exponential asymptote
slowly, while the tail probability in Fig. 2 converges to its
asymptote fairly fast, and forms a nearly straight line. Note
that the autocovariance function of the Gaussian input used
in Fig. 3 consists of two power terms with different decay
rates. Hence, the input is correlated at different time scales,
which typically results in a slower convergence of the tail
probability to its asymptote. In the following example, a far
more significant effect of this multiple time-scale correlation
is demonstrated.

Example 2: In this example we consider a fluid queue fed
by a Gaussian input process with autocovariance function

.
As can be observed, the autocovariance function is a sum of
three weighted powers with very different decay rates. This
means that the source is correlated at very different time scales.
In Fig. 4, the asymptotic upper bound, the EB approximation
and simulation results are shown for . Note that
the slope of the simulation curve significantly differs from
that of the EB approximation (or the asymptotic upper bound)
even at . This implies that the tail probability is not
close to its asymptote over the entire range of queue lengths
shown in the figure. Even though we cannot calculate the
exact asymptote given in (2), we know that it has to be below
the asymptotic upper bound. Therefore, in this case, neither
the EB approximation nor the asymptotic approximation can
accurately estimate the tail probability even for very large
values of . For example, for the queue length as large as
20 000, the EB approximation overestimates the exact tail



CHOE AND SHROFF: A CENTRAL-LIMIT-THEOREM-BASED APPROACH FOR ANALYZING QUEUE BEHAVIOR 665

Fig. 5. The exact tail probability and the asymptotic upper bound for
two Gaussian input processes withC�(l) = 25:641 � 0:95jlj; C�(l) =
2:5063 � 0:995jlj, and � = 5.

probability by five orders of magnitude, while the asymptotic
approximation underestimates the exact tail probability by at
least five orders of magnitude. This also implies that even
though the asymptotic upper bound provides a close upper
bound to the asymptotic constant (this is found to be true in this
case as well by examining larger values of), since it is in a
single exponential form, it may not provide a useful estimate of

for probabilities of interest. Further, even by using
current multi-term exponential approximation techniques, it
is difficult to accurately capture the tail probability for these
cases [13]. The slow convergence of the tail probability to its
asymptote is often observed when the source is correlated at
multiple time scales. Multiple time-scale correlation in general
occurs when heterogeneous sources are multiplexed. Also
certain traffic sources (for example, MPEG and JPEG encoded
video) are themselves correlated at different time scales. Since
high-speed networks are expected to support many different
types of traffic, each of which has its own correlation pattern,
the network traffic is very likely to be correlated at multiple
time scales. Therefore, it is important to be able to analyze
the queue behavior for such traffic. In Section IV, we will
introduce our second asymptotic upper bound based on the
maximum variance which will be useful even when the
traffic is correlated at different time scales.

Example 3: In this example, we show that the asymptotic
constant and the statistical multiplexing gain could be very
different even for stationary Gaussian input processes having
the same autocovariance sum. Consider two autocovariance
functions, and

, both of which sum up to and satisfy
conditions (C1)–(C3). Although these functions have the same
values of , as one can see from their decay rate (as

), is spread over a wider range of than .
Therefore, has a significantly larger value of than

[19 487.16 for versus 199 501.48 for ].
Hence, as we discussed in the previous section, the asymptotic
constant (for the same value of) for the Gaussian input
process with autocovariance is expected to be smaller
than that for the Gaussian input process with autocovariance

. In Fig. 5, we show the exact tail probability and the
asymptotic upper bound for two Gaussian input processes
with autocovariance and when . The

asymptotic constant is accurately estimated by its upper bound
as in the previous examples, and the asymptotic constant
for the autocovariance function is smaller than that
for (by almost 4 orders of magnitude!). Further, note
that the statistical multiplexing gain as a function of
(the system scale, i.e., the number of sources, when the
capacity is also proportionally increased) increases as fast as

. Therefore, as the system scale increases,
the (logarithmic) difference between the asymptotic constants
for these two Gaussian input processes will also increase very
fast.

The above example can also be related to the effect of
smoothing in the following way. The Gaussian process with
autocovariance can be thought of as the output of a
linear smoothing system discussed in the previous section
fed by the Gaussian process with autocovariance for
appropriately chosen coefficients . There-
fore, this example illustrates that smoothing certain types of
network traffic which are correlated over a relatively short
time scale, can significantly reduce network congestion. On
the other hand, for some traffic types, such as JPEG-encoded
video traffic, which are intrinsically correlated over very long
time scales, smoothing over a small number of time frames
will only marginally change the value of and hence will
not effectively reduce network congestion. For the case of
real video traffic this type of effect has already been observed
(e.g., [30]).

IV. M AXIMUM VARIANCE ASYMPTOTIC UPPERBOUND

We begin this section by studying the importance of,
the time scale at which attains its maximum, and a well
known lower bound which motivates the development of our
second asymptotic upper bound.

A. Dominant Time-Scale and a Known Lower Bound

For a general (including non-Gaussian) stationary ergodic
net input process , it can be shown that ,
as . Therefore, there must exist a finite value of
at which the function attains its maximum. From
(4) we get the following trivial lower bound:

(11)

At first glance, it appears that this simple lower bound is
probably loose, since it is the probability that is greater
than at only one point in the index set
made of infinite elements. However, in many studies, it has
been found that is largely
dominated by , the probability that exceeds

where it is most likely to happen (i.e., at ). For instance,
the lim inf-part of many asymptotic results have been derived
using this lower bound (e.g., see [6], [15], [19], [25]). Further,
in many cases, this lower bound has been found to be log-

similar ( ) to the tail probability as (or ) goes to infinity.
From (5), remember that for Gaussian processes,, the
dominant time scale is also the time at which attains its
maximum value . We will now introduce an asymptotic
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result for Gaussian input processes that has been used in the
derivation of Theorem 1, and further illustrates the importance
of in studying the asymptotic behavior of .

Theorem 2: Under condition (C1), for any ,3

Proof: Refer to Theorem 3.1 in [11].
From Proposition 2, note that for arbitrary , the

interval (and hence itself) will eventually
be contained in as increases. Therefore,
Theorem 2 implies that for any ,

(12)

In other words, as increases,
is essentially determined on a relatively small interval around
the maximum variance time . Also, (12) can be interpreted
as a theoretical verification of the qualitative statement “rare
events take place only in the most probable way” [15], [26].

Observe that with corre-
sponds to the lower bound, (for Gaussian input processes).
This lower bound can be written in terms of

(the tail function of the standard
Gaussian distribution) as

(13)

Note that the lower bound is virtually equivalent to the ap-
proximation for the tail probability suggested in [25], [27] (the
approximation in [25], [27] corresponds to the middle term in
(16) which is almost the same as the lower bound). Since (12)
holds for any arbitrary greater than 1, it suggests that even if
the lower bound were to asymptotically diverge
from the exact tail probability, it would do so very slowly. In
fact, through extensive numerical studies [9], [11], we have
found that our lower bound accurately captures
even for small values of . For illustration, in Fig. 6, we
consider the same multiple time-scale source of Example 2.
Unlike the earlier asymptotic upper bound, the lower bound
closely tracks the tail probability over the entire range of queue
lengths shown. This is a very important feature of the lower
bound which no single exponential approximation can possess
(as was illustrated in Example 2). On the other hand, since
for a very large class of Gaussian input processes, the tail
probability is asymptotically exponential,our asymptotic upper
bound is asymptotically tight in the sense that the (logarithmic)
difference between the exact tail probability and the bound is
bounded.In contrast, as we will show later, the lower bound
does in fact asymptotically diverge from the exact tail (albeit
very slowly). Hence, in the next section, we will provide
another asymptotic upper bound that has the nice properties of
both the lower bound, and the single-exponential asymptotic
upper bound.

3Recently, this theorem has been generalized and significantly strengthened
[10]. However, since the improved version has been derived (as yet) for only
continuous-time Gaussian processes, we do not provide it here. Moreover, the
theorem in its current form has been used to derive all of the main results in
this paper [11].

Fig. 6. The exact tail probability, the lower bound, and the MVA
upper bound for a Gaussian input process with autocovariance function
C�(l) = 104 � 0:99jlj + 64:14 � 0:999jlj + 31:86 � 0:9999jlj when
� = 33:33.

B. Maximum Variance Asymptotic Upper Bound

In this section, we will introduce an asymptotic upper
bound that, like the lower bound, will be based on the
maximum variance of a Gaussian process. Recall that the
lower bound is a simple (standard Gaussian tail distribution)
function of . From Theorem 2, and the fact that
the lower bound matches the shape of the tail probability
curve, we can infer that the term , as a function of

, contains key information about the behavior of the tail
probability before it closely converges to its asymptote. Our
idea is to find a function which resembles such that

is similar ( ) to the asymptotic upper bound
. In this way, would

asymptotically bound the exact tail probability from above,
and also closely track the shape of the tail probability curve.
In the following theorem, which is based on Theorem 1, we
find such an asymptotic upper bound.

Theorem 3: Under conditions (C1) and (C2)

Therefore, with an additional condition (C3),
asymptotically bounds .

Proof: Refer to [11, Proposition 4.1].
We call this new bound themaximum variance asymptotic

(MVA) upper bound. Note that the MVA upper bound, as
a function of , can be written as

. Further, from a well-known bound for
[17], i.e.,

(14)

we have

(15)

Note [from (14)] that the above similarity comes into effect
very fast as increases, and
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even for fairly small values (>2) of. Therefore, the major dif-
ference between and is the multiplicative
term on the right-hand side of (15). This term is very
slowly decreasing (as increases) compared to the remaining
part . Therefore, the shape of the MVA upper
bound curve should almost be the same as that of the lower
bound. Also, in a sense this MVA upper bound is obtained
by “lifting” the lower bound in such a way that it becomes
a tight asymptotic upper bound. Hence, unlike the asymptotic
upper bound in Section III, we expect that the MVA upper
bound will bound the tail probability even for very small
values of queue lengths as if it were a global upper bound.
This prediction has been verified through simulations [11]. In
addition to the asymptotic tightness of the MVA upper bound,
this is another property of the MVA upper bound which makes
it more useful than the lower bound (since conservative, rather
than optimistic, engineering is often desirable for network
dimensioning and control).

A direct result of Theorem 3 is that under conditions
(C1)–(C3):

(16)

Note that the second similarity is from Proposition 3 and
Theorem 3. From (16), it is now clear that the lower bound
is not asymptotically exponential, and hence cannot be sim-
ilar to the exact tail probability. However, the leading term

decreases slowly compared to the remaining term
, as . For this reason, the

divergence of the lower bound from the tail probability was
nearly unrecognizable in all our numerical studies [9], [11].
Perhaps the following observation will shed further light on
this issue.

The (logarithmic) difference

between the MVA upper bound and the lower bound is actually
a function of , that can be closely approximated
by . Therefore, the difference between these
bounds cannot be arbitrary but can be determined from either
the MVA upper bound or the lower bound, as illustrated in
Fig. 7. In the figure, the difference between the two bounds
is only about an order of magnitude even when the MVA
upper bound is as small as . Therefore, Fig. 6 suggests
that the MVA upper bound and lower bound may provide
a narrow envelope that bounds the exact tail probability in
the typical range of interest. This is also suggested in Fig. 6
earlier, where we plot the lower bound and the MVA upper
bound for a Gaussian input process correlated at multiple
time scales. Note that the lower bound and the MVA upper
bound encapsulate the tail probability over the entire range of
queue lengths. Since both bounds are based on the maximum
variance, neither suffers from the slow convergence of the
tail probability to its asymptote. Similar experimental studies

Fig. 7. The differencelog exp[�(x=2h�2
x
i)] � log 	( x=h�2

x
i) versus

the MVA upper boundlog exp[�(x=2h�2
x
i)].

have demonstrated that: 1) the tail probability almost never
escapes from the envelope constructed by the bounds, as long
as conditions (C1)–(C3) are satisfied and 2) that both the lower
bound and the asymptotic upper bound can approximate tail
probabilities as small as 10 with errors less than or close
to an order of magnitude.

As a final remark of the section, it is interesting to note that
the approximation for based on the large deviation

-asymptotics result by Botvich and Duffield [6], results in
the same expression as the MVA upper bound, when applied
to Gaussian fluid queues. Remember that the-asymptotics
result in [25] improved upon the result in [6] (from log-
similarity to nearly similarity), and an approximation based on
these stronger asymptotics was suggested (which is equivalent
to the lower bound). This tells us that the approximation
that satisfies only the weaker asymptotics in-asymptotics
[6], now satisfies the stronger asymptotics in-asymptotics
(and vice versa). As mentioned in Section I, this is because

-asymptotics and -asymptotics consider asymptotic prop-
erties of in different limiting regimes.

V. APPLICATIONS FORGENERAL INPUT PROCESSES

The numerical examples provided in Sections III and IV
were for stationary Gaussian input processes. Further, both the
asymptotic upper bounds described in the previous sections
are valid under three conditions (C1)–(C3). In this section,
we investigate and discuss the accuracy of the lower bound
and the MVA upper bound as an approximation for the tail
probability when conditions (C1)–(C3) are violated, and also
when the aggregate input process is itself not Gaussian.

A. General Gaussian Process

The relation (11) is very generally true, and the lower bound
is valid as long as the input process is stationary

Gaussian. On the other hand, both the asymptotic upper bounds
in Sections III and IV, require conditions (C1)–(C3).

As mentioned in Section II, when condition (C1) is vio-
lated, the input process shows long-range dependence, and the
corresponding tail probability may not even be asymptotically
exponential [15]. However, as long as the input process is
stationary and ergodic, the (finite) maximum variance
can be found and used to compute the lower bound and
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Fig. 8. The exact tail probability, the lower bound, and the MVA upper
bound for a Gaussian input process with autocovariance functionC�(l) =
10 � 0:9jlj cos �l=12 + 0:1 � 0:99jlj and� = 1; 2.

the MVA upper bound. In fact, in [26],4 an approximation
for the tail probability, equivalent to the MVA upper bound,
has been used for the special case of Fractal Brownian
motion, and empirically found to be fairly accurate. Our own
numerical investigations with long-range dependent sources
[which violate both conditions (C1) and (C2)] have resulted
in the same conclusion. Further, in more recent work using
extreme value theory, we have shown (a significantly stronger
result than the Large Deviation results) that for a very large
class of long-range dependent (and other) Gaussian processes,
the MVA upper bound diverges very slowly (or not at all)
from the exact tail [10]. However, in this paper we will not
explicitly focus on numerically studying long-range dependent
processes, but instead will provide examples using actual
traces of video traffic (which is often considered to exhibit
self-similar behavior).

Even though any nonnegative autocovariance function sat-
isfies condition (C3), it should be noted that some types of
network applications (such as MPEG video) generate network
traffic in a fairly periodic fashion. This may result in a large
enough negative component of the autocovariance function to
violate condition (C3). Thus, in the following example, we
investigate the performance of the lower bound and the MVA
upper bound for input processes that do not satisfy condition
(C3).

Example 4: In Fig. 8, we show the exact tail probability,
the lower bound, and the MVA upper bound for a Gaussian
input process whose autocovariance function is given by

. One can easily
check that this autocovariance function does not satisfy condi-
tion (C3). Hence, the MVA upper bound in this example may
not be an asymptotic upper bound. However, note that both
the lower bound and the MVA upper bound still accurately
match the tail probability curve. In particular, note how both
these approximations are able to track even minor transitions
of the exact tail curve from concavity to convexity. This again
emphasizes the importance of the maximum variance .

4In this paper, the tail probability was approximated by the lower bound
given in (13), but the lower bound itself was evaluated through another
approximation	(z) � exp[�(z2=2)]. As a consequence, the resultant
estimate of (Q > x) actually corresponds to our MVA upper bound.

Further, the MVA upper bound seems to be asymptotically
close to the tail probability. This suggests that the bound

to the asymptotic constant in (2) may
be used to accurately approximate it even when (C3) is
violated, or when has a negative value. This may be true in
part because the expression has important
properties that the asymptotic constant is known to have, such
as: 1) if the input process is i.i.d. Gaussian, then and
the asymptotic upper bound simply becomes
which is a well-know bound for the level crossing probability
of a random walk with drift (see [29, p. 236]) and 2) also,

can have a negative value, only when the autocovariance
function of the input process takes large negative values (i.e.,
when the input process is significantly periodic and less bursty
than i.i.d. input processes). If takes on a negative value,
then is greater than 1, and will increase
exponentially with the size of the system (as explained in
Section III). This indicates that for strongly periodic input
processes, there will be no gain in statistical multiplexing the
traffic; an observation which is well known for certain types
of periodic input traffic [13], [31].

In the following section, we altogether weaken the Gaussian
assumption on the input process, and use the lower and the
MVA upper bounds to approximate the tail probability of fluid
queues with a large number of non-Gaussian input processes.

B. Applications to Voice and Video Traffic

As mentioned in Section I, the huge capacity of high-
speed network links motivates the Gaussian characterization
of the aggregate traffic to a multiplexer. For example, FORE
SYSTEMS has already built commercial ATM switches to
supportOC-12 (622.08 Mb/s) lines, and ATM networks with
OC-24 (1.2 Gb/s) lines are already operational (at Cambridge
University). Due to the huge capacity of a single ATM
link, hundreds or even thousands of network applications are
expected to share an ATM link; anOC-3 (155.52 Mb/s) line
can accommodate over 6800 voice calls (assuming 16-Kb/s
mean bit-rate) and anOC-12 line over 300 MPEG video calls
(assuming 1.5-Mb/s mean bit-rate) both at a utilization of

. These numbers seem to be large enough
for the central limit theorem to be applied, and to characterize
the aggregate input process by a Gaussian process. Through
empirical evidence we have found that a few hundred sources
are generally sufficient for the Gaussian approximation to be
quite good (e.g., see [9]).

In this section, we illustrate the effectiveness of the Gaussian
characterization and the applicability of the lower and the
MVA upper bounds for general traffic models. Our examples
focus on voice and video traffic models. It should be empha-
sized that since we have weakened the Gaussian assumption,
both the lower and MVA upper bounds cannot strictly be
thought of as bounds, but are approximations, even if the
various conditions on the autocovariance function of the
aggregate input process were satisfied. However, as will be
illustrated by the numerical examples, as long as the Gaussian
model is reasonably good, these analytical approximations
do behave like real bounds over the tail probabilities of
interest.
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Fig. 9. The exact tail probability, the lower bound and the MVA upper bound
for a multiplexer serving 42 500 and 42 800 voice traffic sources. The output
link capacity is set to 622.08 Mb/s (OC-12 line).

In the next few examples, we demonstrate the utility of
the MVA upper bound and lower bound in analyzing the tail
probability at a multiplexer for different cases. In each case,
the sources are fed into a multiplexer being served by anOC-3
(155.52 Mb/s) orOC-12 (622 Mb/s) line. To save space, we
refer to our technical report [11] for the detailed specifications
of the traffic source models that we use in this section.

1) Voice Traffic Sources:
Example 5: The typical behavior of efficiently encoded

voice traffic is that it alternates between “active” and “inac-
tive” states. Hence, Markov modulated on–off processes have
frequently been used to model voice traffic (e.g., see [34]).
For our experiment, we assume a 10 ms slot size and use a
discrete-time on-off MMF process as a voice traffic source
model obtained by discretizing the continuous-time MMF
voice traffic source model used in [31]. In Fig. 9, we show
the exact tail, the lower bound and the MVA upper bound for
42 500 and 42 800 voice sources served by anOC-12 (622.08
Mb/s) line. As one can see in the figure, the simulation results
are accurately captured between the lower bound and the MVA
upper bound.

2) Video Traffic Sources:In general, the stochastic charac-
teristics of a video traffic source changes with the type of
video application which the source represents. For instance, a
video traffic source that mainly transmits movies is likely to
have different characteristics from that of a video source that
transmits news programs. Further, the video coding schemes
employed to reduce the required bandwidth can also signif-
icantly affect the stochastic characteristics of the generated
video traffic. Therefore, the detailed modeling of such diverse
video traffic sources may neither be an easy nor an efficient
way of characterizing these sources. From this viewpoint,
traffic characterization based only on the first two moments
(mean and autocovariance or mean and IDC) has advantages
over the characterization based on explicit stochastic modeling,
since they can be directly measured from the source. In
the previous example involving a non-Gaussian voice traffic
source model, the first two moments of the traffic sources
have been analytically obtained from the source model. In the
next example, we will show that from the measured mean
and autocovariance of a real video trace, the queue length
distribution can also be accurately computed.

Fig. 10. The exact tail probability, the lower bound and the MVA upper
bound for a multiplexer serving 250 and 260 real MPEG sources. The output
link capacity is set to 155.52 Mb/s (OC-3 line).

3) Example 6: In this example, we use real MPEG video
(frame-size) traces generated by Rose [28]. To simulate
MPEG-encoded video traffic, 16 different MPEG coded traces
of 40 000 frames are concatenated into one trace of 640 000
frames, and the frame sizes are read out sequentially from
this trace starting at a random position in the trace. Since all
the concatenated frame-size traces are from video sequences
captured at 25 frames/s, the total length (640 000 frames) of
the concatenated frame-size trace corresponds to more than
7 h of play time. Since the trace is very long, by simply
assigning a random starting position to each simulated MPEG
video traffic source, we generate a large number of MPEG
video traffic sources. Since we assume a 10-ms slot size in
this example, each frame size should be read out over 4 slots.
We assume that each frame is transmitted uniformly over a
frame period (40 ms or equivalently four slots). In Fig. 10,
the lower bound and the MVA upper bound for 250 and 260
MPEG video sources served at 3667 cells/slot (OC-3 line)
are compared to the exact tail probabilities. The mean and
autocovariance function of the simulated MPEG source are
measured directly from the concatenated frame-size trace,
and used for our approximation technique. Since we are now
using real frame-size traces to simulate MPEG encoded video
sources, the importance sampling technique cannot be used
for this experiment and, hence, the simulation results show
larger confidence intervals. Nevertheless, as one can see in
the figure, both the lower bound and the MVA upper bound
again seem to encapsulate the exact tail probability within an
order of magnitude.

4) Example 7: In this example, we use a frame-size trace
of the JPEG-encoded movie “Star Wars” to simulate real
video sources. Also, we design a simple JPEG video traffic
source model based on the mean and autocovariance function
measured directly from the frame-size trace. We then use the
model to obtain our bounds and another set of simulation
results. Many types of video traffic have been found to be
heavily correlated over multiple time scales or even thought
to exhibit self-similar behavior over a certain time-period
(e.g., see [5]). To capture this multiple time-scale correlation
of video traffic, we model the JPEG video traffic source
as the superposition of 3 two-state MMF processes with
very different mean state sojourn times. More precisely, this
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Fig. 11. Simulation results, the lower bound, and the MVA upper bound for
a multiplexer serving 79 and 81 JPEG-encoded movie “Star Wars” through
an OC-12 output link.

source model is obtained by matching the autocovariance
function measured from the frame-size trace using theleast-
squaremethod. The main purpose of designing a model for
JPEG traffic is to demonstrate that the queuing behavior
of a traffic source can be captured by a relatively simple
stochastic model of the traffic source, especially when the
number of multiplexed traffic sources is large. In Fig. 11, we
show simulation results, the lower bound, and the MVA upper
bound for a multiplexer serving 79 and 81 JPEG traffic sources
through anOC-12 line. The time slot size is set to 8.333 ms.
Since the frame-size trace is from video sequences captured
at 30 frames/s, each frame-size is read out over four slots. As
in the previous example, we assume that a frame is uniformly
transmitted over four slots. As one can see in the figure, the
two simulation results (one using the real frame-size trace and
the other using the model) are encompassed within the lower
and MVA upper bounds.

5) Admission Control—Voice and Video:An important ap-
plication of our analytical results is for admission control. We
assume that a new call is admitted to an ATM multiplexer with
buffer size if the resulting tail probability
is less than some . Hence, corresponds to the maximum
tolerable tail probability for a call to be admitted.

6) Example 8: In Fig. 12, we show the admissible region
for voice and JPEG-encoded video calls computed by sim-
ulation, and via our maximum variance based bounds. The
maximum tolerable tail probability and the buffer size are
set to 10 and 20 000 cells, respectively. Again, we assume
that anOC-12 line serves the multiplexer. Since the required
constraint is quite small, we use simple stochastic models
for both voice and JPEG video traffic sources in order to
employ the importance sampling technique. While we use the
same traffic source model that is used in Example 5, we use
a JPEG video traffic model that is somewhat different from
the model used in Example 7 (in order to simulate smaller tail
probabilities than given in Fig. 11). It is interesting to note
that in Fig. 12, the admissible region computed by simulation,
the lower bound, and the MVA upper bound are so close that
it is almost difficult to distinguish their boundaries. In fact,
the lower bound overestimates and the MVA upper bound
underestimates the maximum admissible number of calls by
less than 1% in terms of utilization.

Fig. 12. Admissible combinations of voice and JPEG-encoded video calls
for anOC-12link with 20 000 cell buffers, computed by simulation, the lower
bound, and the MVA upper bound. The maximum tolerable tail probability
(') is set to 10�6.

VI. CONCLUSION

In this paper, we provide two asymptotic upper bounds to
analyze the tail of the steady-state distribution
at a high-speed multiplexer. We model the multiplexer as an
infinite buffer fluid queue and characterize the aggregate input
process as a Gaussian stochastic process. This enables us to
avoid the classical state explosion problem that occurs when
many traffic sources are multiplexed.

For a Gaussian input process satisfying fairly general con-
ditions, we provide an exponential asymptotic upper bound
(Theorem 1) to the tail proba-
bility using key results in extreme value theory.
This asymptotic upper bound in turn results in a theoretical
contribution to the extreme value literature. The asymptotic
upper bound also results in an upper bound to the asymptotic
constant.

We develop another result (Theorem 2) which emphasizes
the importance of the maximum variance , and pro-
vides theoretical grounding for a well-known lower bound.
Building upon our exponential asymptotic upper bound and
Theorem 2, we also develop an asymptotic (MVA) upper
bound (Theorem 3), based on the maximum
variance . Through an extensive and systematic numerical
study, we find that both the lower bound and the MVA upper
bound accurately approximate the tail probability as long
as the input process can be effectively characterized by a
Gaussian process. We also illustrate that our analysis of the
tail probabilities results in very efficient admission control.

In this paper, we have provided results only for the discrete-
time fluid queues in which the fluid arrival and service
take place only at discrete times. Equivalent results for the
continuous-time fluid queue have already been derived and are
available in [12]. We find that Gaussian modeling of the input
traffic provides significant simplicity and has great potential,
and are currently investigating ways to extend the analysis to
a network end-to-end.
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