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Abstract—In this paper, we study P(Q > =), the tail of in this paper isP(Q > x), the tail of the steady-state buffer
the steady-state queue length distribution at a high-speed mul- gccupancy (queue length) distribution at a multiplexer.
tiplexer. In particular, we focus on the case when the aggregate The tail probabilityP(Q > ) has been extensively studied,

traffic to the multiplexer can be characterized by a stationary but I b ted " v f limited cl
Gaussian process. We provide two asymptotic upper bounds for ut usually can be computed exactly only Tor a limited class

the tail probability and an asymptotic result that emphasizes Of queuing systems. Further, even for traffic sources (such as
the importance of the dominant time scale and the maximum the Markov arrival processefMAP) or Markov modulated
variance. One of our bounds is in a single-exponential form fluid (MMF) Processes) for which exact analytical techniques
and can be used to calculate an upper bound to the asymptotic y5ye peen developed [14], [22], one quickly runs into classical
constant. However, we show that this bound, being of a single- tati | infeasibilit bl h th b f
exponential form, may not accurately capture the tail probability. compu ationa '_n easl ”y. p_ro ems when he number o
Our asymptotic result on the importance of the maximum vari- Multiplexed traffic sources is increased [13], [31]. At the same
ance and our extensive numerical study on a known lower bound time, analyzing the queuing system with many multiplexed
motivate the development of our second asymptotic upper bound. sources is extremely important, since real networks are ex-
This bou_nd is expressed in terms of the maximum variance of epected to support a large number of heterogeneous network
a Gaussian process, and enables the accurate estimation of th licati T dd thi bl | | ffort
tail probability over a wide range of queue lengths. We apply applications. 1o address this problem, a arge-spae e qr
our results to Gaussian as well as multiplexed non-Gaussian Nas been devoted to the study of the asymptotic behavior
input sources, and validate their performance via simulations. of the tail probability, and a number of approximations for
Wherever possible, we have conducted our simulation study using P(¢) > x) have been developed (see [27] for a recent overview
importance samplingin order to improve its reliability and to of queuing analysis in broadband networks). We next briefly

effectively capture rare events. Our analytical study is based on - lated K th totics
extreme value theoryand therefore different from the approaches CVerview related work on the asymptotics B¢ > x).

using traditional Markovian and Large Deviations techniques. Large deviationtechniques have been developed on gen-
eral mathematical settings and are used to investigate the

asymptotic behavior of®(Q > ). For instance, in [19],

the following asymptotic Iog—similaritylf(ig) relation has been
obtained forP(Q > x) in considerable generality:

Index Terms—Asymptotic upper bound, Gaussian process,
gueue lenght distribution, strong asymptotics.

I. INTRODUCTION
log e

DVANCES in lightwave communication technol- P(Q > )~ 1)

ogy have enabled high-speed networks, such as the log )
asynchronous transfer modeATM) networks, to support Here f(z) ~ g(z) if log f(z) ~ log g(=), and f(z) ~ g(x)
various real-time applications. Statistical multiplexing i§€anslim. .. f(x)/g(z) = 1. The positive constany in
very important in such networks, since it increases netwoflk) iS typically called theasymptotic decay rat@nd can
efficiency by allowing a large number of applications ide easily obtained even when the number of traffic sources
share network resources (e.g., buffer space and link capaciﬂ@!”g multiplexed is very large. Therefore, this result has lead
However, when these resources are shared, there also ex@t§archers to propose the well knowffective bandwidth
the possibility of excessive congestion, which could impact tiEB) approximationP(Q > z) ~ ¢ (e.g., see [8] and
quality of the underlying applications. Therefore, a netwodeferences therein for more about the EB approximation and
has to be designed and controlled based on certain measiffedheoretical foundation). However, the great generality of
that reflect the degree of the expected congestion in the large deviation technigues comes at a cost: the asymptotic

network. A fundamental measure of congestion that we stutgjation in (1) captures only the leading (fastest decaying)
term in log P(Q > z). For example, there are an infinite
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are significantly different frome="* but can replace™"* in Markovian or large deviation techniques. One of our bounds
(2) to result in another valid log-similar relation. is of a single exponential form and results in an accurate
To alleviate the poor “resolution” of log-similarity, aupper boundto the asymptotic constanf’. For the reason
stronger form of asymptotics has also been developed foentioned earlier, this bound (as an accurate estimate for the
different classes of queuing systems. These asymptotics shaaymptotic constant) is important in effectively exploiting the
that (1) can be significantly strengthened to obtain a similariggatistical multiplexing gain. Further, since the upper bound is
(~) relation (e.g., see [1], [2], [20], [32]); i.e., obtained as a simple expression in terms of the autocovariance
— function of the input process, it gives us important insights into
P(Q > z) ~ Ce™™. (2) the relationship between the correlation structure of an input
Here, C is a positive constant called tsymptotic constant. Process and its queuing behavior. In spite of the theoretical
From this stronger asymptotic relation, thgymptotic approx- value of our single-exponential asymptotic upper bound, we
imation P(Q > z) ~ Ce ", has been suggested for largghow that it suffers from the same limitation inherent in all
values ofz (e.g., see [1], [2], [13], [20]). Unlike the EB Single-exponential based approximations®gr) > x); when
approximation (which can also be obtained by settiig= 1  the tail probability converges to its asymptote slowly, a single
above), it has been shown that the asymptotic approximatigXponential approximation may fail to accurately approximate
does account for statistical multiplexing. The reason is that thé@? > =) even for fairly large values of. To address this
effect of statistical multiplexing is captured by the asymptotieroblem, we introduce another asymptotic upper bound which
constantC [13], [31], and not by the asymptotic decay ratéS asymptotically similar to the first bound, but also accurately
n. Unfortunately, unlike the asymptotic decay rafe the Ccaptures the tail probability over a wide range of queue lengths
exact value of the asymptotic constafitcannot usually be z. The development of the second asymptotic upper bound is
determined (especially when a large number of traffic sourc@$tivated by our past numerical studies on a well known lower
are mu|tip|exed)_ Hence, methods have been deve|0pedb@1n& and a theoretical result (Theorem 2) This theoretical
approximateC for special cases (e.qg., see [2], [13], [16], [31])result also serves to emphasize the importance of the dominant
In this paper, we focus on the case when the input procdége scale in queuing analysis for Gaussian sources. We further
is stationary Gaussian. Gaussian process modeling is us@fi@vide an extensive numerical study involving importance
for two main reasons. First, Gaussian processes have s@mpling and actual video traces to demonstrate the accuracy
eral appealing properties. For example, independent Gausg®ur analytical results.
processes are closed under superposition, and any stationafyere, we should distinguish our work in this paper from
Gaussian process can be completely specified by its mean sa@e results in the literature. All of the above discussion
autocovariance. Therefore, unlike the case of MMF processéBcluding the work in this paper) is about“asymptotics”
analyzing a queue with a large number of Gaussian input pie-, the asymptotic behavior 8@ > x), as the queue length
cesses is ho more difficult than ana|yzing a queue with a Sin@éncreases. There has been recent work that focuses on the
Gaussian input process. Second, and more importantly, &/mptotic behavior d?(¢) > z) when the number of sources,
large bandwidth (compared to the bandwidth required by a tyffie queue length, and the service rate are all proportionally
ical network application) of high-speed networks make it a naient to infinity (e.g., [6], [25]). We classify these studiesias
ural approximation for the aggregate input process. Due to f8ymptotics, wheré/ represents the number of sources in the
huge capacity of network links, hundreds or even thousandssystem. In particular, Montgomery and De Veciana [25] have
network applications are likely to be served by a multiplexegignificantly strengthened the corresponding log-similarity re-
Therefore, even when the traffic from each individual appllation in [6] using the Bahadur—Rao asymptotics, and obtained
cation cannot be characterized by a Gaussian process, by &gmptotic bounds for the tail probability. However, note that
pea"ng to thecentral limit theoremthe aggregate traffic to the M—asymptotics considers a limit in a different direction from
multiplexer can be effectively modeled as a Gaussian proce$it in z-asymptotics. Therefore, results ib/-asymptotics
Such queues (fed by a stationary Gaussian input proceggjinot be extended te-asymptotics (andice versa unless
have recently received some attention (e.g., see [2], [9], [2%E'Y Strong properties such as uniformity of convergence can
[26]). We already know from [19], that the log-similarity rela-P€ shown (which is usually not the case). Hence, the results
tion (1) holds for Gaussian processes. The excellent work iy this paper belong to a different category, from those in
Addie and Zuckerman [2] strengthens this result by showirlf -asymptotics.
that for fairly general discrete-time Gaussian sources, the tailAs an important final note, due to space limitations, we do
probability is in the form of (2). They also suggest possiblgot provide any proofs to the theoretical results in this paper.
approximations of the asymptotic constaiitIn [26], Norros Interested readers are referred to our technical report [11].
provides an approximation to determine the tail probability for
the special case dfactal Brownian motionln this case, the II. PRELIMINARIES
ﬁfsy(rzn)p.)totlc behavior of the tail probability is not in the formA. Fluid Queue Model
We will provide two asymptotic upper bounds ¢Q > z) We model a high-speed statistical multiplexer by an infinite
for a large class of Gaussian processes for which (2) holds. dwffer fluid queue shown in Fig. 1. The fluid queue consists of

approach 'IS quite novel: it is bas?d gutreme value the_qry 2As will be described in Section 1V, approximations equivalent to this lower
for Gaussian processes [4] and is different from traditionsbund have already been suggested (e.g., see [25], [27]).
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Infinite Buffer of X,, can be expressed as a weighted sumCgfl), i.e.,
Var{X,,} = nC,(0) + 2 315 (n — O, ().

2 Q Server Note that VafX,} can also be expressed in terms of
t ! Lic(n) = Var{}" _ M\ }/E{>"" _; A.}, the (general-
Fluid input rate Amount of thid ized) index of dispersion for count§iIDC) by the relation

at time t at time ¢ Service rate Var{X,} = n(p — £)Lac(n). Assuming that the net input
processy, is stationary Gaussian, its distribution is completely
determined by eithers and I,.(n), or x and VafX,}.
Therefore, this paper also falls into the classification of
gueuing analysis based on the mean and the index of dispersion
a server that drains the fluid from the buffer at a constant raaé the input traffic (e.g., [18], [34]).

i, and a fluid input that fills the buffer at a ratg. The fluid For notational simplicity, for eaclk > 0, we define a new
input A, corresponds to the aggregate arrival process to a higitechastic process.* := [Vz(X,, + kn)]/(x + xn). It then
speed multiplexer, and corresponds to the rate at which fixedollows that for anyz > 0 and anyn € {0, 1, 2, ---}

size packets (such as ATM cells) are transmitted onto the link. . . ©

Consequently@),, the amount of fluid in the buffer at timg X > if and only if Y,E '> Ve ®)

represents the number of cells in the multiplexer. Hence, from (4), we hav®(Q > z) = P(sup, Yn(w) >

Depending on the index s, from which the time index 7y Note that for each, ;'™ is a centered Gaussian process,
takes its value, a fluid queue is classified as either a continUoYsy its autocovariance functiafy, is given by

time fluid queue(7 = (—o0, o)) or a discrete-time fluid
queue(Z = {---, —-1,0,1,---}). In this paper, we only
consider discrete-time fluid queues, although equivalent results
can also be obtained for the continuous-time case [12].
In a discrete-time fluid queue, the evolution &f,, the

Fig. 1. A typical fluid queue model.

2Cx(ny, na)
T+ kny)(x + Kkng)

Cyy(n1, no) = (

Further,o2 ., the variance ot,\"’, can be written as

z,n?

amount of fluid in the buffer, can be expressed by Lindley’s n-l
equation: 2| nC(0)+2) " (n = HC()
o aVar{X,} =1
Qn=(Qu_1 +v)* @ mnT (x+rn)2 (x + rn)? '
(6)

where~,, := A, — p is the net amount of fluid input at time
n and (z)* := max{0, z}. In [24], it has been shown underHenceforth, we let{w)e denotesup,.q ws. Moreover, we
some mild assumptions (such as the stationarity and ergodidaity not specify the index rang@ when it includes the entire
of v, and the stability condition, i.ef{~,} < 0), that the domain ofws. For example{s2) represents the supremum of
distribution of @, determined by (3) converges to a unique? = Var{Y,,(,“J)} overn € {0, 1, 2, ---} (the index omitted

limiting distribution (the steady-state queue distribution) gg ’<.>) and(y(m)>[ » represents the supremum ﬁf-r) over
€ [a, b]. We now list three important conditions @, (1),

n goes to infinity, regardless of the initial conditiap,. In

addition, it has been shown that the supremum distribution 9f 4 <iate three important propositions (we provide detailed

{Xp:n =0, 1, -} defined byX,, :=>_/_, v-m. is €qual 55065 in [11]) which will be referred to later in the paper:

to the steady-state queue length distribution, i.e.,

C,(D)] < oo and c,(h)y>0 C1
n>0
This relation, which originally comes from [24], has played Z IC,(D] < > (C2)

a key role in obtaining a number of important results on the i=—c
steady-state queue length (or waiting time) distribution. m

From here on, throughout this paper, we focus on the cases ?_ [Cx()+ > mCy() >0,  ¥m=1,2,---,
=1

oo

for which the aggregate arrival process (and hencey,,) can = l=m+1
be characterized by a stationary Gaussian process. a”doo

C. () > 0. C3
B. Important Notations and Definitions ; ) (3)

Let C,(l) denote the autocovariance function of the sta- proposition 1: Let k; andi; be two nonnegative sequences
tionary Gaussian net input process = A, — p (note that sych thatk;, I; — oo andk,/l; — o > 1 asi — oo. Then,
C, (1) = Cx(1) since we set the service rate to a consfant ynder condition (C1),

It is easy to see from the definition of,, that it is also a

Gaussian process. The mean and autocovariance function of lim Ox(hi, ) = lim Oxll, ki) =5
X, can be computed in terms ef:= —E{~,} and C,({) as e g e g
E{X,} = —rn, andCx(n1, n2) = >.;2, 202, C,(l — where S = Yo o Cy(D.  In particular,

;). By a change of variable$ = I, — [;, the variance lim, ., Var{X,}/n = S.
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Proposition 2: Define 7, to be the time at whichy2 both theoretical and practical importance, as will be discussed

xz,n
attains its maximun{s2). Then, under condition (C1), shortly.
. z This section proceeds as follows. We first make some
M ™~ 72 interesting observations by time-scaling the stochastic process

Yn(’”). These observations provide some insight on the behavior
of P(Q > z) and point us in the development of our
@symptotic upper bound.

Proposition 3: Under condition (C1),lim, ., (¢2) =
S/4k.

It should be mentioned that (C1)—(C3) characterize a fair
large class of Gaussian processes. Condition (C1) is mainly on
the absolute summability of the autocovariance function of t R
input process. Hence, a sufficient condition for (C1) [assumingConsider a continuous-time stochastic proc‘é,é“é? defined
S . Ca(l) > 0] is that there exists an > 1 such that for eachz > 0 asY,") := YLS;)/KJ, where | z| denotes the
Ca(1) < 1=« for all sufficiently largel. It should be noted that largest integer that is smaller than or equatid@he stochastic
condition (C1) can be thought of as the boundary between thgcessy;” is simply an interpolated (by holding its value
processes that exhibit long-range dependence and those thgbéla period of lengthx /=) and scaled (in time) version of
not (see [5], [23] for the definition and properties of long-rangg () that is enforced to attain its maximum variance around
dependence and/or self-similarity). In other words, under this_ | a5, — ~ (see Proposition 2). From the definition of
condition the tail probability satisfies (2) with= 2x/S and (=) o following can easily be verified:
some finite constan€' [2]. b

Condition (C2) is on the absolute summability of a weighted P(Q > z) =P ((Y@)) > \/5) 7)
autocovariance function of the input process. This condition S min{ty, £2}
is somewhat more restrictive than (C1), and satisfied if there  lim Cy(,,(t;, £2) = L 2

exists ane > 2 such thatCx(l) < 1=, for all sufficiently o0 R(L+8)(L +22)
large . (from Proposition 1) (8)

While (C1) and (C2) are related to the decay rate of B hcev ™ is a centered Gaussian process for each0, (8)
autocovariance function, condition (C3) is related to its Shaﬂ%pliestthat asr — oo '

and sign. Roughly speaking, (C3) is satisfied wid&g!), the
autocovariance function of an input process, is positive for V@ o VS B,

most values of.. The class of input processes characterized to TV VE(1L+1)
by (C3) is very important for the analysis of network delay,

since positive autocovariance is related to the bursty natureVHﬁrEB v 1S the_ standard Brownian motion process. .
ow, we briefly move our attention to continuous-time

an input process, which in turn is the main cause of netwo;k_ : . . .
luid queues. For continuous-time fluid queues, continuous-

congestion. ) ) (@) () i
time stochastic processeés;, Y,"’, andY,”’ can be defined
in an analogous way to their discrete-time counterparts:

Interpretation of Time—ScaIing’,ﬁ’”)

in distribution (9)

I1l. SINGLE EXPONENTIAL ASYMPTOTIC UPPERBOUND

In this section, we introduce our first asymptotic up- Xy i=Lo =T,
per bound forP(QQ > z) expressed as an exponential y(@) V(X + ki)
function of x, and illustrate its theoretical importance. We T x4kt
say that f(x) asymptotically boundsg(z) from above if and
limsup,_., g(x)/f(x) < 1. We also briefly discuss its VAR :Yg/)n-
performance as an approximation fB(¢) > z) through
numerical examples. Here, I'; is a stochastic process with stationary increments

It should be noted here that Simonian [33] has derived an @nd negative drift such thdt, — I';(s < ¢) represents the
egant upper bound in an integral form for general continuouget input into a fluid queue during the interved, ¢], and
time fluid queues fed by input processes having density:= —[(E{I': — I';})/(t — s)]. Remember that the results
function. However, in spite of its significant theoretical valudincluding (7)] obtained for discrete-time fluid queues can
the upper bound usually results in a fairly complicated exprealso be derived for continuous-time fluid queues [12]. Also,
sion when it is evaluated for a specific fluid queue. MoreoveRote that if we setl; = /S B, — xt (which corresponds
the asymptotic behavior of this upper bound has only be&® an uncorrelated input procesﬁ)(m) would have the same
shown to be exponential for tH@rnstein-Uhlenbeckprocess. distribution asl/;. This fact together with (7) and (9) indicates
For more general processes we do not even know if theat asz increasesP(Q > x) behaves as if the fluid queue is
bound is asymptotically log-similar to the tail probability, thuglriven by a completely uncorrelated input process, regardless
limiting its practical value. of the correlation structure of the actual input process.

In contrast, the asymptotic upper bound B > x) that This phenomenon can be intuitively interpreted as follows.
we introduce in this section is in a simple exponential forrRrom Proposition 24, the time at whichX,, (Y,ﬁ’”)) is most
which can easily be obtained from the mean and autocovdikely to be larger thanz (\/z) increases linearly withe.
ance of the net input Gaussian process. Although it is notTaerefore, ag: increasesi, eventually becomes significantly
global upper bound, but an asymptotic upper bound, it is frger than the time scale over which the net input process
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is correlated. As a result, the effect of the correlated inpaof P(Q* > z) can be written asxp[—(2x>DM/S5?%)] where
process is negligible on the time scale @f, and Y &, S, andD are defined by the first two moments of a single
behaves as if the input is an uncorrelated Gaussian prociéggit process and the service rateper input. Note that the
(with the same value ofS as the original input process).bound decreases exponentially &5 increases. Therefore, if
For instance, lety,, be an i.i.d. Gaussian process and leve quantitatively define statistical multiplexing gain as the
¢ = 0.5%n + 0.3xvn_1 + 0.2x,_2. Then, althoughy,, is not reciprocal of the asymptotic constant, then this gain increases
correlated(,, is a correlated process. However, if we comparat leastexponentially with the system size. This result, in fact,
the two partial sumsy_" _, x, and>_ _, (., over a much supports the behavior of the asymptotic constant that has been
larger time scale (say > 100) than the time scale over whichobserved in empirical studies (e.g., see [13, eq. (1.6)]).

¢y, Is correlated, the differenc@,5(xo—x»)+0.2(x -1 —Xn—1) The form of the upper bound to the asymptotic constant
between these sums becomes very minor. Therefore, we @ires us more insight into the queuing behavior for stationary
expect that these two partial sums will exhibit very similagaussian input processes. It is well known tisatin con-

stochastic behavior for such large valuesnof junction with x, determines the asymptotic decay ratgiven
The above discussion suggests the following simple apprd®-(2) [2], [19]. Further, the limiting value of the IDC of an
imation for the tail probability: input process [i.elim,, ... Lic.(n) = S/(1 — x)] can also be
expressed in terms of [3]. ThereforeS can be thought of
P(Q > z) [P’(( “”) y > \/_) from (7) as a measure of the “burstiness” of the input process, which
[P’((U x) from (9) is invariant to filtering or finite time-shifting of the arrival
process. For example, let,, € [0, 1] be a sequence that sums
P({ / (t+1), ever}) to 1, and c_onsider a _Iinear smoothing system which delays
the a,, portion of the input at time: by m > 0. Then, the

2K output procesa!, can be expressed as a convolutiomgfand
= exp <_?>’ e.g., see [29, p. 199](10) e input process,,, i.e., N, =32 amAn_m. From this
relation, the autocovariance function &f can be computed as

Since  in (1) and (2) has been shown to I3&/S [2], Cy(I) = Ef:l:o Ef:z:o Qmy Omo Ca(L + M1 — m2). Hence,
[19], (10) corresponds to the famous EB approximation. Thige have
means that to go beyond the EB approximation and obtain
some information about the asyr?p;totic constant in (2), more
than the limiting distribution ofY,'*) has to be considered. = = =
The asymptotic upper bound that we now introduce, can be Z Ox (D)= Z @ma Z @ma Z 20

obtained by capturing the way in which the varianceVgt’ e e e =
converges to its limiting value. = Y G
=—cc

B. Single-Exponential Asymptotic Upper Bound

By observing how the variance &Q(”) converges to that
of U, around the time £7;/x =~ 1, from Proposition 2) at
which the variance oﬁ?;(”) attains its maximum, we get the
following theorem.

Theorem 1: Under conditions (C1)—(C3),

In other words, since the system does not impose an infinite
amount of delay (that isy_,._, a., = 1), the autocovariance
function of the input process and that of the output process
have the same sum. On the other hahd,.”, /C\(I) could
be quite different from) ;~, ICx (1). In other words, the
212D parametetD is not invariant to filtering or finite time-shifting,
?) and many autocovariance functions with the safmaay have
very different values ofD. Now, consider two nonnegative
where D := 2 372 1C. (D). autocovariance function€’;(l) and C»(I) having the same
Proof: Refer to [11, Theorem 3.2]. m sumsS. The autocovariance functia® (1) has most of its mass
Theorem 1 gives us an exponential asymptotic upper boudidtributed close té = 0, while C(I) has its mass spread over
exp[—(2k/S)(z + kD/S)] to the tail probability P(¢2 > awider range of. In this case, it is obvious from the definition
x). Further, since it has been shown under condition (C&j D, that Ci(I) will have a smaller value oD than Cs(1).
that (2) holds for stationary Gaussian input processes withother words, for the same amount of total burstiness in the
n = 2k/S [2], Theorem 1 also provides us with an uppearrival process, the more the burstiness is spread over time, the
boundexp[—(2x2D/S?)] to the asymptotic constaiif. The larger is the corresponding value bt Hence, from our bound
asymptotic upper bound accounts for statistical multiplexirtg the asymptotic constant, the larger is the eventual statistical
in the sense that the bound for the asymptotic constant awedltiplexing gain. This implies that for a given constraint
creases exponentially when more sources are multiplexed. Barthe tail probability, by spreading the burstiness over time
instance, consider a fluid queuing system sendfigdentical (e.g., the familiar smoothing concept [30]), we can get better
input processes with an infinite buffer and a fixed service raseatistical multiplexing gain. In the following section, we will
p per input, and le(QY > z) denote the correspondingshow just how dramatic the difference in this gain can be for
tail probability. Then, the bound for the asymptotic constamvo different Gaussian processes having the same vali$e of

2
lim sup exp <ﬁ> P(Q > z) < exp <—

T—00 S
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Fig. 2. The exact tail probability and the asymptotic upper bound for g 4. The exact tail probability, the EB approximation, and the asymptotic
Gaussian input process with autocovariance funafigril) = 200 x 0.95!1l, upper bound for a Gaussian input process vith(/) = 104 x 0.99/1 4
64.14 x 0.9991" 4+ 31.86 x 0.9999!*/ whenx = 33.33.
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EIPIES (N, -§,.;'_\:-\\-\\*\\_%_/j—x=11.11 the tail probability will eventually converge to a finite value.
N N N et 1 k=17.65 ' '
N S Us ~=Qrg Further note that the bound matches the simulation results
Py = i~ = . .. . . . .
& 1x10710 ‘\.\\,\ ~o '\\\;\@‘/—/K=25 quite well. This indicates that the limiting error will be fairly
- ST N = 1333 small, and thatxp[—(2x*D/S?)], the upper bound for the
o— b S~ . K= . . . .
B X107, \\,\ A S S asymptotic constant is an accurate estimate of the asymptotic
@1,(10-205 S Yy constant. The same observations can be made in Fig. 3; the
£ ; ~ 1 k=42.86 . . o
= s — — Exact Tail Prob. @t\/ asymptotic upper bound parallels the tail probability sas
& 1x10 i —-- Asym. Upper Bound \\~§ increases and the difference between the bound and the exact

1510307 tail probability is less than an order of magnitude for large

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Queue Length: x enough values of. However, in Fig. 3, the asymptotic upper

bound fails to approximate the tail probability for small queue
[Bngths &500) for x = 33.33, 42.86. This is because the tail
probability in Fig. 3 converges to its exponential asymptote
slowly, while the tail probability in Fig. 2 converges to its
asymptote fairly fast, and forms a nearly straight line. Note
In this section, we experimentally investigate the perfofhat the autocovariance function of the Gaussian input used

mance of the asymptotic upper bound as an approximation'foFig- 3 consists of two power terms with different decay
the tail probability. To validate our results numerically, w&at€s. Hence, the input is correlated at different time scales,
use thelmportance Samplingimulation technique describedWhich typically results in a slower convergence of the tail
in [7] (see [21] for a general overview of Importance Samplingrobability to its asymptote. In the following example, a far
techniques). We have calculated 95% confidence intervals fBP"e significant effect of this multiple time-scale correlation
each tail probability estimated via simulation by the method & demonstrated.
batch mean. However, to not unnecessarily clutter the figured=x@mple 2:In this example we consider a fluid queue fed
we only show confidence intervals when they are larger th& @ Gaussian input process with autocovariance function
+20% of the estimated tail probability. Cxa(1) = 104 x 0.991 +64.14 x 0.9991" +31.86 x 099991,
Example 1: In this example, we consider fluid queues feds can be observed, the autocovariance function is a sum of
by two different Gaussian input processes. In particular, firee weighted powers with very different decay rates. This
Figs. 2 and 3, we show the exact tail probability and th@eans that the source is correlated at very different time scales.
asymptotic upper bound for two Gaussian input processésFig. 4, the asymptotic upper bound, the EB approximation
with the autocovariance functiorg00 x 0.95!!l and 100 x and simulation results are shown fer= 33.33. Note that
0.9 4+ 60 x 0.98Y, respectively, for six different values ofthe slope of the simulation curve significantly differs from
x. Note that these autocovariance functions are nonnegatiét of the EB approximation (or the asymptotic upper bound)
and vanish exponentially asincreases, so that they satisfyeven atz = 10°. This implies that the tail probability is not
conditions (C1)—(C3). Therefore, from Theorem 1, an expglose to its asymptote over the entire range of queue lengths
nential asymptotic upper bound for the tail probability can bghown in the figure. Even though we cannot calculate the
computed for these two Gaussian sources. As one can seejact asymptote given in (2), we know that it has to be below
Fig. 2, for largez, the asymptotic upper bound parallels théhe asymptotic upper bound. Therefore, in this case, neither
tail probability for all values ofx. This is not a surprising the EB approximation nor the asymptotic approximation can
result because both the asymptotic upper bound and the &aiturately estimate the tail probability even for very large
probability are asymptotically exponential with the same decagplues ofx. For example, for the queue length as large as
rate. Therefore, the logarithmic error between the bound aR@ 000, the EB approximation overestimates the exact tail

Fig. 3. The exact tail probability and the asymptotic upper bound for
Gaussian input process withly (1) = 100 x 0.9/ 4+ 60 x 0.981l.,

C. Numerical Examples and Discussion
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1x10°1 asymptotic constant is accurately estimated by its upper bound
= 1x10-13'\\.-\f_\ G, (1) = 25641x095" as in the previous examples, and the asymptotic constant
&, 1107 S for the autocovariance functiofz(l) is smaller than that
T 1x10°9X N for Cy(1) (by almost 4 orders of magnitude!). Further, note
2 w0ty > T that the statistical multiplexing gain as a function &f
B x10%] TSN G, (1)=25063x0995" ™ J (the system scale, i.e., the number of sources, when the
§ 1x10°7 ~< capacity is also proportionally increased) increases as fast as
& 1x1077 =~ exp[(2k2D/S?) M]. Therefore, as the system scale increases,
& x10°7  __ Asym. Upper Bound  ~ - the (logarithmic) diff_ereqce between the a_sympto_tic constants
1x10°7 . _Eyact Tail Prob. M for these two Gaussian input processes will also increase very
1x10710 . T . . fast
0 200 400 600 800 1000 .
veue Length: x e above example can also be related to the effect o
Q Length The ab I Iso b lated to the effect of
Fig. 5. The exact tail probability and the asymptotic upper bound fo§mooth|ng in the following way. The Gaussian process with
two Gaussian input processes with, (1) = 25.641 x 0.95/, ¢, (1) = autocovarianceC>(l) can be thought of as the output of a
2.5063 x 0.9951], andx = 5. linear smoothing system discussed in the previous section

fed by the Gaussian process with autocovariafig€l) for

probability by five orders of magnitude, while the asymptoti@ppropriately chosen coefficients, (m = 0, 1, ---). There-
approximation underestimates the exact tail probability by fre, this example illustrates that smoothing certain types of
least five orders of magnitude_ This also |mp||es that evé}ﬁtWOfk traffic which are correlated over a relatively short
though the asymptotic upper bound provides a close upgéfe scale, can significantly reduce network congestion. On
bound to the asymptotic constant (this is found to be true in tHlke other hand, for some traffic types, such as JPEG-encoded
case as well by examining |arger Va|uesﬂ)f since itis in a video traffic, which are intrinsically correlated over very Iong
single exponential form, it may not provide a useful estimate §fne scales, smoothing over a small number of time frames
P(Q > z) for probabilities of interest. Further, even by usingvill only marginally change the value ab and hence will
current multi-term exponential approximation techniques, Mot effectively reduce network congestion. For the case of
is difficult to accurately capture the tail probability for theséeal video traffic this type of effect has already been observed
cases [13]. The slow convergence of the tail probability to i{€.9-, [30]).

asymptote is often observed when the source is correlated at

multiple time scales. Multiple time-scale correlation in general V. MAXIMUM VARIANCE ASYMPTOTIC UPPERBOUND

occurs when heterogeneous sources are multiplexed. Als
certain traffic sources (for example, MPEG and JPEG encoche] time scale at which? , attains its maximum, and a well

video) are themselves correlated at different time scales. Si%%wn lower bound which motivates the development of our
high-speed networks are expected to support many differ%

types of traffic, each of which has its own correlation pattern?"tcond asymptotic upper bound.
the network traffic is very likely to be correlated at multiple . ' R
time scales. Therefore, it is important to be able to analyfé Dominant Time-Scalé. and a Known Lower Bound
the queue behavior for such traffic. In Section IV, we will For a general (including non-Gaussian) stationary ergodic
introduce our second asymptotic upper bound based on fi§ input process,, it can be shown thaf(X,, > z) — 0,
maximum varianceo?2) which will be useful even when the asn — oo. Therefore, there must exist a finite valuewot 7.,
traffic is correlated at different time scales. at which the functiorP(X,, > «) attains its maximum. From
Example 3: In this example, we show that the asymptoti¢4) we get the following trivial lower bound:
constant and the statistical multiplexing gain could be very . .
different even for stationary Gaussian input processes having PQ>x) 2 ili% P(Xn > o) =P(Xs, > 2). 11
the same autocovariance sufnConsider two autocovariance o o .
functions, Cy (1) = 25.641 x 0.9511 and C,(1) = 2.5063 x At first glance, it appears that this simple lower bound is
0.995!1, both of which sum up toS = 1000 and satisfy probably loose, since it is the probability that, is greater
conditions (C1)—(C3). Although these functions have the sarff@nz at only one point. = 7, in the index se{0, 1, 2, - - -}
values of S, as one can see from their decay rate {as made of infinite elements. However, in many studies, it has
o), Ca(l) is spread over a wider range éfthan C;(7). been found that?(@ > z) = P((X) > z) is largely
Therefore, C»(1) has a significantly larger value ab than dominated byP(X;,, > z), the probability thatX,, exceeds
Cy(1) [19487.16 for Cy(l) versus 199501.48 foiCy(1)]. <« where itis most likely to happen (i.e., at). For instance,
Hence, as we discussed in the previous section, the asympt8tg lim inf-part of many asymptotic results have been derived
constant (for the same value @ for the Gaussian input Using this lower bound (e.g., see [6], [15], [19], [25]). Further,
process with autocovarianag; () is expected to be smallerin many cases, this lower bound has been found to be log-
than that for the Gaussian input process with autocovariargigilar (lfig) to the tail probability as: (or M) goes to infinity.
Ci(1). In Fig. 5, we show the exact tail probability and thd=rom (5), remember that for Gaussian processgs, the
asymptotic upper bound for two Gaussian input processd@minant time scale is also the time at Whhtﬁn attains its
with autocovarianceC;(I) and C»(I) when x = 5. The maximum value(s?). We will now introduce an asymptotic

e begin this section by studying the importancengf
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result for Gaussian input processes that has been used in the
derivation of Theorem 1, and further illustrates the importance
of 7, in studying the asymptotic behavior B{@Q > x).

Theorem 2: Under condition (C1), for any > 1,3

PUX) [e/ar, az/x] > T)

--------- MVA Upper Bound
—-+— Exact Tail Prob.

- Lower Bound

li =1.
o P((X) > x) N
N
Proof: Refer to Theorem 3.1 in [11]. n T

Tail Probability: P(Q>x)

From Proposition 2, note that for arbitraky > 1, the
interval [7,/«, any,] (@and hencen, itself) will eventually

i i . . i 110 — T T

be contameq |n[_x/2om, 2ax/r] as ¢ increases. Therefore, B N L S

Theorem 2 implies that for ang > 1, Queue Length: x
lim [F"((X){,»-L‘/a ang] > (X)) >x)=1. (12) Fig. 6. The exact tail probability, the lower bound, and the MVA
z—00 e upper bound for a Gaussian input process with autocovariance function

. . Cah(l) = 104 x 0.99M 4 64.14 x 0.9991' + 31.86 x 0.9999!"l when
In other words, as: increasesP(Q > z) = P((X) > z) . = 3333,

is essentially determined on a relatively small interval around

the maximum variar_u_:e ti_mém. Also, (12_) can be interpreted g Maximum Variance Asymptotic Upper Bound

as a theoretical verification of the qualitative statement “rare ] ) o )

events take place only in the most probable way” [15], [26]. N this section, we will introduce an asymptotic upper
Observe thaP((X)(a, ja.an,] > ) With a = 1 corre- bound that, like the lower bound, will be based on the

sponds to the lower bound, (for Gaussian input processd8pXimum variance of a Gaussian process. Recall that the
This lower bound can be written in terms aF(z) := lower bound is a simple (standard Gaussian tail distribution)

1/v/2r [ exp[—(42/2)] dy (the tail function of the standard function of \/x/{c2). From Theorem 2, and thg fact thg_t
Gaussian distribution) as the lower bound matches the shape of the tail probability
curve, we can infer that the term/(s2), as a function of
PO > 2) > \I/< x ) (13) % contains key information about the behavior of the tail
- (02) probability before it closely converges to its asymptote. Our

Note that the lower bound is virtually equivalent to the aﬁ TT\ e cirnd .

proximation for the tail probability suggested in [25], [27] (théZ( z/{07)) is similar ) to the asymptotic upper bound

approximation in [25], [27] corresponds to the middle term if<P[—(2#/5) (¢ + xD/5)]. In this way, q(/z/{07)) would

(16) which is almost the same as the lower bound). Since (ZJyMptotically bound the exact tail probability from above,

holds for any arbitraryr greater than 1, it suggests that even it d also cIo;er track the sh_ape_ of the tail probability curve.

the lower bound¥(+/z/{o2)) were to asymptotically diverge |!’l the following theorem, which is based on Theorem 1, we

from the exact tail probability, it would do so very slowly. Inflnd such an asymptotic upper bound.

fact, through extensive numerical studies [9], [11], we have 1heorem 3:Under conditions (C1) and (C2)

found fthat ou:I Iovx:er bom;rndFacc_“ratfl);_ capt_uﬁ%l(zs_f) E x) exp[—(z/2(c2))] ~ exp{—[(2x/S)(z + kD/S)]}.

even for small values of. For illustration, in Fig. 6, we . " "

consider the same multiple time-scale source ongxampIe-af'erefore’ with an additional condition (C8kp[—(z/2(07))]

Unlike the earlier asymptotic upper bound, the lower bouﬁao":‘ymptOtlcally bound#(Q) > x)'. .

closely tracks the tail probability over the entire range of queue Proof: Refer to [11, Proposmon 4.1]. . .

lengths shown. This is a very important feature of the low We call this new bound thenaximum variance asymptotic

bound which no single exponential approximation can poss VA) Upper bound. Note2that the MVA. upper bound, as

(as was illustrated in Example 2). On the other hand, sinéefuncugn ofz = /z/(oz), can be written asy(z) =

for a very large class of Gaussian input processes, the ffdfp[_.(z /2)|. Further, from a well-known bound fo¥(=)

probability is asymptotically exponentiaur asymptotic upper 17, ie.,

bound is asymptotically tight in the sense that the (Iogarithmici) g 22 1 2
a5 2w e ()

dea is to find a functioy(z) which resembled’(z) such that

difference between the exact tail probability and the bound is—— 2~ 277 exp 5

bounded.In contrast, as we will show later, the lower bound V 2 2

does in fact asymptotically diverge from the exact tail (albeit v2>0 (14)
very slowly). Hence, in the next section, we will provide
another asymptotic upper bound that has the nice propertied¥t have
both the lower bound, and the single-exponential asymptotic 22
upper bound. exp <——>
W(z) ~ 2/ - 4) (15)

3Recently, this theorem has been generalized and significantly strengthened /9 /9 :
[10]. However, since the improved version has been derived (as yet) for only T T
continuous-time Gaussian processes, we do not provide it here. Moreover,% L .
theorem in its current form has been used to derive all of the main results te [from (14)] that the above S'm”amy comes into effect
this paper [11]. very fast asz increases, andf(z) =~ exp[—(2%/2)]/v2r »
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even for fairly small values (>2) of. Therefore, the major dif- 1.4
ference betweet(z) andexp[—(22?/2)] is the multiplicative
term1/y/27 » on the right-hand side of (15). This term is very
slowly decreasing (as increases) compared to the remaining ~=— 11
part exp[—(~?/2)]. Therefore, the shape of the MVA upper E;D
bound curve should almost be the same as that of the lower =
bound. Also, in a sense this MVA upper bound is obtained
by “lifting” the lower bound in such a way that it becomes™
a tight asymptotic upper bound. Hence, unlike the asymptotic
upper bound in Section Ill, we expect that the MVA upper
bound will bound the tail probability even for very small O
values of queue lengths as if it were a global upper bound. 0 2 4 6 8 0 2 44 6
This prediction has been verified through simulations [11]. lFig. 7. The differencdog exp|[—(x/2(02})] — log ¥(\/x/{02)) versus
addition to the asymptotic tightness of the MVA upper boundfe MVA upper boundog exp[—(xz/2{c7))].

this is another property of the MVA upper bound which makes

it more useful than the lower bound (since conservative, rathgdve demonstrated that: 1) the tail probability almost never
than optimistic, engineering is often desirable for networ‘!gscapes from the envelope constructed by the bounds, as long
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dimensioning and control). . _ as conditions (C1)—(C3) are satisfied and 2) that both the lower
A direct result of Theorem 3 is that under conditiong s nd and the asymptotic upper bound can approximate tail
(C1)—(C3): probabilities as small as 18° with errors less than or close
to an order of magnitude.
\I,< z ) - {o3) ox <_ z ) As a final remark of the section, it is interesting to note that
G 2nx 2(o3) the approximation fo(Q > =) based on the large deviation

%% wD M-asymptotics result by Botvich and Duffield [6], results in

/S
~ rexpy—| g lz+— . (16) the same expression as the MVA upper bound, when applied
8k S S . . .
to Gaussian fluid queues. Remember that AMfieasymptotics

Note that the second similarity is from Proposition 3 antgsult in [25] improved upon the result in [6] (from log-
Theorem 3. From (16), it is now clear that the lower boungimilarity to nearly similarity), and an approximation based on
is not asymptotically exponential, and hence cannot be sifhese stronger asymptotics was suggested (which is equivalent
ilar to the exact tail probability. However, the leading ternfo the lower bound). This tells us that the approximation
/5/8rrx decreases slowly compared to the remaining terfiat satisfies only the weaker asymptoticslifrasymptotics
exp[—(26/8) (z + kD/S)], asz — oc. For this reason, the [6], now satisfies the stronger asymptoticsirasymptotics
divergence of the lower bound from the tail probability waéand vice versa). As mentioned in Section |, this is because
nearly unrecognizable in all our numerical studies [9], [11]-@symptotics and\/-asymptotics consider asymptotic prop-
Perhaps the following observation will shed further light ofties ofP(Q > x) in different limiting regimes.
this issue.

The (logarithmic) difference V. APPLICATIONS FORGENERAL INPUT PROCESSES

The numerical examples provided in Sections Il and IV
— 2\Y _ oo 2
(@/2{03)) —log W(vz/(03)) were for stationary Gaussian input processes. Further, both the

between the MVA upper bound and the lower bound is actui@;ymptotic upper bounds described in the previous sections

a function of \/m that can be closely approximate re valid under three conditions (C1)—-(C3). In this section,

by % (log 272/{o2)). Therefore, the difference between thesW® investigate and discuss the accuracy of the lower bound

bounds cannot be arbitrary but can be determined from eiti‘?é}d th(.a.MVA upper bgund as an approximgtion for the tail
the MVA upper bound or the lower bound, as illustrated iRrobabmty when conditions (C1)—(C3) are violated, and also

Fig. 7. In the figure, the difference between the two bouné%hen the aggregate input process is itself not Gaussian.

is only about an order of magnitude even when the MVA ,

upper bound is as small a8—2°. Therefore, Fig. 6 suggests”: General Gaussian Process

that the MVA upper bound and lower bound may provide The relation (11) is very generally true, and the lower bound
a narrow envelope that bounds the exact tail probability ii(y/z/{c2)) is valid as long as the input process is stationary
the typical range of interest. This is also suggested in Fig.Gaussian. On the other hand, both the asymptotic upper bounds
earlier, where we plot the lower bound and the MVA uppen Sections IIl and IV, require conditions (C1)—(C3).

bound for a Gaussian input process correlated at multipleAs mentioned in Section Il, when condition (C1) is vio-
time scales. Note that the lower bound and the MVA uppéated, the input process shows long-range dependence, and the
bound encapsulate the tail probability over the entire range adrresponding tail probability may not even be asymptotically
queue lengths. Since both bounds are based on the maxinexponential [15]. However, as long as the input process is
variance, neither suffers from the slow convergence of tistationary and ergodic, the (finite) maximum variane€)

tail probability to its asymptote. Similar experimental studiesan be found and used to compute the lower bound and
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Further, the MVA upper bound seems to be asymptotically
close to the tail probability. This suggests that the bound
exp[—(2k2D/S?)] to the asymptotic constart in (2) may

be used to accurately approximate it even when (C3) is
violated, or whenD has a negative value. This may be true in
part because the expressiexp[—(2x2D/S?)] has important
properties that the asymptotic constant is known to have, such
as: 1) if the input process is i.i.d. Gaussian, tien= 0 and

the asymptotic upper bound simply becomes[—(2xxz/5)]
which is a well-know bound for the level crossing probability
of a random walk with drift (see [29, p. 236]) and 2) also,
D can have a negative value, only when the autocovariance
function of the input process takes large negative values (i.e.,

Fig. 8. The exact tail probability, the lower bound, and the MVA uppewhen the input process is significantly periodic and less bursty

bound for a Gaussian input process with autocovariance fun€tipfi) =

10 x 0.9 cos 71/12 + 0.1 x 0.99!! andx = 1, 2.

than i.i.d. input processes). ) takes on a negative value,
then exp[—(2x2D/S?)] is greater than 1, and will increase
exponentially with the size of the system (as explained in

the MVA upper bound. In fact, in [26],an approximation Section IIl). This indicates that for strongly periodic input
for the tail probability, equivalent to the MVA upper boundprocesses, there will be no gain in statistical multiplexing the
has been used for the special case of Fractal Browniaaffic; an observation which is well known for certain types
motion, and empirically found to be fairly accurate. Our owof periodic input traffic [13], [31].
numerical investigations with long-range dependent sourcedn the following section, we altogether weaken the Gaussian
[which violate both conditions (C1) and (C2)] have resultedssumption on the input process, and use the lower and the
in the same conclusion. Further, in more recent work usimgVA upper bounds to approximate the tail probability of fluid
extreme value theory, we have shown (a significantly stronggueues with a large number of non-Gaussian input processes.
result than the Large Deviation results) that for a very large
class of long-range dependent (and other) Gaussian procesBed\pplications to Voice and Video Traffic
the MVA upper bound diverges very slowly (or not at all) As mentioned in Section |, the huge capacity of high-
from the exact tail [10]. However, in this paper we will notspeed network links motivates the Gaussian characterization
explicitly focus on numerically studying long-range dependegf the aggregate traffic to a multiplexer. For example, FORE
processes, but instead will provide examples using act@STEMS has already built commercial ATM switches to
traces of video traffic (which is often considered to exhib§upportOC-12 (622.08 Mb/s) lines, and ATM networks with
self-similar behavior).
Even though any nonnegative autocovariance function S@fniversity). Due to the huge capacity of a single ATM
isfies condition (C3), it should be noted that some types pfk, hundreds or even thousands of network applications are
network applications (such as MPEG video) generate netwaskpected to share an ATM link; aBC-3 (155.52 Mb/s) line
traffic in a fairly periodic fashion. This may result in a largecan accommodate over 6800 voice calls (assuming 16-Kb/s
enough negative component of the autocovariance functionpfean bit-rate) and a®C-12line over 300 MPEG video calls
violate condition (C3). Thus, in the following example, wgassuming 1.5-Mb/s mean bit-rate) both at a utilization of
investigate the performance of the lower bound and the MVA.— E{)\o}/u = 0.8. These numbers seem to be large enough
upper bound for input processes that do not satisfy conditiggy the central limit theorem to be applied, and to characterize

(C3).

0OC-24(1.2 Gbh/s) lines are already operational (at Cambridge

the aggregate input process by a Gaussian process. Through

Example 4:In Fig. 8, we show the exact tail probability,empirical evidence we have found that a few hundred sources
the lower bound, and the MVA upper bound for a Gaussiafte generally sufficient for the Gaussian approximation to be
input process whose autocovariance function is given Ryite good (e.g., see [9]).

Cx(1) = 10 x 0.9 cos (n1/12)40.1 x 0.99/". One can easily

In this section, we illustrate the effectiveness of the Gaussian

check that this autocovariance function does not satisfy congharacterization and the applicability of the lower and the
tion (C3). Hence, the MVA upper bound in this example mayvA upper bounds for general traffic models. Our examples
not be an asymptotic upper bound. However, note that badtus on voice and video traffic models. It should be empha-
the lower bound and the MVA upper bound still accuratelyjzed that since we have weakened the Gaussian assumption,
match the tail probability curve. In particular, note how botRoth the lower and MVA upper bounds cannot strictly be
these appl’OXimationS are able to track even minor tranSitiqﬂ%ught of as bounds, but are approximationS, even if the
of the exact tail curve from concavity to convexity. This agaiparious conditions on the autocovariance function of the

emphasizes the importance of the maximum variacg.

aggregate input process were satisfied. However, as will be
illustrated by the numerical examples, as long as the Gaussian

4In this paper, the tail probability was approximated by the lower bounghodel is reasonably good, these analytical approximations

given in (13), but the lower bound itself was evaluated through another
approximation U(z) = exp[—(z2/2)]. As a consequence, the resultan
estimate ofP(Q > x) actually corresponds to our MVA upper bound.

0 behave like real bounds over the tail probabilities of
interest.
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Fig. 9. The exact tail probability, the lower bound and the MVA upper bouniig. 10. The exact tail probability, the lower bound and the MVA upper
for a multiplexer serving 42500 and 42 800 voice traffic sources. The outpund for a multiplexer serving 250 and 260 real MPEG sources. The output
link capacity is set to 622.08 Mb/©C-12line). link capacity is set to 155.52 Mb/©C-3 line).

In the next few examples, we demonstrate the utility of 3) Example 6:In this example, we use real MPEG video
the MVA upper bound and lower bound in analyzing the ta{frame-size) traces generated by Rose [28]. To simulate
probability at a multiplexer for different cases. In each cas®|PEG-encoded video traffic, 16 different MPEG coded traces
the sources are fed into a multiplexer being served b®@r3 of 40000 frames are concatenated into one trace of 640 000
(155.52 Mb/s) orOC-12 (622 Mb/s) line. To save space, weframes, and the frame sizes are read out sequentially from
refer to our technical report [11] for the detailed specificationthis trace starting at a random position in the trace. Since all
of the traffic source models that we use in this section.  the concatenated frame-size traces are from video sequences

1) Voice Traffic Sources: captured at 25 frames/s, the total length (640000 frames) of

Example 5: The typical behavior of efficiently encodedthe concatenated frame-size trace corresponds to more than
voice traffic is that it alternates between “active” and “inac? h of play time. Since the trace is very long, by simply
tive” states. Hence, Markov modulated on—off processes haagsigning a random starting position to each simulated MPEG
frequently been used to model voice traffic (e.g., see [34))ideo traffic source, we generate a large nhumber of MPEG
For our experiment, we assume a 10 ms slot size and useideo traffic sources. Since we assume a 10-ms slot size in
discrete-time on-off MMF process as a voice traffic sourdbis example, each frame size should be read out over 4 slots.
model obtained by discretizing the continuous-time MMMVe assume that each frame is transmitted uniformly over a
voice traffic source model used in [31]. In Fig. 9, we shodrame period (40 ms or equivalently four slots). In Fig. 10,
the exact tail, the lower bound and the MVA upper bound fahe lower bound and the MVA upper bound for 250 and 260
42500 and 42 800 voice sources served byO&i12(622.08 MPEG video sources served at 3667 cells/slotC(3 line)
Mb/s) line. As one can see in the figure, the simulation resulise compared to the exact tail probabilities. The mean and
are accurately captured between the lower bound and the M¥#Atocovariance function of the simulated MPEG source are
upper bound. measured directly from the concatenated frame-size trace,

2) Video Traffic Sourcesin general, the stochastic characand used for our approximation technique. Since we are now
teristics of a video traffic source changes with the type ofsing real frame-size traces to simulate MPEG encoded video
video application which the source represents. For instancesairces, the importance sampling techniqgue cannot be used
video traffic source that mainly transmits movies is likely tdor this experiment and, hence, the simulation results show
have different characteristics from that of a video source thatger confidence intervals. Nevertheless, as one can see in
transmits news programs. Further, the video coding schentles figure, both the lower bound and the MVA upper bound
employed to reduce the required bandwidth can also signifgain seem to encapsulate the exact tail probability within an
icantly affect the stochastic characteristics of the generatedier of magnitude.
video traffic. Therefore, the detailed modeling of such diverse4) Example 7:In this example, we use a frame-size trace
video traffic sources may neither be an easy nor an efficiesft the JPEG-encoded movie “Star Wars” to simulate real
way of characterizing these sources. From this viewpointideo sources. Also, we design a simple JPEG video traffic
traffic characterization based only on the first two momenssurce model based on the mean and autocovariance function
(mean and autocovariance or mean and IDC) has advantagessured directly from the frame-size trace. We then use the
over the characterization based on explicit stochastic modelimgodel to obtain our bounds and another set of simulation
since they can be directly measured from the source. fesults. Many types of video traffic have been found to be
the previous example involving a non-Gaussian voice traffieeavily correlated over multiple time scales or even thought
source model, the first two moments of the traffic sourcés exhibit self-similar behavior over a certain time-period
have been analytically obtained from the source model. In theg., see [5]). To capture this multiple time-scale correlation
next example, we will show that from the measured meanr video traffic, we model the JPEG video traffic source
and autocovariance of a real video trace, the queue length the superposition of 3 two-state MMF processes with
distribution can also be accurately computed. very different mean state sojourn times. More precisely, this
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Fig. 11. Simulation results, the lower bound, and the MVA upper bound for

a multiplexer serving 79 and 81 JPEG-encoded movie “Star Wars” througﬁ} 12.  Admissible combinations of voice and JPEG-encoded video calls
an OC-12 output link. or anOC-12link with 20 000 cell buffers, computed by simulation, the lower

bound, and the MVA upper bound. The maximum tolerable tail probability
(v) is set to 10°6.

source model is obtained by matching the autocovariance
function measured from the frame-size trace usingl¢iaest- VI. CONCLUSION
squaremethod. The main purpose of designing a model for

. : . In this paper, we provide two asymptotic er bounds to
JPEG traffic is to demonstrate that the queuing behawé{t' 'S baper, we provide tw ymPpIoic upp :

alyze the tail of the steady-state distributiBac} > x)

a high-speed multiplexer. We model the multiplexer as an
nite buffer fluid queue and characterize the aggregate input
rocess as a Gaussian stochastic process. This enables us to

show S|mulat|0n_results, the. lower bound, and the M.VA UPPSL0id the classical state explosion problem that occurs when
bound for a multiplexer serving 79 and 81 JPEG traffic sourc¢rer§‘,:my traffic sources are multiplexed

through anOC-12line. The time slot size is set to 8.333 ms. . . =4 ssian input process satisfying fairly general con-

Stlngcoe fthe fre;me-5|zhe ftrace 1S frqm V|ddeo stequenfces c|a|t3tu ittons, we provide an exponential asymptotic upper bound
a rames/s, each frame-size is read out over four slots. A J.o exp[—(2r/S) (z + xD/S)] to the tail proba-

in the previous example, we assume that a frame is unifor }fity P(Q > =) using key results in extreme value theory.

transmltted_over four slots. A.S one can see n the figure, t is asymptotic upper bound in turn results in a theoretical
two simulation results (one using the real frame-size trace apd ribution to the extreme value literature. The asymptotic
the other using the model) are encompassed within the lo : ) .
er bound also results in an upper bound to the asymptotic
and MVA upper bounds. VY"ﬁ{p PP ymp

e : . constant.
.5) Admlssmn Contr_oI—V0|ce apd \ﬁde@;r.] ”’T‘po”""”t an we develop another result (Theorem 2) which emphasizes
plication of our analytical results is for admission control. Wi

that Il is admitted t ATM multiol _The importance of the maximum variande2), and pro-
assume that a new call Is admitted 1o an 4 MUItPIEXEr Wi} jes theoretical grounding for a well-known lower bound.
buffer sizeB if the resulting tail probability?(Q > = = B)

. ; Building upon our exponential asymptotic upper bound and
is less than some. Hence,y corresponds to the maximum g up P ymp PP

. - : Theorem 2, we also develop an asymptotic (MVA) upper
tolerable tail probability for a call to be admitted. boundexp|—(z/2(2))] (Theorem 3), based on the maximum

6) Example 8:In Fig. 12, we ;how the admissible reg'o.r\/ariancewg). Through an extensive and systematic numerical
for voice and 'JPEG—enco.ded V'd69 calls computed by si fudy, we find that both the lower bound and the MVA upper
ulation, and via our maximum variance based bounds. T 8und accurately approximate the tail probability as long

maximum tolerable tail probability and the buffer sizé3 are ; - :
. i as the input process can be effectively characterized by a
set to 10°° and 20000 cells, respectively. Again, we assurnﬁ Put P y y

of a traffic source can be captured by a relatively simp
stochastic model of the traffic source, especially when t%i
number of multiplexed traffic sources is large. In Fig. 11, wi

. X . ) aussian process. We also illustrate that our analysis of the
that anOC-12line serves the multiplexer. Since the require P y

trainto | " I imole stochast q il probabilities results in very efficient admission control.
;:onz r?r']n v Is qui 3 irggG W% uset S|frpp € stochastic n:jo S In this paper, we have provided results only for the discrete-
or both voice an VIdeo Traflic sources In Order g, fig qgueues in which the fluid arrival and service
employ the importance sampling technique. While we use t

trafi del that | din E le 5 e place only at discrete times. Equivalent results for the
same fraftic source model that IS USed In Examp'e ©, WE USGinous-time fluid gueue have already been derived and are
a JPEG video traffic model that is somewhat different fro

th del din E le 7 (in order to simulat ller t ailable in [12]. We find that Gaussian modeling of the input
e model used in Example 7 (in order to simulate smaller ffic provides significant simplicity and has great potential,

probgbll[tles than given in Fig. 1.1)' Itis mterestmg to nc_)t%nd are currently investigating ways to extend the analysis to
that in Fig. 12, the admissible region computed by S|mulat|og, network end-to-end

the lower bound, and the MVA upper bound are so close that
it is almost difficult to distinguish their boundaries. In fact,

the lower bound overestimates and the MVA upper bound
underestimates the maximum admissible number of calls byThe authors would like to thank the anonymous reviewers
less than 1% in terms of utilization. for their careful reading of this paper and for bringing to the
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