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Abstract

The empirical measure Pn for independent sampling on a distribution P is formed by placing mass n~'
at each of the first n sample points. In this paper, n]/2(Pn — P) is regarded as a stochastic process
indexed by a family of square integrable functions. A functional central limit theorem is proved for
this process. The statement of this theorem involves a new form of combinatorial entropy, definable
for classes of square integrable functions.
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Introduction

In this paper I define a new type of combinatorial entropy for classes of square
integrable functions. In terms of this entropy function, I find sufficient conditions
for a functional central limit theorem to hold for a sequence of empirical
measures obtained by independent sampling on a fixed distribution. The theorem
strengthens and generalizes recent results of Dudley (1981b) for Vapnik-
Cervonenkis Donsker classes of functions.

Suppose £,, . . . ,£„ are independent observations on a probability distribution P
defined on some measure space (%,&), usually a finite dimensional euclidean
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236 David Pollard [21

space. Form the empirical measure Pn by placing mass \/n at each of these
observations. For each class *$ of functions square integrable with respect to P,
regard the normalized empirical process Xn = nx/2(Pn — P) as a stochastic pro-
cess indexed by <3. The finite dimensional projections [Xn(fx),..-,Xn(fk)], which
can be written as normed sums of independent random vectors, converge in
distribution to the corresponding projections of a gaussian process X indexed by
5", with zero means and covariance kernel

(1) cov[*(/,), X{f2)] = P{fJ2) - P(/,)P(/2).

(Throughout this paper I use the notation advocated by de Finetti (1972),
according to which integrals are written as linear functionals and sets are
identified with their indicator functions. Thus jcfdP is written P{fC).)

With some further conditions on the sample paths of the {Xn}, this finite
dimensional convergence can be strengthened to a functional central limit theo-
rem analogous to Donsker's theorem for empirical distribution functions (Bil-
lingsley 1968, Section 16). Theorems of this sort have been proved by Dudley
(1978, 1981a, 1981b) and Bolthausen (1978). Classes of functions for which such a
theorem holds are called Donsker classes. A precise definition of this concept
appears in Section 2.

As with the classical theorem of Donsker, the finite dimensional convergence
needs to be supplemented by a uniform tightness condition (Dudley 1981a,
1981b); small changes in the indexing function / must have only a small effect on
the value Xn{f), for every n. Measure distances between functions in fusing the
L2(P) norm II • II. Write [8] for the class of all functions/' a n d / " in 'Jfor which
II / ' — f"\\ < 8. The key condition to check will be: for every e > 0 and TJ > 0
there exists a 8 > 0 such that

(2) l imsuppf sup | *„ ( / ' ) - Xn(f") | > i,) < e.

When ^consists of indicator functions of intervals of the form [0, x] and P equals
the uniform distribution on [0,1], this requirement reduces to the usual uniform
tightness condition.

Behind (2) lies the idea that the process Xn might be adequately approximated
by its values on a finite subclass of'%, a subclass chosen to contain members close
to every function in <S. For a given degree of approximation 5 (in a sense to be
made precise by Definition 6), the logarithm of the size of the smallest subclass
providing such an approximation will be denoted by H(8). Following the
reported usage of Kolmogorov (attribution by Dudley 1973, page 70), I shall call
H an entropy. The rate at which H increases as 8 decreases provides a measure of
size, or complexity, for C3\ If 9 consists of indicator functions of certain geometri-
cally simple classes of sets multiplied by a fixed square-integrable function, the
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(3 ] A central limit theorem 237

entropy increases only as fast as some negative power of log 8; this gives (2) with
plenty to spare (Theorem 9). This particular example improves upon Theorem 4.1
of Dudley (1981b).

2. Convergence in distribution

Regard the empirical process Xn as a random element of the space B(<5) of all
bounded real functions on f. Equip B(^) with the metric of uniform conver-
gence. For reasons analogous to those described in Section 18 of Billingsley
(1968), Xn need not be measurable with respect to the borel a-field on B(§). This
complicates the definition of convergence in distribution slightly. I shall work
with a modified definition, based on a proposal of Dudley (1966, 1967). This
definition succeeds because of the regularity properties of the limit gaussian
process X.

Remember that the L2(P) norm provides ?F itself with a pseudometric space
structure. It therefore makes sense to talk of continuity, or even uniform continu-
ity, for elements of B{^). The sample paths of X will be continuous in this sense.

1 DEFINITION. Write C(§) for the closed subspace of BC%) consisting of all
those bounded real functions on § that are uniformly continuous with respect to
the L2(P) norm.

Under the entropy condition of the Main Theorem (Theorem 7), <yr will be
totally bounded (Simmons 1963, page 123). This will make CC§) topologically
separable and X stochastically separable (Gihman and Skorohod 1974, page 164),
thereby taking care of all measurability difficulties for X. To avoid the same
difficulties for the empirical processes, I shall assume that each Xn is stochasti-
cally separable. This does exclude some theoretically interesting cases, such as ?F
consisting of all finite subsets of [0,1] and P equaling the uniform distribution,
but for most applications it presents no obstacle. Dudley (1981b) and LeCam
(1981) have proposed subtler, more sophisticated ways to handle questions of
measurability.

With stochastic separability, each Xn will be measurable (Pollard 1981) with
respect to the a-field % generated by all closed balls in B(^) centred at points of
CC$). Adding a requirement of ^Immeasurability to the standard definition of
convergence in distribution (Billingsley 1968, page 23) specifies a mode of
convergence better suited to the study of empirical processes. To avoid any
confusion with accepted definitions, I shall introduce a new symbol.
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238 David Pollard [4]

2 DEFINITION. Let Y, Yx, Y2,... be ^measurable random elements of BC*).
Write Yn ~* Y to mean that Ph(Yn) -> Ph(Y) for every bounded, continuous,
9t-measurable, real function h on

The theory of weak convergence using this definition parallels the standard theory
in most respects; most proofs follow the standard proofs closely.

3 EXAMPLE. Here is what the continuous mapping theorem looks like, for
example.

Let Yn ~* Y. Let T be a ^measurable map (defined at least on the
range of all the Y) into a separable metric space. If T is continuous at
almost all the points in the range of Y, then TYn ~* TY.

The separability restriction on the range space could be weakened, but that would
require the placing of further restrictions on its field. I omit the proof of this
result, because it will not be invoked explicitly in this paper.

With this notion of convergence I can define Donsker classes of functions.
Apart from the substitution of separability for the subtler suslin measurability
property, my definition agrees with Dudley's (1981b).

4 DEFINITION. Call 9 a Donsker class for P if
(i) the empirical processes {Xn} are stochastically separable;
(ii) there exists a gaussian process X with zero mean, covariance structure

specified by (1), and sample paths in C(9);
(iii) Xn - X.

With allowance for the modified measurability assumptions once again, Dudley's
(1981a) Theorem 1.3 translate into a checkable condition for identifying Donsker
classes.

5 THEOREM. 9 is a Donsker class for P if
(i) the empirical processes {Xn} are stochastically separable;
(ii) ft is totally bounded under its L2(P) norm;
(iii) the uniform tightness condition (2) holds.

Note that the supremum in (2) defines a measurable function because of the
separability requirement placed on Xn. Indeed, for a separable process, the
supremum could even be taken over a countable subclass of pairs from <5. This
will justify my assuming (without loss of generality) later in this paper that f i s
countable.
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3. The entropy condition

The concept of entropy involves approximation to the members of some set by
the members of a finite subset. Approximation requires a measure of distance.
For the class <S, a suitable distance measure can be constructed using an envelope
function, that is, a measurable function F for which | / | < F for each / in 65.
(Measurability difficulties thwart the obvious method for defining F: taking the
pointwise supremum of absolute values of functions in 9r.)

6 DEFINITION. Let F be an envelope function for *$. For each finite subset 5 of
% and each positive 8, take NF(S, S,^) to be the smallest value of m for which
there are functions # , , . . . ,(j>m in ̂ such that

(3) min 2 [/(*)-4>,(*)]2<S2 2 F{*?

for every / in *3'. The entropy function is defined as

H(8) = HF(8,$) = sup log NF(8,S,^),
s

the supremum running over all finite subsets of %. Clearly H(8) must increase as
8 decreases. A slow enough rate of increase will make ?F a Donsker class.

7 MAIN THEOREM. These conditions suffice for 'if to be a Donsker class for P.
(i) the empirical processes {Xn} are stochastically separable
(ii) the envelope function F belongs to L2(P)
(iii) the entropy function satisfies the growth condition

7 = 1

Condition (iii) bears a strong resemblance to conditions imposed on entropy
functions in Theorem 2.1 of Dudley (1973) and Theorem 5.1 of Dudley (1978).
The method of proof for my Main Theorem, given in Section 5, combines ideas
from those two results of Dudley with modifications of the techniques of Pollard
(1981). Condition (ii) improves upon a more awkward assumption in Theorem 4.1
of Dudley (1981b), where F needed to satisfy

P{F>t} = o(r2(logt)~p) a s / ^ o o ,

for some fi > 4.
For simplicity, I shall refer to function classes satisfying the growth condition

(iii) as sparse classes. Examples of such classes can be constructed from classes of
sets satisfying a combinatorial condition introduced by Vapnik and Cervonenkis
(1971).
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8 DEFINITION. Call a class Q of measurable subsets of % a VC class of degree v
if each set S of v points in 9C has fewer than 2" distinct subsets of the form CS
picked out by members of 6.

The most important property of a VC class is that {CS: C G 6} must contain
at most | 51" members, for every finite S. Elegant characterizations and many
examples of VC classes have been collected together by Dudley (1978, Section 7).
These include, for example, the classes of all closed balls, all ellipsoidal regions,
and all convex hulls of at most k points (k fixed) in Rd.

9 THEOREM. Let Q be any VC class of sets and F be any function in L2(P). Then
{FC: C e Q) is sparse.

PROOF. Call this class f. I shall show that NF(S, S, $) ^AS~W for some
constants A and W depending only on v. Fix a finite 5, and then write

Suppose {FC, , . . . , FCm} is a maximal subclass of <5 for which

II FCt - FCj II s > SIIF || s whenever i # j .

Maximality implies that NF(S, S,^) «s m.
Define a probability measure Q on 5 by giving mass F(x)2/\\ F \\ \ to x. Then if

QiQbCj) = Q[(FC, - FCjf/F2] = \\FC, - FCj\\2
s/\\F\\2

s > S2.

Sample k points independently from S according to the distribution Q. Then

P{at least one C(ACj receives no sample point} < I - 1(1 — 82)

< w2exp(-A:52)

which is less than one if k exceeds ( logw2) /52 . Choose k as the smallest such
integer. In that case, at least one configuration of the k sample must land at least
one point in each C,AC7; the class Q picks out at least m distinct subsets of that k
sample. Thus

m^kv<(\ + (\ogm2)/82Y
which implies the desired results, as in Lemma 7.13 of Dudley (1978) or in
Lemma 2.5 of Pollard (1981). Dudley conjectures that, when F = 1, the growth
condition (iii) of Theorem 7 characterizes VC classes. Theorem 2.1 of Durst and
Dudley (1981) supports this conjecture.

Sparse classes can be constructed in other ways.
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10 THEOREM. Let 5 and § be sparse classes with envelopes F and G. Then
(i) the class S of all sums f + g, with f in *5and g in %, is sparse;
(ii) the class 9H ofpointwise minima min[/, g], with fin 'Sand gin §, is sparse;
(iii) the class £ of functions obtainable as pointwise limits of functions in 'S is

sparse;

(iv) the class D̂ of all functions of the form af, with 0 *£ a < 1 and f in *%, is
sparse.

PROOF. Put S = F + G and M = max[F, G]. The results follow from these
bounds:

HM(28, 91L) < HP(8,$) + HG(8, §),

HF(S,£) = HF(8,<5),

HS(2S,S) < HF(8,%) + Hc(8,§),

HF{28, <%) < -logfi + HF(8,$).

The first of these comes from the inequality, written in the notation of Theorem 9,

| |min[/, g] - min[*, y]\\s< \\ f - <t>\\s + IIg - yl l s .

The other three can be proved similarly.

For a nontrivial application of these results see Pollard (1982), where Donsker
classes play a key role in the proof of a central limit theorem for fc-means
clustering.

4. Symmetrization

It is easier to compare two independent samples from a distribution than to
compare a sample with its underlying population distribution (Gnedenko 1968,
Sections 67 and 68), because probability calculations for the difference of two
independent empirical distribution functions can be reduced to counting prob-
lems. The same is true for empirical measures.

Vapnik and Cervonenkis (1971) proved uniform convergence of empirical
measures to population measures by considering the difference of two empirical
measures, one constructed from the observations £,, . . . ,£„, the other from the
observations £n+],. ..,£2n- By working conditionally on the location of all In
observations, they transformed the problem into calculation of exponential bounds
on the tail probabilities of the hypergeometric distribution.

Pollard (1981) replaced the two independent samples by two groups of observa-
tions obtained from £,, . . . ,£2ll by coin tossing; the observation £, went into group
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one only if the ith toss of a coin gave heads. This turned the problem into
calculation of exponential bounds on binomail tail probabilities, an easier distri-
bution to work with than the hypergeometric. The penalty paid was the possibility
of unequal sample sizes, which added slight complication to several of the
arguments (look at Lemmas 3.2 and 3.3 in particular).

Here I propose another method of dividing the observations into two groups, a
method that retains both the convenience of equal sample sizes and the technical
advantage of working with tail distributions for sums of independent random
variables. Lucien LeCam informs me that the same approach also works well for
sequences of independent, not necessarily identically distributed, random varia-
bles.

Independently of the sample £],...,£2n> choose independent random variables
a(l),...,a(n) with P{0(/) = 2/} = P{a(i) = 2/ - 1} = 1/2. Construct the em-
pirical measure />„' and its corresponding empirical process X'n — «1/2(P'n — P)
from the sample £am,.••,£„(„)', construct />„" and X'n' from the remaining £. The
processes X'n and X'n' are independent copies of Xn. Define symmetrized processes
P° = P'n - />„" and X°-X'n- X1; = n^2P°. I shall state the key inequality
relating Pn to P° and Xn to X° in the form best suited for the proof of the Main
Theorem. It is based on Lemma 2 of Vapnik and Cervonenkis (1971) and Lemma
3.1 of Pollard (1981).

11 L E M M A . Let gt, g2,--- be a sequence of functions in L2(P) with \\gj\\ < 8 for
each).

P{ sup | X°n(gj) |> ij} > (1 - S2/V
2)P[ sup | Xn(gj)\> 2T,

j J

PROOF. Define Qk to be (| X'n'(gk) | > 2TJ}. On this set,

p{ sup | X°(gj)\>v | />„"} ^ P{| X'n(gk) |< r,}

> 1 - 8 2 /T) 2

by Tchebychev's inequality, because

a normed sum of independent random variables with mean 0 and variance
P(gk) = IISkII2- Integrate the conditional probability over the union of the Qk to
complete the proof.
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[91 A central limit theorem 243

The first application I shall make of this lemma will be to prove a uniform
strong law of large numbers. This result feeds into the proof of the Main Theorem
in two places to show that 'Sis totally bounded, and to show that the class [8] in
the uniform tightness condition (2) can be replaced by an analogous class
depending only on £,, . . . ,£2n.

12 THEOREM. Suppose "5 is countable. Then a sufficient condition for

(4) sup | Pn( f - f"f ~ P(f - f"f | -> 0 almost surely,

where / ' , f" range over all pairs of functions in <3, is the finiteness of HF( 8,$) for

every positive 8.

PROOF. Because the lefthand side of (4) is a reversed submartingale, as in
Lemma 3.2 of Pollard (1981), it converges almost surely to some limit. Conse-
quently I need only prove convergence in probability to zero.

Every squared difference ( / ' — / " ) 2 is bounded above by G = 4F2. Choose a
truncation level M large enough to make PG{G > M) < e. Then

sup | Pn(f -f"f{G >M}- P(f -f"f{G > M) |

=£ PnG{G > M) + PG{G > M) -» 2PG{G > M) almost surely.

It suffices to prove that

sup | Pn{gj) - P(gj) | -* 0 in probability,
j

where {g,, g2>.. .} is the class of all functions of the form ( / ' — f")2{G «£ M}.
Apply Lemma 11 with 8 = M and ij = en l / 2 to transform this into a problem

for the symmetrized measure P°: I need to prove that

(5) sup | P°(gj) | -» 0 in probability.
j

Write &2n for the a-field generated by £ , , . . . , | 2 n - The convergence in (5) is the

integrated form of

p { sup | P°(gj) | > 2e | <£2n} - 0 in probability,

which I shall establish by appealing to the finiteness of HF( •, (S).

In the definition of entropy take S to be the set { £ , , . . . , £ 2 n } , then choose

functions </>,,...,<j>m from <$ according to (3). Remember that m < exp HF(8, '3 ).

Write II • II 2n for the L2(P2n) norm. Then (3) can be expressed more concisely as

(6)
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for every/in '$. Given/ ' a n d / " in Sr, suppose </>' and </>" are the corresponding 4>-
at which the lefthand side of (6) achieves its minimum. Then by the Cauchy-
Schwarz inequality

i|/»»°(/' -f"f{G < M) - Pn°(<!>' - <j>"f{G < M) |

= \\ Pn°(f " / " - </>' + * " ) ( / ' - / " + «*»'- <P"){G < M) |

which is less than

< 4M'/281| F || 2n -> 4Ml / 2«IIF \\ almost surely,

by the strong law of large numbers. Choose 8 small enough to make 8A/1/28IIFII
less than e, then deduce by (™) applications of Tchebychev's inequality that

pf max | P°(<j>r - <k)2{G < M) | > e | &2n) -* 0 in probability.
1- r, s >

13 COROLLARY. Finiteness of HF{8, (S)for every positive 8 implies total bounded-
ness of Sunder its L2(P) norm. In particular, every sparse class is totally bounded.

PROOF. I lose no generality by assuming that ^s is countable. Choose a sample
point w at which both (4) and IIF || 2n -» || FII hold. For a large enough value of n,
if <>,,... ,<f>m satisfy (6) then

min

5. Proof of the main theorem

The assumptions are sparseness of tf, square integrability of F, and stochastic
separability of each empirical process Xn; the desired conclusion is that ^ be a
Donsker class for P. Theorem 5 demands total boundedness of ^ , which
Corollary 13 ensures, and the uniform tightness (2). Separability of Xn allows me
to check (2) with / and / ' restricted to a countable subclass of *?. Equivalently, I
may as well assume that <5 itself contains only countably many functions. In that
case I can invoke Lemma 11, with g, running through the class [8] of all the
differences / — / ' for which II / — / ' | | < 8, to justify replacing Xn by the symme-
trized process X°. Next use Theorem 12 to replace [8] by the class (8) of all
d i f f e r e n c e s / - / ' with l l / - / ' l l 2 n < 8. (Remember the notation || • \\2n for the
L2(P2n) norm.) Here I suppress the dependence of (8) on n to keep the notation
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clean. With these changes, checking uniform tightness reduces to the problem of
finding a S to make, for all large enough values of n,

(7) {
1 <«>

with high probability. (Remember that £, , . . . ,£2n generate the a-field &2n-)
By working conditionally on (22n, I can treat the set S = {£,,. . . ,£2n} a s o n e °f

the finite sets entering the definition of entropy. Put 8, = 2~'. Choose finite
subclasses ^(1), f (2 ) , . . . , of fsuch that
(8) m i n | | / - 4 » | | 2 n ^ 8 , | | F | | 2 n

for each fixed/. By the definition of entropy, ^ ( i ) need contain at most exp(//,)
functions, where Ht = HF(2~', I3r). For a given/in <3r, denote b y / the function <j>
in ?F(/) for which the lefthand side of (8) achieves its minimum. Notice that

I ! / -"/ I I 2 , - 0

as / tends to oo. Thus, for any fixed r,

f-fr= 1 (fj-fj-l)
r+\

pointwise on 5.
The proof of (7) breaks into two parts. First find a value of r large enough to

make

(9) p{sup|X?(/-/r)|>i,|ff2l l}<e

on the set {IIFII2n < 2||F\\). Because IIFII 2n converges almost surely to \\F\\, the
set on which (9) holds will have probability tending to one. For the second part,
find a S small enough and r large enough to make

(10) {

o n the set { I IF I I 2 n < 211 F \ \ ) . Because

sup | X°n( f -/") |< 2sup | X°n( f - fr) | + sup | X°( f'r - fr) I ,
<S> <S (S)

the inequalities (9) and (10) combine to prove (7).
To obtain (9), first select a sequence {rjy} for which

7 = 1

(12) v
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(13) 2 e x p ( - r , 7
2 / 1 4 4 8 / 1 | F | | 2 ) < oo.

7=1

This is possible because of the growth condition on H( •). For example, it would
suffice to set J]] = max{y5,, (28811 F||fi/J/y.)l/2}- Then

p{sup|Xn°(/-/r)|> lijy-|(SB2ll
r+\

(H) < f

r+i $

Consider one of these last conditional probabilities. Define

h^ifj-fj-M^-ifj-fj-Mtv-i)-

Then X°( /J- — j^-_,) can be written as

where it is understood that the signs are chosen at random independently of the £.
By Theorem 2 of Hoeffding (1963),

n-W2

1 = 1

Observe that

(=1

< 144«S/| |F| |2

on the set {IIF||2n «£ 2 | |F | |} . The sum in (14) is thus less than
oc

2 exp(2//y) •2exp(-7, 2 /728 /
2 | | f | |2)

OC

< 2 2 exp(-7, 2 /144S/ | | f | |2) by(12),
r+ 1
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which, by (13), is less than e if r is large enough. If r is also large enough to make

1f+1 f]j < i), inequality (9) follows.

Now consider (10). If \\f - f"\\lH < 8 and \\F\\2n < 2 | | F | | then

if 8 is chosen to equal 8r\\ F\\. Use the Hoeffding inequality again to bound the
left side of (10) by

| f ( r ) | 2 s u p 2 e x p ( - T , 2 / 2 | | / r ' - / ; ' l l L )
<«>

<2exp(2 / / r -T , 2 /505 r
2 | |F | | 2 ) .

< 2exp(-7}2/l008r
2\\F\\2) if TJ2 > 200Hr8?\\F\\2

-» 0 as r -* oo.

So once again, if r were large enough (10) would hold. This completes the proof of
the Main Theorem.
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