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While many centrality measures for complex networks have been proposed, relatively few have
been developed specifically for weighted, directed (WD) networks. Here we propose a centrality
measure for spread (of information, pathogens, etc.) throughWD networks based on the independent
cascade model (ICM). While deriving exact results for the ICM requires Monte Carlo simulations,
we show that our centrality measure (Viral Centrality) provides excellent approximation to ICM
results for networks in which the weighted strength of cycles is not too large. We show this can be
quantified with the leading eigenvalue of the weighted adjacency matrix, and we show that Viral
Centrality outperforms other common centrality measures in both simulated and empirical WD
networks.

I. INTRODUCTION

The literature on network centrality measures is vast.
Unlike identifying a network’s shortest paths [1] or de-
termining the stability of its synchronization [2], there
is no single method for identifying the most influential
nodes in a network. This is to be expected, since nodes
and connections represent vastly different physical/social
entities from one network to the next, and the character-
istics which confer centrality often depend on the phe-
nomena of interest [3].

Many centrality measures aim to identify nodes that
are influential with respect to spreading phenomena, such
as the spread of infectious disease [4], rumors [5], or infor-
mation [6]. The performance of such centrality measures
is often determined by comparison with simulations of
spread that are highly simplified yet still computationally
expensive. The independent cascade and linear thresh-
old models are perhaps the two most popular models for
simulating information diffusion through social networks
[7].

In this paper we propose a centrality measure based on
the independent cascade model (ICM), a generalization
of the susceptible-infected-recovered (SIR) epidemiologi-
cal model originally proposed by Goldenberg et al. [8, 9].
Like the SIR model, the ICM is used to simulate spread
through a network in which nodes may be in one of three
states: susceptible, active (or infected), and inactive (or
recovered). The ICM runs in discrete time steps, with
an active node having just one opportunity to activate
its neighbors before becoming inactive. The ICM gen-
eralizes the SIR model by specifying network structure
using a weighted, directed (WD) adjacency matrix P,
with Pij giving the probability of node j activating node

i, given that node j is itself active.
A tremendous amount of work has gone into identify-

ing the optimal set of seed nodes of a given size to max-
imize the total number of nodes subsequently activated
in the ICM [10–16]. Kempe et al. showed this to be an
NP-Hard problem [6], necessitating heuristic approaches.
Such heuristic approaches to this combinatorial optimiza-
tion problem are not the focus of this study. Instead, we
address the simpler problem of ranking individual nodes
according to the expected number of others they will in-
fect, given a single activated node as the starting point.
Various centrality measures have been proposed to

identify such influential spreaders in the SIR model with
homogeneous transmission probability, including degree,
k-core, betweenness centrality, eigenvector centrality, and
PageRank, among others [3]. Such classic approaches suf-
fer from two major drawbacks, however: they do not gen-
erally take into account specific details of the spreading
model, and they do not apply to WD networks. In cases
where a classic centrality measure may be generalized to
WD networks, there are often multiple ways of doing so,
with no consensus as to which way is best [17–19]. In
general, there are relatively few centrality measures that
have been developed specifically for WD networks.
In this study, we propose a novel centrality measure

for WD networks specifically designed to identify influ-
ential spreaders in the ICM. We call our measure the
Viral Centrality (VC), and we show that it gives results
nearly to identical to the ICM but much faster, so long
as the strength of cycles within a network is small. We
show that the strength of cycles within a network may
be quantified using the leading eigenvalue of the weighted
adjacency matrix, and we show that VC’s performance
compares favorably to several other WD centrality mea-
sures in synthetic and empirical networks.
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Algorithm 1 Viral Centrality

1: for each node as SeedNode do

2: prob susceptible = ones(TotalNodes) # initializing probabilities a given node is still susceptible
3: prev activated = zeros(TotalNodes) # initializing probabilities a given node was activated on previous time step
4: cur activated = zeros(TotalNodes) # initializing probabilities a given node is activated on current time step

5: prev activated[SeedNode] = 1 # set seed node to definitely being activated on previous time step...
6: cur activated[SeedNode] = 0 # ... and therefore definitely NOT activated on current time step

7: t=1 #initialize time step
8: while (termination condition) do

9: perform breadth-first search to determine all nodes within t edges of SeedNode

10: for each Node within reach of SeedNode do

11: prob uninfected = 1 # initialize probability that a given node is not infected on this time step
12: for each Neighbor sending a connection to Node do

13: # P[i, j] is probability of node j activating node i, given that node j was activated on previous time step
14: prob uninfected = prob uninfected * (1-prev activated[Neighbor]*P[Node, Neighbor])
15: end for

16: cur activated[Node]=(1-prob uninfected)*prob susceptible[Node]
17: end for

18: for each Node in TotalNodes do # clean-up in preparation for next time step
19: prev activated[Node] = cur activated[Node]
20: prob susceptible[Node] = prob susceptible[Node] - cur activated[Node]
21: end for

22: t = t + 1
23: end while

24: viral centrality[SeedNode] = sum(1-prob susceptible) - 1 #“-1” discounts initial activation of seed node
25: end for

II. RESULTS

Viral Centrality algorithm

The VC algorithm aims to calculate the expected to-
tal number of nodes activated by a given set of initial
seed nodes in the ICM. (In this study, we explore VC as
a centrality measure, so we focus on the special case of
just one initially activated seed node.) As shown in Algo-
rithm 1, for each seed node VC loops over several discrete
time steps (Lines 8-22), similar to a Monte Carlo simu-
lation. Rather than prescribe precisely defined states to
each node (susceptible, active, or inactive), however, VC
continually updates the probability that each nodes re-
mains susceptible (in the array prob susceptible). At
the end of the algorithm (Line 23), taking one minus this
value gives the probability a given node was activated at
some previous point in time, and adding all these prob-
abilities gives the expected number of nodes ultimately
activated by the seed node.
Note how Line 8 allows one to specify a condition for

terminating the algorithm. This could be simply a fixed
number of time steps, or a condition based on the con-
vergence of prob susceptible to stable values. We later
explore the consequences of both approaches in applying
VC to empirical networks.

The VC algorithm gives exact results for acyclic net-
works, but strictly overestimates the expected number
of nodes infected for networks with cycles. This can be
seen most easily with a simple example: suppose node i

and node j are reciprocally connected, i←→ j, and fur-
ther suppose node j has no connections with any other
nodes. If node i activates node j, the ICM does not al-
low j to subsequently activate node i (because node i is
activated for only one time step, and inactivated there-
after). Yet the VC algorithm allows node j to increase
node i’s probability of being activated, resulting in an
overestimate of node i’s expected activation probability.
While this simple example is for a 2-cycle, it applies to
arbitrary n-cycles. It has been shown that properly ac-
counting for all such cycles results in an algorithm that
scales exponentially with the number of nodes, making it
impractical for large networks [20].

Condition for accuracy

Fortunately, it is possible to determine the credibility
of VC’s results for a given network by considering the
leading eigenvalue of the network’s weighted adjacency
matrix, P. To see this, we first devise a measure to quan-
tify the “strength of cycles” within a WD network. First,
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the number of paths of length ℓ from node j to node i in
an unweighted network with adjacency matrix A is equal
to (Aℓ)ij , and therefore the number of cycles of length ℓ

starting and ending on node i is (Aℓ)ii. For a WD net-
work, we may replace the unweighted adjacency matrix
A with the weighted adjacency matrix P, understanding
that each cycle is then weighted by the product of its
links.
A reasonable measure of the strength of cycles in a

network, SC, is then found by summing over all nodes
and all possible cycle lengths:

SC =

∞
∑

ℓ=2

Tr(Pℓ) (1)

We may then use two properties from linear algebra to
further simplify this result. First, the trace of a matrix
is equal to the sum of its eigenvalues. Second, if λ is an
eigenvalue of a matrix M, then λn is the corresponding
eigenvalue of Mn.
For an n-node network, Eq. 1 then becomes

SC =

∞
∑

ℓ=2

λℓ
1 + λℓ

2 + · · ·+ λℓ
n. (2)

This measure will diverge when the magnitude of the
weighted adjacency matrix’s leading eigenvalue is greater
than or equal to 1. In this case, the error (relative to
ground truth ICM results) in VC’s predicted number of
nodes activated will be hopelessly large. On the other
hand, VC gives results exactly equal to ICM results in
acyclic networks, for which SC = 0. We expect a smooth
transition in VC’s performance between these two ex-
tremes, and predict low error between VC and ICM re-
sults when |λ|max ≪ 1.

Results for Erdős-Rényi networks

We explored VC’s accuracy as a function of |λ|max in
a simple Erdős-Rényi model. We synthesized an assort-
ment of WD 1000-node networks by specifying two dif-
ferent probability values: pcon was the probability of a
potential directed connection actually being instantiated,
and ptrans was the transmission probability (fixed to the
same constant value for all connections within any par-
ticular network). We independently swept over a range
of 0.005 to 0.038 for both probabilities (this range was
chosen in order to give values for |λ|max ranging from
roughly 0 to 1). For each combination of pcon and ptrans,
we generated a corresponding network, then ran ICM
Monte Carlo simulations and compared these “ground
truth” results to those predicted by VC. We then com-
puted the mean relative error between the ICM and VC
results, defined as

ϵ =

∑N

i=1

|aICM

i
−aVC

i
|

aICM

i

N
, (3)

where aICM
i is the mean number of nodes activated by

node i in the ICM (averaged across 10,000 Monte Carlo
trials) and aVC

i is the expected number of nodes activated
by node i according to Viral Centrality. For Erdős-Rényi
networks, the VC algorithm was terminated when either
of the following conditions was first met: 1) the maxi-
mum relative error (from one time step to the next for
a particular node, with the maximum taken across all
nodes) first dipped below 10−5, or 2) twenty time steps
were completed.
Fig. 1A shows how the mean relative error de-

pended on the magnitude of the leading eigenvalue of the
weighted adjacency matrix. As expected, VC performed
very well for |λ|max ≪ 1, and the error steadily increased
as |λ|max approached and exceeded 1. (Note that the er-
ror did not go to zero as |λ|max approached zero due to
imprecision in the Monte Carlo results, resulting from a
finite number of ICM trials for each network.) Panels B,
C, and D compare Monte Carlo and VC results for 100
randomly selected nodes (out of 1000) in three represen-
tative networks. (We do not show results for all 1000 seed
nodes in order to aid visualization.) Note the excellent
match in B (small |λ|max) and the worsening performance
as |λ|max increases (C and D). Also note how VC tends
to overestimate the number of nodes activated.

Congressional Twitter network

We applied VC to an empirical network by using Twit-
ter’s API to construct the Twitter interaction network for
the 117th United States Congress House of Representa-
tives. We quantified empirical transmission probabilities
according to the fraction of times one member retweeted,
quote tweeted, replied to, or mentioned another mem-
ber’s tweet. (See Methods section for more details.)
Requiring a minimum of 100 Tweets over a four-month
span gave a network of 475 Congressional members, with
transmission probabilities ranging between 0.00053 and
0.13, and a leading eigenvalue for the adjacency matrix
of 0.208.
Fig. 2A shows excellent agreement between VC and

Monte Carlo ICM results. (For this figure, the VC com-
putation terminated with a tolerance of 0.001, meaning
every seed node’s expected number of nodes activated
had to change by less than 0.1% from the previous iter-
ation.) Fig. 2B shows the distribution of transmission
probabilities (i.e., connection weights) was well approxi-
mated by a lognormal distribution (see Methods section),
which we used later in formulating the Higgs Twitter
dataset (discussed in the next section).
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FIG. 1. Performance of Viral Centrality in Erdős-Rényi networks. Various combinations of connection probability (pcon)
and transmission probability (ptrans ) were used to synthesize 1000-node networks. 10,000 Monte Carlo simulations of the
Independent Cascade Model were conducted for each network, and the average number of nodes activated for each seed node
was compared to that predicted by Viral Centrality. A: Each point represents a single network, with different points implying
different combinations of pcon and ptrans. The mean relative error between ICM and VC is plotted as a function of the magnitude
of the leading eigenvector of each network’s adjacency matrix. B: Results for a network with pcon = 0.02 and ptrans = 0.02.
The figure shows the mean (ICM Monte Carlo) or expected (VC) number of nodes activated by 100 randomly selected seed
nodes. Error bars for Monte Carlo results represent standard error of the mean over 10,000 trials. C: Same as B, but for a
network with pcon = 0.03 and ptrans = 0.03. D: Same as B and C, but for a network with pcon = 0.034 and ptrans = 0.034.

In Table I, we compare the performance of VC to other
common centrality measures in ranking the influence of
members of Congress on Twitter. We use expected num-
ber of nodes activated in Monte Carlo ICM simulations
for the ground truth ranking, then compute Kendall’s tau
correlation [21] with the rankings obtained by WD ver-
sions of degree, k-core [17–19], and PageRank [22]. We
also compare to diffusion degree, which is a generaliza-
tion of weighted degree that takes second-order neighbors
into account [23–25].
The table shows how VC outperforms all these central-

ity measures, albeit at the cost of taking much longer to
compute. Diffusion degree comes closest to matching the
performance of VC, giving a Kendall’s tau value nearly
identical to VC when ranking all nodes, but clearly infe-
rior when ranking just the top 10% of nodes. It is per-
haps not surprising that diffusion degree’s performance is

closest to VC, since it is similar (but not identical) to run-
ning VC for two time steps. Diffusion degree starts with
the weighted out-degree of a node (first-order neighbors),
then adds the products of the two connection weights re-
quired to reach each second-order neighbor. This is sim-
ilar to two-step VC, except that diffusion degree’s sim-
plistic approach does not attempt to make the second-
order contributions equal to probabilities of activation
of second-order neighbors (although for small transmis-
sion probabilities, it gives a good approximation). We
therefore expect that if we run VC for two time steps
(rather than to a convergence tolerance), it will give re-
sults roughly on par with those of diffusion degree, and
that running for more time steps will further improve
performance. Table I confirms this expectation, demon-
strating that running VC for a small, fixed number of
time steps can expedite the VC algorithm at the cost of
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FIG. 2. Viral Centrality and Independent Cascade Model results for Congressional Twitter network. A: Mean (ICM Monte
Carlo) or expected (VC) number of nodes activated by each of the 475 seed nodes. Monte Carlo results represent averages over
106 trials, with error bars displayed but too small to be seen. B: Distribution of transmission probabilities for this network.
Red line represents fit by a lognormal distribution.

diminished accuracy.

Higgs networks

We applied VC to the Higgs Twitter dataset, a much
larger network of 456,626 nodes derived from Tweets re-
lated to the discovery of the Higgs boson in 2012 [26]
(see Methods for more details). Fig. 3 overlays the aver-
age number of nodes activated according to Monte Carlo
ICM and the expected number according to VC (run with
a convergence tolerance of 0.001). Table II shows the
Kendall’s tau between these two results was 0.967 for all
nodes, and 0.927 for the top 10% of nodes. Similar to
the Congressional network, the diffusion degree matched
this performance for all nodes but was inferior for the top
10%. VC run with two time steps gave virtually identical
results to diffusion degree, whereas running it with three
time steps gave even better performance than with the
convergence tolerance (suggesting that most seed nodes
required only two time steps to converge).
While VC is obviously much more computationally ex-

pensive than more traditional centrality measures (re-
quiring about 400 compute-hours when run with con-
vergence tolerance), it still provided roughly an order of
magnitude speed-up over Monte Carlo simulations, which
required approximately 5500 compute-hours to complete
10,000 trials per seed node.

FIG. 3. Viral Centrality and Independent Cascade Model
results for Higgs Twitter network. Plot displays mean (ICM
Monte Carlo) or expected (VC) number of nodes activated by
each of the 456,626 seed nodes. Monte Carlo results represent
averages over 104 trials, with error bars displayed but too
small to be seen.
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Measure
Kendall’s Tau

(top 10%)

Kendall’s Tau

(all nodes)

Mean Rel.

Error

Compute

time (s)

WD Out-degree 0.882 0.949 N/A < 10−7

WD k-core 0.223 0.672 N/A 0.031

WD PageRank 0.415 0.515 N/A 0.047

Diffusion degree 0.882 0.989 0.025 0.125

Viral Centrality

(tol=0.001)
0.994 0.991 0.017 5.03

Viral Centrality

(t=2)
0.965 0.990 0.029 2.89

Viral Centrality

(t=3)
0.994 0.997 0.0047 7.58

TABLE I. Comparison of VC to other centrality measures for the Congressional Twitter network. Kendall’s tau correlation
between Monte Carlo (106 trials per seed node) and centrality rankings was computed for all nodes in the network, as well as for
just the top 10% of nodes in the network. Mean relative error was also computed between average number of nodes activated in
Monte Carlo simulations and the number predicted by diffusion degree and VC. VC outperformed all other measures, though
at the cost of substantially increased runtime. Monte Carlo simulations required approximately 6 compute-hours. All compute
times were determined using the Neuroscience Gateway computing cluster.

Measure
Kendall’s Tau

(top 10%)

Kendall’s Tau

all nodes)

Mean Rel.

Error

Compute

time (hr)

WD Out-degree 0.872 0.702 N/A 5.0 ×10−5

WD k-core 0.355 -0.017 N/A 2.40

WD PageRank 0.316 0.144 N/A 26.1

Diffusion Degree 0.877 0.967 0.113 0.08

Viral Centrality (tol=0.001) 0.927 0.967 0.093 398.9

Viral Centrality (t=2) 0.877 0.967 0.113 202.5

Viral Centrality (t=3) 0.938 0.977 0.058 789.0

TABLE II. Comparison of VC to other centrality measures for the Higgs Twitter network. Kendall’s tau correlation between
Monte Carlo (10,000 trials per seed node) and centrality rankings was computed for all nodes in the network, as well as for just
the top 10% of nodes in the network. Mean relative error was also computed between average number of nodes activated in
Monte Carlo simulations and the number predicted by diffusion degree and VC. As in the Congressional network, VC generally
outperformed all other measures, though at the cost of substantially increased runtime. Monte Carlo simulations required
approximately 5500 compute-hours.

III. DISCUSSION

In this study we have proposed a novel centrality mea-
sure, Viral Centrality (VC), for weighted, directed (WD)
networks. VC is designed to identify influential spreaders
within networks for which probability of transmission be-
tween nodes can be quantified. We have shown that VC
well approximates the expected number of nodes acti-
vated in the Independent Cascade Model (ICM), so long
as the leading eigenvalue of the WD adjacency matrix
is much less than 1. Because VC is modeled after the
ICM, it is more accurate than other traditional central-
ity measures in ranking nodes with respect to the number
activated in Monte Carlo ICM simulations.
The trade-off for this improved accuracy is slower run

time. VC is much slower than degree-based centrality
measures, and is too slow to be used as a heuristic to

find an optimal set of multiple seed nodes in the ICM
[10, 27]. For such a combinatorial optimization problem,
faster centrality measures such as diffusion degree [24] are
required for large-scale networks. VC is best applied to
networks composed of up to tens of thousands of nodes.
Nevertheless, we have shown that VC is generally more

accurate than diffusion degree, making it an ideal choice
for situations where accuracy is paramount, yet speed
much faster than Monte Carlo simulations is still re-
quired. We have also shown that this superior accuracy
can be expected when the leading eigenvalue of a net-
work’s WD adjacency matrix is much less than 1 (Fig.
1A suggests |λ|max = 0.5 is a conservative and safe cut-
off). Although the calculation of the leading eigenvalue
of a matrix is generally expensive, we note that Gersh-
gorin’s Circle Theorem may be used to place an upper
bound on the leading eigenvalue of an adjacency matrix
based purely on its row sums. This provides an inex-



7

pensive, sufficient condition for trusting the accuracy of
VC’s results. Our results for the Congressional Twitter
network suggest that transmission probabilities in empir-
ical networks may often be small enough for VC to well
approximate ICM results.
It should be noted that there are many generalizations

and extensions of the ICM that our centrality measure
does not address [6, 28–30]. Further research is necessary
to develop efficient algorithms for identifying influential
spreaders in these more complex models.

IV. METHODS

Comparison centrality measures

WD PageRank

We used an extension of PageRank to WD networks
proposed by Zhang et. al. [22]. The original PageRank
(PR) algorithm [31] applied to unweighted networks, and
defined PR iteratively according to

PR(i) = α
∑

j

aij

doutj

PR(i) +
1− α

n
, (4)

where aij is a binary value (0 or 1) specifying whether
or not a connection exists from j to i. The extension to
WD networks is achieved by introducing a second param-
eter, θ ∈ [0, 1], that determines the degree to which the
centrality score is determined by the weighted adjacency
matrix (wij) versus the unweighted one (aij). Calling
the WD PR centrality score ϕ, it may be computed iter-
atively according to:

ϕ(i) = α
∑

j

(

θ
wij

soutj

+ (1− θ)
aij

doutj

)

ϕ(i) +
1− α

n
, (5)

where soutj is the weighted out-degree of node j. Note
that in this approach, nodes “score points” according to
the incoming connections they receive. However, in this
study influence was based on outgoing connections, so we
simply ran the WD PR algorithm on the transpose of our
adjacency matrices. Also, in this study we set θ = 0.5.

WD k-core

Inspired by [17–19], we implemented a WD version of
k-core decomposition using the following approach:

• Calculate the weighted out-degree, sout, of each
node in the network.

• Determine the smallest weighted out-degree, soutmin.

• Remove all nodes for which sout = soutmin.

• Update the values of sout for the nodes that remain
in the network.

This process terminates when all nodes in the network
have been removed. Nodes are ranked according to the
order in which they are removed from the network, with
those surviving the longest ranked the highest.

Diffusion degree

The diffusion degree, DD, generalizes weighted degree
to include second-order neighbors in addition to first-
order neighbors. Given a weighted adjacency matrix wij ,
it is defined mathematically by

DD(i) =
∑

j

wji ×
(

1 +
∑

k

wkj

)

. (6)

Datasets

Congressional Twitter network

The Twitter interaction network for the 117th United
States Congress House of Representatives was con-
structed by first obtaining members’ official Twitter
handles from https://pressgallery.house.gov/

member-data/members-official-twitter-handles.
The Twitter API was then used to obtain all Tweets
by members of Congress between February 9, 2022, and
June 9, 2022. (The latter date corresponds to when
the data were requested, and the earlier date was the
farthest point backward in time at which one user’s
number of Tweets exceeded the 3200-Tweet limit set by
the API.) Only the 475 representatives (out of 535) who
issued 100 or more tweets during this time frame were
included in the network.
A weighted, directed network was constructed such

that the connection from user j to user i was given by

Pij =
nretweet
ij + n

quote
ij + n

reply
ij + nmention

ij

N tweets
j

, (7)

where nretweet
ij is the number of times user i retweeted

user j, nquote
ij is the number of times user i quote tweeted

user j, nreply
ij is the number of times user i replied to user

j, nmention
ij is the number of times user i mentioned user

j, and N tweets
j is the total number of Tweets issued by

user j. The weighted connection, Pij , can therefore be
interpreted as the probability that user i is observably
influenced by user j.

https://pressgallery.house.gov/member-data/members-official-twitter-handles
https://pressgallery.house.gov/member-data/members-official-twitter-handles
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The distribution of non-zero elements w of Pij was
approximated by a lognormal distribution with pdf

p(w) =
1

sw
√
2π

exp

(

− log2(w)

2s2

)

. (8)

The parameter s = 0.7893 was found to best fit to data
(see Fig. 2B).

Higgs Twitter dataset

The Higgs Twitter dataset is derived from all tweets
from July 1 to July 7, 2012, that contained the fol-
lowing keywords or hashtags: lhc, cern, boson, higgs
[26]. The dataset is available for download on the Stan-
ford Network Analysis Project website (https://snap.
stanford.edu/data/higgs-twitter.html). While the
original dataset includes information about retweets,
replies, and mentions, we chose not to use this infor-
mation in constructing our network because most users
issued only a few tweets in total, resulting in poor statis-
tics for inferring transmission probabilities.
Instead, we started with the follower network, which

consisted of 456,626 nodes and 14,855,842 directed con-
nections. (If user j followed user i, this constituted a
connection from node i to node j, consistent with the
presumed direction of influence.) We then randomly as-
signed weights (i.e., transmission probabilities) to each
connection, using the lognormal distribution empirically
determined from the Congressional Twitter network (see
Fig. 2B). The magnitude of the largest eigenvalue of the
resulting adjacency matrix was 0.074.
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