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Abstract

We propose a Node Centroid method with Hill-
Climbing to solve the well-known matrix band-
width minimization problem, which is to permute
rows and columns of the matrix to minimize its
bandwidth. Many heuristics have been devel-
oped for this NP-complete problem including the
Cuthill-McKee (CM) and the Gibbs, Poole and
Stockmeyer (GPS) algorithms. Recently, heuris-
tics such as Simulated Annealing, Tabu Search and
GRASP have been used, where Tabu Search and the
GRASP with Path Relinking have achieved signifi-
cantly better solution quality than the CM and GPS
algorithms. Experimentation shows that the Node
Centroid method achieves the best solution qual-
ity when compared with these while being much
faster than the newly-developed algorithms. Also,
the new algorithm achieves better solutions than the
GPS algorithm in comparable time.
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1 Introduction
For A = {aij}, a symmetric matrix, the matrix bandwidth
minimization problem is to find a permutation of rows and
columns of A so as to bring all the non-zero elements of A to
reside in a band that is as close as possible to the main diag-
onal, that is to Minimize{max{|i − j| : aij �= 0}}.The
bandwidth minimization problem also can be stated in the
context of graph as: Let G(V, E) be a graph on n vertices.
Label, through a function f : V → {1, 2, ..., n}, the ver-
tices of G. Then, with the bandwidth of G defined to be
Bf (G) := Max(u,v)∈E(G)|f(u)−f(v)|, the bandwidth min-
imization problem is to find a labeling, f , which minimizes
Bf (G). Note, that we transform a graph bandwidth problem
into a matrix bandwidth problem by using its adjacency ma-
trix. The bandwidth minimization problem originates from
the 1950s and was proved to be NP-complete by Papadim-
itriou [16]. Garey et al. [7] has shown that it is NP-complete
even if the input graph is a tree whose maximum vertex de-
gree is 3. The bandwidth minimization problem is relevant to

a wide range of optimization applications. In solving large
linear systems, Gaussian elimination can be performed in
O(nb2) on the matrices of bandwidth b, which is much faster
than the normal O(n3) algorithm when b << n. Bandwidth
minimization has also found applications in circuit design and
saving large hypertext media. Other practical problems are
found in data storage, VLSI design and network survivabil-
ity. Yet another applications are in industrial electromagnet-
ics [9], finite element methods for approximating solutions
of partial differential equations, large-scale power transmis-
sion systems, circuit design, chemical kinetics and numeri-
cal geophysics [15][17]. In 1969, the classical CM [4] algo-
rithm appeared, which used Breadth-First Search to construct
a level structure of the graph. By labeling vertices accord-
ing to a level structure, good results are achieved in a short
time. The GPS algorithm [8],which is also based on the level
structure, is comparable with the CM algorithm, but is about
eight times faster. Esposito et al. [9] proposed a new WBRA
(Wonder Bandwidth Reduction Algorithm), which achieves
better results than the CM and GPS algorithm. There are
also some other approximation algorithms such as, [6; 14;
3]. A detailed suvey can be found in [5].

In 2000, Marti et al. [15] proposed a new Tabu Search
method in which candidates list strategy was used to acceler-
ate the selection of move in a neighborhood. Extensive ex-
perimentation showed that their Tabu Search outperformed
best-known algorithms in terms of solution quality. In 2002,
Pinana et al. [17] used a GRASP (Greedy Randomized Adap-
tive Search Procedure) with Path Relinking method for the
problem. Computational results showed that the GRASP with
Path Relinking (GRASP PR) achieved the best solution qual-
ity, although it is slower than Tabu Search. Recently, Genetic
Algorithm, Node Shift method and Partical Swarm Optimiza-
tion have been applied to solve the bandwidth minimization
problem by us [11; 12; 13], which have obtained better solu-
tion quality comparing with past methods.

In this paper we propose a Node Centroid adjustment
method with Hill Climbing, which achieved futher improve-
ment in solving the bandwidth minimization problem. Exper-
imentation shows that this algorithm outperforms the other
algorithms in solution quality. Further, a fast version of
the algorithm is comparable with CM and GPS algorithm in
speed, being about 100 times faster than the newly-developed
GRASP with Path Relinking algorithms. In the next Section
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2, we give the general framework of the algorithm. In Section
3, we describe the Node Centroid adjustment method in more
detail, while in Section 4 we describe the Hill Climbing com-
ponent of the algorithm. Computational results are reported
in Section 5 before we conclude.

2 The Node Centroid with Hill-Climbing
algorithm

The Node Centroid method with Hill Climbing (NCHC) em-
ploys the strategy of using the Node Centroid method for
global search with Hill-Climbing in local search. An ini-
tial labeling is generated by performing Breadth-First Search
(BFS) on the given graph representation of the matrix with
random start vertex. We then use the Node Centroid method
to adjust vertices to a central (centroid) position among its
neighbors. From this, a new labeling is created on which
we perform Hill Climbing to obtain local optima. The Node
Centroid method and Hill Climbing are iterated a number of
times, following which a new initial labeling is generated by
BFS. The entire process is repeated several times within the
NCHC algorithm which is described in Algorithm 1 given be-
low. .

Algorithm 1 NCHC
for i = 1 to restart Times do

Initialize(labeling)
for j = 1 to NC Times do

NC(labeling)
if j mod 2 ≡ 1 then

HC(labeling)
end if

end for
end for

In the algorithm, the NC component comprises of Node
Centroid labeling adjustments and HC denotes Hill Climb-
ing. These will be described in more detail in the following
sections. The HC procedure is invoked only every other time
we perform the NC since it is the bottleneck for the speed of
the algorithm and since experimentation has shown that this
frequency proportion works well. In the next Section 3, we
describe the Node Centroid adjustment method and the gen-
eration of initial labelings.

3 The Node Centroid Method
3.1 Generating Initial Labelings
As is in many heuristic algorithms, good initial solutions of-
ten lead to high quality solutions. In our approach, we achieve
this by continuing to use classical level structure in generat-
ing initial solutions. Many well-known algorithms such as
CM and GPS are based on the level structure generated by
BFS, where vertices with the same depth in the BFS will be
on the same level. A level structure is a partition of vertices
into levels, L1,L2,...,Lk which have the following features [1;
15]

1. Vertices adjacent to a vertex in level L1 are either in L1
or L2.

2. Vertices adjacent to vertex in Lk are in either Lk or
Lk−1.

3. Vertices adjacent to vertex in Li(for 1 < i < k) are in
either Li−1, Li or Li+1.

Given a level structure, L, the minimum bandwidth,
Bf (G), when vertices are labeled sequentially by levels, is
bounded as in the following range:

|L| ≤ Bf (G) ≤ 2|L| − 1 (1)

where |L| is the cardinality of the largest level, L, with the
most vertices in the level structure. Equation 1 shows that we
can get a reasonably good solution by labeling vertices in the
level structure sequentially. In our approach to the problem,
we build our initial solutions by performing BFS on the graph
from different start vertices. Each time, a vertex is randomly
picked as the start vertex for the BFS and a solution is ob-
tained by labeling vertices sequentially by their levels in the
BFS.

42
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Figure 1: A simple example of BFS

Example: Starting BFS from the vertex 1, 4 separately in
the graph shown in Figure 1, the vertex sequences in the BFS
will be 1, 2, 3, 4, 5, 6 and 4, 2, 5, 6, 1, 3, from which we get
two initial label sequences: 1, 2, 3, 4, 5, 6 and 5, 2, 6, 1, 3, 4.

3.2 The Node Centroid algorithm
With the bandwidth of a graph G(V, E) defined by Bf (G) =
Max(u,v)∈E(G)|f(u) − f(v)|, we define a vertex neigh-
borhood diameter, for each vertex v, by diamf (v) =
Maxu∈N(v)|f(u)−f(v)|, where N(v) := {u ∈ V : (u, v) ∈
E(G)}

Definition 1 For a given labeling, f , the critical value of
any vertex, v, is defined as follows:

C(v) =
{

0 when diamf (v) < Bf (G),
1 when diamf (v) = Bf (G),

Further, if C(v) = 1,we say that v is critical. In our approach,
we also consider vertices which are nearly critical by defining
vertex v as λ−critical , whenever diamf (v) > λBf (G), for
λ ∈ [0, 1]. Those λ− critical vertices for λ close to 1 would be
nearly critical. The set of vertex v’s λ−farthest neighbors
, FNλ(v), can be defined as:

FNλ(v) = N(v) ∩ {u : |f(u) − f(v)| ≥ λ.Bf (G)}
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and the λ − farthest neighbor bundle of vertex v to be
bλ(v) := FNλ(v) ∪ {v}. In our approach, we attempt to re-
duce the neigborhood diameters of λ − critical vertices for
λ values close to, and including, 1. Here, Node Centroid ad-
justments are aimed at reducing the diameters of λ− critical
vertices by attempting to move each toward the centroid of its
bundle. To achieve this, we give each vertex a weight ω(v),
which is set according to:

ω(v) =

∑
u∈bλ(v) f(u)

|bλ(v)|
All the vertices are then sorted into a non-decreasing se-
quence according to these weights and relabeled. The NC
procedure can be described as follows.

Algorithm 2 procedure NC
for i = 1 to number of vertex do

w(i) = f(i) (w(i) is the weight for vertex i)
c(i) = 1 (c(i) is the number of vertices in the bundle of
vertex i)

end for
for i = 1 to number of edges do

if |f(u) − f(v)| ≥ λ.Bf (G)(u, v are the two vertices of
Edge[i]) then

w(u) = w(u) + f(v); c(u) = c(u) + 1;
w(v) = w(v) + f(u); c(v) = c(v) + 1;

end if
end for
for i = 1 to number of vertex do

w(i) = w(i)
c(i)

end for
sort vertices according to their w(weight)
label vertices from 1 to n one by one in the sortied se-
quence

4 Hill Climbing
In last section, we define the critical value for vertices. For a
given labeling, f , we will always have diamf (v) ≤ Bf (G).
In order to implement Hill Climbing, for a vertex, v, we de-
fine C(v) = 2, whenever diamf (v) becomes larger, through
vertex swaps, than the bandwidth before the swap. The Hill
Climbing procedure is designed to increase solution quality
by swapping vertex labels. In order to judge solution quality,
we need to do more analysis.

Definition 2 An edge e(u, v) ∈ E is said to be a critical
edge whenever |f(u) − f(v)| = Bf (G).

In Hill Climbing, we measure the solution quality by the
current bandwidth of the graph as well as the number of crit-
ical edges that are present. When the bandwidth has reduced
or, the bandwidth has not changed but the number critical
edges has been reduced, the solution quality would have im-
proved. In the Hill Climbing procedure, we detect the critical
vertices where C(v) = 1 and attempt to perform swaps be-
tween the label of the current critical vertex v with some other

vertex to reduce the current bandwidth or the number of crit-
ical edges. In the Tabu Search approach proposed by Marti
et al. [15], the maximum label and minimum label for vertex
which connect to vertex v is defined as :

max(v) = max{f(u) : u ∈ N(v)}
min(v) = min{f(u) : u ∈ N(v)}

The best label for v in the current labeling, f , is obtained as:

mid(v) = 	max(v) + min(v)
2




Suitable swap vertices for v were taken to be given by:

N ′(v) = {u : |mid(v) − f(u)| < |mid(v) − f(v)|}
which includes all the vertices u with labels f(u) that are
closer to mid(v) than f(v). In our approach, we sort the
vertices in N ′(v) according to the value |mid(v) − f(u)|,
where ones with a lower |mid(v) − f(u)| will be put ahead
in the node sequence. We then attempt to swap the label f(v)
of vertex v with the label f(u) of vertex u one by one in a
sorted sequence. If the solution quality improves, the labels
after a swap will be used as the new solutions. We detect
whether or not the number of critical edges has decreased by
the bandwidth before the swap. If these have decreased to
0, then the bandwidth must have been reduced. We take the
resultant bandwidth as the new bandwidth. Also, we forbid
swaps which increase bandwidth. Theorem 1 below provides
us a simple way to detect whether the solution quality has
improved. We need the next Lemma first.

Lemma 1 A critical vertex v can become not critical iff the
vertex v is on a critical edge with only one other critical ver-
tex

Proof: A critical vertex label f(v) can only achieve the
distance Bf (G) with min(v) and max(v). If both min(v)
and max(v) achieve the distance Bf (G) with f(v), we have

f(v) = min(v)+max(v)
2 , for which changing the label for

v can only worsen Bf (G). Conversely, if v is on a critical
edge with one other critical vertex, then changing v with the
mid(v) makes it not critical.

Theorem 1 For a given labeling, f, and vertices u, v, by
swapping f(u) with f(v), Bf (G) is reduced or the number
of critical edges is reduced with Bf (G) unchanged iff the fol-
lowing inequalities are satisfied.{

C ′(u) ≤ C(u)
C ′(v) ≤ C(v)
C ′(u) + C′(v) < C(u) + C(v).

where C ′(u) is the critical value for vertex u
after swap comparing with old Bf (G) 1,
where C ′(v) is the critical value for vertex v
after swap comparing with old Bf (G).

1If Bf (G) has been reduced, we will update it only after swap-
ping the two labels
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Proof outline If both u, v are not critical, swapping them
will not improve the solution quality. Since C ′(u)+C′(v) ≥
C(u) + C(v), the assertion in the theorem holds. If one of
u, v is critical vertex, suppose it is u, so that C(u) = 1. By
the inequalities, we know that C ′(u) = 0, which means the
number of critical edges is reduced. Conversely, changing
u from critical to not critical only can reduce the number
of critical edges by 1 by Lemma 1, so vertex v cannot be-
come critical. Hence the inequalities are satisfied. Lastly,
if both vertices u and v are critical, where C(u) = 1 and
C(v) = 1, by the inequalities, C′(u) or C ′(v) must be 0.
If we suppose C ′(u) = 0, then the number of critical edges
is reduced by 1. If C ′(v) = 0, then the number of critical
edges has reduced. If C ′(v) = 1, as the label for vertex has
changed to be f(u), the vertex v only can have one critical
edge with min(v) or max(v), otherwise there can only be
one other critical label (min(v)+max(v)

2 ). Hence the solution
quality has been improved. Conversely, when solution qual-
ity is improved, C ′(u) or C ′(v) must be 0, as both can only
connect to one other critical vertex by Lemma 1 and therefore
all the inequalities are satisfied. �

We use Theorem 1 in the Hill Climbing procedure to count
the critical values of the swapped vertices. The whole swap
process is iteratively run until the solution quality cannot be
improved any more. The HC procedure (Algorithm 3) is de-
scribed below.

Algorithm 3 procedure HC
while can improve do

can improve=false
for v = 1 to Number of vertex do

if C(v) = 1 then
for all u such that u ∈ N ′(v) do

if C ′(u) ≤ (C(u))∧(C′(v) ≤ (C(v))∧(C′(u)+
C ′(v)) < (C(u) + C(v)) then

swap(f(v), f(u))
can improve=true
break

end if
end for

end if
end for

end while

5 Computational Results
5.1 Benchmark Results
We have compared our new NCHC algorithm with algo-
rithms developed by other researchers on three sets of test
cases from the Harwell-Boeing Sparse Matrix Collection
(http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/) of
standard test matrices, which represent a large spectrum of
scientific and engineering applications. These are used as
test sets since recent experiments by other researchers have
used this test set which is comprehensive and representative
of real-world data. We have also developed a fast version of
our NCHC algorithm, denoted FNCHC. This is done by al-
lowing paratmeters to be automatically adjusted according to

matrix size. The iterating times of the Node Centroid is ad-
justed according to the number of non-zero entries in the ma-
trix. Though reducing the iterating times of the Node Cen-
troid has decreased the solution quality, the solution is still
quite good comparing with past methods. And the whole al-
gorithm is much faster than the old one. In our experiments,
we examine the critical factor λ parameter for the FNCHC
since experimentation with λ < 1 in the NCHC gives long
running times for which the trade-off with good solution qual-
ity is not justified. We use the 80 instances test cases from
[17] for λ in the range [0, 1] at intervals of 0.1. The results
are shown in Table 1.

As the results show, for this test set, λ = 0.95 achieves the
best solution quality whereas λ = 1 gives the best time. This
result is interesting providing for the fact that adjusting for
those λ − critical nodes for values of λ close to 1 results in
better results than if we were to only adjust the critical ver-
tices alone. The fact that λ = 1gives the best time is obvious.
For the range of test sets we attempt to balance solution qual-
ity with running time choosing λ to be 0.95. For the NCHC
algorithm we set λ to be 1.00 since the times taken outweigh
the benefits of solution quality disproportionately. Parame-
ters we set for the three test sets are shown in Table 2.

In table 2, dim is the dimension of the matrix, f(NE) is the
function for NE, which is defined in the following:

f(NE) = 200/2log10(E)−1;

where NE is the number of non-zero entries in the matrix.
The first two test sets have also been used in [17]. Ex-

perimental results for the two test sets of total 113 instances
when compared with the classical GPS [8], the Tabu Search
[15] , the GRASP with Path Relinking [17], the Genetic Al-
gorithm and the Node Shift Method we proposed [11; 12;
13] are shown in Table 3, where the dimension for the first
33 instances range from 30 to 199, and the dimensions for
the 80 instances set is from 200 to 1000.
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Here, all the metohds are tested on the Intel P4 1.6G CPU
except the GPS is tested on AMD K7 1.2G CPU. The P4
1.6G CPU is about 1.33 times faster than the K7 1.2G CPU.
As shown in table 3, best solutions in quality are achieved
by the NCHC, GA and NS, where NCHC is the fastest one.
Meanwhile our FNCHC achieves very good solutions in a
short time, which is more than 100 times faster than the
GRASP PR. Although the FNCHC is slower than the GPS
algorithm, it obtains solutions 37% and 60% better than the
latter. We also compared our approach with the Esposito’s
WBRA and TS [9; 10] on the DWT test set from the Harwell-
Boeing Sparse Matrix Collection for which the results are
shown below.

We can find in table 4 that the NCHC and FNCHC achieve
the best results. The average running time for our FNCHC
is 0.41 s. Since the other experiments have been run on the
IBM RS6000 250T, we cannot tell the CPU speed and thus
have not compared running time. We conclude that experi-
ments on the three test sets show that our new NCHC method
achieves the best solution in quality on the bandwidth mini-
mization problem compared with the other well-known algo-
rithms, including the most-recently developed GRASP PR.
Further, the fast version, FNCHC, obtains high quality solu-
tions in short times.

5.2 Effectiveness of Node Centroid

Experimentation results show that our NCHC can achieve
best solutions in much faster speed than recently developed
heuristic algorithms. To analyze the effectiveness of our Node
Centroid Method in acting as the globe search, we have com-
pared our NCHC with the RAND HC which perform Hill
Climbing with random start sequences. We compare the two
procedure on the bp 1000 instance from the second test set
we used. The comparison result is show in the following fig-
ure.

In the comparison, we let both procedures run for Hill
Climbing 7500 times. From figure 5.2 we can find that the
NCHC get much better result than the RAND HC. And the
NCHC finish all the 7500 times Hill Climbing in 59 s, while
it cost 556 s for the RAND HC to finish 7500 times Hill
Climbing. To explain why our Node Centroid Method has
increased the speed for the whole procedure significantly, we
have recorded the average swap times in the Hill Climbing
Procedure for the NCHC and RAND HC. In th e NCHC the
average swap times is 123, while the average swap times in
the RAND HC is 2036. This result show that our new Node
Centroid Method has explored good solution regions effec-
tively. Therefore only a few steps of swaps needed to improve
the soluti on quality in the Hill Climbing part.

6 Conclusions
We have proposed a Node Centroid adjustment method with
Hill Climbing for the well-known matrix bandwidth mini-
mization problem where node adjustments are intrinsically a
natural strategy in reducing graph node labelings contribut-
ing to bandwidth. Further, we have catered for a range of
vertices that contribute to bandwidth by using an adjustable
parameter to include these. Experimentation has shown that
the Node Centroid global search works well with Hill Climb-
ing for this problem. Best solutions in quality are achieved by
the new NCHC algorithm, while the FNCHC provides good
solution quality at fast speeds and is comparable in speed
to the fast GPS algorithm.Experimentation results also show
that our new Node Centroid method has explore good solu-
tion regions effectively, which indicates that we can apply the
new Node Centroid procedu re to other similar combinatorial
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optimization problems, such as matrix profile reduction and
Minimum Linear Arrangement Problem.
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