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Abstract11

This paper provides a thumbnail sketch of the evolution of nonlinear ideas in the math-12

ematics and physics of the geosciences, broadly construed, over the last hundred or so13

years. It emphasizes the mathematical concepts and methods, and outlines simple ex-14

amples of how they were, are, and maybe will be applied to the solid Earth — i.e., the15

crust, mantle, and core — and its fluid envelopes — i.e., the atmosphere and oceans.16

Plain-Language Summary. Nonlinearity has become a buzzword, along with chaos,17

complexity, fractals, networks, tipping points, turbulence, and other concepts associated18

with modern science. We outline here what it all means and how it has affected the progress19

of the geosciences over the past century, mostly over the last six decades or so.20

1 Introduction and Motivation21

As we are celebrating 100 years since the founding of the American Geophysical22

Union (AGU), it appears of interest to consider the way that nonlinear concepts and meth-23

ods have modified the way that we are practicing the geosciences today and may prac-24

tice them over the next century.25

While nonlinear approaches have rapidly expanded over the last half century, it is26

clear that their roots go back much further. One of the oldest nonlinear problems in the27

geosciences is certainly drawing a right angle on the face of the Earth, e.g., between a28

meridian and a parallel: this problem is equivalent to solving the Diophantine equation29

a2+b2 = c2. It is conjectured that the ancient Egyptians applied this equivalence, com-30

monly called Pythagoras’s theorem, to build their pharaonic projects, from the basis up;31

specifically, that they used the simplest solution — namely (a, b, c) = (3, 4, 5) — by ty-32

ing 12 = 3+4+5 equidistant knots into a rope, and used it in order to build the great33

pyramids of Gizeh, and many other temples, palaces and tombs (e.g., Cooke, 2011).34

But that is, of course, not what we all have in mind when discussing nonlinearity35

in the sciences in general and in the geosciences in particular. Linear approaches dom-36

inated the physical sciences in the 19th century; the explosion of a variety of method-37

ologies that deviate from them is well illustrated by the saying, often attributed to Stanis-38

law Ulam (Gleick, 1987), that linear dynamics is akin to elephant zoology, or words to39

that effect. What we mean by tracing back the rapid rise of nonlinear dynamics, non-40

linear sciences or what not to some time after World War II, is the following fact: ac-41

cording to the well-known story of the lamppost, and of attempts to find the forlorn keys42

in its circle of light, a superb development of methods for solving linear algebraic and43

differential equations in the 19th century led to great emphasis on solving problems for-44

mulated in terms of such equations in the first half of the 20th century.45

Basically, linear problems are easily separable, and hence solvable, due to the su-46

perposition principle, projection onto orthonormal bases, and so on. Thus, many such47

problems were solved over the last 200 years, most often analytically, i.e., with pencil and48

paper or with very rudimentary computational devices. And these methods are still of49

great use to us, in deriving and determining the properties of tangent linear equations,50

adjoint operators, and many other mathematical approximations of real-world problems.51

It is the rise of more-and-more powerful computational devices after World War52

II that changed our way of thinking about what the solution to the mathematical for-53

mulation of a physical problem really is, i.e., not necessarily an analytical expression but54

an algorithm for obtaining information about such a solution with prescribed accuracy.55

The improvement in observational methods — in the geosciences and elsewhere, whether56

in vitro, i.e., in the lab, or in vivo, i.e. outdoors— has also contributed greatly to our57

appetite for going beyond linear approximation to model, simulate, understand, and pre-58

dict the complexity of the phenomena under study.59
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The nonlinear way of thinking about problems, in the geosciences and many other60

sciences — physical sciences in general, biosciences, socio-economic sciences — still needs61

to operate within the circles of light projected into the night of our ignorance by a cer-62

tain number of lampposts. These lampposts include the theory of dynamical systems,63

statistical mechanics, scale invariances, the theory of localized coherent structures, and64

several others. Some lampposts that have been added or whose light circle has expanded65

in the last decade or so are network theory and the theory of non-autonomous and ran-66

dom dynamical systems.67

The remainder of this paper will examine some of these lampposts and their re-68

spective circles of light, following Ghil, Kimoto, and Neelin (1991) and Ghil (2001). In69

the next section, we outline with a broad brush how linear results provided first insights70

into the behavior of fluid motions, around the turn of the 19th into the 20th century, and71

how nonlinear ones completed our knowledge after World War II.72

Sections 3 and 4 examine in somewhat greater detail the dynamical systems and73

the scale invariance lamppost, respectively. Each section starts with a sketch of the ba-74

sic concepts and methods, in Secs. 3.1 and 4.1, respectively; each then follows up with75

some key applications. Thus, in Secs. 3.2 we discuss the mechanics of vacillation, mul-76

tiple weather regimes in the atmosphere, and multiple flow regimes in the oceans, while77

in Sec. 4.2 we cover succintly fractals in dynamical systems, as well as scale invariance78

in general three-dimensional (3-D), two-dimensional (2-D) and geostrophic turbulence.79

A few additional lampposts are examined in Sec. 5, each subsection starting again80

with theoretical foundations, followed by selected applications. Section 5.1 covers net-81

work theory, including both topology and dynamics, in particular that associated with82

Boolean delay equations; the applications illustrated are to earthquake and climate net-83

works. In Section 5.2 we discuss fluctuation–dissipation theory, outlining both the clas-84

sical theory for thermodynamic equilibrium and the more recent out-of-equilibrium gen-85

eralizations, and emphasizing applications to climate response.86

In Sec. 5.3, we cover the extension of dynamical systems theory to nonautonomous87

and random dynamical systems; the applications are the stochastically perturbed Lorenz88

(1963a) model and the oceans’ wind-driven circulation subject to time-varying wind stress.89

This subsection ends with an introduction to climate sensitivity and the use of Wasser-90

stein distance to generalize the traditional concept of equilibrium sensitivity.91

Section 6 presents two meanings of prediction as touchstones of progress in the non-92

linear geosciences: (i) forecasting, i.e. prediction in time of the quantitative realization93

of known phenomena; and (ii) theoretical prediction of qualitatively new phenomena. The94

former meaning is illustrated by forecasting atmospheric and oceanic phenomena on longer95

and longer time scales, from days through seasons and on to several decades. The lat-96

ter one is presented in the context of predicting an ice-covered Earth by simple energy97

balance models and leading to the current arguments about a snowball Earth. Section 798

concludes this review paper with a brief coda.99

2 From Linear to Nonlinear Thinking: A Quick Review100

A paradigmatic success of linear concepts and methods at the beginning of the 20th101

century is the explanation by Lord Rayleigh (1916) of the striking patterns found in the102

thermal convection experiments of James Thomson (1882) and of Henri Bénard (1900).103

The word “paradigm” is used here advisedly in the sense of Thomas Kuhn (1962): it is104

easy to see how the transition from a linear — and for quite a while very successful —105

mode of thinking to a nonlinear one is not just an evolutive generalization but a gen-106

uine revolution.107
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In the next section, we will consider a few key traits of the nonlinear mode of think-108

ing. In many applications to the physical sciences, like fluid dynamics, the linear mode109

involves linearizing the equation of motion about a suitably symmetric steady state, most110

often a state of rest (Rayleigh, 1916, p. 534). The stability of the resulting linear oper-111

ator is examined and the spatial pattern of the most rapidly growing unstable mode can112

then be compared to observations. While Lord Rayleigh only examined a rectangular113

domain, subsequent work led to the study of convective rolls and hexagons as the most114

often occurring spatial patterns near equlibrium (e.g., Busse, 1978; Krishnamurti, 1973).115

It is interesting, though, that Rayleigh (1916, pp. 529–530) does describe the irregular116

transitions between two types of flow regimes. Pursuing an explanation thereof was clearly117

beyond the reach of the linear methodology available to him.118

Be that as it may, linear methodology led to many other successes during the first119

half of the 20th century, in explaining flow patterns observed in the laboratory, in indus-120

try, and in nature. Thus, when we see parallel cloud streaks in the sky, we know that121

they are the result of either Rayleigh-Bénard or Kelvin-Hemholtz instability. Possibly122

the crowning success of this approach was the discovery of a truly 3-D instability of great123

importance for atmospheric and oceanic flows, namely baroclinic instability, by Jule G.124

Charney (1947) and, independently, by Eric T. Eady (1949).125

Charney’s and Eady’s results on baroclinic instability and variations thereupon man-126

aged to explain various features of the initial stages of development of mid-latitude storms127

in the atmosphere and of mesoscale meanders in the oceans. But they could not explain128

the finite-amplitude interactions between separate storms nor help very much in predict-129

ing weather beyond 1–2 days. In fact, Eady (1949, pp. 51–52) already had a pretty clear130

vision of the difference between theoretically identifying recognizable initial patterns in131

a storm’s development and “the formidable task facing theoretical meteorology — that132

of discovering the nature of and determining quantitavely [sic] all the forecastable reg-133

ularities of a permanently unstable (i.e., permanently turbulent) system.” It is here that134

the paradigmatic jump from linear to nonlinear concepts and methods has to occur.135

3 The dynamical systems lamppost136

3.1 The theory137

The mathematical theory of dynamical systems deals with modeling the behavior138

of systems that evolve on long time scales. Sufficiently long, that is, for assuming that139

solutions of the models exist for all times, from −∞ to +∞. This theory does not dis-140

tinguish, in principle, linear from nonlinear systems but has much to say about the lat-141

ter; it does not distinguish either between natural systems — whether physical, biolog-142

ical or socio-economical — and human-made systems but we will be interested here in143

the natural ones. Some basic facts of nonlinear life are outlined below, from the dynam-144

ical systems perspective, following Ghil et al. (1991).145

1. The equations of continuum mechanics are nonlinear. Surprisingly many phenomena146

can be explained by linearization about a particular fixed basic state. Many more can-147

not; see Sec. 2 above.148

2. Behavior of solutions to the nonlinear equations changes qualitatively only at isolated149

points in phase-parameter space, called bifurcation points. Behavior along a single branch150

of solutions, between such points, is modified only quantitatively and can be explored151

by linearization about the basic state, which changes as the parameters change. That152

is, nonlinear dynamics is much like linear dynamics, only more so (Ghil & Childress, 1987;153

Lorenz, 1963a, 1963b).154

3. Bifurcation trees lead from the simplest, most symmetric states, to highly complex155

and realistic ones, with much lower symmetry in either space or time or both. These trees156

can be explored partially by analytic methods (Jin & Ghil, 1990; Jordan & Smith, 2007)157
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and more fully by numerical ones, such as pseudo-arclength continuation (Dijkstra, 2005;158

Legras & Ghil, 1985).159

4. The truly nonlinear behavior near bifurcation points involves robust transitions, of160

great generality, between single and multiple fixed points (saddle-node, pitchfork and trans-161

verse bifurcations), fixed points and limit cycles (Hopf bifurcation), limit cycles and strange162

attractors (”routes to chaos”: Eckmann, 1981; Guckenheimer & Holmes, 1983). As the163

complexity of the behavior increases, its predictability decreases (Ghil, 2001).164

5. Behavior in the most realistic, chaotic regime can be described by the ergodic the-165

ory of dynamical systems. In this regime, statistical information similar to, but more de-166

tailed than for truly random behavior, can be extracted and used for predictive purposes167

(Eckmann & Ruelle, 1985; Ghil & Robertson, 2000; Mo & Ghil, 1987).168

6. Chaos and strange attractors are not restricted to low-order systems. They can be169

shown to exist for the full equations governing continuum mechanics (Constantin, Foias,170

Nicolaenko, & Temam, 1989; Temam, 2000). The detailed exploration of finite- but high-171

dimensional attractors is in full swing (Dijkstra, 2005; Ghil, 2017; Legras & Ghil, 1985).172

7. Single time series (Takens, 1981) and single numbers derived from them (e.g., Grass-173

berger, 1983) have been used to describe chaotic behavior. This very simple and straight-174

forward use of a nonlinear concept has attracted considerable attention to determinis-175

tically chaotic dynamics, including in the geosciences (Nicolis & Nicolis, 1984; Tsonis &176

Elsner, 1988). The use of single time series, while exciting in theory, is not very promis-177

ing when the series are short and noisy (Ruelle, 1990; Smith, 1988). The increasing avail-178

ability of a large number of similar series at different points in space, combined with phys-179

ical insight, is compensating more and more for the shortcomings of each individual time180

series in describing the complexity of many phenomena in the geosciences, as well as ad-181

vancing their prediction (Ghil et al., 2002).182

3.2 Some results183

The mechanics of vacillation. Two steps beyond linear theory, in the direction already184

outlined by Eady (1949), were taken by Edward N. Lorenz (1963a, 1963b). The first was185

stimulated by the work on convection mentioned in Sec. 2 above, and revisited by Barry Saltz-186

man (1962). This step yielded the paradigmatic strange attractor of Lorenz (1963a), too187

well known to be reviewed here yet another time; see Sparrow (1982), Guckenheimer and188

Holmes (1983), Ghil and Childress (1987, Sec. 5.4), and McWilliams (2019) in this is-189

sue. It showed the road to understanding deterministic chaos in a low-dimensional case.190

The second step was going beyond the linear theory of baroclinic instability and191

was stimulated by the rotating-annulus experiments with differential heating of David Fultz192

(e.g., Fultz et al., 1959) and Raymond Hide (Hide & Mason, 1975, and references therein);193

see also Ghil, Read, and Smith (2010). In this step, Lorenz (1963b) showed how to pro-194

ceed from the initial baroclinic instability of Charney (1947), via successive bifurcations,195

to the so-called index cycle of atmospheric mid-latitude variability. Namias (1950) de-196

scribed this cycle of the zonal index as a recurrence of changes in intensity of the pre-197

vailing westerlies, with a rough periodicity of 4–6 weeks.198

Lorenz (1963b, Fig. 3) reproduced key features of this phenomenon — such as the199

changes in strength, latitude and meandering of the westerly jet — by associating them200

with the tilted-trough vacillation in the rotating annulus experiments. The correspond-201

ing bifurcation tree appears as Fig. 5.8 in Ghil and Childress (1987).202

Multiple weather regimes. Charney (1947) and Eady (1949) followed the linear approach203

outlined in Secs. 1 and 2 and assumed small perturbations about a stationary mid-latitude204

state of zonally symmetric flow. But observational meteorologists knew already that pre-205

dominantly zonal flow is only one of the mid-latitudes’ persistent states, and that episodes206

of so-called blocked flow — with large deviations from zonality — can persist for fairly207

long times (e.g., Baur, 1947; Namias, 1968). ‘Long’ here is defined as longer than the life208
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cycle of a typical mid-latitude storm, which is 5–7 days, while blocking events can last209

for up to a month (e.g., Dole & Gordon, 1983); see also Ghil and Childress (1987, Fig. 6.1).210

Charney and DeVore (1979) studied a low-order barotropic model with merely three211

modes in a β-channel — i.e., in a rectangular domain on a tangent plane to the sphere212

(e.g., Gill, 1982; Pedlosky, 1987) — that had two stable stationary solutions: one with213

features similar to zonal flow, the other resembling blocked flow; see the bifurcation di-214

agram in Ghil and Childress (1987, Fig. 6.5). Charney, Shukla, and Mo (1981) and Benzi,215

Malguzzi, Speranza, and Sutera (1986) provided observational evidence for the existence216

of blocked-vs.-zonal bimodality in the Northern Hemisphere extratropics, while Mo and217

Ghil (1987) also found bimodality in the Southern Hemisphere extratropics. The latter218

bistability involved different amplitudes and phases of a dominant wavenumber-three,219

quasi-stationary wave; a third quasi-stationary pattern, of regional rather than hemispheric220

extent, was called by Mo and Ghil (1987) the Pacific–South-American (PSA) pattern.221

Legras and Ghil (1985) showed that, using just 25 modes of a barotropic model on222

the sphere, one could go well beyond two stable fixed points, to obtain not only more223

realistic zonal and blocked flow, but also stable limit cycles and deterministically chaotic224

behavior. In the latter regime, depending on the Rossby number Ro that determines the225

relative importance of the planet’s rotation (see Sec. 4.2 for further details), it is either226

a zonal, a blocked or an intermittent regime that dominates. In the presence of inter-227

mittency, the relative time spent in zonal and blocked episodes changes smoothly as Ro228

increases (Ghil & Childress, 1987, Fig. 6.14). Weeks et al. (1997, Fig. 5B) used a barotropic229

rotating annulus with topography and found that the dependence of persistence times230

of zonal vs. blocked flow on the experiment’s Rossby number exhibited marked similar-231

ities to the numerical results of Legras and Ghil (1985).232

The existence of several weather regimes in the Northern Hemisphere’s atmosphere233

is statistically pretty well established now by a number of distinct clustering methods234

and their application to several data sets; see, for instance, Table 1 in Ghil, Groth, Kon-235

drashov, and Robertson (2018) and references therein. Even so, the exact number of such236

regimes supported by the data, as well as their description and dynamical explanation,237

remains a matter of debate. Moreover, high-resolution numerical weather prediction (NWP)238

models — which are otherwise quite skillful at predicting weather a few days in advance239

— still have difficulties in predicting the onset of blocking and transitions between it and240

zonal flow (Dawson & Palmer, 2014).241

Multiple flow regimes in the oceans. The horizontal extent of storms in the atmosphere242

and of eddies in the oceans is given by the Rossby radius of deformation R (Ghil & Chil-243

dress, 1987; Gill, 1982; Pedlosky, 1987) that determines the so-called synoptic scale. Be-244

cause of the differences in stratification between the two fluid media, Roc ≃ 100 km ≪245

Ratm ≃ 1000 km. Thus, when first discovered, oceanic eddies have been erroneously246

called “mesoscale eddies,” since 100 km is termed the mesoscale in the atmosphere. Be247

that as it may, the name has stuck (e.g., McWilliams, 2011).248

While the diameter of oceanic eddies is much smaller than that of the atmospheric249

ones, their life cycle is much longer: months rather than days. Thus, low-frequency vari-250

ability (LFV) in the oceans is on the scale of years-to-decades, while in the atmosphere251

it is subseasonal-to-seasonal, 10–100 days. In the oceans, one tends to distinguish be-252

tween two types of causes of LFV: the wind-driven circulation and the thermohaline or253

meridional-overturning circulation (THC or MOC). The former is predominantly in a254

horizontal plane, driven by atmospheric momentum fluxes, and contributes to the inter-255

annual LFV of the oceans, while the latter is predominantly in a meridional plane, driven256

by buoyancy fluxes and contributes to the interdecadal LFV (Dijkstra & Ghil, 2005).257

Important contributions to the nonlinear understanding of oceanic LFV are roughly258

contemporaneous to, or even earlier than, the pioneering contributions of Lorenz (1963a,259
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1963b) for the atmosphere. Henry Stommel (1961) obtained two stable stationary so-260

lutions in a simple two-box model of the THC. He was originally interested in the sea-261

sonal reversal of local THCs, such as in the Red Sea or the Eastern Mediterranean (Stom-262

mel, 1961, p. 225) but did note on p. 228 that “One wonders whether other quite dif-263

ferent states of flow are permissible in the ocean [...] and if such a system might jump264

into one of these with a sufficient perturbation. If so, the system is inherently frought265

with possibilities for speculation about climatic change.” Speculations on this matter266

continue apace, and some of the relevant research is reviewed in Dijkstra and Ghil (2005,267

Sec. 3).268

George Veronis (1963) considered the wind-driven ocean circulation in a rectan-269

gular basin on the β-plane, subject to time-independent wind stress, and truncating the270

expansion of the barotropic, single-layer streamfunction at four sine modes. He obtained271

two stable steady states, as well as a limit cycle for various parameter values.272

Jiang, Jin, and Ghil (1995) introduced a different expansion of the shallow-water273

equations in the same geometry, with an exponential multiplier in the zonal, x-direction274

to allow for a western boundary current, as well as carrying out numerical integrations275

on an eddy-permitting grid with ∆x = ∆y = 20 km. They obtained exact steady states,276

as well as exactly periodic solutions (Fig. 1) for the numerical integrations that used 15 000277

grid variables. These authors also showed that the generation of the nearly mirror-symmetric278

steady states in the numerical integrations was well captured by the perturbed pitch-279

fork bifurcation of their highly idealized, intermediate-order model.

Interannual Interannual variability:variability:

relaxation oscillationrelaxation oscillation

Figure 1. Snapshots from an exactly periodic relaxation oscillation of the Jiang et al. (1995)

model; see also Fig. 7 (black and white) there. Color indicates contours of the model’s upper-

layer thickness, with warm colors for the subtropical gyre and cold ones for the subpolar one;

black lines indicate contours of potential vorticity, with a modified Rossby wave propagating

across the basin. Courtesy of Shi Jiang.
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The periodic solutions became more and more anharmonic and sawtooth-shaped280

as the time-constant wind stress intensity was increased, and finally led to aperiodic, in-281

termittent solutions. This transition to chaos can be followed in Fig. 2 via a homoclinic282

bifurcation for a quasi-geostrophic (QG) model with a resolution of ∆x = ∆y = 10 km.283

Dijkstra and Ghil (2005, Sec. 2) provide further details on this particular model, as part284

of an entire hierarchy of increasingly detailed and realistic models that confirm its re-285

sults, and many additional references. Concerning geostrophy and its effect on turbu-286

lent fluid behavior, see Sec. 4.2 below.287

Overall, the line of work outlined in the preceding paragraphs has provided fairly288

convincing evidence that intrinsic oceanic LFV, even in the absence of variable atmo-289

spheric forcing, is an important source of interannual climate variability. Detailed con-290

frontation of model results with recent reanalysis data for both atmosphere and oceans291

supports these ideas, at least in the case of the North Atlantic basin (Groth, Feliks, Kon-292

drashov, & Ghil, 2017), where this mechanism also provides a possible explanation of293

the North Atlantic Oscillation (NAO) and of its approximate 7-8-year periodicity. The294

situation for time-dependent wind forcing will be discussed in Sec. 5.3.295
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Figure 2. Generic bifurcation diagram for the barotropic QG model of the double-gyre prob-

lem: the asymmetry of the solution is plotted versus the intensity of the wind stress τ . The

streamfunction field ψ = ψ(x, y) is plotted for a steady-state solution associated with each of the

three branches; positive values in red and negative ones in blue. After Simonnet et al. (2005).

Bifurcations and tipping points. In the applications covered herein, we have limited our-296

selves to classical bifurcations (e.g., Arnol’d, 2012; Guckenheimer & Holmes, 1983), which297

go back to the work of Leonhard Euler (1757) on buckling of a beam (e.g., Timoshenko298

& Gere, 1961). Recently, the interest in bifurcations in the geosciences has greatly in-299

creased due to the introduction of the concept of tipping points from the social sciences300

(Gladwell, 2000; Lenton et al., 2008). Clearly, a tipping point sounds a lot more threat-301

ening than a bifurcation point, especially when dealing with an earthquake or a dramatic302

and irreversible climate change.303
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Aside from their rhetorical impact, though, tipping points generalize classical bi-304

furcations when considering open, rather than closed systems. In fact, there are three305

kinds of tipping points under consideration recently for open systems (Ashwin, Wiec-306

zorek, Vitolo, & Cox, 2012):307

(i) B-Tipping or Bifurcation-due tipping — slow change in a parameter leads to the sys-308

tem’s passage through a classical bifurcation;309

(ii) N-Tipping or Noise-induced tipping — random fluctuations lead to the system’s cross-310

ing an attractor basin boundary;311

(iii) R-Tipping or Rate-induced tipping — rapid changes lead to the system’s losing track312

of a slow change in its attractors.313

We will have more to say about open systems and their attractors in Sec. 5.3.314

4 The Scale Invariance Lamppost315

The light of this lamppost has to do with insights about patterns that appear to316

keep their spatial structure at increasing magnification. Such spatial patterns — like the317

Cantor set on the line and the Peano curve in the plane — were well known by the late318

19th century (e.g., Sagan, 2012) but their pervasiveness in nature and connection to a319

system’s evolution in time only became evident in the second half of the 20th century.320

4.1 The theory321

Probably the best-known set with strange properties that arise by an iterative con-322

struction is the Cantor ternary set. Consider the closed unit interval C0 = [0, 1] of length323

ℓ0 = 1 on the real line R and remove the open middle third (1/3, 2/3), which leaves the324

set C1 = (C0/3)∪(2/3+C0/3) = [0, 1/3]∪ [2/3, 1] of length ℓ1 = 2/3. Removing induc-325

tively the open middle third of the two closed intervals left, then of the four ones left at326

the next stage and so on, one gets327

Cn =
Cn−1

3
∪

(

2

3
+

Cn−1

3

)

, (1)328

of length ℓn = (2/3)ℓn−1 = (2/3)n. This construction is perfectly self-similar and scale329

invariant.330

Clearly ℓn → 0, so that the limit set C∞ = C has length ℓ∞ = 0. But the deep331

result is that there is a one-to-one correspondence between the points in the set C of zero332

Lebesgue measure and those in the unit interval C0, i.e., the two sets have the same un-333

countable cardinality |C| = |C0|, which equals also the transfinite cardinality ℵ1 of the334

real line itself. The former result was stated by Georg Cantor (1887) without proof; the335

modern proof is based on what became known as the Cantor-Schröder-Bernstein the-336

orem, with Felix Bernstein and Ernst Schröder having almost simultaneously given two337

different proofs in 1897, as did Felix Dedekind. The 2-D generalization of the Cantor set338

in the plane R
2 is called the Sierpiński (1916) carpet; see Fig. 3.339

Many mathematicians at the time were not comfortable with transfinite numbers340

nor with statements like the inequality ℵ0 < ℵ1, where ℵ0 is the cardinality of natu-341

ral, integer and rational numbers, among other countable sets. Nor did physicists in the342

late 19th century appreciate functions that were not continuously differentiable every-343

where. This inequality and the absence of any cardinals between ℵ0 and ℵ1 depended344

on difficult issues raised by the axiomatization of mathematics (e.g., Suppes, 1972) that345

were not that palatable for most mathematicians and almost all physicists. This fact tran-346

spires even in Cantor’s choice of journal for his 1887 paper, namely a philosophical rather347

than a standard mathematical one.348
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Figure 3. The 6th-level iteration for obtaining the Sierpiński carpet on the unit square [0, 1] ×

[0, 1]. The carpet has topological dimension dT = 1 but Hausdorff dimension dH ≃ 1.893 < 2.

From Wikimedia, public domain.

The situation was as bad or worse with respect to functions that were not contin-349

uously differentiable anywhere. Bernard Bolzano and Augustin-Louis Cauchy had given350

early definitions of continuity in 1817 and 1823, respectively, and Karl Weierstrass had351

given the better-known (ǫ−δ) definition a few decades later. As discussed in Sec. 2, physi-352

cists were extensively using ordinary and partial differential equations (ODEs and PDEs)353

around the turn of the 19th into the 20th century and lack of continuous differentiabil-354

ity was considered a mathematical oddity of little use in studying natural phenomena.355

Benôıt Mandelbrot (1967) had an important role in stressing that this was not so.356

Hugo Steinhaus (1954) had already discussed what we now call fractional dimension, when357

Lewis Fry Richardson (1961) pointed out the “coastline paradox” and provided the polyg-358

onal method for correctly overcoming this paradox; see also Hunt (1998). Essentially,359

the length L of a coastline, river (e.g., Steinhaus’s Vistula) or geographic border depends360

on the scale G used to approximate it by a polygon. Based on several examples avail-361

able at the time, Richardson (1961, Fig. 17) proposed the approximation L(G) = κG1−D,362

where κ is a constant and D ≥ 1 is the fractional dimension; the latter equals unity if363

the curve is smooth. Quite recently, Losa, Ristanović, Ristanović, Zaletel, and Beltraminelli364

(2016) found “[. . . ] that among many fractal analysis techniques, only Richardson’s method365

enables correct calculation of the length of an object’s border or irregular line.”366

The basic ingredients of Mandelbrot’s development of fractal concepts and meth-367

ods became available in the early 20th century. First, Felix Hausdorff (1918) provided368

a generalization of dimension that allowed one to evaluate it for the kinds of odd sets369

we discussed above, cf. Fig. 3; it is now called the Haussdorf dimension and it can take370

on noninteger values. Second, the same year, Gaston Julia (1918) considered a class of371

iteratively defined sets in the complex plane C that have the right oddity.372

Speaking loosely, for a given holomorphic (i.e., complex analytic) function f(z), with373

z = x+iy, the Julia set J (f) and the Fatou (1919) set F(f) are complements of each374

other, with J (f) being the set of points on which repeated iterations of z → f(z) di-375

verge, while on F(f) these iterations behave similarly. In other words, f is regular on376

F(f) and chaotic on J (f). As for the Cantor set C above, we only outline here the sim-377

plest case, namely that of quadratic polynomials, written as fc(z) = z2 + c, with c ∈378

C. It is this case that Benôıt Mandelbrot (2013, and references therein) made famous379

in the late 20th century.380
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For c = 0, the Julia set is simply the unit circle |z = 1|, and the two Fatou sets
are its interior and exterior, with iterations that converge to 0 and ∞, respectively. In
general, though, the Julia set J (fc) is much more complicated and Mandelbrot (1977)
introduced the term “fractals” for such complicated sets. A beautiful illustration of the
self-similarity that characterizes many fractals is given by the Mandelbrot set M(f), de-
fined as the set of points c in the complex plane for which the iterates

{zn+1(c) = f(zn; c);n = 0, . . .}

stay bounded as n increases, when starting at z0 = 0. The most often studied and cited381

case is that of f(z; c) = fc(z) = z2 + c.382

While there is no definitive consensus on how best to define a fractal, there are two383

key ingredients: (i) a degree of self-similarity and (ii) a Hausdorff dimension dH that ex-384

ceeds the classical, topological dimension dT. The rigorous mathematical definition of385

the latter is also laborious, but its integer values are obvious for the usual Euclidean spaces,386

namely dT = n for Rn; the former is often an irrational number, although a “fractal387

dimension,” while often used, is an obvious misnomer: it is the set that is a fractal, while388

the dimension is a simple scalar in all cases, and a fraction in many.389

Both Julia sets, defined for a fixed c as z varies, and Mandelbrot sets, defined for390

a fixed z0 = 0 as c varies, have fascinating properties and there are interesting connec-391

tions between the two. Peitgen and Richter (2013) provide both mathematical substance392

and beautiful illustrations on these topics. Figure 4 illustrates just one such case, but393

for this set, the scale invariance is more qualitative: things look roughly the same rather394

than exactly the same at different scales.395

4.2 Some results396

Fractals in dynamical systems. A number of factors concurred in the second half of the397

20th century to greatly increase the circle of light of this lamppost, as well as the inter-398

est in it. First, there was the increase of interest in dynamical systems and their appli-399

cations, as reviewed in Secs. 2 and 3 herein. Next, like in the case of dynamical systems,400

it was the great progress in computing power and storage capacity.401

It’s great fun computing Julia or Mandelbrot sets on your laptop, as it is comput-402

ing the strange attractor of the Lorenz (1963a) model. Moreover, this attractor is a frac-403

tal for a broad range of parameter values, i.e. when you drill through it perpendicular404

to the tangent manifold, anywhere except at the origin, you get a Cantor-like set.405

The dimensions of the attractor, for the standard nondimensional parameter val-406

ues illustrated in the original Lorenz (1963a) paper — namely the Rayleigh number ρ =407

28, the Prandtl number σ = 10 and the wavenumber β = 8/3 — are dH = 2.06 ±408

0.01 > 2 = dT and its volume is zero, as for the Cantor set. Please see, again, Spar-409

row (1982), Guckenheimer and Holmes (1983), Ghil and Childress (1987, Sec. 5.4), and410

McWilliams (2019) in this issue for further details.411

While several metric dimensions have been defined for dynamical systems (e.g., Farmer,412

Ott, & Yorke, 1983), a particularly useful one is the Lyapunov dimension. It is given by413

the Lyapunov spectrum of the undelying system and is also called the Kaplan-Yorke di-414

mension (Kaplan & Yorke, 1979):415

dKY ≡ k +Σk
j=1

λj

λk+1

; (2)416

here k is the maximum integer such that the sum of the k largest exponents is still non-417

negative. We shall return to the Lyapunov spectrum in Sec. 6 below. Leonov, Kuznetsov,418

Korzhemanova, and Kusakin (2016) obtained the following remarkable formula for the419
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(a) Full figure. (b) Subdomain with 6× magnification.

(c) 100× magnification. (d) 2000× magnification.

Figure 4. Mandelbrot set, with cr on the abscissa and ci on the ordinate. The white rectangles in-

dicate the domain of the zoom in the next panel. From Nadim Ghaznavi, under the Creative Commons

Attribution-Share Alike licence https://creativecommons.org/licenses/by-sa/3.0/deed.en.

Lyapunov dimension dKY of the global attractor of the Lorenz (1963a) model:420

dKY = 3−
2(σ + β + 1)

σ + 1 + ((σ − 1)2 + 4ρσ)1/2
< 3 . (3)421

Fractals in turbulence. Of course, it is one thing to describe numerically and study math-422

ematically fractals in dynamical systems and quite another thing to do so in natural phe-423

nomena. As already indicated in Sec. 1, the improvement in making and in analyzing424

observations, with their rapidly increasing number and accuracy, has also greatly accel-425

erated the uses of scale invariance in the natural environment.426

A particularly stimulating example is given by turbulence in general and by geo-427

physical turbulence more specifically. Turbulent flow arises in many areas of engineer-428

ing, as well as in nature, from blood flow to galactic evolution. Its presence and inten-429

sity is characterized by the Reynolds number R ≡ UL/ν, where U,L and ν are a char-430

acteristic velocity, length and kinematic viscosity of the flow and the fluid: the higher431

U or L and the smaller ν, the more turbulent the flow.432

Understanding and predicting turbulent behavior is probably the hardest problem433

in continuum physics. Compared to huge progress throughout the 20th century in quan-434

tum and relativistic physics, progress in turbulence studies has been more moderate.435

In fact, in the opening article of the Annual Reviews of Fluid Mechanics, Sydney436

Goldstein (1969) attributes to Sir Horace Lamb the following statement “I am an old437
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man now, and when I die and go to Heaven there are two matters on which I hope for438

enlightenment. One is quantum electrodynamics, and the other is the turbulent motion439

of fluids. And about the former I am really rather optimistic.” The “old man,” of course,440

was a leader in fluid dynamics at the turn of the 19th into the 20th century and the au-441

thor of the Lamb (1932) book on which the generation of S. Goldstein, Ludwig Prandtl442

and Theodor von Kármán had grown up. Goldstein’s comment on this quote is, “Lamb443

was correct on two scores. All who knew him agreed that it was Heaven that he would444

go to, and he was right to be more optimistic about quantum electrodynamics than tur-445

bulence.” Goldstein’s prediction still holds exactly 50 years later.446

Rapid progress of technology still obliged engineers and other practitioners to find447

empirical results even in the absence of deeper understanding of the causes of turbulence448

and the behavior of turbulent flows. In particular, once the crucial role of boundary lay-449

ers in mediating the transition between the fairly frictionless flow far from a wall and450

the necessity of a viscous fluid to be at rest at the boundary was understood, several em-451

pirical formulas were developed. Schlichting and Gersten (2016, and earlier editions) are452

a good source for this important subfield of turbulent fluid dynamics.453

Thus, assumptions about the phenomena at play that appear at first sight rather454

strong, along with dimensional analysis (e.g., Barenblatt, 1996), lead to the well-known455

“law of the wall.” Let U be the (nearly constant) velocity outside the boundary layer,456

τw the shear stress at the solid surface, y the distance perpendicular to the surface, uτ =457

(τw/ρ)
1/2, with ρ the density of the fluid, µ its molecular viscosity, and ν = µ/ρ its kine-458

matic viscosity. The law is then given by U/uτ = f((uτy)/ν) and it holds for the “in-459

ner layer” y ≤ 0.2δ, where δ is the total thickness of the boundary layer.460

Based on work variously attributed to Lev Landau in the former Soviet Union and461

to L. Prandtl and Th. von Kármán in the western literature, the form of the function462

f above is logarithmic, resulting in the log-law463

U

uτ
=

1

κ
ln

uτy

ν
+ C ; (4)464

see Bradshaw and Huang (1995, and references therein). Extensive experimental work465

shows that Eq. (4) holds for κ ≃ 0.41 and C ≃ 5.0, provided the pressure gradient par-466

allel to the wall is not too large, within the region 30ν/uτ ≤ y ≤ 0.1δ. The goodness467

of fit of the log-law above decreases as the pressure gradient increases and one approaches468

separation of the boundary layer.469

Such semi-empirical relations, based on physical approximations and dimensional470

analysis, served practitioners well. Still, there was an increasing need for fundamental471

understanding of the complexities involved in turbulent flows.472

A truly major step forward was due to the development of the concept of energy473

cascade and the statistical theory of turbulence. In his pioneering study of numerical weather474

prediction, L. F. Richardson (1922, p. 66) formulated the key idea of a turbulent cas-475

cade via the verse “Big whirls have little whirls that feed on their velocity, and little whirls476

have lesser whirls and so on to viscosity—in the molecular sense.”477

This idea was refined first by distinguishing between the largest scales in a fluid478

that are most energetic and are affected by the geometry of the domain, and the small-479

est ones, at which energy input from nonlinear interactions and the energy drain from480

viscous dissipation are in exact balance. The latter have high frequency and are locally481

isotropic and homogeneous (e.g., Batchelor, 1953). In between these two scales, geomet-482

ric and directional information is lost in the A. N. Kolmogorov (1941) inertial cascade,483

between the large scales L and the Kolmogorov scale ℓK, provided the Reynolds num-484

ber R is sufficiently high.485
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The value of ℓK is given again merely by dimensional arguments and the physical
assumption that the statistics of the small scales are universally and uniquely determined
by the rate of energy dissipation ǫ and the kinematic viscosity ν, as R → ∞,

ℓK =
(

ν3/ǫ
)1/4

.

Between L and ℓK, instabilities break up the larger eddies into smaller ones that inter-486

act nonlinearly, while viscous effects are negligible. Once more, these assumptions and487

dimensional analysis lead — for scalar wavenumbers k = 2π/r and L > r > ℓK, where488

r = |r| and r is the distance in the physical space R
3— to the kinetic-energy spectrum489

E = E(k), namely490

E(k) = Cǫ2/3kp, (5)491

with p = −5/3 and C a presumably universal constant.492

Frisch (1995) presents this statistical theory of 3-D turbulence elegantly and reviews493

the experimental evidence, which confirms broadly the theory. This so-called direct en-494

ergy cascade appears in Fig. 5(a). There are two related difficulties, though. First, to495

cite again Goldstein (1969), “[. . .] distinguished mathematical statisticians, some of whom496

had hopes of contributing to the theory of turbulence, [when] they saw the physical, rather497

than mathematical, nature of Kolmogorov’s contribution [. . .] decided that such research498

was not for them.” Indeed, to this day — and in spite of considerable progress in the499

mathematical theory of the Navier-Stokes equations that govern fluid dynamics (e.g., Temam,500

2001) — there is no rigorous derivation of the Kolmogorov (−5/3) law.

log(k)

lo
g

(E
(k

))

log(k)

lo
g

(E
(k

))

(a) 3-D     (b) 2-D

E(k)

E(k)

E(k)

–5/3 –5/3

–3

E(k)

E(k)

Z(k)

Figure 5. Energy and enstrophy cascades in (a) three-dimensional (3-D) and (b) two-

dimensional (2-D) turbulence. The latter panel also characterizes the dual cascades in QG

turbulence. Courtesy of Niklas Boers.

501
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Second, the Kolmogorov (1941) theory implicitly assumes that 3-D turbulence is502

statistically self-similar at different scales in the inertial range. Thus the flow velocity503

increments δu(r) = u(x+ r)−u(x), when scaled by λ > 0, should behave as δu(r) ≃504

λβδu(r), with β independent of r, where ≃ stands for equality in distribution. It follows505

that the structure functions of order n, i.e. the nth-order statistical moments of the flow506

velocity increments δu, should scale as507

〈

(

δu(r)
)n
〉

= Cn(ǫr)
n/3, (6)508

where the brackets denote the statistical average, and the Cn are universal constants.509

More generally, given 1 < |p| < 3 in Eq. (5), one can show that the second-order510

structure function, i.e. n = 2 in Eq. (6) behaves like rp−1. Since the latter is easier to511

measure accurately,
〈(

δu(r)
)2〉

∝ r2/3 implies that p = 5/3, confirming Kolmogorov512

(1941) theory. In fact, experimental differences are of the order of 2 % (Mathieu & Scott,513

2000). So far, so good.514

Higher-order structure functions, though, deviate more and more from the scaling515

predicted by Eq. (6), as they become a sublinear function of n, and the constants Cn are516

far from universal, according to both laboratory and numerical experiments. The main517

reason for the observed deviations is the lack of homogeneity in the turbulent flow field,518

in either time or space; this feature of turbulence is referred to as intermittency and Man-519

delbrot (1969) highlighted its role: he conjectured that, as R → ∞, the dissipation of520

the energy, far from being uniform, tends to concentrate on a fractal set with dH < 3.521

Lagrangian coherent structures play an important role in reducing dissipation, produc-522

ing intermittency in turbulent flows, and increasing their predictability (e.g., Haller, 2015).523

Geophysical turbulence. Large-scale atmospheric and oceanic flows are characterized by524

the key role of rotation and shallowness (e.g., Ghil & Childress, 1987; Gill, 1982; Ped-525

losky, 1987). The theoretical study of such flows is referred to as geophysical fluid dy-526

namics (GFD) and an important tool in this study is the QG approximation; see Ghil527

and Childress (1987, Ch. 4) for a succint introduction.528

Shallowness is due to the small aspect ratio δ ≡ H/L ≪ 1, where H is the char-529

acteristic height — with H ≃ 10 km in the atmosphere and even smaller in the oceans530

— and L the characteristic horizontal extent, with L ≃ 103 km in the atmosphere and531

L ≃ 102 km in the oceans. The dominant role of planetary rotation is due to the small-532

ness of the Rossby number Ro ≡ U/fL ≪ 1, where U is a characteristic horizontal533

velocity, f = 2Ω sinφ is the Coriolis parameter that measures the local angular veloc-534

ity, while Ω is the planet’s angular velocity of rotation around its axis and φ the latitude.535

QG flows are hydrostatic, i.e., vertical accelerations are negligible due to the flows’536

shallowness, and they are dominated by geostrophic balance between the Coriolis force537

and the pressure gradient. These two features result in QG flows being 2-D to a good538

first approximation, which suggests that geostrophic turbulence should also have 2-D fea-539

tures (e.g., Cushman-Roisin & Beckers, 2011; McWilliams, 2011; Salmon, 1998). We start540

by rapidly reviewing the differences between 2-D and 3-D turbulence.541

The key difference is the existence of two quadratic invariants, enstrophy and ki-542

netic energy, rather than energy alone; see the references in Charney (1971, pp. 1087-543

1088), with enstrophy Z being the mean-squared vorticity. In 3-D turbulence, the con-544

servation of the kinetic energy E(k) leads to the direct cascade from large to small scales,545

cf. Eq. (5), as illustrated in Fig. 5; the slope of the E(k) spectrum over the inertial range546

L ≤ k ≤ ℓK equals approximately −5/3.547

In 2-D turbulence, the existence of the two separate, positive-definite quadratic in-548

variants, kinetic energy E and enstrophy Z(k), leads to two cascades. Indeed, Fjørtoft549

(1953) showed that an energy transfer from k to k+∆k must, to conserve Z(k), be ac-550

companied by a larger transfer of energy to k−∆k; this follows, essentially, from Z(k) ∝551
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k2E(k). Based on this crucial fact, Kraichnan (1967) showed that, in 2-D turbulent flows,552

there are two inertial ranges: one with a reverse energy cascade and zero enstrophy flux,553

between L and L∗, the other with a direct enstrophy cascade and zero energy flux, be-554

tween L∗ and ℓK. The slope of the energy spectrum in the former is (−5/3), and it is555

(−3) in the latter, as illustrated in Fig. 5(b).556

Charney (1971) noted atmospheric observations (e.g., Wiin-Nielsen, 1967) and nu-557

merical simulations (e.g., Manabe, Smagorinsky, Holloway, & Stone, 1970) of a k−3
z en-558

ergy spectrum, where 7 ≤ kz ≤ 20 is the zonal wavenumber, with a corresponding range559

of linear scales from 1 500 to 4 000 km. He emphasized, though, that the previously ac-560

cepted analogies between 2-D and QG flows are not really sufficient to argue for a sim-561

ilarity of the turbulent physics, given the fact that the baroclinic instability that injects562

energy at L∗ ≃ 103 km is highly 3-D.563

Charney (1971) argued that a deeper reason for the k−3
z spectrum is the possibil-564

ity, in geostrophic turbulence, to combine its two quadratic invariants into a single one,565

which he termed “pseudo-potential vorticity,” following previous work of his own. In 1971,566

no sufficiently accurate observations or simulations were available for distinguishing among567

several hypotheses for the atmospheric spectrum beyond kz = 20. As such observations568

did become available, Nastrom and Gage (1985) showed that (i) all the way down to 2.6 km,569

there are no spectral gaps; and (ii) in fact, the k−3
z spectrum associated with the k−3

z570

enstrophy cascade is followed by yet another (−5/3) slope, as the flow becomes 3-D at571

the smallest scales; see Fig. 6.

Figure 6. Wavenumber spectra of zonal and meridional velocity composited from three groups

of flight segments of different lengths; these groups were selected from over 6 000 commercial

aircraft flights. The three types of symbols (blue, red, and yellow) show results from each group.

The least-square–fitted straight lines indicate slopes of (−3) and (−5/3). The meridional wind

spectra are shifted one decade to the right for greater legibility. The actual observational results

show the typical deviations from straight lines in log–log coordinates. After Nastrom and Gage

(1985).

572
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Subsequent work, reviewed by Rhines (1979), Salmon (1998), and McWilliams (2011),573

among others, has greatly refined understanding of both atmospheric and oceanic tur-574

bulence, including the role of intermittency in deviating from simple −5/3 and −3 laws.575

The interest of GFD practitioners for 2-D turbulence, combined with the computation-576

ally much easier task of carrying out high-resolution, high-R calculations in 2-D led to577

an important discovery linking localized coherent structures with intermittency and in-578

creased predictability (Legras, Santangelo, & Benzi, 1988; McWilliams, 1984).579

These structures were shown to be stable nonlinear solutions of the 2-D Euler equa-580

tions. They represent, therewith, a depletion of nonlinearity in the turbulent flow field,581

locally inhibit the direct enstrophy cascade, and can survive for long times. As a result,582

the predictability time of large-scale dynamics increases, being no longer limited as much583

by the small-scale fluctuations; see the recent review of Haller (2015).584

Sakuma and Ghil (1991) also reviewed some of the pertinent GFD literature, as585

well as proving stability for such localized coherent structures in the shallow-water equa-586

tions, and emphasizing the analogies with magnetohydrodynamics (MHD). These analo-587

gies arise from the similarity between the role of the magnetic field vector B in the lat-588

ter and the angular rotation vector Ω in GFD (e.g., Ghil & Childress, 1987; Hide, 1989).589

Helicity H is an additional quadratic invariant in both 3-D and 2-D turbulence (Chorin,590

2013, and references therein) but it is not sign-definite, and hence does not have the same591

effect as enstrophy on balancing energy transfers. Still, it does give rise to both inverse592

and dual cascades, which are important in GFD as well as in MHD. Helicity dynamics593

and bidirectional cascades are discussed in this issue by Pouquet, Stawarz, Rosenberg,594

and Marino (2019). A particularly important application is to astrophysics in general595

and to the solar wind in particular (e.g., Pouquet, Marino, Mininni, & Rosenberg, 2017).596

5 A Few More Lampposts597

So far we have covered, to the extent allowed by the constraints of this special is-598

sue, some fundamental concepts, methods and results of dynamical systems theory in599

Sec. 3 and of scale invariance in Sec. 4. We will sketch now, even more briefly, the skele-600

ton of three additional lampposts that increasingly are helping shed some light on non-601

linear effects in the geosciences.602

5.1 The network lamppost603

We live in a world that is more and more dependent on networks of computing de-604

vices, as well as of people. Network theory thus is playing a bigger role in both under-605

standing and modifying this world. Its applications extend to a rapidly growing num-606

ber of areas, which include of course the geosciences.607

Arguably, it is the Burridge and Knopoff (1967) model of friction along a fault that608

is the first and still one of the most important models of this kind in the geosciences. The609

model consists of a string of blocks connected by springs and can also be thought of as610

a modification of the Fermi, Pasta, Ulam, and Tsingou (1955) model with differing non-611

linear spring laws and the addition of nonlinear friction forces. It provided an understand-612

ing of the gradual accumulation and sudden release of potential energy associated with613

slow pre-seismic build-up and rapid displacement along an earthquake fault. The Burridge-614

Knopoff model, by its simple-model explanation of a baffling phenomenon, played a role615

in nonlinear solid-Earth studies that resembles that of the Lorenz (1963a) model in non-616

linear atmospheric studies.617

Network theory. More generally, network theory is a field of graph theory. A graph is618

an object with nodes that are connected by edges. The nodes and edges have certain at-619

tributes, e.g. the physics at each node may be described by an ODE, while the link be-620
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tween two nodes may correspond to couplings between their ODEs. Such a network could621

then correspond to the method of lines being applied to a PDE (e.g., Schiesser, 2012).622
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Figure 7. Schematic diagram of the network classes studied by Colon and Ghil (2017). (a)–

(g) Simple network motifs: (a) linear networks; (b) trees; (c) isolated loops; (d) and (e) two

interacting loops, connected through a pivotal node; (f) and (g) three interacting loops. (h)–(k)

More complex classes of directed graphs, with n = 100 nodes and connectivity c = 4: (h) di-

rected Erdős–Rényi (ER) networks; (i) scale-free networks with the specific, production-network

distribution of in- and out-degree based on the Fujiwara and Aoyama (2010) dataset; (j) random

acyclic (RA) networks in which production moves upward; and (k) a network of two interdepen-

dent RA networks — in the network at left, production moves upward, while it moves downward

in the one at right. From Colon and Ghil (2017).

623

A much simpler network could be a geometrically linear one, each of its nodes hav-624

ing an identical Boolean expression attached to it, while being instantaneously connected625

to neighboring nodes. Such a network is called a cellular automaton (e.g., Von Neumann,626

1951; Wolfram, 1983). For illustration purposes, Fig. 7 shows a number of network classes627

recently studied by Colon and Ghil (2017).628

A graph may be undirected, meaning that there is no distinction between the two629

nodes associated with each edge, or its edges may be directed from one node to another.630

The latter can be the case of river networks (Zaliapin, Foufoula-Georgiou, & Ghil, 2010,631

and references therein), supplier–producer networks (e.g., Colon & Ghil, 2017; Fujiwara632

& Aoyama, 2010), and many others (e.g., Albert & Barabási, 2002; Newman, 2010). A633

good example of the former is an Ising model on a 2-D lattice in statistical mechanics634

(e.g., Onsager, 1944) or a forest fire model of lesser (Malamud, Morein, & Turcotte, 1998)635

or greater (Spyratos, Bourgeron, & Ghil, 2007) complexity.636

The topology of a network can be described by its adjacency matrix A = (aij),637

where the entry aij equals 1 or 0 depending on whether an edge does exist between the638

nodes i and j or not. Much of network theory concentrates on various topological fea-639

tures, and on measures of centrality (Albert & Barabási, 2002; Newman, 2010, and ref-640

erences therein). Each of these measures aims to rank nodes by their importance, and641

they differ in how this importance is defined.642

The simplest measure of centrality is the number of edges that it participates in,643

which is called the degree k. For directed graphs, one also distinguishes between the in-644

and out-degree. The distribution of degrees can be uniform, e.g., k ≡ 1 for either a lin-645
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ear graph or a simple cycle and k ≡ 2 for a braid (e.g., Coluzzi, Ghil, Hallegatte, & Weis-646

buch, 2011); it can be fully connected, k ≡ N − 1, where N is the number of nodes;647

it can be fully random, in which case the mean degree is z = k̄ > N/2; or it can be648

scale-free, i.e. it obeys a power law, with p(k) ≃ k−α, with α > 0.649

The dynamics on a network depends on the mathematical description of the state650

of each node, its set of linked neighbors, and on the nature of the links, i.e., on the cou-651

pling between the nodes. The state of each node can be described by a time series of real-652

or Boolean-valued variables; such time series, in turn, can either be provided by obser-653

vations or be the result of evolution equations, be they systems of ODEs, PDEs or of Boolean654

equations. The links, as previously mentioned, can be directed or not; they can also change655

in time in an evolving network.656

Network applications, I: Boolean delay equations (BDEs). We will give here an appli-657

cation to earthquake modeling and prediction. First, we introduce the framework of Boolean658

delay equations (BDEs) to describe the state of the nodes and the nature of the links.659

A system of BDEs is a semi-discrete dynamical model with Boolean-valued vari-660

ables that evolve in continuous time (Dee & Ghil, 1984; Ghil & Mullhaupt, 1985). The661

place occupied by BDEs in the world of dynamical systems is illustrated in Fig. 8.662

Systems of BDEs can be classified into conservative or dissipative, in a manner that663

parallels the classification of ODEs or PDEs. Solutions to certain conservative BDEs ex-664

hibit growth of complexity in time; such BDEs can be seen therefore as metaphors for665

biological evolution or human history. Dissipative BDEs are structurally stable and ex-666

hibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets,667

such as Devil’s staircases and “fractal sunbursts” (Ghil, Zaliapin, & Coluzzi, 2008, and668

references therein).

Figure 8. Schematic diagram of the distinct classes of dynamical systems, in terms of the

state x and time t. Note the links: the discretization of time t can be achieved by the Poincaré

map (P-map) or a time-one map, leading from Flows to Maps. The opposite connection is

achieved by suspension. To go from Maps to Automata one has to discretize the statet̀ion and

smoothing lead in the opposite direction. Similar connections lead from BDEs to Automata

and to Flows, respectively. Please see the glossary in Table A.1 for acronyms. Modified after

Mullhaupt (1984).
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More generally, Fig. 8 raises the question of which one of the various types of dy-669

namical systems therein apprehends best the complexities of the world surrounding us?670

Clearly, the amount of detail provided by each increases as we move from the Automata671

at the bottom to the Flows at the top of the rhomboid in the figure.672

Thus, one level at which one can read the figure is as an illustration of the hier-673

archy of models discussed further in Sec. 6. But there is also another way of reading it.674

In fact, each one of the downward-pointing arrows between a class of models and an ad-675

jacent one below it represents a perfectly self-consistent simplification, obtained as one676

discretizes either time t or space x. We all know how to obtain an ordinary or partial677

difference equation (O∆E or P∆E) from an ODE or PDE respectively, by discretizing678

time. The extent to which the solutions of the O∆E so obtained converge to those of the679

corresponding ODE depend on certain stability and consistency properties of the ODE’s680

right-hand side (e.g., Isaacson & Keller, 2012).681

In the case of a P-map, topological properties are preserved as one goes from a Flow682

to a Map, and maps are easier to study. Under certain technical assumptions dealing683

with smoothness and one-to-oneness, one gets most of what one wants from studying the684

map, since the suspension that goes back from the Map one has studied to the Flow685

can be proven to have the right properties. For instance, a periodic solution of the Flow686

will appear as a point in the Map and vice-versa.687

Can similar equivalence results be proven for other pairs of arrows in Fig. 8? There688

exists numerical evidence, at least, to suggest that it might be true under suitable cir-689

cumstances. Two such examples of, at least partial, equivalences are given below.690

Saunders and Ghil (2001) provided a thorough BDE treatment of the El-Niño/Southern-691

Oscillation (ENSO) mechanism postulated by J. J. Bjerknes (1969). Their Fig. 7 of the692

“Devil’s bleachers” shows the dependence of the model ENSO’s periodicity on two model693

parameters that characterize the wave propagation along the equator and the local ocean–694

atmosphere heat exchanges, respectively; see also Ghil, Zaliapin, and Coluzzi (2008, Fig. 6).695

The projection of the latter 3-D axionometric plot on its 2-D parameter plane is strik-696

ingly similar to Fig. 9 herein.697

This similarity is the first example of good numerical correspondence between two698

adjacent vertices of the rhomboid in Fig. 8, since the “Devil’s terrace” in Fig. 9 is based699

on the intermediate model of Jin, Neelin, and Ghil (1994, 1996). The latter model is gov-700

erned by a system of nonlinear PDEs in one space dimension, namely longitude along701

the equator, with the parameters µ and δs that appear in Fig. 9 here; the two play a roughly702

similar role in the PDE model to that of the two parameters, local and global, in Ghil,703

Zaliapin, and Coluzzi (2008, Fig. 6).704

The early applications of BDEs to the climate sciences only used small systems of705

a few variables (e.g., Darby & Mysak, 1993). The first BDE application on a network706

was to a very simple model of seismic activity. The model consists of a ternary tree with707

a direct cascade of loading from a top node that represents a major plate, down to smaller708

and smaller plates. This direct cascade collides with an inverse cascade of failures that709

starts with the bottom nodes and travels up to larger and larger plates, possibly all the710

way to the top, depending on the delayed effects of healing (Zaliapin, Keilis-Borok, &711

Ghil, 2003a, 2003b, and references therein).712

Clearly, to analyze extensively and systematically systems of 3L ODEs would be713

fairly prohibitive, even for a tree depth L as small as 6 or 7. Fairly surprisingly, though,714

the BDE model could be easily analyzed as a function of the loading and healing param-715

eters, yielding the three well-known seismic regimes of high (H), low (L) and intermit-716

tent (I) seismicity, as shown in Fig. 10.717
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Figure 9. Regimes of subharmonic, frequency-locked and chaotic solutions in the (µ, δs) pa-

rameter plane; here µ is the local ocean–atmosphere coupling parameter and δs is an ocean mixed

layer parameter that determines the model’s intrinsic periodicity, in the absence of the annual

cycle. Black areas represent regions where no interannual signal is present. Color scale repre-

sents the frequency ratio of the interannual oscillation to the annual cycle in regimes that are

frequency locked; e.g., 0.25 indicates one ENSO cycle every four yeas, 0.222 indicates two ENSO

cycles repeating every nine years. Chaotic regimes are plotted in grey. Courtesy of Fei-Fei Jin.

The three regimes are characterized, respectively, by the following key features:718

H: A cyclo-stationary behavior, with the maximum earthquake intensity reached on719

every cycle;720

I: A highly intermittent behavior, with irregular intervals between major earthquakes721

and high, but not necessarily maximum intensity of the latter; and722

L: A fairly low and nearly constant level of white-noise–like seismic activity overall.723

These features are present in observations (e.g., Press & Allen, 1995; Romanow-724

icz, 1993), as well as in much more detailed and sophisticated models (Ben-Zion, 2008,725

and references therein). On the whole, it is the intermittent behavior that is most widespread,726

but a particular region can also change regime over time, as parameter values that af-727

fect the collective behavior of earthquakes and faults change. This is the second numer-728

ical example of at least partial equivalence between a BDE model and a Flow.729

Network applications, II: Teleconnections and centrality. A very different network-theoretical730

setting was applied to climatic variability, and we discuss it now very succintly herein,731

following Tsonis and Swanson (2008) and Donges, Zou, Marwan, and Kurths (2009a).732

The idea that meteorological, oceanographic or coupled climatic variability might involve733

“centers of action” that are widely separated in space goes back to Hildebrandsson and734

Teisserenc de Bort (1898) and to G. Walker’s “teleconnections” between them (Walker735

& Bliss, 1932). The statistical and dynamical study of such teleconnections engaged many736

important figures in the history of these disciplines over the last century (J. Bjerknes,737

1969; Hoskins & Karoly, 1981; Wallace & Gutzler, 1981).738
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Figure 10. Three seismic regimes in the internal dynamics of the BDE model, for a tree

depth of L = 6, i.e. for n = 1093 nodes. The panels show the density ρ = ρ(t) of broken elements

in the system. See Figs. 7 and 8 in Zaliapin et al. (2003a) for loading and healing parameter

values and other details. (a) Regime H; (b) Regime I; and (c) Regime L. Note the difference in

vertical scale for the three panels. Reproduced from Zaliapin et al. (2003a) with kind permission

of Springer Science and Business Media.

One of the main approaches used by A. A. Tsonis and colleagues (e.g., Tsonis, Swan-739

son, & Kravtsov, 2007), as well as by the groups around J. Kurths (e.g., Donges, Zou,740

Marwan, & Kurths, 2009b) and around S. Havlin (e.g., Gozolchiani, Havlin, & Yamasaki,741

2011), was labeled complex networks (CNs) and essentially consists in identifying the742

strongest correlations among time series at different locations. Boers, Bookhagen, Mar-743

wan, Kurths, and Marengo (2013) review relevant climate network literature and pro-744

vide an application to the South American Monsoon System and to the spatial patterns745

associated with synchronization of extreme rainfall events; see also Boers et al. (2019)746

for a global analysis of extreme-rainfall teleconnections.747

Many of the dynamical studies of the atmosphere’s low-frequency variability that748

involve teleconnections have used the highly simplified geometry of a so-called β-channel749

with periodicity in longitude and solid walls along parallels to the north and south of750

the channel, away from both the North Pole and the Equator (Ghil & Childress, 1987;751

Pedlosky, 1987); see also Sec. 3.2 herein. Colon and Ghil (2017, and references therein)752

showed that signal propagation in networks with distinct topologies in the plane can have753

very different properties; these properties are quite likely to be entirely different, in turn,754

from those of networks on the sphere. It is the latter that are most relevant to dynam-755

ical studies on a spherical domain, whether linear (e.g., Hoskins & Karoly, 1981) or non-756

linear (e.g., Legras & Ghil, 1985). Thus BDE models in such geometrically different set-757

tings as shown in Fig. 7 here, on the plane and on the sphere, might complement or even758

guide further network-based investigations of teleconnections and climate variability.759

5.2 The fluctuation–dissipation lamppost760

Fluctuation–dissipation theory (FDT) has its roots in the classical theory of sta-761

tistical mechanics of many-particle systems in thermodynamic equilibrium. The idea is762

very simple: the system’s return to equilibrium will be the same whether the perturba-763

tion that modified its state is due to a small external force or to an internal, random fluc-764

tuation (e.g., Kubo, 1966, and references therein). We outline below the simplest cases,765
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and point to the generalization to systems out of equilibrium, such as the climate sys-766

tem or a network of seismic faults.767

Fluctuation–dissipation theory (FDT). Like so many other ideas in the physical sciences,768

FDT goes back to Einstein and his Annus mirabilis, 1905. Einstein (1905) formulated769

the problem of the Brownian motion of a large particle immersed in a fluid formed of770

many small ones as follows. The presentation here follows Ghil and Childress (1987, Sec. 10.3),771

where further details can be found. Consider the large particle as moving on a straight772

line with velocity u = u(t), subject to a random force η(t) and to linear friction −λu,773

with coefficient λ. The equation of motion is774

du = −λudt+ η(t) , (7)775

The random force η(t) is assumed to be a “white noise,” i.e., it has mean zero E [η(t;ω)] =776

0 and autocorrelation E [η(t;ω)η(t+s;ω)] = σ2δ(s), where δ(s) is a Dirac function, σ2
777

is the variance of the white-noise process, ω labels the realization of the random process,778

and E is the expectation operator, which averages over the realizations ω. Alternative779

notations for the latter are the overbar, in climate sciences, and the angle brackets, in780

quantum mechanics, E [F ] := F̄ := 〈F 〉.781

Equation (7), with η = σdW , is a linear stochastic differential equation (SDE)782

of a form that is now referred to as a Langevin equation, where W (t) is a normalized Brow-783

nian motion or Wiener process. The necessary stochastic concepts are explained at a com-784

fortable level in Dijkstra (2013, Ch. 3). Einstein’s main results are that785

E [u2] =
τ∗

2λ
, E [x2] =

τ∗

λ2
t , (8)786

with x(t) = x0 +
∫ t

0
u(s)ds the displacement of the particle and τ∗ =

∫ +∞

−∞
σ2δ(s)ds.787

There are two remarkable features in Eqs. (8) above. First, the fact that the variance788

E [x2] of the displacement is proportional to time. This leads to the mathematical the-789

ory of SDEs distinguishing between the time differential dt and the stochastic differen-790

tial dW , since ∫ t0 ds = t, while ∫ t0 dW (s) = t2; in other words, dW ∝ (dt)1/2.791

Second, the friction coefficient λ characterizes in this simple case a dissipation of792

the fluctuations, since E [u(t)] = E [u0] exp(−λt). More generally, as Kubo (1966, Se. 2)793

points out, the dissipation constant is D = limt→∞ E
[(

x(t)− x(0)
)2]

, and one gets794

µ =
D

kT
=

1

kT

∫

∞

0

E [u(t0)u(t0 + t)]dt ; (9)795

here µ = 1/λ is the mobility of the particles, T is the temperature of the thermal bath,796

and k is the Boltzmann constant. And voilà, you have the original and simplest version797

of FDT, where the acronym also stands for the fluctuation–dissipation theorem.798

FDT in general can thus be used either to infer the statistics of thermal fluctua-799

tions from the drag law (e.g., Nyquist, 1928) with known λ or the reverse (e.g., Onsager,800

1931). The former is more practical in laboratory or industrial situations, like an elec-801

tric circuit, where it is relatively easy to measure the admitttance or impedance of the802

system and we are not that interested in details of what happens at such-and-such a lo-803

cation in an individual wire. It is the latter, though, that is more useful for natural sys-804

tems, like the climate system, where we have many observations localized in time and805

space, and wish to estimate future response to as-yet-unknown forcings.806

All of the above apply, however, to systems in thermodynamic equilibrium, and most807

natural systems — including, of course, the climate system — are not. As Kubo (1966)808

notes, it is precisely for this reason that FDT has attracted much greater attention “re-809

cently” — i.e., in the middle of the 20th century — as it has been extended to “nonequi-810

librium states [and to] irreversible processes in general.”811
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FDT applications. Cecil E. (“Chuck”) Leith (1975) showed that FDT applies to a 2-D812

or QG turbulent flow with two integral invariants, kinetic energy E and enstrophy Z,813

under additional assumptions of normal distribution of the realizations and stationar-814

ity. Such flows were reviewed in Sec. 4.2 herein. Subject to the above assumptions (Leith,815

1975), the unperturbed covariance matrix U and the average response matrix G are then816

related by the FDT relation817

U(τ) = G(τ)U(0) , (10)818

where τ is the interval over which we wish to estimate the response of the system to an819

arbitrary external forcing. Noting that the regression matrix R for linear prediction of820

the stationary multivariate time series with lagged covariance matrix U equals G, one821

then gets that822

R(τ) = U(τ)U−1(0) . (11)823

Since the problem of estimating the response of the climate system to both nat-824

ural and anthropogenic forcing on multidecadal time scales is becoming scientifically, as825

well as socio-economically, more and more important, Eqs. (10, 11) present a huge ad-826

vantage over conventional methods of attacking this problem. Indeed, successive assess-827

ment reports of the Intergovernmental Panel on Climate Change (IPCC: e.g., Houghton,828

Jenkins, & Ephraums, 1990; IPCC, 2007) carried out ensembles of high-end global cli-829

mate model simulations with a number of prescribed scenarios of such forcings, but were830

limited by the enormous computational expense of such simulations.831

In comparison, the linear response of Eq. (11) can be computed, at least in a re-832

duced subspace of leading eigenvectors of the covariance matrix U — the so-called em-833

pirical orthogonal functions ((EOFs: Jolliffe & Cadima, 2016; Preisendorfer, 1988) — rel-834

atively easily. And, once that is done, changes in any prescribed scalar or vector observ-835

able, say in the globally averaged surface air temperatures or in the entire sea surface836

temperature field {Tij(t)}, can be evaluated in turn for arbitrary small forcings δf(t).837

Let Û and R̂ be the reduced versions of U and R, respectively, with {ûα} the EOFs838

of Û, and {Tα(t)} the projection of said temperature field onto the corresponding EOFs.839

Component-wise, we can write, following Leith (1975), that840

δTα(t) =

∫ t

−∞

∑

β

R̂αβδfβ(s)ds . (12)841

Once more, this is all very helpful for systems in thermodynamic equilibrium and842

normally distributed stochastic processes, which turbulent fluids and other subsystems843

of the climate system are not. Given a normal distribution of an initial state, nonlinear-844

ity will break that happy state of affairs to a greater or lesser degree.845

Generalizations to systems out of equilibrium have been developed since the early846

1950s (e.g., Callen & Welton, 1951) and many references appear in Kubo (1966). But847

a particularly fruitful change in point of view was provided by D. Ruelle (1998, 2009),848

who considered the problem in the setting of dynamical systems theory, rather than that849

of statistical mechanics. The former point of view is justified in this context by the so-850

called chaotic hypothesis (e.g., Gallavotti & Cohen, 1995), which states, in rough terms,851

that chaotic systems with many degrees of freedom possess a physically relevant invari-852

ant measure ν such that averaging with respect to this measure is equivalent to averag-853

ing in time over the system’s attractor. This property suffices for using the measure ν854

in evaluating changes in any observable of the system with respect to any small pertur-855

bation, and we return to this point in Sec. 5.3 below.856

In the footsteps of Leith (1975), several applications of FDT to climate (e.g., Abramov857

& Majda, 2008; Gritsun & Branstator, 2007) and ocean (Wirth, 2018) models have been858

carried out. It is V. Lucarini and colleagues, though, who have systematically applied859
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Ruelle’s linear response theory to generalize both equilibrium and transient climate sen-860

sitivity (Lucarini, Ragone, & Lunkeit, 2016; Ragone, Lucarini, & Lunkeit, 2015); they861

also obtained the resonant response and its spatial patterns in one or more frequency862

bands for time-dependent forcing (Lucarini et al., 2014, and references therein).863

The study of resonant response is made possible by the study of the susceptibil-864

ity operator S̃, which is given by the Fourier transform of the linear response operator865

G̃. The latter operator requires a generalization of the response matrix G defined in Eq. (10)866

to the non-equilibrium setting, for which we refer to the work of Ruelle (1998, 2009) and867

of Lucarini et al. (2014).868

5.3 The random dynamical systems (RDS) lamppost869

In Sec. 3, we have considered mainly the deterministically nonlinear approach to870

apprehend the complexities of geosciences in general and climate variability in partic-871

ular. In the previous subsection, we have also hinted, via the Langevin equation (7), at872

the complementary approach of stochastically linear dynamics to climate variability and873

change, due largely to K. Hasselmann (1976). Imkeller and Von Storch (2001, and ref-874

erences therein) give a broader view of this approach. In the present subsection, we briefly875

outline a promising unification of the two complementary approaches to climate variabil-876

ity and change, via the theory of random dynamical systems (RDS).877

The theory of nonautonomous (NDS) and random (RDS) dynamical systems. As a re-878

sult of sensitive dependence on initial data and on parameters, numerical weather fore-879

casts, as well as climate projections, are both expressed these days in probabilistic terms.880

It is, in fact, more convenient — and becoming more and more necessary — to rely on881

a model’s (or set of models’) probability density function (PDF) rather than on its in-882

dividual, pointwise simulations or predictions.883

We summarize here results on the surprisingly complex statistical structure that884

characterizes stochastic nonlinear systems. This complex structure does provide mean-885

ingful physical information that is not described by the PDF alone; it lives on a random886

attractor, which extends the concepts of a strange attractor and of the invariant mea-887

sure that is supported by it, from the deterministic to the stochastic framework. It is888

this extension that we describe, in the simplest possible terms, forthwith.889

On the road to including random effects, one needs to realize first that the climate890

system, as well as any of its subsystems, is not closed: it exchanges energy, mass and mo-891

mentum with its surroundings, whether other subsystems or the interplanetary space and892

the solid earth. Typical applications of dynamical systems theory to climate variability893

so far have only taken into account exchanges that are constant in time, thus keeping894

the model — whether governed by ODEs, PDEs or other differential equations — au-895

tonomous; i.e., the models had coefficients and forcings that were constant in time.896

Succinctly, one can write such a system as897

Ẋ = f(X;µ) , (13)898

where X now may stand for any climate or other geophysical field, while f is a smooth899

function of X and of the vector of parameters µ, but does not depend explicitly on time.900

Being autonomous greatly facilitated the analysis of a model’s solutions. For instance,901

two distinct trajectories, X1(t) and X2(t), of a well-behaved, smooth autonomous sys-902

tem cannot pass through the same point in phase space, which helps describe the sys-903

tem’s phase portrait. So does the fact that we only need to consider the behavior of so-904

lutions X(t) as we let time t tend to +∞: the resulting sets of points are — possibly mul-905

tiple — stationary solutions, periodic solutions, and chaotic sets.906

We know only too well, however, that the seasonal cycle plays a key role in climate
variability on many time scales, while orbital forcing is crucial on the Quaternary time
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scales of many millennia, and now anthropogenic forcing is of utmost importance on in-
terdecadal time scales. How can one take into account such time-dependent forcings, and
analyze the nonautonomous systems, written succinctly as

Ẋ = f(X, t;µ) , (14)

to which they give rise? In Eq. (14), the dependence of f on t may be periodic, f(X, t+907

P ) = f(X, t), as in various ENSO models, with P = 12 months, or monotone, f(X, t+908

τ) ≥ f(X, t) for τ ≥ 0, as in studying scenarios of anthropogenic climate forcing.909

To illustrate the fundamental character of the distinction between (13) and (14),910

consider the simple scalar version of these two equations:911

Ẋ = −βX , (15a)912

Ẋ = −βX + γt , (15b)913
914

respectively. We assume that both systems are dissipative, i.e. β > 0, and that the forc-915

ing is monotone increasing, γ ≥ 0, as would be the case for anthropogenic forcing in916

the industrial era. Lorenz (1963a) pointed out the key role of dissipativity in giving rise917

to strange, but attracting solution behavior, while Ghil and Childress (1987, Sec. 5.4)918

emphasized its importance and pervasive character in climate dynamics. Clearly the only919

attractor for the solutions of Eq. (15a), given any initial point X(0) = X0, is the fixed920

point X = 0, attained as t → +∞.921

For the nonautonomous case of Eq. (15b), though, this forward-in-time approach922

yields blow-up as t → +∞, for any initial point. To make sense of what happens in the923

case of time-dependent forcing, one introduces instead the pullback approach, in which924

solutions are allowed to still depend on the time t at which we observe them, but also925

on a time s from which the solution is started, X(s) = X0; presumably s ≪ t. With926

this little change of approach, one can easily verify that927

|X(s, t;X0)−A(t)| → 0 as s → −∞ , (16)928

for all t and X0, where the pullback attractor (PBA) A(t) is given explicitly by929

A(t) =
γ(t− 1/β)

β
. (17)930

We thus obtain, in this pullback sense, the intuitively obvious result that the solutions,931

if started far enough in the past, all approach the time-dependent attractor set A(t), which932

grows linearly in time and thus follows the linear forcing.933

For the more complicated case of RDSs, where the random attractor A depends934

on the particular realization ω of the driving noise, A = A(t;ω), we refer to Chekroun,935

Simonnet, and Ghil (2011); Ghil, Chekroun, and Simonnet (2008) and Dijkstra (2013,936

Ch. 4). The beauty and complexity of the results is illustrated herein by four snapshots937

at sucessive times {t1, . . . , t4} for the Lorenz (1963a) model perturbed by multiplicative938

noise; see Fig. 11. Note that the support of the invariant measure ν(t;ω) may change939

quite abruptly, from time t to time t+∆t; see the related short video given as Supple-940

mentary Information in Chekroun et al. (2011), as well as at https://vimeo.com/240039610.941

This video shows more clearly than a simple sequence of snapshots the interaction be-942

tween the nonlinearly deterministic dynamics and the stochastic perturbations.943

NDS and RDS applications. We outline here briefly an application of the theory of nonau-944

tonomous dynamical systems (NDSs) to the so-called double-gyre problem of the wind-945

driven ocean circulation, following Pierini, Ghil, and Chekroun (2016) and Ghil (2017).946

The large-scale, near-surface flow of the mid-latitude oceans is dominated by the pres-947

ence of a larger, anticyclonic and a smaller, cyclonic gyre. The two gyres share the east-948

ward extension of western boundary currents, such as the Gulf Stream or Kuroshio, and949
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Figure 11. Four snapshots of the stochastically perturbed Lorenz (1963a) model’s random

attractor A(ω) and the invariant measure ν(ω) supported on it. The model can be written com-

ponentwise as dXi = f(X;µ)dt + σXidW, i = 1, 2, 3, with X ≡ (X1, X2, X3) ≡ (X,Y, Z)

and the parameter values µ equal to the classical ones — normalized Rayleigh number r = 28,

Prandtl number Pr = 10, and normalized wave number b = 8/3 — while the noise intensity is

σ = 0.5 and the time step is δt = 5 · 10−3. The color bar used is on a log-scale and quantifies

the probability to end up in a particular region of phase space; shown is a projection of the 3-D

phase space (X,Y, Z) onto the (X,Z)-plane. Notice the complex, interlaced filament structures

between highly (yellow) and moderately (red) populated regions. The time interval ∆t between

two successive snapshots — moving from left to right and from top to bottom — is ∆t = 0.0875.

Weakly populated regions cover an important part of the random attractor and are, in turn, en-

tangled with regions that have near-zero probability (black). [After Chekroun et al. (2011) with

permission from Elsevier.]

are induced by the shear in the winds that cross the respective ocean basins. Results for950

this problem in the presence of a surface wind stress that is constant in time were re-951

viewed briefly in Sec. 3.2; see, in particular, Figs. 1 and 2 there.952

The model domain used by Pierini et al. (2016) is rectangular, like those in Sec. 3.2,953

and the model equations are based on the equivalent barotropic QG vorticity equation954

of Simonnet et al. (2005). This PDE is projected here onto four modes that take into955

account the presence of a western boundary current by including an exponentially de-956

caying factor for the streamfunction field, as suggested by Jiang et al. (1995). The forc-957

ing is deterministic, aperiodic, and dominated by interdecadal variability.958

The autonomous system exhibits a global bifurcation associated with a homoclinic959

orbit, like the one illustrated in Fig. 2 herein; it occurs at the value γ = 1.0 for the pa-960

rameter γ that scales the intensity of the forcing. Pierini et al. (2016, Appendix) have961

rigorously demonstrated the existence of a global PBA for the time-dependent forcing962

case in the weakly dissipative, nonlinear model under discussion, based on general re-963

sults for nonautonomous dynamical systems (Carvalho, Langa, & Robinson, 2012; Kloe-964

den & Rasmussen, 2011).965

Numerically, though, this unique global attractor seems to possess two separate lo-966

cal PBAs, as apparent from Fig. 12. Panels (a) and (b) in the figure refer to parame-967
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ter values that correspond to subcritical vs. supercritical values of γ in the autonomous968

model, respectively. While formula (16) seems to require an infinite pullback time, it turns969

out that convergence to the PBAs in this model only takes about 15 yr.970

The mean normalized distance ∆ plotted in the figure is defined as ∆ = 〈δn〉T̃ .971

Here δt is the distance, at time t, between two trajectories of the model that were a dis-972

tance δ0 apart at time t = t0, and the normalized distance δn = δt/δ0 is averaged over973

the whole forward time integration T̃ of the available trajectories, with T̃ = 400 yr.

Figure 12. Mean normalized distance ∆ for 15 000 trajectories of the double-gyre ocean

model: (a) γ = 0.96, and (b) γ = 1.1. Reproduced from Pierini et al. (2016), with the permission

of the American Meteorological Society.

974

The maps of ∆ in Fig. 12 reveal large chaotic regions where δn ≫ 1 on average975

(warm colors) but also non-chaotic regions, in which σ ≤ 1 (blue) and thus initially close976

trajectories do remain close on average. The rectangular regions in the two panels that977

are labeled by letters A and B and by numbers 1−4 correspond to subdomains of the978

initial set Γ; see Pierini et al. (2016, Sec. 5). The numerical evidence in Fig. 12 suggests979

that the boundary between the two types of local attractors has fractal properties.980

In the autonomous context, the coexistence of topologically distinct local attrac-981

tors is well known in the climate sciences (Dijkstra, 2013; Dijkstra & Ghil, 2005; Ghil982

& Childress, 1987; Simonnet et al., 2005, and references therein). The coexistence of lo-983

cal PBAs with chaotic vs. non-chaotic characteristics, within a unique global PBA, as984

illustrated by Fig. 12 here, seems to be novel, at least in the geosciences literature.985

Climate sensitivity and Wasserstein distance. Tamás Tél and associates (Bódai, Károlyi,986

& Tél, 2011; Bódai & Tél, 2012; Drótos, Bódai, & Tél, 2015) have applied NDS and RDS987

concepts and methods to climate modeling, while emphasizing the distinctions and ad-988

vantages of the pullback point of view with respect to the much more common one of989

ensemble simulations (Houghton et al., 1990; IPCC, 2007, and references therein). The-990

oretically speaking, the latter practice merely approximates the PDF that would be ob-991

tained by the forward-in-time solution of the Fokker-Planck equation associated with a992

given model, a solution that is impossible to obtain for high-dimensional climate mod-993

els (Leith, 1974). An important point raised by the work of these authors is that, aside994

from the computational difficulties with ensemble size and the PDF approximation, the995
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finite-time averages obtained by the ensemble method do not reflect correctly the changes996

in time of the climate system’s statistics in a transient world.997

Following up on the work of Lucarini and colleagues (e.g., Lucarini et al., 2014) in998

applying linear response theory to climate change and on that of Tél and associates above,999

Ghil (2015, 2017) proposed using the Wasserstein or “earth mover’s” distance ∆W to gen-1000

eralize the concept of equilibrium climate sensitivity; ∆Wν is the distance between two1001

invariant measures of equal mass, ν1 and ν2, on a metric space, like an n-dimensional1002

Euclidean space (Dobrushin, 1970; Kantorovich, 2006; Monge, 1781; Wasserstein, 1969).1003

Roughly speaking, and dropping the subscript ‘W’, ∆ν represents the total work needed1004

to move the “dirt” (i.e., the measure) from a trench you are digging to another one you1005

are filling, over the distance between the two trenches.
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x t
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(a) (b) (c)

Figure 13. Climate sensitivity (a) for an equilibrium model; (b) for a nonequilibrium, oscil-

latory model; and (c) for a nonequilibrium, chaotic model, including possibly random pertur-

bations. As a forcing (atmospheric CO2 concentration, say, dash-dotted line) changes suddenly,

global temperature (light solid) undergoes a transition: in panel (a) only the mean temperature

changes; in panel (b) the mean adjusts, as it does in panel (a), but the period, amplitude and

phase of the oscillation can also decrease, increase or stay the same, while in panel (c) the en-

tire intrinsic variability changes as well. From Ghil (2017), with permission from the American

Institute of Mathematical Sciences.

1006

Equilibrium climate sensitivity γe is usually defined as γe = ∂T̄ /∂µ, where T̄ is1007

the globally and seasonally averaged surface air temperature and µ is a parameter, such1008

as the suitably normalized incoming net radiation. It was introduced by Charney et al.1009

(1979) and used extensively by the IPCC’s first three assessment reports (e.g., Houghton1010

et al., 1990). The associated evolution of T̄ (t) for a jump in CO2 concentration in a scalar1011

linear model is illustrated in Fig. 13(a).1012

This picture is clearly oversimplified, given the complex evolution of temperatures1013

in the historical record. Figure 13(b) illustrates T̄ (t) in a world in which ENSO would1014

be purely periodic, and Fig. 13(c) illustrates schematically the even more realistic case1015

of temperature evolution in a deterministically chaotic, turbulent and stochastically per-1016

turbed system. For such a system, a better definition of climate sensitivity would be1017

γcs =
∆ν

∆µ
; (18)1018

here {νi = νi(µi) : i = 1, 2} can be the invariant measures on a system’s strange at-1019

tractor, in the autonomous case, or its PBA, whether deterministically nonautonomous1020

or random, and {νi = νi(µi) : i = 1, 2} are the corresponding values of a parameter,1021

such as the forcing parameter γ in the Pierini et al. (2016) model in Fig. 12. In this sense,1022

one can think of Eq. (18) as a generalization of the linear response in Eq. (12).1023
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The Wasserstein distance ∆(ν1, ν2) between two measures ν1 and ν1 on a metric1024

space X is defined as1025

∆(ν1, ν2) = inf E [m(ξ, η)] ; (19)1026

here m is a metric, the infimum is taken over all possible pairs of random variables ξ and1027

η that have the distributions ν1 and ν2, respectively, and E is the corresponding expec-1028

tation. When X = R is just the real line and m the usual Euclidean metric, let Q1 and1029

Q2 be the PDFs of the absolutely continuous measures ν1 and ν2. Then1030

∆W(Q1, Q2) =

∫

|G1(x)−G2(x)|dx , (20)1031

where G1 and G2 are the cumulative distribution functions of the two PDFs Q1 and Q2,1032

respectively (Vallender, 1974).1033

In general, though, the shape of the two trenches as well as the depth along the trench1034

— i.e., both the support of the measure and its density — can differ. Chekroun, Ghil,1035

and Neelin (2018) have described a so-called critical transition of this type — essentially1036

a generalized tipping point — for a simple ENSO model with a seasonal cycle. In such1037

a case, the actual distance calculations require some model reduction to a smaller phase1038

space (e.g., Kondrashov, Chekroun, & Ghil, 2015, and references therein) and they have1039

to rely on more advanced methodologies in the reduced space (e.g., Villani, 2009).1040

Robin, Yiou, and Naveau (2017) have argued that the usual quadratic norms used1041

to judge distance in the phase space of climate models do not provide an easy interpre-1042

tation of the dynamics on the attractor. They calculated the Wasserstein distance be-1043

tween the PBAs of the Lorenz (1984) model subject to summer vs. winter forcings and1044

showed how this metric does provide a more intuitive discrimination between the two.1045

Vissio and Lucarini (2018) evaluated the performance of a stochastic parametriza-1046

tion by using the Wasserstein distance to measure the difference between the behavior1047

of a full fast–slow system and that of a reduced system in which the parametrization had1048

replaced the fast subsystem. In their setting, the Lorenz (1984) model governed the slow1049

behavior and the Lorenz (1963a) model the fast one. Applying the Wouters and Lucarini1050

(2016) parametrization to the fast component, they showed that “Wasserstein distance1051

provides a robust tool for assessing the quality of the parametrization, and that mean-1052

ingful results can be obtained when considering [a very coarse-grained] representation1053

of the phase space.”1054

6 The Way Ahead: Prediction and Prediction1055

There are two important meanings of “prediction” in the physical sciences. First,1056

there is the relatively straightforward meaning of predicting in time. There are many other1057

areas of science in which one needs or, at least, wishes to predict: the evolution of an in-1058

dividual illness or of an epidemic, that of human population numbers, the outcomes of1059

national, ethnic or class conflicts.1060

In the geosciences, this kind of prediction is clearly of paramount importance: pre-1061

dicting routine weather progress, as well as extreme weather events, like a hurricane land-1062

fall or a flash flood; earthquakes, volcanic erruptions; global and regional temperatures1063

and precipitations many years from now. In all these cases, the usefulness of detailed,1064

physics-based models is largely predicated on the understanding of the phenomena and1065

processes involved. Thus, good predictions validate the knowledge that entered a spe-1066

cific model or class of models, while unsatisfactory ones give a sense of the distance still1067

ahead in the field of interest.1068

Second, there is the sense in which a theoretical model predicts a phenomenon that1069

had not been observed at the time of the prediction. The paradigmatic example of this1070

kind of prediction is the observational confirmation (Dyson, Eddington, & Davidson, 1920)1071
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of the Einstein (1916) prediction of light rays’ bending in the gravity field of the Sun.1072

More precisely, the 1919 solar eclipse confirmed that the bending of starlight passing near1073

the Sun was about twice as much as predicted by using Newtonian gravity alone. This1074

kind of prediction tends to be rare, and rather undervalued in the geosciences.1075

Real-time forecasting. It is clear that numerical weather prediction (NWP) skill has steadily1076

improved over the years, since its post-World War II beginnings in the mid-1950s (Thomp-1077

son, 1961). Operational forecasts with good local accuracy in surface air temperatures1078

for up to 3–5 days are fairly routine, although precipitation forecasts, with their greater1079

dependence on more poorly resolved vertical velocities are typically less accurate.1080

Global forecasts of atmospheric fields on larger scales are much of the time rather1081

accurate up to ten days, thanks to improvements in the physical parametrizations of subgrid-1082

scale phenomena and the assimilation of massive amounts of remote-sensing data, along1083

with the substantial increase of spatial resolution due to huge increases in computing power1084

and storage capacity.1085

It appears that the NWP situation is well in hand (e.g., Kalnay, 2003), although1086

there is still room for improvement with respect to theoretical limits of predictability,1087

and substantial misses still occur. A better understanding of the mechanisms associated1088

with the onset, maintenance and termination of blocking, as discussed in Sec. 3.2 herein1089

could help. And so could a better understanding of the interaction between smaller and1090

larger scales, as reviewed in Palmer and Williams (2009) and in Sec. 4.2 here.1091

John von Neumann’s role in starting these modern developments in NWP is well1092

known, cf. Charney, Fjørtoft, and von Neumann (1950). What is a little less so is his1093

longer-range outlook on the three levels of difficulty in understanding and predicting at-1094

mospheric and climate phenomena (Von Neumann, 1955): (a) short-term NWP is the1095

easiest, since it represents a pure initial-value problem, as formulated by V. Bjerknes (1904)1096

and L. F. Richardson (1922); (b) long-term climate prediction is next easiest, since it cor-1097

responds to studying the system’s asymptotic behavior, i.e., the possible attractors and1098

the statistical properties thereof (Dijkstra, 2013; Dijkstra & Ghil, 2005; Ghil & Childress,1099

1987); and (c) intermediate-term prediction is hardest, since both the initial data and1100

the parameter values are important.1101

In fact, long-term climate prediction is a bit harder than Von Neumann envisaged1102

at the time, because the forcing changes in time, too, as discussed here in Sec. 5.3. Con-1103

cerning the intermediate term, matters tend to get more and more difficult as the pre-1104

diction horizon is extended further and further, because additional subsystems, with longer1105

time scales and additional evolution mechanisms have to be accounted for (Ghil, 2001).1106

Thus, subseasonal-to-seasonal prediction is receiving increased attention and is mak-1107

ing good progress (Robertson & Vitart, 2018, and references therein). Interannual cli-1108

mate variability being dominated by ENSO, its prediction concentrates on the coupled1109

ocean–atmosphere system in the Tropical Pacific and the teleconnection therefrom to the1110

extratropics. ENSO prediction has made great strides, with the emphasis shifting from1111

statistical and stochastic-dynamic models in the 1990s to high-end climate models in the1112

last decade; compare, for instance, the assessments of real-time ENSO forecast skill in1113

Barnston, Glantz, and He (1999) vs. Barnston, Tippett, Heureux, Li, and DeWitt (2012).1114

And interdecadal climate prediction is becoming the hardest problem of the climate sci-1115

ences, and one of humanity’s hardest ones as well.1116

On the other hand, there are areas of the geosciences in which even the possibil-1117

ity of prediction is viewed with suspicion, e.g., earthquake prediction (Geller, Jackson,1118

Kagan, & Mulargia, 1997). In spite of the sustained scepticism, the approach outlined1119

by Zaliapin et al. (2003b) might deserve some attention. A key obstacle to prediction1120

is clearly the relative rarity of large earthquakes and of long and accurate earthquake1121

catalogs. One way to extend the record might be to use a model, albeit a more detailed1122
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and complete one than the ternary-tree model mentioned here in Sec. 5.1, to generate1123

additional, synthetic catalogs of arbitrary length, which agree in their statistics with ex-1124

isting catalogs of real sequences, as far as the latter go. And then proceed from there.1125

The situation with respect to predicting volcanic eruptions is somewhat less con-1126

troversial than for earthquake prediction but still far from being as routine as in NWP.1127

Some volcanoes, like Mt. Etna in Sicily, seem to behave fairly periodically — like the1128

synthetic earthquakes in Fig. 10(a) of Sec. 5.1 — and their infrasound rumblings have1129

been used fairly successfully for automated, real-time forecasts (e.g., Hall, 2018). Oth-1130

ers behave more irregularly, like in Fig. 10(b), but still may exhibit characteristic relax-1131

ation oscillations of their magma chambers, which could lead to a certain degree of pre-1132

dictability (Walwer, Ghil, & Calais, 2019).1133

Predicting new phenomena. The typical way that theory, observation in the field or in1134

the laboratory, and numerical simulation interact in the geosciences is: (i) observation1135

in the field, be it the atmosphere, ocean or solid Earth, in situ or remotely; (ii) analy-1136

sis and description of the observations; and (iii) attempts at explanation of the observed1137

phenomena via competing theories and numerical simulations. Moreover, with increas-1138

ing computer power and storage capacity, Ockham’s razor is neglected more and more,1139

preference being given to high-end models with massive details over the simpler and more1140

easily understandable models.1141

In fact, philosophical objections do exist to the parsimony principle and it, too, is1142

not infallible. Still, it is simpler to put the Sun at, or near, the center of the solar sys-1143

tem than to keep adding epicycles to the geocentric system (e.g., Kuhn, 1962). The main1144

point of applying the principle is that simpler theories cover more observations and should1145

therefore be easier to falsify, in the terminology of Karl Popper (2005), i.e., as the dic-1146

tionary antonym of “verify” and synonym of “disprove.” Recall that, according to Pop-1147

per (2005), to be scientific, a statement has to be falsifiable.1148

A way of using more systematically parsimonious models in the geosciences is that1149

of model hierarchies. Introduced into the climate sciences by Schneider and Dickinson1150

(1974), they extend from simple, low-order conceptual models, through intermediate ones1151

with one or more space dimensions, all the way to high-end ones that encompass many1152

processes and have high 3-D spatial resolution. Rather than hurling epithets of “toy”1153

models towards one end of the hierarchy and “overkill” towards the other, it is impor-1154

tant to recognize the role of the entire hierarchy in developing ideas, concepts and tools,1155

on the one hand, and testing them against observations, on the other.1156

More specifically, Held (2005) has argued for the need to use simpler models in or-1157

der to understand many aspects of the simulations produced by the more detailed ones.1158

The author of this paper and his colleagues (e.g., Dijkstra & Ghil, 2005; Ghil, 2001; Ghil1159

& Robertson, 2000) have argued that successive bifurcations can play the role of Ari-1160

adne’s thread across the rungs of this hierarchy. An illustration of this role in the case1161

of the double-gyre problem for the wind-driven ocean circulation was given in Sec. 3.2.1162

It is important also to remember that when a simpler model and a more detailed1163

disagree, it is not always the former that is wrong; i.e., adding details does not always1164

add realism. Ghil (2015) reviewed a situation of this type, based on the work of Dijk-1165

stra (2007). Inspired by the work of Stommel (1961), a series of papers using THC mod-1166

els from simple to intermediate and beyond, had obtained bistability of the MOC, es-1167

pecially in situations mimicking the Atlantic Ocean; see Dijkstra and Ghil (2005, Sec. 3)1168

and Dijkstra (2005, Ch. 6) for a review.1169

High-end ocean models used in the third Coupled-Model Intercomparison Program1170

(CMIP3) — on which the conclusions of the IPCC’s Fourth Assessment Report (IPCC,1171

2007) were based — obtained, however, results that contradicted this bistability. As shown1172

by Dijkstra (2007), observations of the evaporation-minus-precipitation fluxes over the1173
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Atlantic, between the southern tips of Greenland and Africa, tend to agree better with1174

the simpler models than with the CMIP3 ones; and it is this better agreement that sup-1175

ports the bistability results of the former, simpler models.1176

One more interesting story of bistability will shed further light on the correct use1177

of a model hierarchy, as well as on that of nonlinearity in the geosciences in general. En-1178

ergy balance models (EBMs) are fairly simple climate models that emphasize the role1179

of incoming and outgoing radiative fluxes in determining the atmosphere’s temperature1180

field, while parameterizing the role of the velocity field in the energy fluxes (Budyko, 1969;1181

Sellers, 1969). Studies of the number and stability of the stationary solutions of these1182

models in the early and mid-1970s showed that — in spite of various differences in their1183

physical formulation and mathematical details (e.g., Ghil & Childress, 1987, Table 10.1)1184

— they exhibited two stable stationary solutions separated in phase space by an unsta-1185

ble one (Ghil, 1976; Held & Suarez, 1974; North, Howard, Pollard, & Wielicki, 1979).1186

The warmer of the two stable fixed points could be identified with something like1187

the present climate or, more generally, an interglacial one. The colder one corresponds1188

to an ice-covered planet and was labeled at the time a “deep freeze.” The unstable fixed1189

point (e.g., Bódai, Lucarini, Lunkeit, & Boschi, 2015) has been explored more recently1190

by using an edge tracking algorithm (Lucarini & Bódai, 2017).1191

The presence of the saddle-node bifurcation between the interglacial climate and1192

the unstable one was promptly confirmed by the results of a simple general circulation1193

model (Wetherald & Manabe, 1975, Fig. 5). In fact, the authors of the latter study com-1194

mented that “As stated in the Introduction, it is not, however, reasonable to conclude1195

that the present results are more reliable than the results from the one-dimensional stud-1196

ies mentioned above simply because our model treats the effect of transport explicitly1197

rather than by parameterization. [...] Nevertheless, it seems to be significant that both1198

the one-dimensional and three-dimensional models yields qualitatively similar results in1199

many respects.”1200

In spite of this encouraging confirmation, the fact that a sharp global temperature1201

drop by tens of degrees Celsius could occur given very small insolation changes was not1202

taken seriously for quite a while by many climate scientists. The thinking went that the1203

Sun is a main sequence star and its radiative flux had thus been larger in the past and1204

not smaller, as required by the models for a deep freeze to set in. More recently, though,1205

considerable evidence has accumulated for Neoproterozoic (1 000–543 Myr ago) glacia-1206

tions at low latitudes, which suggest a completely glaciated Earth, labeled “snowball Earth”1207

(e.g., Hoffman, Kaufman, Halverson, & Schrag, 1998).1208

Considerable disagreement persists as to whether the Neoproterozoic glaciation was1209

total or partial, a slushball rather than a snowball; it seems, moreover, to have consisted1210

of ups and downs in temperatures and ice cover, somewhat like the Quaternary glacia-1211

tion cycles, only longer and stronger. Even so, the much greater difficulty in getting out1212

of a glaciated Earth than into it (e.g., Crowley, Hyde, & Peltier, 2001; Pierrehumbert,1213

2004) is in substantial agreement with early EBM results on the hysteresis cycle of tran-1214

sition between the high- and low-temperature solution branches (e.g., Ghil, 2001, Fig. 1).1215

Finally, atmospheric composition and life clearly played a role not accounted for in the1216

early work on EBMs or Quaternary glaciations (Rothman, Hayes, & Summons, 2003;1217

Tziperman, Halevy, Johnston, Knoll, & Schrag, 2011, and references therein).1218

To summarize, simple models can offer predictive insights into phenomena only dis-1219

covered after such a prediction. And nonlinear concepts and methods — applied con-1220

sistently across a hierarchy of models — can help disentangle the additional complex-1221

ities to be explained once the phenomena have been identified in observations and de-1222

scribed in greater detail.1223
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7 Coda1224

We have visited several lampposts that have shed a little light — over the last cen-1225

tury, and especially its more recent decades — into the darkness of phenomena in the1226

geosciences in general, and into Earth’s fluid envelopes and the climate sciences more1227

specifically. In each case, we have tried to outline the basic ideas and methods that fuel1228

and focus this light, and to give a few examples of successful application of the theoret-1229

ical ingredients. It is time to conclude with the hope that more lampposts will spring1230

up over the coming century, and that the overlaps between pairs and triplets of circles1231

of light will provide even greater clarity.1232
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A Acronyms1249

Table A.1. Acronymsa

Acronym Meaning

BDE Boolean delay equation
CA Cellular automaton (sing.) or automata (pl.)
CNs Complex networks
DDE Delay differential equation
ER Erdős–Rényi (network)
FDE Functional differential equation
GFD Geophysical fluid dynamics
IPCC International Panel on Climate Change
NAO North Atlantic Oscillation
NDS Nonautonomous dynamical system
MHD Magnetohydrodynamics
O∆E Ordinary difference equation
ODE Ordinary differential equation
P–map Poincaré map
P∆E Partial difference equation
PDE Partial differential equation
PSA Pacific South American (pattern)
RA Random acyclic (network)
RDS Random dynamical system

aList of acronyms.
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Bódai, T., Lucarini, V., Lunkeit, F., & Boschi, R. (2015). Global instability in the1292

Ghil-Sellers model. Climate Dynamics, 44 , 3361–3381.1293
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l’Académie Royale des Sciences de Paris , 666–704.1639

Mullhaupt, A. P. (1984). Boolean Delay Equations: A Class of Semidiscrete Dynam-1640

ical Systems (Unpublished doctoral dissertation). New York University, New1641

York, NY. (386 pages)1642

Namias, J. (1950). The index cycle and its role in the general circulation. Journal of1643

Meteorology , 7 , 130–139.1644

Namias, J. (1968). Long-range weather forecasting: History, current status and out-1645

look. Bulletin of the American Meteorological Society , 49 , 438–470.1646

Nastrom, G. D., & Gage, K. S. (1985). A climatology of atmospheric wavenumber1647

spectra of wind and temperature observed by commercial aircraft. Journal of1648

the Atmospheric Sciences, 42 (9), 950–960.1649

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.1650

Nicolis, C., & Nicolis, G. (1984). Is there a climatic attractor? Nature, 311 , 529–1651

532.1652

North, G. R., Howard, L., Pollard, D., & Wielicki, B. (1979). Variational formu-1653

lation of Budyko-Sellers climate models. Journal of the Atmospheric Sciences ,1654

36 , 255–259.1655

Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Physical Re-1656

view , 32 (1), 110–113.1657

Onsager, L. (1931). Reciprocal relations in irreversible processes. I. Physical Review ,1658

37 (4), 405–426.1659

Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order-1660

disorder transition. Physical Review , 65 (3-4), 117.1661

Palmer, T. N., & Williams, P. (Eds.). (2009). Stochastic Physics and Climate Mod-1662

elling. Cambridge, UK: Cambridge University Press.1663

Pedlosky, J. (1987). Geophysical Fluid Dynamics (2nd ed.). Berlin/Heidelberg:1664

Springer Science & Business Media.1665

Peitgen, H.-O., & Richter, P. H. (2013). The Beauty of Fractals: Images of Complex1666

Dynamical Systems. Springer Science & Business Media.1667

Pierini, S., Ghil, M., & Chekroun, M. D. (2016). Exploring the pullback attractors1668

of a low-order quasigeostrophic ocean model: The deterministic case. Journal1669

of Climate, 29 (11), 4185–4202.1670

Pierrehumbert, R. T. (2004). High levels of atmospheric carbon dioxide necessary for1671

the termination of global glaciation. Nature, 429 (6992), 646–649. doi: 10.1038/1672

nature026401673

Popper, K. (2005). The Logic of Scientific Discovery. Routledge. (Original German:1674

Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft,1675

1935; first English edition 1959.)1676

Pouquet, A., Marino, R., Mininni, P. D., & Rosenberg, D. (2017). Dual constant-1677

flux energy cascades to both large scales and small scales. Physics of Fluids ,1678

29 (11), 111108. doi: 10.1063/1.50007301679

Pouquet, A., Stawarz, J. E., Rosenberg, D., & Marino, R. (2019). Helicity dynamics,1680

inverse and bi-directional cascades in fluid and magnetohydrodynamic turbu-1681

lence: A brief review. Earth and Space Sciences , in press, 29 pages. (in this1682

issue)1683

Preisendorfer, R. W. (1988). Principal Component Analysis in Meteorology and1684

Oceanography. Amsterdam, The Netherlands: Elsevier.1685

Press, F., & Allen, C. (1995). Patterns of seismic release in the southern California1686

region. Journal of Geophysical Research: Solid Earth, 100 (B4), 6421–6430.1687

Ragone, F., Lucarini, V., & Lunkeit, F. (2015). A new framework for climate sen-1688

sitivity and prediction: a modelling perspective. Climate Dynamics, 46 (5-6),1689

–43–



manuscript submitted to Earth and Space Science

1459–1471. doi: 10.1007/s00382-015-2657-31690

Rayleigh, J. W. S. (1916). LIX. On the convective currents in a horizontal layer1691

of fluid when the higher temperature is on the under side. The London,1692

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32 ,1693

529–546. doi: 10.1080/147864416086356021694

Rhines, P. B. (1979). Geostrophic turbulence. Annual Review of Fluid Mechanics ,1695

11 (1), 401–441.1696

Richardson, L. F. (1922). Weather Prediction by Numerical Process. Cambridge,1697

UK: Cambridge University Press.1698

Richardson, L. F. (1961). The problem of contiguity: an appendix to statistics of1699

deadly quarrels. General System Yearbook , 6 , 139–187.1700

Robertson, A. W., & Vitart, F. (Eds.). (2018). The Gap Between Weather and Cli-1701

mate Forecasting: Sub-Seasonal to Seasonal Prediction. Elsevier.1702

Robin, Y., Yiou, P., & Naveau, P. (2017). Detecting changes in forced climate at-1703

tractors with Wasserstein distance. Nonlinear Processes in Geophysics, 24 (3),1704

393–405.1705

Romanowicz, B. (1993). Spatiotemporal patterns in the energy release of great1706

earthquakes. Science, 260 (5116), 1923–1926.1707

Rothman, D. H., Hayes, J. M., & Summons, R. E. (2003, jun). Dynamics of the1708

Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences,1709

100 (14), 8124–8129. doi: 10.1073/pnas.08324391001710

Ruelle, D. (1990). Deterministic chaos: The science and the fiction. Proceedings of1711

the Royal Society of London, 427A, 241–248.1712

Ruelle, D. (1998). Nonequilibrium statistical mechanics near equilibrium: computing1713

higher-order terms. Nonlinearity , 11 (1), 5–18.1714

Ruelle, D. (2009). A review of linear response theory for general differentiable dy-1715

namical systems. Nonlinearity , 22 , 855–870.1716

Sagan, H. (2012). Space-Filling Curves. Springer Science & Business Media.1717

Sakuma, H., & Ghil, M. (1991). Stability of propagating modons for small-amplitude1718

perturbations. Physics of Fluids A: Fluid Dynamics , 3 (3), 408–414.1719

Salmon, R. (1998). Lectures on Geophysical Fluid Dynamics. Oxford University1720

Press.1721

Saltzman, B. (1962). Finite amplitude free convection as an initial value problem –1722

I. J. Atmos. Sci., 19 , 329–341.1723

Saunders, A., & Ghil, M. (2001). A Boolean delay equation model of ENSO variabil-1724

ity. Physica D: Nonlinear Phenomena, 160 (1-2), 54–78.1725

Schiesser, W. E. (2012). The Numerical Method of Lines: Integration of Partial Dif-1726

ferential Equations. Elsevier.1727

Schlichting, H., & Gersten, K. (2016). Boundary-Layer Theory (9th English ed.).1728

Springer Science & Business Media.1729

Schneider, S. H., & Dickinson, R. E. (1974). Climate modelling. Reviews of Geo-1730

physics and Space Physics, 25 , 447–493.1731

Sellers, W. D. (1969). A global climatic model based on the energy balance of the1732

Earth atmosphere. Journal of Applied Meteorology , 8 , 392–400.1733
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