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C L I M A T O L O G Y

A century of observations reveals increasing likelihood 
of continental-scale compound dry-hot extremes

Mohammad Reza Alizadeh1, Jan Adamowski1, Mohammad Reza Nikoo2, Amir AghaKouchak3,4, 

Philip Dennison5, Mojtaba Sadegh6*

Using over a century of ground-based observations over the contiguous United States, we show that the frequency 
of compound dry and hot extremes has increased substantially in the past decades, with an alarming increase in 
very rare dry-hot extremes. Our results indicate that the area affected by concurrent extremes has also increased 
significantly. Further, we explore homogeneity (i.e., connectedness) of dry-hot extremes across space. We show 
that dry-hot extremes have homogeneously enlarged over the past 122 years, pointing to spatial propagation of 
extreme dryness and heat and increased probability of continental-scale compound extremes. Last, we show an 
interesting shift between the main driver of dry-hot extremes over time. While meteorological drought was the 
main driver of dry-hot events in the 1930s, the observed warming trend has become the dominant driver in recent 
decades. Our results provide a deeper understanding of spatiotemporal variation of compound dry-hot extremes.

INTRODUCTION

Traditional climate risk analyses have focused on the hazardous/
anomalous states of one variable at a time (1). For example, studies 
have shown that heatwave magnitudes, frequencies, intensities, and 
spatial extents are increasing over many regions (2), a trend that is 
projected to continue in a warming climate (3). Moreover, analyses 
of historical precipitation, streamflow, and soil moisture indices 
show an increasing trend of aridity over many regions around the 
globe (4), and model simulations point to an increasing drought 
hazard in the 21st century. These extreme events can individually 
cause significant adverse impacts; however, their concurrence can 
be even more devastating (5, 6). For example, the compounding ef-
fects of drought and hot temperatures can significantly increase tree 
mortality, which, in turn, may cascade into other hazards, such as 
wildfires (7). Concurrent drought and heatwaves are the most dam-
aging climatic stressors to wheat production with grave implica-
tions for global food security; they can also jeopardize electric grid 
reliability and adversely affect a wide range of natural and built sys-
tems (8). In the United States alone, three concurrent drought and 
heatwave events between 2011 and 2013 caused damages equaling 
roughly 60 billion U.S. dollars (USD).

Compound extremes are typically characterized by a complex 
chain of interdependent processes at different spatial and temporal 
scales (9). Droughts and heatwaves, for example, are typically initi-
ated by similar synoptic circulation anomalies; however, local- and 
regional-scale land-atmosphere feedbacks drive the evolution of com-
pound drought-heatwave events and intensify both extremes (10). 
While the probability of multiple extremes occurring simultaneously 
or successively has historically been low, climate change has sys-
tematically altered the relationships between natural hazard drivers, 

increasing the probability of their concurrence and/or succession as 
well as their severity and magnitude (9, 11). Background warming 
due to anthropogenic emissions, for example, triggers earlier initia-
tion of and stronger land-atmosphere feedback loops and extends 
their spatial impact across North America (12), which can, in turn, 
intensify compound drought-heatwave extremes and spread their 
spatial extent. The literature shows more frequent compound ex-
tremes in recent decades across the entire globe (13). Across the con-
tiguous United States (CONUS), concurrent droughts and heatwaves 
have increased with a statistically significant shift in their distribu-
tion between 1990 and 2010 and 1960 and 1980 (14). In addition, 
concurrent moderate droughts and heatwaves have increased across 
portions of India (15), and meteorological droughts are associated 
with a faster warming rate than the average climate over southern 
and northeastern United States (16).

Land-atmosphere feedbacks can intensify drought-heatwave 
extremes through two mechanisms: self-intensification and self- 
propagation (17). Self-intensification refers to droughts and heatwaves 
intensifying one another, and self-propagation refers to the spread-
ing of droughts and heatwaves from one region to downwind re-
gions (10, 18). Previous examinations of compound hot-dry events 
(and their derivatives, i.e., compound drought-heatwave events) have 
focused on synoptic circulation patterns that initiate these extremes 
and self-intensifying land-atmosphere processes that drive the evo-
lution of these events (1, 13, 16). Here, we examine a less explored 
mechanism of land-atmosphere feedbacks that explains propagation 
of terrestrially sourced atmospheric moisture deficit and heat from 
one region to its neighboring areas, i.e., self-propagation. This pro-
cess, as manifested through trends in the spatial homogeneity—
connectedness—of concurrent dry-hot extremes, has received less 
attention in past studies. We analyze spatial homogeneity of com-
pound dry-hot extremes over CONUS using more than a century of 
ground observation climatic data. Further, most of the literature only 
analyzes the concurrence of droughts and heatwaves after 1950s 
(14, 15, 19), which overlooks the megadrought of the 1930s (13). 
We extend the analysis to 1896–2017 (122 years) and provide a new 
perspective into the temporal trends of compound dry-hot events.

We use monthly precipitation and average temperature observa-
tions at the climate division scale to derive annual precipitation 
(water year - WY: October to September), spring-summer (March 
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to August) precipitation, average annual WY temperature, and av-
erage spring-summer (March to August) temperature, which are, in 
turn, used in an empirical copula framework to calculate the joint 
probability and return period of compound dry-hot years and vari-
ous subannual events. We define compound dry-hot extremes as years 
with joint return periods of precipitation deficit and heat excess of 
longer than 25 years (joint annual exceedance probability of less 
than 0.04), unless otherwise stated. Joint return period is estimated 
using the “AND” hazard scenario (drier than a threshold AND hot-
ter than a threshold) in a multivariate framework (20). Our results 
show that the frequency of compound dry-hot extremes is increas-
ing across CONUS, a trend that is significant at the 5% level over the 
western United States and parts of the northeastern and southeast-
ern United States. These compound extremes are enlarging homo-
geneously as demonstrated by spatial correlation analysis; i.e., the 
connectedness of the impacted areas is increasing. This has signifi-
cant socio-environmental repercussions as larger and more intense 
extreme events can rapidly deplete regional and national relief re-
sources. This knowledge can help assess regional-to-continental vul-
nerabilities of natural and built systems under climate change and 
inform adaptation and mitigation efforts to curb the grave compound-
ing impacts of multiple extremes (21).

RESULTS

Temporal trends in precipitation and temperature over CONUS
Nonparametric Mann-Kendall analysis shows a statistically signifi-
cant increasing trend for the mean annual temperature between 
1896 and 2017 (Fig. 1B and fig. S2B) across much of CONUS except 
for portions of the Southeast, east of the Southern Great Plains, and 
the southern part of the Midwest. A relatively similar trend exists 
for mean spring-summer (March to August) temperatures, although 
it is less pronounced for portions of the Northern Great Plains and 
Midwest (fig. S1B). Statistically significant trends for annual precip-
itation, however, are much less pronounced across CONUS (Fig. 1A). 
Annual precipitation has not changed significantly over much of 
CONUS, although precipitation patterns and intensities may have 
shifted. Only a strip of land extending from eastern Texas to the 
Great Lakes and the Northeast has a statistically significant increas-
ing trend (at the 5% level) for annual precipitation (Fig. 1A and fig. 
S2A). Trend analysis of precipitation at the annual scale, however, 
might be contentious in the presence of autocorrelation among suc-
cessive annual precipitation values when there are persistent multi-
year dry periods (22). However, further investigation shows that lag-1 
autocorrelation values between annual precipitation—and also spring- 
summer precipitation—generally do not reach statistical significance 
(fig. S4) to justify removal of autocorrelation before trend analysis. 
Similar behavior is observed for higher lag values.

While trends in both precipitation and temperature have signif-
icant socio-environmental implications, their interdependence can 
intensify the impacts of the anomalous state of each driver (11). For 
example, extreme temperatures can induce “flash droughts” with 
devastating impacts such as causing large wildfires (23, 24). Pearson 
linear correlation analysis shows significant negative association be-
tween annual precipitation and mean annual temperature (fig. S5A) 
across much of the Great Plains and Southwest. This correlation is, 
however, not statistically significant at the 5% level for the west 
coast and much of the Pacific Northwest, as well as the Southeast, 
Northeast, and Midwest. The interdependence is further pronounced 

between annual precipitation and mean spring-summer (March to 
August) temperature (fig. S5B) as well as maximum spring-summer 
temperature (fig. S5C).

Climate change can alter the dependence structure between pre-
cipitation and temperature at different spatial and temporal scales 
(19). Arguably, the change in their association might be more im-
portant than the change (e.g., increasing trend) in each variable. Given 
that mean annual temperature, unlike annual precipitation, shows a 
statistically significant trend across much of CONUS, we linearly 
detrended the mean annual (as well as mean and maximum spring- 
summer) temperature and reanalyzed the linear association between 
temperature and precipitation. Our results point to a more pro-
nounced Pearson correlation coefficient between annual precipita-
tion and mean annual temperature (fig. S6A), when temperature time 
series are linearly detrended. A similar conclusion holds when tem-
perature is exponentially detrended (fig. S7). This shows that cli-
mate change has weakened the association between temperature and 
precipitation at the annual scale cross CONUS. This finding seems 
counterintuitive at first glance, as background warming is believed 
to have strengthened land-atmosphere feedbacks (12). A closer look, 
however, shows that detrending strengthens the correlation between 
annual precipitation and mean spring-summer temperature (figs. 
S5B, S6B, and S7B), as well as maximum spring-summer tempera-
ture (figs. S5C, S6C, and S7C), which confirms the strengthening of 
land-atmosphere feedbacks. At the annual scale, the more pronounced 
warming rate of winters (figs. S2 and S3)—due to anthropogenic 
background warming—overwhelms the land-atmosphere feedback 
effects that are activated in the warm season. Nevertheless, increas-
ing temperature trends increases the probability of concurrence of 
dry and hot extremes.

Temporal trends in compound dry-hot extremes
We use return period as a statistical measure of the severity and 
likelihood of an extreme event. Return period signifies the expected 
recurrence of a phenomenon (25); for example, a 25-year event is 
expected to occur, on average, once in 25 years, which is associated 
with an exceedance probability of 0.04 (nonexceedance probability 
of 0.96). This definition is intuitive for univariate extremes, such as 
dryness. However, the concept is rather complex for multivariate 
cases (20). Here, we use the AND hazard scenario, which determines 
the probability (or frequency) of a compound dry-hot event, i.e., 
drier than a threshold AND hotter than a threshold (26). We use the 
empirical copula and the entire 122 years of the record to estimate 
the joint exceedance probabilities of dryness and heat excess. We 
focus on the annual precipitation and mean annual temperature in 
this paper. The results for annual precipitation and mean spring- 
summer temperature, as well as spring-summer precipitation and 
mean spring-summer temperature, are provided in the Supplementary 
Materials (figs. S14 to S17). Mean annual temperature is selected 
here to include winter temperature, which, along with spring, is 
warming at a higher rate compared to other seasons (27). Winter 
temperature has important environmental implications ranging from 
snowmelt and water availability to phenology and wildlife health. 
Mean annual temperature is also closely associated with soil respi-
ration that has important feedbacks with climate. Moreover, an in-
crease in mean annual temperature is associated with a pronounced 
likelihood of extreme heat events (28).

The frequency of >25-year compound dry-hot extremes (joint 
return period levels exceeding 25 years) has significantly increased 
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over the last three quarter-century periods (Fig. 2, A to C). While in 
1943–1967 most of the climate divisions across CONUS observed 
only one >25-year compound dry-hot extreme (as expected per the 
definition of such an event), with some climate divisions not ob-

serving any, this increased slightly to one to three such bivariate 
events in 1968–1992 for almost all climate divisions in CONUS. In 
the most recent period (1993–2017), however, there is a spike in the 
number of >25-year compound dry-hot extremes, with several 

Fig. 1. Nonparametric Mann-Kendall trend analysis. Red shaded areas show a statistically significant increase (at the 5% level) in the return period level of (A) dry ex-

tremes, (B) hot extremes, and (C) concurrent dry AND hot extremes across CONUS over the past 122 years (1896–2017) at the annual scale. Fraction of area in each region 

and the entire CONUS with significant trends are also shown in the figure.
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climate divisions observing more than five such compound events. 
The increase is most pronounced for the Pacific Northwest, southern 
portions of the Southwest, Florida, and portions of the Northeast. 
This escalation in the frequency of compound dry-hot extremes ex-
tends beyond the expected randomness of climate phenomena. The 
nonparametric Mann-Kendall trend analysis of the return period 
level of compound events over the past 122 years shows a statistically 
significant trend at the 5% level for the western CONUS, Florida, 
the eastern portion of the Northeast, and some climate divisions in 
Michigan, Minnesota, Mississippi, and Alabama (Fig. 1C). Similar 
inferences about more frequent compound dry-hot extremes could 
be made for >50-year (Fig. 2, D to F) and >75-year (Fig. 2, G to I) 
events. Multiple >75-year compound events are observed in the coastal 
Pacific Northwest, inland Southern California, Florida, Maine, and 
several climate divisions in Texas, which point to the intensification 
of compound dry-hot extremes over many portions of CONUS with 
significant socio-environmental repercussions, such as causing very 
large wildfires (29).

These results are in accordance with the findings of Hao et al. 
(19) and Mazdiyasni and Kouchak (14) that show an increasing fre-
quency of concurrence of precipitation and temperature extremes 
over the globe and CONUS, respectively. The spatial distribution of 
compound extremes in our study, however, is not in complete agree-
ment with that of Mazdiyasni and Kouchak (14) (Fig. 1), especially 
for California and the Pacific Northwest. This discrepancy stems 
from differences in the definitions of compound events, along with 

differences in the study period. Here, we define the compound events 
as years with <0.04 exceedance probability of being dry AND hot 
(>25-year return level), whereas they use meteorological drought and 
various definitions of heatwaves as compound events. Moreover, their 
study spans 1960–2010, whereas our study spans 1896–2017. This 
longer time period can add significant information on the frequency 
of compound dry-hot extremes, as it includes the megadrought of 
the 1930s (discussed in the next section).

Spatial trends in compound dry-hot extremes
Our analysis points to a substantial increase in the number of cli-
mate divisions observing >25-year compound dry-hot extremes after 
the 1950s across all climate regions in the CONUS (Fig. 3, A to G). 
This increasing trend, however, is not present for many regions if 
one uses a longer record (1896–2017). More specifically, there is no 
increasing trend observed in the number of climate divisions observ-
ing >25-year compound dry-hot extremes for the Great Plains, Midwest, 
and Southeast, and to some extent the Northeast (Fig. 3, A to G). 
However, there is an interesting shift in the nature of the dominant 
driver for these compound events. In the 1930s, a long, severe dry 
event that engulfed two-thirds of CONUS was the dominant driver 
of the joint probability of compound dry-hot extremes. This drought 
contributed to the infamous dust storms of the Southern Great 
Plains (30). In the mid-2000s, however, both precipitation deficit 
and heat excess contributed to the compound events across many 
climate regions (Fig. 3, A, B, and G), and since 2010, hotter years 

Fig. 2. Frequency of compound dry-hot extremes has increased. (A to C) Frequency of >25-year, (D to F) frequency of >50-year, and (G to I) frequency of >75-year 

bivariate dry AND hot extremes across CONUS in the periods of 1943–1967 (A, D, and G), 1968–1992 (B, E, and H), and 1993–2017 (C, F, and I).
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became the main driver of the compound events across all the climate 
regions (Fig. 3, A to G). This observation is in accordance with the 
findings of Mo and Lettenmaier (24), who reported that heatwave- 
driven flash droughts have shown an increasing trend across CONUS 
since 2011. This implies that the dominant triggering driver of the 
land-atmosphere feedback has shifted from dryness in the earlier 
half of the study to excess heat in recent decade(s).

Over the entire CONUS, the number of climate divisions with 
>25-, >50-, and >75-year compound dry-hot extremes shows an in-
creasing trend, with >75-year events having the highest rate of in-

crease (i.e., a larger slope of linear regression; Fig. 3, H to J). These 
results also confirm the shift in the main driver of the compound 
extreme events from dry years in the 1930s to hot years in recent 
decade(s). Many compound event studies focus on the concurrence 
of droughts and heatwaves, and, in general terms, dry and hot years, 
over the past 3 to 6 decades (15, 19, 31). Climate analysis studies 
should use longer time series to also detect low-frequency cycles of 
the climate (32). We argue that the literature might underestimate 
the risks of compound dry-hot extremes by neglecting to account 
for longer climatic cycles and lower frequency events, such as the 

Fig. 3. Number of climate divisions affected by compound dry-hot extremes is increasing across many regions. (A to G) Different regions of CONUS affected by 

>25-year univariate dry, univariate hot, and bivariate dry AND hot extremes. (H to J) Entire CONUS affected by >25-year, >50-year, and >75-year extremes, between 1896 

and 2017.
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1930s drought. Lower-frequency cycles of climate are most likely to 
bring back historical multidecadal and continental megadroughts 
in the United States (32–34). While internal stochastic—not forced— 
atmospheric variability alone is able to create both megadroughts 
(35) and megaheatwaves (36), anthropogenic emissions have con-
siderably increased their probability of occurrence (37) and, most 
importantly, their concurrence (13).

The cumulative area (km2) affected by >25-year compound dry-
hot years also shows a statistically significant increasing trend at the 
10% level as determined by the nonparametric Mann-Kendall trend 
analysis (Fig. 4). The highest increase rate (slope of the linear re-
gression of cumulative impacted area as a function of time) is asso-
ciated with the Southeast, Northeast, and Southwest, respectively. 
This, however, does not account for the total area of each climate 
region, and care is advised in interpreting these results for compar-
ison purposes. Furthermore, the area affected by >25-year hot years 
is also associated with an increasing trend across all climate regions, 
which is determined to be nonsignificant at the 10% level. The cu-
mulative area observing >25-year dry years, however, is not associ-
ated with an increasing or a decreasing trend.

Further analysis shows that the cumulative distribution of the 
percent of CONUS observing >25-year compound dry-hot years for 
1993–2017 (the past 25-year period) diverges from that of 1896–1920 
(the first 25-year period; fig. S8C). This divergence is also visible for 
>25-year hot years (fig. S8B) but is less marked for >25-year dry years 
(fig. S8A) between the periods of 1896–1920 and 1993–2017. Moreover, 
the Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling 
tests all point to statistically significant shifts in the cumulative dis-
tributions of the percent of CONUS observing >25-year com-
pound dry-hot and univariate hot years between 1993 and 2017 and 
1896 and 1920, which correspond to the last and the first 25-year 
periods of our study (table S1). This distribution for >25-year dry 
years, however, is not statistically different between the two periods 

at the 5% (and the 10%) level using the Kolmogorov-Smirnov and 
Cramér-von Mises tests, although the Anderson-Darling test points 
to their significant divergence (table S1). We repeated these tests for 
different 25-year periods compared to 1993–2017; results generally 
point to significant changes in cumulative distribution of the per-
cent of CONUS affected by >25-year compound dry-hot extremes 
(except for the 1918–1942 period) and >25-year hot years, but gen-
erally do not identify significant changes in distributions of >25-year 
dry years (table S2). Rather, similar results are observed if the two 
periods of 1896–1956 and 1957–2017 are used (61-year periods; 
table S3).

Spatial homogeneity of compound dry-hot extremes
It is also important to analyze homogeneity of the area affected by 
compound dry-hot extremes. Large spatially homogenous compound 
events can endanger natural and built system services (38). For nat-
ural systems, connected heterogeneous habitats are resilient to syn-
chronous and large-scale aquatic species population and ecosystem 
collapse. Homogeneous compound dry-hot events might fragment 
this connectedness and result in population collapse. In the context 
of built systems, homogeneous compound extremes can damage 
harvests across a wide range of agricultural lands and rapidly de-
plete federal and local relief resources.

Here, we assess the connectedness of climate divisions that expe-
rience >25-year compound dry-hot extremes. We calculate the spa-
tial correlation in terms of impacted area (km2) through Moran’s I 
as a proxy for spatial homogeneity for compound dry-hot, as well as 
univariate dry and univariate hot extremes for each year (fig. S9). 
We show that spatial homogeneity of >25-year dry years is associated 
with a nominal slope that fluctuates between negligible negative and 
positive values for different climate regions as well as the entire 
CONUS over the past 122 years (Fig. 5). The spatial homogeneity of 
>25-year hot years shows an increasing trend with linear slopes of 
Moran’s I ranging between 0.04 and 0.07 across various regions (Fig. 5). 
Similarly, >25-year compound dry-hot extremes are also growing 
homogeneously with a slope of linear regression of Moran’s I rang-
ing from 0.1 to 0.18 across different regions. Homogeneous enlarge-
ment of compound events is steeper than each of the drivers alone, 
with the largest difference observed in the Southwest (0.18 versus 
0.02). To investigate the potential impact of the threshold of extreme 
events (>25-year) on the observed connectivity trend (39), Moran’s I 
analysis was performed on less (>5-year) and more (75-year) intense 
extreme events (figs. S10 and S11), the results of which confirm 
those found for the >25-year analysis. Further, the cumulative dis-
tribution of annual Moran’s I for >25-year compound dry-hot years 
between 1896 and 1956, and 1957 and 2017, is determined to be sta-
tistically different based on the Kolmogorov-Smirnov, Cramér-von 
Mises, and Anderson-Darling tests at the 5% level (table S4). These 
tests are also applied to the distributions of Moran’s I for various 
25-year periods (table S5).

If the past 50 years alone are analyzed, the homogeneous spatial 
growth of >25-year compound dry-hot years shows an even steeper 
slope, mainly driven by the homogeneous enlargement of hot years 
(fig. S12). The slope of Moran’s I for compound extremes ranges be-
tween 0.1 and 0.6 for various regions and is 0.7 for the entire CONUS. 
This ranges between 0.1 and 0.4 for different regions and 0.6 for the 
entire CONUS for >25-year hot years. Conversely, dry years do not 
exhibit much change in terms of spatial homogeneity. In this pe-
riod, while the growth rate (slope of linear regression to Moran’s I) 

Fig. 4. Impacted areas by >25-year compound dry-hot extremes are enlarg-

ing. Slope of linear regression to the spatial extent of >25-year univariate dry, uni-

variate hot, and bivariate dry AND hot extremes based on the affected area size 

(km2). Filled circles are associated with statistically significant trends at the 10% 

level, and empty circles are associated with trends that are not statistically signifi-

cant at the 10% level. None of the increases are significant at the 5% level. Boxes 

represent the range between the 25th and 75th percentiles of the linear regression 

slopes, and the horizontal line in each box corresponds to the slopes’ median.
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for the compound events and the univariate hot extremes for the 
Northwest, Northern Great Plains, and Midwest are rather similar 
(slightly higher for compound events), the increase in homogeneity 
of compound events over the rest of CONUS occurs at a much 
higher rate than the increase in univariate hot extremes.

DISCUSSION

Persistent large-scale circulation anomalies are generally known to 
initiate drought and heatwave events and their co-occurrence; how-
ever, land-atmosphere feedbacks can also intensify and propagate 
those anomalous climatic events (40). Megaheatwaves, for example, 

Fig. 5. Spatial homogeneity for compound dry-hot extremes is increasing. Slope of linear regression to time series of Moran’s I of >25-year univariate dry, univariate 

hot, and bivariate dry AND hot extremes for different climate regions (A to G) as well as the entire CONUS (H) over the past 122 years (1896–2017).
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are usually preceded by persistent anticyclones, enabling cloud-free 
conditions and advection of hot air (40), but drier soils intensify 
heatwaves by partitioning the incoming solar radiation into more 
sensible and less latent heat. It is noted that megaheatwaves can 
be generated by natural atmospheric variability even without land- 
atmosphere feedbacks (36). However, land-atmosphere feedbacks 
increase the probability of occurrence of megaheatwaves (41). For 
example, the probability of the Russian 2010 megaheatwave event 
increased 13-fold due to the self-intensification feedback of drought 
and heatwave (42). With a lack of soil moisture, evaporation de-
creases as does partitioning of solar radiation into latent heat; hence, 
a larger fraction of the incoming radiation is translated into sensible 
heat, which, in turn, warms the environment (43). Desiccated soils 
contribute to temperature increase, heat entrainment, and deepen-
ing of the atmospheric boundary layer. The latter, in turn, increases 
evaporative demand and further desiccates soils and further in-
creases the temperature. This cycle of drying and warming inhibits 
the formation of clouds and, in turn, restrains local convective pre-
cipitation, further intensifying drought (40).

A less explored mechanism of land-atmosphere feedback is self- 
propagation (40). In a Lagrangian perspective, atmospheric moisture 
deficit and heat can propagate from one location to downwind regions 
(18). While heat advection and its impact on the formation and expan-
sion of heatwaves have been explored in the literature, especially 
for the 2003 European and 2010 Russian megaheatwaves (44), ter-
restrially sourced atmospheric moisture advection has been explored 
in less detail but is receiving more attention in the recent literature 
(18). Within-continent transport of terrestrially sourced moisture 
has promoted the concept of “teleconnected land-atmosphere feed-
backs” (10). While this concept is still in its infancy, these telecon-
nected land-atmosphere feedbacks are believed to help propagate 
droughts to neighboring regions (10, 18). The propagation of droughts 
is more important for regions that depend on terrestrially sourced 
precipitation, including large parts of North America (45). Our anal-
ysis shows that compound dry-hot extremes have enlarged homo-
geneously, i.e., impacted areas are increasingly becoming connected, 
pointing to the propagation of atmospheric moisture deficit AND 
heat from one region to its neighboring regions. Connected spatial 
growth of compound dry-hot events can have significant natural 
and societal repercussions. An example of a spatially large and se-
vere compound extreme is the summer 2010 drought and heatwave 
in Russia that decreased crop production by 25%, caused >500 wild-
fires that burned more than 1 million ha, and induced an estimated 
15 billion USD economic loss (46).

Our results show that the frequency of compound dry-hot extremes 
in CONUS has substantially increased in the past 50 years, a trend 
that is less pronounced if a longer period of analysis (1896–2017) is 
used. While anomalous synoptic circulation patterns are recognized 
for initiation of compound dry-hot events, background warming 
due to anthropogenic emissions has strengthened, caused the earlier 
start of, and extended the spatial impact of land-atmosphere feed-
backs in North America (12). We report that there is a shift in the 
dominant driver of compound dry-hot extremes from precipitation 
deficit in the 1930s to heat excess in recent decade(s). In other words, 
the dominant driver that triggers land-atmosphere feedbacks has 
changed from meteorological drought to excess heat. This is in con-
cept similar to the precipitation deficit–driven and heatwave-driven 
flash drought categorization of Mo and Lettenmaier (24, 47), despite 
differences in the temporal scale. Although flash droughts of all cat-

egories are shown to have increased in frequency across the globe in 
the last century, Mo and Lettenmaier (24) show that the frequency 
of heatwave-driven flash droughts was associated with a decreasing 
trend over the last century, which rebounded after 2011. This agrees 
with our argument of the changing nature of the dominant driver of 
compound dry-hot events in the recent decade, i.e., precipitation 
deficit to heat excess. Further, while natural variability is able to cre-
ate compound events, anthropogenic emissions have significantly 
enhanced the probability of concurrent drought and heatwaves, and 
only aggressive emission reduction can mitigate the risks associated 
with their increasing frequency (13). Last, although notable varia-
tions exist over different regions of CONUS, there is no significant 
increasing trend in the frequency of univariate dry years; however, 
univariate hot years are becoming more frequent and more intense.

We argue that recent literature may underestimate the risks of 
concurrent dry and hot episodes, as they only study the post-1950s 
period without recourse to the 1930s meteorological drought that 
engulfed two-thirds of CONUS for almost a decade. We argue that 
if meteorological droughts of the length and severity observed in 
the 1930s occur during the hot years that are increasingly common 
in recent decades due to global warming, their concurrence can have 
devastating impacts (5, 32, 48). Recent literature shows that no major 
U.S. region is immune to the multidecadal continental-scale mega-
droughts that occurred in the 12th and 13th centuries (49), and 
global warming has markedly increased the risk of their return (37). 
Moreover, a hotter climate increases water demand (50), concurrence 
of which with dry years would strain social, built, and natural systems 
(7) and might push them to unprecedented states (51). Our results 
contribute to a deeper understanding of the spatiotemporal patterns 
of compound events to help with reliable risk projections in the con-
text of climate change. The consequences of the increased frequency, 
intensity, and spatial homogeneity of climatic extremes for compound 
events with multiple drivers are far graver than the effect of each driver 
individually (9), and risk assessment frameworks need to consider the 
compounding effects of multiple extremes rather than addressing 
one driver at a time within the traditional univariate framework.

MATERIALS AND METHODS

Compound dry and hot events versus drought
As defined by the Intergovernmental Panel on Climate Change (IPCC) 
Special Report on Managing the Risks of Extreme Events and Disas-
ters to Advance Climate Change Adaptation (SREX) report, drought 
is the “impact of extreme weather or climate events on the natural 
physical environment.” Drought is a complex phenomenon with 
multiple drivers, the most complicated of which are human activities 
that regulate and affect input, output, and shortage of water in the 
human-environment system. Human influences can modify and 
regulate drought and even cause drought in the absence of its natural 
drivers (52). In this paper, we are interested in the extremes that cause 
drought, i.e., compound dry and hot events.

Joint probabilities and return periods
The joint probability and bivariate return periods of extreme events 
are calculated on the basis of the empirical copula models using the 
AND scenario. Copulas are statistical measures that explore the 
dependence and association between two or more variables regardless 
of their univariate distributions and provide a multivariate distri-
bution (53). A bivariate copula can be informally defined as mapping 
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from I2(F, G) → I(H), where (F(x), G(y), H(x, y)) is a point from I3, 
( I ∈ [0,1]). X and Y are continuous random variables with distribution 
functions F(x) = P(X ≤ x), G(y) = P(Y ≤ y), and H(x, y) = P(X ≤ x, Y ≤ y) 
is a function that describes their joint distribution. Let H be a joint 
cumulative distribution function with marginal univariate distributions 
� and G. Then, there exists a copula C so that H(x, y) = C[F(x), G(y)]. 
Considering the joint distribution H with continuous marginals � 
and G, u = F(x), v = G(y), the associated copula can be described as

  C(u, v ) = H [  F   −1 (u ) ,  G   −1 (v )]  (1)

The bivariate joint exceedance probability in terms of the AND 
scenario can be defined as

  P(X > x ∧ Y > y) = 1 − F(x) − G(y) + C [F(x) , G(y)]  (2)

and the associated return period, RP, based on the AND scenario is 
defined as

  R  P  AND   =   1 ───────────  
P(X > x ∧ Y > y)

    (3)

We adopt a nonparametric approach to calculate univariate and 
multivariate probabilities and associated return periods. This relaxes 
the need for fitting parametric distributions to data, which are asso-
ciated with underlying assumptions. Violation of assumptions can 
produce biased and unreliable results. Further, one parametric model 
may not be appropriate for all climate divisions across CONUS, 
which poses grave challenges on spatial comparison of results. Non-
parametric approaches, on the contrary, are accurate and do not de-
pend on any underlying assumption.

Spatial autocorrelation
The spatial autocorrelation of compound extreme events over a time 
period is determined using Moran’s I (54, 55), which is a cross-product 
statistic between a variable and its spatial lag. For an observation at 
the location i, the deviation of observation from its mean (zi) is ex-
pressed as   z  i   = x −   ̂  X   , where    ̂  X    is the mean of variable x. Moran’s I 
statistic for spatial autocorrelation is given as

  I =   
 S  i    S  j    w  i,j    z  i   .  z  j   /  S  0  

  ─ 
 S  i     z  i     

2  / n
    (4)

where wi, j is the element i, j of the spatial weights’ matrix, n is the 
number of observations, and S0 is the aggregate of all the spatial 
weights: S0 = SiSjwi, j. Spatial autocorrelation has a value between −1 
and 1. Positive and negative values signify spatial clustering of sim-
ilar and dissimilar values, respectively (1: perfect clustering, and −1: 
perfect dispersion), and a zero value specifies absence of spatial auto-
correlation (perfect randomness) (56).

Temporal trends
Mann-Kendall trend test (57, 58) is a nonparametric test commonly 
used to statistically assess whether there is a monotonic trend in the 
time series of the variable of interest. The null hypothesis, H0, states 
that that there is no monotonic trend in the series, and the data come 
from a population with independent realizations and are identically 
distributed. The alternative hypothesis, H1, is that a trend exists and 
the data follow a monotonic trend (positive or negative).

For a given time series (x1, …, xn), the sign of all n(n − 1)/2 pos-
sible differences (xj − xi), j > i is determined. Using the indicator 
function S, the number of discrepancies between positive and nega-
tive signs is computed as follows

  S =   S  
i=1

  
n−1

   S  
j=k+1

  
n
  sign( x  j   −  x  i  )  (5)

If S > 0, later observations in the time series tend to be larger 
than observations made earlier, and the reverse is true if S < 0.

The variance of S is presented by

  Var(s ) =   1 ─ 18   [ n(n − 1 ) (2n + 5 ) −  S  
p
     t  p  ( t  p   − 1 ) (2  t  p   + 5 ) ]  (6)

where tp is the frequency of times that the rank t emerges. p differs 
over the set of the tied groups.

The Mann-Kendall trend analysis calculates the test statistic ZMK 
as follows

    Z  MK   =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

    

  S − 1 ─ 
 √ 
_

 Var(S)  
   if S > 0

   0   if S = 0   

  S + 1 ─ 
 √ 
_

 Var(S)  
   if S < 0

     (7)

A positive/negative value of ZMK shows a positive/negative trend 
in the time series with time.

Distribution tests
The two-sample Cramér-von Mises test and Anderson-Darling test 
are commonly used to assess changes in probability distributions, 
and both tests refer to the class of empirical distribution function 
(EDF). The null hypothesis, H0, for these tests is that the data come 
from the same distribution. Considering Fm and Fn as empirical dis-
tributions of the two samples, the Cramér-von Mises test statistic 
proceeds by computing the distance between Fm and Fn distri-
butions as

  CM =  ∫−∞  
+∞

     ∣ F  n  (x ) −  F  m  (x )∣   2  dF(x)  (8)

The two-sample Anderson-Darling statistic test is presented 
by (59)

   A   2  =   mn ─ 
t
    ∫−∞  

+∞
      
 [ F  n  (x ) −  F  m  (x ) ]   2 

  ─  
 H  t  (x ) [1 −  H  t  (x ) ]

    dH  t  (x)  (9)

where t = m + n, and   H  t  (x ) =  [n  F  n  (x ) + m  F  m  (x ) ]  ___________ t    is the EDF of the com-
bined sample.

The judgment to reject the null hypothesis (H0) depends on com-
paring the value of test statistics for the hypothesis test and the spec-
ified significance level. If the value of the test statistic is greater than 
the significance level (P = 0.05), the null hypothesis will be rejected.

Similarly, the Kolmogorov-Smirnov test measures the distance 
between the EDF of Fm and Fn as the empirical distributions. The 
test statistic is specified by (60)

   D  n   =  sup  
x
   ∣ F  n  (x ) −  F  m  (x )∣  (10)

where   sup  
x
     is the supremum of the set of distances. The null hypoth-

esis, H0, is rejected if Dn is greater than the significance level (P = 0.05).
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Climate divisions
Climate Divisional Dataset provides a complete set of long-term 
spatiotemporal data for historical climate analyses over CONUS. 
There are 344 climate divisions in CONUS, in which monthly tem-
perature and precipitation are estimated using daily observations. The 
complete list of climatological divisions can be found at https://ncdc.
noaa.gov/monitoring-references/maps/us-climate-divisions.php.

Climate region
CONUS is grouped into seven similar climatological regions includ-
ing the Northeast, Southeast, Northwest, the Southwest, the Northern 
Great Plains, Southern Great Plains, and the Midwest, which provide 
greater detail and information regarding national climate assessments.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/6/39/eaaz4571/DC1
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