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A Cerebellar Internal Models Control Architecture

for Online Sensorimotor Adaptation of a Humanoid

Robot Acting in a Dynamic Environment

Marie Claire Capolei1, Nils Axel Andersen1, Henrik Hautop Lund1, Egidio Falotico2, and Silvia Tolu1

Abstract—Humanoid robots are often supposed to operate in
non-deterministic human environments, and as a consequence,
the robust and gentle rejection of the external perturbations
is extremely crucial. In this scenario, stable and accurate be-
havior is mostly solved through adaptive control mechanisms
that learn an internal model to predict the consequences of
the outgoing control signals. Evidences show that brain-based
biological systems resolve this control issue by updating an
appropriate internal model that is then used to direct the muscles
activities. Inspired by the biological cerebellar internal models
theory, that couples forward and inverse internal models into the
biological motor control scheme, we propose a novel methodology
to artificially replicate these learning and adaptive principles into
a robotic feedback controller. The proposed cerebellar-like net-
work combines machine learning, artificial neural network, and
computational neuroscience techniques to deal with all the non-
linearities and complexities that modern robotic systems could
present. Although the architecture is tested on the simulated
humanoid iCub, it can be applied to different robotic systems
without excessive customization, thanks to its neural network-
based nature. During the experiments, the robot is requested to
follow repeatedly a movement while it is interacting with two
external systems. Four different internal model architectures are
compared and tested under different conditions. The comparison
of the performances confirmed the theories about internal models
combinatory action. The combination of models together with
the structural and learning features of the network, resulted in a
benefit to the adaptation mechanism, but also the system response
to nonlinearities, noise and external forces.

Index Terms—Biomimetics, Neurorobotics, Model Learning for
Control, Learning and Adaptive Systems, Control Architectures
and Programming.

I. INTRODUCTION

MODERN robots are often mechanically complex, and

are embedded in unstructured non-deterministic envi-

ronments [1]. The accurate and stable motor control of such

systems is often challenging due to the unreliability of the
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hand engineered modeling strategies, which are too strict to

describe all the complexities and nonlinearities.

In this manuscript, we propose an online learning and

control algorithm to dynamically adapt the movements of a

robotic system acting in an uncertain non-deterministic envi-

ronment. In the design process, we assumed that: the Jacobian

poorly describes the actual robotic condition; one or more

unmodeled external objects interfere with the movement; the

state space system is multivariable and not fully observable;

the action/state space is continuous and high-dimensional. In

this view, the controller should improve the tracking accuracy

of each actuator, and minimize the effects of noise through

force-based control input.

Traditionally, uncertain systems were learned by estimat-

ing open parameters of structured mathematical models [2].

Although this approach has been used for several years in

system identification and adaptive control, fitting the parame-

ters of fixed structure with training data can lead to different

drawbacks, such as: physical inconsistency [3]; unmodeled

behavior; persistent excitation issues [4]; and unstable reaction

to high estimation error.

In the last decades, due to the advancement in artificial

intelligence, a large number of non-parametric approaches

have been proposed to solve the aforementioned problems [5],

[6], [7], [8], [9], [10]. For instance, the introduction of artificial

neural networks (ANNs) into nonlinear dynamical systems

adaptive control were advantageous for reducing the effects

of nonlinearities and uncertainties, and for handling high di-

mensional and continuous state space systems [11], [12], [13],

[8], [14]. Although the structural versatility that distinguishes

ANNs, the continuous interaction within the robotic system

and the non-deterministic environment can be constrained by

the off-line training of the neural network.

The Autonomous Mental Development (AMD) theorists

claim that robots should learn and evolve their processing

through real-time interaction with the environment [15], [16].

In this view, model learning is not seen anymore as a summa-

tion of off-line learned experiences but as an online develop-

ment of the current knowledge of the system [17], [18]. These

theories have their foundation in studies of biological systems,

such as humans, especially infants. The advanced mechanisms

exploited by biological systems to explore their relation with

the surroundings, and control their own movements, motivated

several scientists towards a better understanding of the biolog-

ical motor control.

James S. Albus was the first person to propose a robotic
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control architecture enhanced by an artificial neural network

based on evidence of the central nervous system (CNS): the

”cerebellar model articulation controller” (CMAC) [19]. The

CMAC module was mainly inspired by the David Maar’s

theory [20] that depicts the cerebellum, a neural structure

located at the back of the brain, as ”language translator

between data in the cerebrum, and command sequences needed

by the muscles” [21].

In the last decades, several scientists have been attracted

by the fascinating mechanisms and functional roles of the

cerebellum in motor and cognitive tasks [22], [23], [24], [25],

[26], [27]. Among all the hypotheses, the scientific community

is highly supporting the involvement of the cerebellum in the

acquisition and maintenance of the internal models, mapping

the correlation within the body and the environment [28],

[29], [30], [31], i.e., forward and inverse models [32], [33]. If

confirmed, these assumptions would explain several complex

mechanisms underlying the neural control of movements [34].

The inverse model elaborates the motor command that leads

the system from the current state to a desired one [35]. Its

contribution enables fast and coordinated limb movements,

that are not achievable with pure feedback control, due to the

biological system dynamics [32]. Evidences show that some

of the motor deficits caused by cerebellar dysfunction, e.g.,

quick ballistic limbs movements and impaired muscle coordi-

nation [36], are due to the lack of feed forward contribution

in motor control, or rather the neural control loop is affected

by slow reaction time and sensory delay [34]. Although it is

controversial [37], [38], scientists argued that integrating the

efference copy signal of the delayed sensory feedback could

overcome these CNS transmission problems [39]. Different

prototypes of cerebellar control architecture based on the

inverse model theory has been proposed, such as: adaptive

filter models [40], [41]; spiking neural networks [42], [43];

combination of parametric adaptive control and machine learn-

ing techniques [44], [45].

The forward model describes the causal relationship be-

tween the outgoing motor command and system state. This

model results beneficial to predict those state transitions that

are not directly accessible [46]. Electrophysiological stud-

ies [47], [48], computational theories [28], [29], imaging and

lesion data [49], [50] suggest that the forward model could

explain pivotal cerebellar functions, such as error correction

and learning. Moreover, robotics experiments proved that

the forward model could play an important role in action

prediction, sensory discrepancy minimization, and noise can-

cellation [51], [52].

Inspired by the theory of coupled internal models [53], [54],

[55], [56], [57], [58], we propose a novel methodology to

replicate and exploit artificially the cerebellar internal models

learning and corrective action. In particular, we designed a

neural network that, through the combination of machine

learning, artificial neural network, and computational neu-

roscience techniques, replicates the functionality, learning,

modularity, and morphology of the cerebellar-circuit. This bio-

mimetic network is embedded in a feedback robotic control

architecture, and is intended to minimize modeling errors and

to constrain the effects of noise, uncertainties, and external dis-
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Fig. 1: Robotic plant: a) the humanoid iCub holding the

table-ball system in the Neurorobotics Platform; b) the three

controlled wrist joints: 1 pronosupination, 2 yaw, 3 pitch.

turbances. The network weights are defined by non-linear and

multidimensional learning functions that mimic the cerebellar

synaptic plasticities, as proposed by [59], [42]. The manuscript

presents the comparison of four adaptive control architectures

based on the cerebellar internal models theories. The control

system is tested on the virtual humanoid robot iCub [60]

embedded in the Neurorobotics Platform (Fig.1.a)[61], [62].

The architectures performance are evaluated under different

noise and external perturbation conditions. The study con-

firmed that the forward and inverse internal model coupling

shows improved performance respect to the independent in-

ternal models action. Moreover, the biologically plausible

weighting kernel together with the layered structure of the

cerebellar networks resulted beneficial to constrains the effects

of external perturbations and nonlinearities.

The structure of the paper is as follows: in section II we

describe the overall control architecture, giving special focus to

the cerebellar-like component; in section III, the experimental

set up and results are presented. The manuscript concludes

with the discussion of the main findings in comparison with

the literature and future directions.

II. MATERIALS AND METHODS

The robotic system, or rather Agent (Fig.2.a), consists of: a

Planner, which generates the Qr
N×1,Q̇

r

N×1 reference motors

angular positions and velocities (where N is the number of

controlled joints), that are sent to the controller; the Controller,

which elaborates the τ
tot
N×1

torque commands needed to move

the actuators to the Qr
N×1,Q̇

r

N×1 desired states; the Robotic

Plant, which includes the actuators and the proprioceptive

sensors employed to read the Q and Q̇ actual angular positions

and velocities respectively. The Agent interacts with two

external systems, which in this manuscript are represented by

a table and a rolling ball (Fig.1.a).

A. Robot Plant

The humanoid iCub is a 53 degree of freedom (dof)

robotic system equipped with several type of sensors, such

as: encoders, accelerometers, gyroscopes, F/T sensors, digital

cameras. For the sake of simplicity, the overall system actuates

seven motors of the right arm: four motors are kept constant

to keep the arm upwards (i.e. elbow, shoulder roll, shoulder

yaw and shoulder pitch), and N = 3 motors are controlled by
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the proposed controller (namely wrist pronosupination, wrist

yaw and wrist pitch, Fig.1.b). The n-th actual motor state is

read by the encoders and saved in the qn ∈ QN×1 angular

position and q̇n ∈ Q̇N×1 angular velocity process variables.

B. Planner

The Planner plans the qn
r ∈ Qr

N×1, q̇rn ∈ Q̇
r

N×1 reference

trajectories, or rather it generates oscillator movements,

qrn = An · sin(2πft+ ϕn) , (1)

q̇rn = 2πfAn · cos(2πft+ ϕn) , (2)

with fixed temporal frequency f = 0.25Hz, An amplitude

and ϕn phase,

A1×N =
[

A1, A2, A3

]

=
[

0.1727, 0.1363, 0.0345
]

rad

ϕ1×N =
[

ϕ1, ϕ2, ϕ3

]

=
[

0.5π, 0.5π, 0.0
]

rad.

C. Controller

The Controller once received the Q, Q̇ actual robot states

computes the τn
tot ∈ τ

tot
N×1

torque command to move each

actuator to the qrn,q̇rn desired state. This subsystem is consti-

tuted by a static module based on classical control methods,

and by two decentralized cerebellar-like neural networks (sec-

tion II-D): inverse and forward models (blue boxes Fig.2.b).

The inverse cerebellar-like module adds ∆τ cn ∈ ∆τ
c
N×1

feed-forward corrective torque command to the τfbn ,∈ τ
fb
N×1

feedback controller motor input [63], [64], while the forward

module applies ∆q̇cn ∈ ∆q̇
c state-specific adjustment to the

feedback loop [65], [66], [58]. In this initial design, the

AGENT
Controller

Feedback 
Controller +

Inverse Model

+
-

Actuator n

Forward Model

𝜏tot

qPF

efb 𝜏fb
𝚫𝜏c

+

Granular Layer

Cerebellum

𝚫qc

Granular Layer

𝜏PF

Cerebellum

Sensor n
noise

noise
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⇢ teaching signal
➝ teaching signal
➝ corrective action

Cerebellum-like 
Networks
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Controller

Robotic Plant
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Actuator n
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∑∑∑

Planner
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＾

＾
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q
.
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ϵ

+
qr
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q

-

Fig. 2: Control architecture scheme for N actuated joints: a)

main components communication, and b) controller block.

forward model corrective term is narrowed to the angular

velocity, which is the feedback controller input.

In the details of Fig.2.b, the closed-loop computes the efbn ∈
e
fb
N×1

feedback angular velocity error of the n-th motor,

efbn = q̇rn − q̇n . (3)

This quantity is corrected by the forward cerebellar-like

module which predicts the consequence of the outgoing motor

command and adds ∆q̇cn contribution to minimize the efbn
feedback error. The etot total error,

etotn = efbn +∆q̇cn, (4)

it is then employed by both the feedback controller to

compute the feedback torque command τfbn , according to

the proportional-integrative-derivative (PID) independent joint

control law, and by the inverse cerebellar-like model to com-

pute the corrective torque ∆τ cn ∈ ∆τ
c
N×1

, that minimizes both

the etot and the ǫn ∈ ǫ angular position error,

ǫn = qrn − qn. (5)

The total control input sent to the motors is the result of a

feed-forward compensation [40],

τ
tot = τ

fb +∆τ
c . (6)

On a final note, the PID regulator K gains are tuned to

weakly operate in linearized conditions which exclude the

disturbance of the ball and sensory noise,

KP =
[

KP
1 , KP

2 , KP
3

]

=
[

2.9000, 2.3000, 2.3500
]

KI =
[

KI
1 , KI

2 , KI
3

]

=
[

1.9400, 1.9000, 1.9000
]

KD =
[

KD
1 , KD

2 , KD
3

]

=
[

0.0050, 0.0001, 0.0004
]

.

D. Cerebellar-like Network

The cerebellum is constituted of several micro-zones that

plausibly correspond to the minimal ulm unit learning ma-

chine (Fig.3) [63]. Each ulm presents similar internal micro-

circuitry, but it differs from the others in terms of external

connectivity. There are two main type of axons that connect

each ulm to the outside: the mf mossy fibers (in magenta

Fig.3), which project signals regarding the position, velocity

and direction of the limbs movements [68]; the climbing fibers

(in red), that project from the io inferior olive nucleus the

signal encoding the error [47], [69]. These axons transmits

the information to two main groups of cells: the Gr granule

ulm n
ccm N

ccm 1

Mossy Fibers
(Inputs)

DCN

Corrective Action
(Output)

Parallel Fibers

GrGrGr Gr
io

Pc
io

Pc

Fig. 3: Canonical cerebellar circuit in analogy with [67].
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Fig. 4: Cerebellar-like neural network scheme: (a) structural

modular partition of the inverse and forward module; (b)

details of the networks.

cells, that in Marr’s opinion encode combinations of mossy

fibers inputs [20]; the pc Purkinje cells (in green Fig.3), that

modulated by the inferior olive axon and excited by the pf

parallel fibers (in violet) projecting from the granule cells,

they influence the activity of the dcn deep cerebellar nuclei

(in blue). The dcn is inhibited by the pc and excited by both

the io and mf, and it is responsible for the final processing of

the signal that is sent outside the cerebellar circuit.

In the proposed model (Fig.4.a), each ulm (light blue box)

processes the information of the n-th controlled object (where

n=1,...,N). Accordingly, the dcn of the n-th ulm outputs the

∆q̇cn and ∆τ cn cerebellar corrections. Each ulm is divided

into M sub-modules representing the ccm canonical cerebellar

microcircuit (yellow boxes in Fig.4.a). Each ccm encodes kine-

matic and/or dynamic features of the n-th controlled object,

such as angular position and velocity. The N ulm together

compose the MCC Modular Cerebellar Circuit mapping the

inverse and forward models of the robotic system (green boxes

in Fig.4.a).

Hereafter for the sake of simplicity, the variable x gen-

erally recalls the signals q̇n and τn propagating inside the

two separated networks, and w generally recalls the specific

network weight. The mossy fibers of the inverse MCC transmit

information about the actual and reference angular velocity of

all the controlled joints,

MFinv
2N×1 =

[

mf inv
1 , ... , mf inv

2N

]T
=

=
[

q̇r1, ... , q̇rN , q̇1, ... , q̇N
]T

,
(7)

while the mossy fibers of the forward MCC project the

signal encoding the reference angular velocities and the latest

control inputs (6),

MF
frw
2N×1

=
[

mffrw
1 , ... , mffrw

2N

]T
=

=
[

q̇r1, ... , q̇rN , τ tot1 (t− 1), ... , τ totN (t− 1)
]T

.
(8)

The mossy fibers signals are then mapped and exploited to

predict the τ tot control input (inverse MCC) and q̇ system

state (forward MCC). As proposed by [44], the granule layer

is represented by the Locally Weighted Projection Regression

algorithm (LWPR) [70]. The LWPR is a fast on-line nonlinear

function approximation algorithm suitable for the reduction of

high dimensional state space system. To replicate the efference

copy theory [39], [71], the LWPR uses a copy of the outgoing

τ tot (inverse MCC) and actual q̇ (forward MCC) as modulatory

signals (in cyan Fig.4) to create and train on-line G local linear

models, or rather Grg granule cells (where g=1,...,G). These

models are employed by the algorithm to make τ̂grn,g , ˆ̇qgrn,g local

predictions of the control input (inverse MCC) and angular

velocity (forward MCC) respectively. The final output of the

granular-parallel fibers layer (in violet Fig.4.b) is the weighted

mean of all the linear models ( refer to [70] for the complete

set of formulas),

x̂pf
n =

∑g=G

g=1
wgr

n,g · x̂
gr
n,g

∑g=G

g=1
wgr

n,g

. (9)

The wpf−pc [42] synaptic strengths of the pf-pc parallel

fibers-Purkinje cells connections (Table I) is modulated by the

io inferior olive transmitting the error signals (3,4,5) (in red

Fig.4.b),

ioinv
n =

[

ioinvn,1 , ioinvn,2

]T
=

[

ǫn, etotn

]T
, (10)

iofrw
n =

[

iofrwn,1 , iofrwn,2

]T

=
[

ǫn, efbn
]T

. (11)

The Purkinje cell output signal (in green Fig.4.b) is the

result of the x̂pf modulated LWPR prediction (9),

xpc
n,m = wpf−pc

n,m (t, ion,m) · x̂pf
n . (12)

Respect to [44], [52], both the MF mossy fibers input

vectors and the xpc Purkinje cells signals are reformulated:

the xpf is represented by the final LWPR prediction and not

by the linear combination of the network weights; the xpc is

the result of a biologically plausible learning rule function of

the error (10,11), instead of the direct proportion of the error
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signal; the inferior olive transmits the angular position and

velocity error instead of the τfb [72].

The pc signal transmitted to the dcn (in green Fig.4.b) is

scaled by the wpc−dcn
n,m synaptic weight [42], which is function

of both the pc and dcn activities,

xpc−dcn
n,m = wpc−dcn

n,m (t, xpc
n,m,∆xc

n) · x
pc
n,m. (13)

In the proposed scheme, the mossy fibers (in magenta

Fig.4.b) project to the dcn deep cerebellar nuclei a copy of

the τ totn outgoing control input (6) (inverse MCC) and the q̇n
actual angular velocity (forward MCC). The mf contribution

to the dcn activity is highly influenced by the pc Purkinje

cells [42],

xmf−dcn
n,m = wmf−dcn

n,m (t, xpc
n,m) · xn, (14)

while the strength of the inferior olive input to the deep

cerebellar nuclei is determined by the io itself [73],

xio−dcn
n,m = wio−dcn

n,m (t, ion,m) · ion,m. (15)

The final corrective action of each cerebellar-like net-

work (in blue Fig.4.b) is function of the excitatory activity

of mossy fibers and inferior olive, and the inhibitory action of

the Purkinje cells,

∆xc
n = +k(k(

M
∑

m=1

xmf−dcn
n,m ) + k(

M
∑

m=1

xio−dcn
n,m )+

−k(
M
∑

m=1

xpc−dcn
n,m )),

(16)

where the nonlinear activation function k(y) is defined as,

k(y) =
2

1 + e−2y
− 1 . (17)

III. RESULTS

Four architectures that differ in terms of internal models

contributions are compared: (I) feedback controller; (II) feed-

back controller combined with inverse cerebellar-like network;

(III) feedback controller combined with forward cerebellar-

like network; (IV) feedback controller combined with inverse

and forward cerebellar-like networks. Each architecture has

been tested in the presence of table-ball disturbances (case

A), and extra uniformly distributed noise U(−0.1, 0.1) added

to the process variables read by the sensors (case B). Hereafter,

we use the notation ”architecture number+A/B” (for instance

IIA) to recall a specific test.

The software is based on the ROS messaging frame-

work [74] integrated in the Gazebo-based simulation envi-

ronment Neurorobotics Platform (NRP) [61]. The three wrist

joints are controlled in effort through the Gazebo service

ApplyJointEffort. The encoders information are sampled at

fsamp = 50 Hz. The computer used for the test has the

Ubuntu 16.04 Operating system (OS type 64− bit), the Intel

CoreTM i7−7700HQ CPU@2.80GHz×8 processor, and the

GeForce GTX 1050/PCIe/SSE2 graphics card. The tests

are performed 20 times per experiment. Due to the stochastic

nature of the experiments, the recorded data are expressed as

µ mean value and σ standard deviation of the 20 tests. The

oscillation (1,2) period is T = 4sec which corresponds to one

k trial, or rather iteration. The ball is launched from above

when the table is parallel to the floor (1st trial). Due to some

simulator problems that cause initial jerky movements of the

robot, the cerebellar-like networks initiate the learning after the

5th trial, and are enabled to send correction after 2 more trials.

This procedure is generally not necessary and is tailored to the

simulator. The paper focuses on the angular position tracking

performances of each experiment, which are measured in terms

of MAE mean absolute error evolution computed for the ǫn
angular position error of each joint,

maeqn(k) =

∑t+T

i=t |eqn(i)|

T
for n = 0, ..., N. (18)

Fig.5 reports the MAE evolution obtained for the three

controlled joint during the 20 tests. From the analysis, the

IV architecture (in magenta) resulted to correct larger errors

faster with respect to the two networks used independently.

This reactive behavior also appears in the III scheme (in cyan),

Angular position MAE

A

𝜇 
± 

3𝜎
 [r

ad
]

⎼⎼ I-pid     ⎼⎼ II-pid+inverse     
⎼⎼ III-pid+forward     ⎼⎼ IV-pid+inverse+forward

Trials (4 sec period)

B

𝜇 
± 

3𝜎
 [r

ad
]

𝜇 
± 

3𝜎
 [r

ad
]

n = 1

n = 2

n = 3

Trials (T=4 sec period)

n = 1

n = 2

n = 3

Fig. 5: Control architectures performances. The evolution of

the MAE mean absolute error shows how the system is

improving its tracking accuracy over the oscillations period.

The plot shows the results of the 20 tests in terms of µ mean

value (solid line) and 99.7% confidence interval (colored area).

The vertical green line represent the moment the cerebellum

starts adding contributions to the feedback loop (k = 8 trial).
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TABLE I: Weighting kernel parameters for [ccm1, ccm2] [42], [59]: LTP long-term potentiation, LTD long-term depression,

MTP potentiation modulating term, MTD depression modulating term, α decaying factor.

PF-PC PC-DCN
Forward Inverse Forward Inverse

n LTP LTD α LTP LTD α LTP LTD α LTP LTD α

1 [10−2
, 10−3.3] [10−2

, 10−3.3] [800, 170] [10−2
, 10−3] [10−2

, 10−3] [300, 70] [10−4
, 10−4] [10−4

, 10−4] [2, 2] [10−4
, 10−4] [10−4

, 10−4] [2, 2]
2 [10−2

, 10−3.3] [10−2
, 10−3.3] [800, 170] [10−2

, 10−3] [10−2
, 10−3] [300, 70] [10−4

, 10−4] [10−4
, 10−4] [2., 2] [10−4

, 10−4] [10−4
, 10−4] [2., 2]

3 [10−2
, 10−1] [10−2

, 10−1] [800, 170] [10−2
, 10−3] [10−2

, 10−3] [500, 70] [10−4
, 10−4] [10−4

, 10−4] [2., 2] [10−4
, 10−4] [10−4

, 10−4] [2., 2]
IO-DCN MF-DCN

Forward Inverse Forward Inverse

n MTP MTD α MTP MTD α LTP LTD α LTP LTD α

1 [10−3
, 10−4] [10−4

, 10−5] [1000, 100] [10−3
, 10−4] [10−4

, 10−5] [100, 100] [10−4
, 10−4] [10−4

, 10−4] [2, 2] [10−4
, 10−4] [10−4

, 10−4] [2, 2]
2 [10−3

, 10−3] [10−4
, 10−4] [600, 100] [10−3

, 10−3] [10−4
, 10−4] [100, 200] [10−4

, 10−4] [10−4
, 10−4] [2., 2] [10−4

, 10−4] [10−4
, 10−4] [2., 2]

3 [10−4
, 10−4] [10−5

, 10−5] [300, 1000] [10−4
, 10−4] [10−5

, 10−5] [500, 200] [10−4
, 10−4] [10−4

, 10−4] [2., 2] [10−4
, 10−4] [10−4

, 10−4] [2., 2]

but it is highly boosted in IV by the feed forward correction

of the inverse model, thanks to the reduction of the loop de-

lays affecting the feedback controller. Although the feedback

controller is highly perturbed by the propagation of noise in

the system (IB in green Fig. 5), the biomimetic architectures

do not present evident consequences. In particular, thanks to

the forward model action, architectures III and IV robustly

reduce the effect of noise as suggested by [51].

In about 5 trials, architecture IV rapidly corrects the feed-

back controller performance leading to an extra drop of 12%
(joint 1) and 90% (joint 2) with respect to architecture I (in

green). Moreover, architecture IV is the only one able to

correct rapidly the deviation of joint 3 between trials 8 and

15. It is worthwhile to mention that the feedback controller

of the first joint is highly affected by the table weight, which

slowly leads the joint towards the correct reference.

As we expected, the number of Gr granule cells of each

ulm (LWPR receptive fields) created during the test case B

are larger respect to the not noisy test (Table II), especially

for architecture III and IV that resulted to act more robustly

against noise. Moreover, We believe that the large numerical

difference between the Gr of the two MCC is due to the update

of the forward MCC before the inverse MCC that solve the

one-to-many mapping issue of the inverse model [55].

IV. CONCLUSIONS

Thus far, we have presented, tested, and compared four con-

trol architectures based on a versatile and real-time modeling

structure that replicates the cerebellar internal models individ-

ual and combinatorial theories. In particular, we introduced a

novel bio-mimetic learning and control cerebellar network that

combines computational neuroscience, machine learning, and

artificial neural network methods. The biomimetic controllers

are tested on a humanoid robot acting in a perturbed non-

deterministic environment.

The experiments confirmed the theories about the inter-

nal model independent and combinatorial contribution. In

particular, the forward model resulted to act rapidly and

efficiently against any noise and external perturbation in

the early adaptation period, while the inverse model highly

TABLE II: Receptive fields created by the LWPR.

Architecture II III IV
Case A B A B A B

Inverse MCC 8 14 - - 11 16

Forward MCC - - 78 146 436 510

boosted the feedback controller action through the adaptive

feed forward compensation that helped to reduce tracking error

and loop delays in the post adaptation period. Finally, the

combination of the internal models into a feedback control

scheme merged the models strengths and guaranteed improved

tracking accuracy, adaptation, high robustness to perturbations

and filtering of noise.

In the details of the biomimetic neural network, the granule

cells-parallel fibers layers are artificially interpreted with the

LWPR. The algorithm has been employed differently with

respect to the past experiments [75], [44], both in terms

of input, training, and output signals (the details are listed

in Section II). The algorithm resulted an efficient tool for

the online mapping of high dimensional input space, and

prediction of complex non-linear functions. Although high

estimation errors can lead the LWPR to jerky prediction, the

stratified structure of the network and the application of non-

linear functions largely damped any over-reactive behaviors.

Most of the artificial cerebellar model do not employ

biologically plausible learning and frequently miss the dcn

deep cerebellar nuclei layer [76], [51], [44]. In the proposed

model, the learning rules that iteratively update the network

weights are based on synaptic plasticities derived from com-

putational neuroscience studies [42], [59]. At some extend,

this learning approach makes the network conceptually closer

to the spiking models presented in the literature [42], [57],

[77] but still not comparable due to the different codification

of the signals propagating inside the networks. Moreover with

respect to [57], we embedded the networks into a feedback

control scheme where the MCCs are combined in a ”tandem

model” [55], in order to solve the one-to-many mapping prob-

lem affecting the inverse model. Although the high number

of synaptic plasticities includes a large number of learning

parameters, the network does not required excessive tuning,

and no adjustment were necessary between experiments: the

tuning resulted to work robustly even in highly noisy con-

ditions (experiments B). For the scope of this manuscript,

we did not focus on the optimal tuning, but we believe,

as in most neural network case, that a modeling algorithm

could help assetting the best combination of parameters. An

additional difference with respect to the literature, is the

internal modularity of each uml unit learning machine, which

is divided in specialized compartment encoding kinematics

or dynamical features. This modular and layered structure of

the network significantly reduced the effects of nonlinearities,

sensor noise, high feedback and prediction (LWPR) errors.
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Despite the novelties with respect to past models, at the

current state the cerebellar network can not generalize all the

possible conditions. The model itself replicate only a small

component of a wider and modular structure that is under

investigation. The biological cerebellum is composed by a

large number of canonical circuits working in parallel. It is

not clear how different circuits operate together towards a

more general and complete learning and control action, but

it is our intention to analyze these motor dynamics employing

the proposed component as main building block. Moreover,

the cerebellum is just one of the central nervous system area

involved into the neural control of movements. We believe

that the full exploitation of the cerebellar potentialities is only

possible if the circuit collaborates with other generalized and

biological plausible control structures.
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