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The cerebellum, which is responsible for motor control and learning, has been suggested to act as a
Smith predictor for compensation of time-delays by means of internal forward models. However, insights
about how forward model predictions are integrated in the Smith predictor have not yet been unveiled.
To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like
loop for adaptive control and a Smith predictor controller is proposed. The goal is to provide accurate
anticipatory corrections to the generation of the motor commands in spite of sensory delays and to
validate the robustness of the proposed control method to input and physical dynamic changes. The
outcome of the proposed architecture with other two control schemes that do not include the Smith
control strategy or the cerebellar-like corrections are compared. The results obtained on four sets of
experiments confirm that the cerebellum-like circuit provides more effective corrections when only the
Smith strategy is adopted and that minor tuning in the parameters, fast adaptation and reproducible
configuration are enabled.
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1. Introduction

Human beings show highly skilled motor responses

in spite of their complex musculoskeletal dynamics,

transport delays and response latencies. A reactive

feedback system, originating in the brain-stem and

spinal cord, and a feed-forward anticipatory system,

originating in the cerebellum, allow fine motor con-

trol of the body.1

The cerebellum has a complex neural organiza-

tion that gives rise to a massive signal-processing

capability for accomplishing several types of motor

learning.2 The cerebellum’s role in motor function,

i.e. its contribution to the execution of coordinated,

and precise complex actions, is well recognized.3 It

has been widely accepted that the cerebellum stores

internal models to represent input–output proper-

ties of a body part.4–6 Two types of internal models

have been proposed: forward and inverse models.4,7

This paper focuses on forward models. In his semi-

nal paper on cerebellum and internal models, Ebner5

affirmed: “Forward models use the commands for an

action and information about the present state to

predict the consequences of that action.” More recent

evidence8 hypothesized that the cerebellum may use

the motor command or “efference copy” signal sent

to an effector to overcome the problems associated

with long delays in sensory feedback.

Considering the structure of the control system

for voluntary movements, Ito9 depicted a plausible

control path of the connections between the cerebral

cortex and the cerebellum that has anatomical and

physiological bases: the forward model-based control

loop. Miall10 suggested that the cerebellum could

act as a Smith predictor11 for compensation of time

delays that occur in the sensorimotor transmission

and neural central processing by means of forward

models. As a matter of fact, the engineering control

strategy known as Smith predictor, which is a type

of predictive controller for systems with pure time

delay, is based on the forward model of the robot

plant; it provides a fast prediction of the outcome of

a motor command and a delayed copy of that pre-

diction, which will match in time the actual feedback

arising from the movement. However, no study has

confirmed Miall’s hypothesis; no control loop merg-

ing a computational model of the cerebellum and an

internal forward model acting as a Smith predictor

has ever been presented. Twenty years later, Porrill

et al.12 argued Miall’s hypothesis appeared to be in

principle biologically implausible because of the con-

straint of having a suitable teaching signal. Nonethe-

less, they also affirmed: “However, even for plausible

schemes, such as forward models for noise cancella-

tion and novelty-detection, and the recurrent archi-

tecture for adaptive inverse control, there is unlikely

to be a simple mapping between microzone function

and internal model structure”.12 In contrast with the

previous statements, we focused our investigation on

conceiving a plausible mapping by integrating the

Smith predictor strategy into the biological recur-

rent control loop13 while preserving the intrinsic and

suitable teaching signal.

In this study, a methodology for integrating the

Smith predictor mechanism with a cerebellar-like

network has been devised. The former includes the

forward model-based learning for providing sensory

predictions to the second one that automatically

supplies corrective control signals making the con-

trol adaptive. Any biological system has an inher-

ent delay from when a command has been issued

to a muscle to when the response of the limb has

been received. In this work, the delays are the ones

that arise from the communication system function-

ing and the motors feedback. The main objective of

this work is to gain insights into the sensory signal

processing in motor control by answering the follow-

ing questions: (i) In the proposed architecture, what

is the role and connectivity of the forward cerebellar

model? (ii) How are the sensory signals distributed in

order to drive the learning and corrections in combi-

nation of the Smith predictor and the cerebellar-like

network?

The forward model and the cerebellar-like micro-

circuit were reproduced by combining machine learn-

ing and computational neuroscience techniques. The

control scheme was then tested on a real physi-

cal platform, the Fable modular robot,14 combining

basic modules that led to a mutual influence in the

joint dynamics. In this context, a real modular robot

represents a suitable benchmark platform to investi-

gate the role of the cerebellum in anticipatory con-

trol and the relation with its internal modularity. We

propose a cerebellar-based modular controller that

is capable of effectively reducing the errors in few

iterations of the same task for both a single and dou-

ble robot module configuration.
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1.1. Background

Since the late 1960s, several authors, such as Marr

(1969),15 Albus (1971),16 Fujita (1982),17 shared

their view of the cerebellum as an adaptive con-

troller. The use of cerebellar models for robotic con-

trol has become an active research for developing

accurate low-gain control schemes for robotic plat-

forms of several degrees of freedom and compliant

joints (see review on cerebellar control18). For exam-

ple, these models have been used in robotic manipu-

lation tasks, where the cerebellum abstracts dynamic

models of the robotic platform and provides adap-

tive feed-forward corrections to the imprecise con-

trol signal obtained from an inverse dynamics con-

troller19,20 or feedback error learning controller.21

Several works have been carried out on the cerebel-

lar internal model theory,22–26 and two main con-

trol alternatives have been advocated, which are

known as feed-forward,21,27–30 and recurrent con-

trol loops;13,20,26,31,32 a comparison among the two

schemes is also available in the literature.33 Biolog-

ically plausible cerebellar algorithms have been suc-

cessfully embedded in the aforementioned loops for

validating the cerebellar adaptive functions in dif-

ferent tasks, e.g. in arm manipulation adaptation

under perturbations,19,21,30,34,35 in eyeblink classical

conditioning,36,37 in gaze stabilization through the

vestibulo-ocular reflex with a humanoid robot,29,38

in gain and timing adaptation for a target reach-

ing task,39,40 in minimizing sensory discrepancy and

cancelling the noise.31 Although these cerebellar-like

circuits differ in the synaptic plasticity models or net-

work models, they all analyzed how the cerebellum

is able to adjust the motor output or to predict the

action and minimize the sensory discrepancy.

The recurrent cerebellar loop, based on the use

of the forward model, was originally proposed by

Porrill et al.31 to simplify the adaptive control of

nonlinear and redundant biological motor systems;

in their experiments, the cerebellum had to com-

pensate for miscalibrations in a two deegrees of free-

dom (DOFs) planar arm. Another attempt to show

how the recurrent adaptive control algorithm can

successfully improve the performance of a robotic

implementation for gaze stabilization was made by

Ref. 32. They came to the conclusion that the archi-

tecture was able to adapt to a time varying plant

and so, it could be employed in general engineering

applications where sensory feedback is very noisy

and/or delayed. Luque et al., in 2011,20 were one

of the first authors who evaluated the capability of a

spiking cerebellar model embedded in the recurrent

loop architecture to control a robotic arm of three

degrees of freedom. Two years later, Tolu et al.,13

proposed a new bio-inspired recurrent architecture

in which the feedback-error-learning41 and adaptive

predictive control strategies were combined. Both

of the previous studies reported the advantage of

employing the recurrent architecture to ensure a fast

convergence in learned profile curve dynamics. In

contrast with Ref. 20, Tolu et al.13 guaranteed the

system capability to be robust against both dynam-

ics and kinematics transformations even in nonlin-

ear plants with seven DOFs. Although of signifi-

cant importance, this study did not fully exploit the

potential of the forward model predictions, as they

were just used to provide an input-space represen-

tation to the cerebellum-like network and not for

improving the corrections based on the prediction

error.

1.2. Paper outline

Section 2 gives an explanation of the adopted con-

trol strategy and a description of each main compo-

nent with the equations included. In this regard, the

properties and characteristics of the machine learn-

ing engine, of the cerebellar microcircuit, and of their

connection are presented and analyzed. Section 3

begins by outlining the four sets of experiments that

include highly dynamic tasks under varying modular

set-ups. Finally, in Secs. 4 and 5, we discuss the per-

formance and the robustness of the proposed control

method in learning forward models and compensat-

ing to deviations in the target trajectory together

with concluding remarks.

2. Material and Methods

2.1. The cerebellar-like adaptive smith

predictor

The proposed control strategy is illustrated in

Fig. 1(c) and it will be referred as the cerebellar-like

adaptive Smith predictor in the rest of this paper.

A set of four main blocks is created for each active

robot module and each block is also internally split

up in terms of DOFs. The blocks are: the trajectory
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S. Tolu et al.

Fig. 1. Three modular control architectures (a, b and c) were used for outcome comparison between the Qr(t) reference
joint positions and the Q(t) actual joint positions. The derivative terms are not depicted for clarity. In each main block, N
sub-blocks are created, where N is the number of active robot modules. Every blocks receives N for J signals, where J is
the number of joints per module. (a) This is the RAFEL control loop proposed in Ref. 13, (b) This is the Smith predictor
strategy (c) The proposed architecture is depicted here. It is based on both the cerebellar-like sensory corrections and the
Smith predictive mechanism.

planner, the controller, the Unit Learning Machine

(ULM), and the robot plant.

Two previous control strategies presented in the

literature have been combined. The first one is shown

in Fig. 1(a) and it is known as the recurrent adap-

tive cerebellar-based control loop (RAFEL).13 In

RAFEL, inside the ULM or cerebellar-like micro-

complex, the Forward Model plays the role of the

granular cerebellar layer that sends the WGK pre-

processed weights (K is the number of receptive

fields (RFs)) to the Readout Plasticity Units (RPUs)

sub-component that includes the Purkinje cerebellar

layers. The cerebellar corrective output (qc) of the

RPUs is summed to the feedback error (efb) into a

total error signal (etot) that is converted by the con-

troller into a τ torque command to the joint actua-

tors. The second control strategy is the Smith-based

control mechanism that is shown in Fig. 1(b). It is

based on a fast internal feedback loop (Qpr(t) for-

ward model predictions) and on an external feed-

back loop in which errors are converted by the con-

troller into a τ torque command to the joint actua-

tors. There are no cerebellar-like corrections acting

in the loop.

Further details about each block in terms of

learning and prediction mechanisms, processing flow,

and interconnections, are given in the following sub-

sections.

2.2. The control loop description

The trajectory planner delivers the reference or

Qr,j(t) desired joint positions for the Fable robot to

follow. Ideally, if there were no noise, disturbances,

or delays during the functioning of the system, the

desired positions and velocities and the actual out-

comes from the robot plant would match thanks to

the torque control command provided by the con-

troller. However, a correction that takes into account

if any mismatch occurred in the robot plant out-

put, has to be added to the desired movements and

the sum is converted into a τ motor command sig-

nal through the controller. A delayed copy of the

Q
pr

(t − δ) forward model prediction is compared

with the Q(t − δ) previous sensory feedback in out-

put from the robot plant. The result of this com-

parison is fed into the system to correct the move-

ment if necessary. The equations presented below are
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A Cerebellum-Inspired Learning Approach for Adaptive and Anticipatory Control

referred to position contributions. Velocity contribu-

tions can be derived in a similar way, but they have

not been explicit for clarity.

In Fig. 1(c), the controller receives etot,j(t) con-

trol input i.e. the sum of the following contribu-

tions (1)

etotj
(t) = (Qrj

(t) − Qprj
(t)) + (Qj(t − δ)

−Qprj
(t − δ)) + qcj

(t)

= etprj
(t) + eprj

(t) + qcj
(t), (1)

where etpr,j(t) is the trajectory joint error, epr,j(t)

is the prediction joint error, and qc,j(t) is the deep-

cerebellar nuclei (DCN) cell behavior or cerebellar

joint corrective position computed as in Eq. (8). Each

term is associated to the jth joint. The τ(t) torque

command for the jth joint is obtained by the follow-

ing equation:

τj(t) = kpj
· etot,j(t) + kdj

· ėtot,j(t)

+ kij
·
dėtot,j

dt
. (2)

The control signal is thus a sum of three terms: a

first term that is proportional to the position error,

a second term that is proportional to the velocity

error, and a third term that is proportional to the

derivative of the velocity term.

The controller parameters for each joint j are: the

proportional gain kp, the derivative gain kd, the inte-

gral gain ki, and the natural frequency wj that deter-

mines the speed of response of joint j. The param-

eter values are shown in Table 1 for each joint and

they were intentionally tuned to make the controller

initially stable, but not optimal and robust to distur-

bances, during the execution of the task. Indeed, the

purpose of the work is to show how the RPUs adap-

tive module and the Smith predictor strategy are

together contributing to the improvement of the con-

trol in an adaptive way. In the work done, both joint

velocity and position corrections have been taken

Table 1. The proportional (kp), derivative (kd),
and integral (ki) gains for joints 1 and 2. The
natural frequency w1 (joint 1) is equal to 4.5,
and w2 (joint 2) is equal to 5.0.

Joint N.◦ kp kd ki

1 w2
1 · 2 w1 · 0.4 w1/40.0

2 w2
2 · 4 w2 · 0.4 w2/40.0

into account for adaptive control. Equations in the

text refer to the position terms, but a similar anal-

ysis could be derived for the velocity terms. Here,

they are omitted for clarity.

2.2.1. The unit learning machine

The ULM is a set of structured cerebellar neural

circuits that encodes internal models in order to

precisely perform the control of the body part.42

Forward models are formed and adjusted through

a supervised learning process as the movement is

repeated to mimic the behavior of a natural pro-

cess,43 to facilitate more precise coordinated move-

ments44 and to increase the system control compli-

ance.45 The main advantage of this approach is to

allow the design of control systems that can oper-

ate in unknown or changing environments, when the

dynamical robot model is unknown13,21 or every time

a subject learns to use a new tool or uses different

tools.23

The network of ULMs is inspired on the cerebellar

modular neural organization proposed by Ref. 46; the

modularity of the ULMs is achieved by replicating

them in terms of the number of robot modules (N)

with an identical parameter configuration; one set of

ULMs is dedicated to position terms and another one

to velocity terms, but this is not explicitly depicted in

Fig. 1 for clarity. Each ULM artificially reproduces

the main cerebellar layers of the canonical micro-

complex circuit shown in Fig. 2 that were grouped

in two sub-blocks: the Forward Model and RPUs.

The Forward Model and RPUs components that are

dedicated to position learning are separated from

the ones for velocity learning. The Forward Model

sub-block is dedicated to learn the internal forward

model of a single robot module, but it receives the

sensory input data from every robot module that is

active and connected. If another robot module is con-

nected to the active ones, an extra ULM is created

and all the ULMs start receiving data also from it.

The RPUs output inside the ULM block is the adap-

tive cerebellar correction for each robot module as

represented in Figs. 1(a)–1(c).

Forward Model. The Forward Model component

receives and processes the sensorimotor information

during the entire experiment execution to provide

an optimal incremental input space representation

likewise in the cerebellar granular layer in terms
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Fig. 2. The cerebellar functional neural unit is called
microcomplex. Mossy Fibers (MFs) and climbing fibers
(CFs) are the principal input to the cerebellar cortex.
MFs that originate from the spinal cord and from a wide
range of nuclei in the brain stem, namely PN, distribute
multisensory information, which refers to the desired
movement, motor commands, and the actual state of the
limbs, onto different GCs. GCs excite the main output
of the cerebellar cortex, the Purkinje cells (PCs) via par-
allel fibers (PF)-PC synapses. The other afferent of the
cerebellum, the CF, arise from the IO and is thought
to convey an error computed during the movement, thus
providing the teaching signal for the cerebellar learning.
Other cell types such as the Golgi, the basket, and the
stellate cells are not depicted in the figure for simplicity.

of RFs.13 The RFs are generated online along the

execution of the trajectory. The LWPR algorithm47

accomplishes the learning of the forward dynamic

model of a robot module, while it is subjected to cor-

rections during the reaching task.13 So, the LWPR

engine is running in the Forward Model sub-block

inside the ULM with multiple functions: (1) it learns

the forward model of the robot; (2) it predicts the

Qpr(t) future state of the robot module; (3) it com-

putes the WGk granular weights from the sensori-

motor information coming through the MFs and it

provides them to the RPUs.

Among the global nonlinear function approxima-

tors, such as Gaussian Process Regression (GPR), or

Support Vector Regression (SVR), LWPR method

has been selected since it approximates nonlinear

functions in high-dimensional spaces at a low compu-

tational cost. It automatically and efficiently evalu-

ates the required number of local correlation modules

to optimize the network size by incremental learning,

the Partial Least Squares regression (PLS). Because

of this, the LWPR algorithm does not require any

prior knowledge of the data, thus allowing fast online

learning. Moreover, there is no restriction in the

number of different tasks that can be retained and

interposition among them. All the previous facilitate

the cerebellar learning accuracy and speed, thus con-

firming the hypothesis of Ref. 31 that they could be

improved by an optimized granular sparse code, i.e.

a neural code in which the ratio of active neurons

is low at any time. Furthermore, more recent stud-

ies on cerebellar physiology link the PCs responses

necessary for motor learning to learning-related neu-

ral responses in granular cells. Thus, the learning

capability of the cerebellum is highly correlated to

the changes in the granular layer during motor

control.8 Bearing in mind the similarity between the

LWPR learning mechanism and the cerebellar circuit

(see Fig. 1 in Ref. 21), each LWPR module and its

associated RF weights can be seen as providing the

firing rate of a PF, while the set of active RF weights

can be seen as the current state of the granular layer-

processing module.

From Fig. 1(c), the Qpr(t) outputs of the For-

ward Model sub-block represent the predicted future

states or positions of the robot and they are used

for addressing a fast internal feedback control. A

schematic representation of the input/output signals

to the learning and prediction functions of the LWPR

algorithm is depicted in Fig. 3. The learning function

is trained to acquire the forward model of the robot

module. The predict function is called to estimate the

future state QprM (t) of the robot module M based on

the previous Q(t − δ), Q̇(tδ)) robot plant state, the

previous Qr(t − δ), Q̇r(t − δ)) desired robot plant

state, and the previous τ(t − δ) efferent command

copy sent to the robot, where δ is the inherent delay

of the control of the system.

Besides, the LWPR incrementally divides the

input space into a set of K RFs whose WGk(t) time-

varying parameters are defined in (3) by the ck cen-

ter and a Gaussian area characterized by a positive

definite Dk distance matrix

WGk(t) = e−
1
2
(xi(t)−ck)T Dk(xi(t)−ck), (3)

where xi(t) are the input data points at sample t

(i ∈ [1, M ], M is the total number of inputs), and k

is a local model or RFs (k =∈ [1, K], K is the total

number of RFs).
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A Cerebellum-Inspired Learning Approach for Adaptive and Anticipatory Control

Fig. 3. At every moment in time (t), the predict and
learning functions of the LWPR algorithm for a robot
module (M) receive input signals from all the J joints of
all N active robot modules. The forward model prediction
outputs (QprM (t)) related to robot module M are then
simultaneously employed as a feedback signal to compute
the torque commands that will drive the robot plant.

At each sample t, the xi(t) points are assigned to

the closest RF based on its WGk(t) weight activa-

tion, and consequently, the ck center is incremen-

tally updated. The number of local models increases

with the complexity of the input space. If an input

data falls into the validity region of a local model,

its own distance matrix and regression parameters

are updated. Likewise in the cerebellum processing

flow, the WGk(t) RF weights (3) are processed by the

RPUs sub-component.

The Qpr,j(t) global forward model output for

the jth joint of a robot module is computed as the

weighted mean of all the q̂k(t) predictions of the kth

linear local models created (4).

Qpr,j(t) =

∑K

k=1 wgk(t)q̂k(t)
∑K

k=1 wgk(t)
. (4)

In other words, the input data points xi(t) enters

every RF (local model), which provides the q̂k(t) pre-

diction seen in (4).

The Readout Plasticity Units. Inside the RPUs

the following cerebellar layers are represented:

• Purkinje cell (PC) layer: the activity at this

layer is function of the granular layer state. The

learned parameters are modified during the exe-

cution of the planned movement by the error or

teaching signal.

• DCN cells: The response is related to the inte-

gration of both excitatory and inhibitory contribu-

tion from MFs, inferior olive (IO) and PCs, respec-

tively.

Each PC and DCN is associated with a joint of the

robot. Several forms of plasticity mechanisms work

in balance at different layers to provide a final cor-

rective control signal to perform the desired robotic

task.

More in detail, the RPUs set provides the qc(t)

cerebellar corrections, where t states the current

sample. These corrections are modulated through

the efb(t) teaching signal computed by the differ-

ence between the Qr(t) reference joint positions

and the Q(t) actual joint positions of the robot

plant, obtained from the encoders of the motors. The

dimensionality of the previous-mentioned vectors is

Q ∈ R
n, (5)

where n is number of DOFs of each robot module.

Unlike the work in Ref. 13, the here adopted

cerebellar-like model was inspired from the biolog-

ical cerebellar micro-complex circuit shown in Fig. 2

that includes extra plasticity rules based on the cere-

bellar theories described in Ref. 48. Thus, inside the

RPUs sub-block, the PF-PC, PC-DCN, MF-DCN

and IO-DCN synaptic connections are implemented.

Our main aim is to maintain the functional cerebellar

information processing by using artificial cells with

analog activity values. In the context of movement

control, several studies,25,42,48,49 suggested that the

CFs that arise in the IO, may signal the presence

of an unexpected sensory stimulus during an action,

which nature depends on the type of the internal

model, so they may convey the error signals that

drive a long-term depression (LTD)-based learning

process at parallel-Purkinje (PF-PC) synapses. In

the case of forward model learning, the CFs may

convey either sensory signals. Apart from the PF-

PC synaptic plasticity, the plasticity at the DCN

synapses can account for learning.19 DCN neurons

are innervated with both excitatory and inhibitory

connections: the first from CFs and MFs, and the sec-

ond from PCs. Their relationships are still not com-

pletely revealed, but it seems that the IO-DCN plas-

ticity provides fast corrections at early stages during

the learning.48

The WGkj
(t) weights are then processed for com-

puting the qcj
(t) cerebellar corrections on the basis

of the efbj
(t) feedback error or teaching signal car-

ried out by the CF from the IO associated with

the jth joint. Thus, the specific PFkj
(t) pathway to

the Purkinje layer carries the WGkj
(t) signal to the
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S. Tolu et al.

PCj(t) synapse. The PCj(t) output represents the

firing rate of the PCs associated with the jth joint

and it is modeled as a weighted linear combination

of the WGkj
(t)

PCj(t) =
∑

k

W(PF−PC)kj(t) · WGkj(t). (6)

∆W(PF−PC)kj(t) = β · CFj(t) · WGkj(t), (7)

where ∆wPFk−PCj
(t) represents the weight change

between the kth PF and the target PC associated

with the jth joint, β is a small positive learning rate

set to 5 · 10−3 (7 · 10−4 for the velocity configuration)

in all the experiments, CFj(t) signal corresponds to

the efbj
(t) teaching signal. According to Fig. 2, the

DCN receives input signals from two differentiated

pathways. The first pathway comes from the cerebel-

lar cortex trough PCs and the second is through MFs

and CFs. The roles of the aforementioned pathways

in motor control were discussed in Ref. 48. Equa-

tion (8) describes the DCN cell behavior

DCNj(t) = WMF−DCNj
− PCj(t) · WPC−DCNj

+ CFj(t) · WIO−DCNj
, (8)

where DCNj(t) represents the firing rate of the DCN

cell associated to the jth robotic joint; WMF−DCNj

is the synaptic strength of the MF-DCN connection

at the joint jth; WPC−DCNj
represents the synap-

tic strength of the PC-DCN connection of the jth

joint; CFj(t) corresponds to the efbj
(t) teaching sig-

nal associated to the jth joint and WIO−DCNj
rep-

resents the synaptic strength of the IO-DCN con-

nection of the jth joint. The sensory information

is then related with the corrective cerebellar out-

put DCNj(t). We have integrated in our previ-

ous cerebellar-like circuit13 the rules described in

Eqs. (9), (10) and (11) that represent the WPC−DCNj
,

WMF−DCNj
, and WIO−DCNj

synaptic plasticities of

the jth joint. However, some changes related to the

parameters and signals suggested in Ref. 48 for the

robotic simulations were applied in the implementa-

tion with the real robot. All the synaptic strengths

are progressively adapted during the learning process

according to different synaptic plasticity mechanisms

which are represented by the following equations:

∆WPC−DCNj
(t) =

LTPMAX · |PCj(t)|
α

(1. + abs(DCNj(t)))
α

−LTDMAX · |PCj(t)|, (9)

where LTPMAX and LTDMAX are the maximum

long-term potentiation/long-term depression val-

ues set to 1.0 · 10−4 and 1.0 · 10−3, respectively

(1.0 · 10−5 and 1.0 · 10−4 for joint velocity configu-

ration); α is the LTP decaying factor that was set to

10 in order to maintain stable behavior versus a fast

LTP action decreasing; a faster LTP action (1000)

as proposed in Refs. 19 and 48 affects the control

stability of the system.

∆WMF−DCNj
(t) =

LTPMAX

(|PCj(t)| + 1)
α

−LTDMAX · PCj(t)), (10)

where LTPMAX and LTDMAX are the maximum long

term potentiation/long terms depression values set

to 1.0 · 10−4 and −1.0 · 10−3, respectively (1.0 · 10−5

and −1.0 · 10−4 for joint velocity configuration); α is

the LTP decaying factor that was set to 10 in order

to maintain stable behavior versus a fast LTP action

decreasing.

∆WIO−DCNj
(t) = MTPMAX · |CFj(t)|

−
MTDMAX

(|CFj(t)| + 1)α
, (11)

where MTPMAX and MTDMAX are the maximum

modulating plasticity terms set to 1.0 · 10−3 and

−1.0 · 10−6, respectively, for both joint position and

velocity configurations; α is the MTD decaying fac-

tor that was set to 10 in order to maintain a posi-

tive ratio between behavior versus fast MTD action

decreasing. The CFj(t) activity in the IO-DCN plas-

ticity represented the efb(t) feedback joint position

error instead of the normalized joint feedback error

as used in Ref. 48.

In order to both preserve the control loop sta-

bility and refer to the bio-inspired control system

structure for voluntary movements,50 the feedback

error learning theory presented in Ref. 51 was took

into consideration. In our work, the feedback error

learning mechanism is obtained by using the Smith

predictor strategy whose anticipatory actions con-

tribute toward achieving a fast improvement of the

performance and fast learning cerebellar consolida-

tion. As a matter of fact, the cerebellar-like learn-

ing is facilitated by the supervised learning in terms

of feedback error carried trough the CF in con-

junction with the PF-PC synapses.41 In addition

to this, the prediction error obtained by compar-

ing the internal forward model outcome with the
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A Cerebellum-Inspired Learning Approach for Adaptive and Anticipatory Control

current robot plant outcome, indirectly contributes

to the learning and adaptation of the ULM mod-

ule through the generation of the optimal τ control

input.

2.2.2. The modular robotic system

Fable is a modular robot consisting of detachable

modules.14 The modules can be active (with motors)

or passive and can be assembled together to shape

configurations that differ in morphology and topol-

ogy. Each module has two actuated revolute joints.

In this work, tests on a single active module with

2-DOFs and on two connected active modules (4-

DOFs) lying in the configuration setup shown in

Fig. 4(a) were conducted. Joints are actuated by

Dynamixel AX-12A motors with an accuracy of

0.29◦. Modules receive a command wirelessly from

the user computer that is serially connected to a don-

gle. The dongle provides a shared 2 Mbit radio com-

munication link between the user controlled applica-

tion and the modules. Modules are addressed using

an ID and their module type. The web services

(API) allow distributed control; a separate thread

is executed on the computer for each module con-

troller. The system application, which the user can

run locally on the computer, has been developed

using Python v.3.4. The user-program calls simple

APIs functions on the remote modules trough the

dongles connected to the computer, as shown in

Fig. 4(b).

The control of the Fable robotic system has an

inherent delay: each control-loop execution takes

approximately 5 ms in a computer; once the torque is

Fig. 4. (a) The Fable modular robot composed of mod-
ule 1 and module 2. (b) The communication system.

estimated, it is sent to the joint through the dongle

which has a latency of about 1ms. Besides this, there

is an unknown variable delay related to the operative

system, which is lower than 0.1ms.

3. Experiments and Results

The outcome of the three control architectures shown

in Fig. 1 has been compared and analyzed in this sec-

tion. In all the following tests, the two-joint modules

had to follow the figure-eight trajectory described by

the following equations in angular coordinates:

Qrj1(t) = −A

(

1

2π

)2

sin(2πt),

Qrj2(t) = −2A

(

1

4π

)2

cos
(

4πt +
π

2

)

,

(12)

where A = 2000; the amplitudes of joints 1 and 2

are approximately 50.0◦ and 25.0◦, respectively. Each

completed figure-eight movement constitutes an iter-

ation, which duration is 1 s (the sampling time is

equal to 5ms).

The performances of the proposed architectures

depicted in Fig. 1 are analyzed by executing four

different tasks that allow proper assessment of the

learning capability of the cerebellar model.

In each task, the performance is measured by

computing the Mean Absolute Error (MAE) between

the reference joint trajectory (Qr,j) and the actual

robot joint outcome (Qj) along the whole trajectory.

During all the trials, there is no offline learning, i.e

the learning of the forward model starts when the

simulation begins, so the cerebellum-like weights are

activated; however, the Smith prediction as well as

the cerebellar corrections are applied into the sys-

tem after one initial iteration of the figure-eight. This

provides the initial stability given by the feedback

controller for the learning phase. The robot module

batteries have to be fully charged in order to get the

best performance.

1. Basic Task. Basic operation with one robot mod-

ule. The robot module stands in a vertical position

and the initial joint angles are set to zero. The figure-

eight movement is repeated 200 iterations with a

fixed frequency and amplitude.

The first experiment simply compares the per-

formance of the three architectures shown in Fig. 1.

Results for the architecture proposed can be found

in Fig. 5. It can be observed (black line) that the
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S. Tolu et al.

Fig. 5. (Color online) Accuracy in position of the con-
trol loop obtained with one robot module in three test-
cases (architectures a, b and c in Fig. 1): (1) with both
the Smith predictor and cerebellar-like corrections (black
solid line); (2) with the Smith predictor contribution and
without the cerebellar-like (RPUs) corrections (brown
dot dashed line); (3) without the anticipatory action pro-
vided by the Smith predictor and with the RPUs correc-
tive actions (red dashed line). Corrections are applied to
the desired joint coordinates when the robot is following
the target trajectory.

adaptive and predictive control method is able to

adapt to robot dynamics by making the averaged

MAE decrease to 0.70◦ at the last iteration.

The effectiveness of the control can be observed

by comparing the result with the one obtained with-

out the cerebellar-like outcome (brown dot dashed

line). The outcome from the RPUs is actually what

Table 2. Standard deviation and min
MAE values (degrees) for the basic
experiment task.

Control loop min MAE std

a 2.34 0.04
b 3.99 0.07
c 0.62 0.02

Table 3. Testing the performance of 1-module basic task by varying the distance
matrix D that is inversely proportional to the diameter of the RFs. The table
data show the D matrix value, the number of RFs, the minimum MAE value for
each joint and averaged among the joints, and finally, when the latter occurred
during the whole executed simulation. The best result is highlighted in bold.

Distance matrix D 5.0 7.0 9.0 10.5 15.0 17.0
No RFs 6 8 9 11 13 15

Test Min MAE joint 1 (◦) 1.07 0.78 0.73 0.65 0.75 0.67
basic task Min MAE joint 2 (◦) 1.27 0.94 0.88 0.72 0.80 0.84

Min avg. MAE (◦) 1.17 0.86 0.81 0.69 0.78 0.76
No iteration 97 100 102 102 96 98

leads to finer adjustments in the control. The task

was also executed without the Smith predictor (red

dashed line) to show that the contribution of the

RPUs helps to anticipate the correction from the

very beginning of the trial (see Fig. 5). The experi-

ment was repeated eight times for the three control

loops and the standard deviation (std) values corre-

sponding to the minimum MAE values are indicated

in Table 2. They are an indicator of how much, on

average, measurements differ from each other. The

RPUs corrections help to maintain the STD values

low and the accuracy is higher than the case without

them.

The number of RFs created by the LWPR was

11 for the position states (see Table 3). The distance

matrix Dk was set to 10.5 for all the experiments.

The initial Dk value, which describes the size of the

newly created RFs, was chosen by analyzing the pre-

diction error obtained, as shown in Table 3. Smaller

values for D yield wider RFs, which oversmooth at

the start of training and lead to slow convergence

until they span the entire input space; it tends to

reduce the generalization ability; bigger values for D

yield smaller RFs, which might lead to fast conver-

gence, but also to overfitting.

2. Trajectory switching task. Trajectory switching

with one robot module in the same initial configu-

ration of task 1.

The second set of experiments focuses on the con-

troller response to a set of sinusoidal inputs at dif-

ferent amplitudes and frequencies that are changed

online every 30 iterations of the figure-eight move-

ment. In the first test, the amplitude of the move-

ment was changed every 30 iterations, with A rang-

ing in the [2200, 2000, 1800] set for both joints, while

the frequency remained constant. Results for this
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A Cerebellum-Inspired Learning Approach for Adaptive and Anticipatory Control

Fig. 6. Test of amplitude change carried out with the
model architecture in Fig. 1(c). The sequence was: A =
[2200, 2000, 1800, 2000, 2200, 2000, 1800]. The switches
occur after every 30 iterations.

experiment are shown in Fig. 6, where it can be

observed that the predictive architecture is robust

to the changes during the executed action, since

the error decreases faster after a switch especially

in advanced learning phase. The number of RFs

increased to 20 in this experiment.

In the second experiment, the amplitude of the

movement remained constant, while the frequency

was changed after every 30 iterations, ranging in

the [0.9, 1.0, 1.2Hz] set. Figure 7 shows the behavior

obtained with one robot module. When a change

occurred, the cerebellar-like adaptive Smith predic-

tor performance is valuable in terms of averaged

MAE, it decreased around 1◦. The number of RFs

also increased to 20 during this experiment despite

fast changes of the frequency. Thanks to the previous

learning acquired by the RPUs during the changes,

the system is able to provide fast adjustments and

Fig. 7. Test of frequency change carried out with
the model architecture c in Fig. 1. The sequence was:
f(Hz)=[0.9, 1.0, 1.2, 1.0, 0.9, 1.0, 1.2] and the switches
occur after every 30 iterations.

maintain a stable behavior that is especially per-

ceived after 100 iterations.

3. Dynamic changes task. The robot module stands

in the same initial configuration of task 2. In this

task, the capabilities of the proposed architecture to

react to changes in dynamics were tested by applying

an external load on the robot end-effector. The load

weighted 105.9 g and was applied by hand from the

beginning of the trial in the experiment shown in

Fig. 8, and after 40 iterations in the test shown in

Fig. 9.

It can be noticed that the cerebellar-like adap-

tive Smith predictor does not seem to be influenced

by the change in dynamics, and the cerebellum is

Fig. 8. The averaged MAE obtained manipulating an
external load at the end-effector from the beginning of
the test.

Fig. 9. The averaged MAE obtained manipulating an
external load at the end-effector after 40 iterations from
the beginning of the test.
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actually the one lowering the error soon after few

iterations after the load application. Moreover, the

initial MAE value is lower than the ones obtained

without cerebellar contributions. As a matter of fact,

the cerebellum is able to apply adaptive correc-

tions thanks to the previous experience and learning,

which is not allowed with only the Smith predictor.

However, their combination helps refining the correc-

tions to get a faster robust performance.

4. Basic task with two Fable modules. Basic oper-

ation and dynamic changes with two robot mod-

ules. The amplitude and frequency of the figure-eight

movement are fixed and repeated by two separated

robot modules. The dynamics of both robot modules

change.

The final set of experiments focuses on the con-

troller capability to deal with the dynamic distur-

bances caused by the connection of two modules and

demonstrates its effectiveness for modular robots.

In this task, two Fable modules were concatenated

one on top of the other forming a column struc-

ture (Fig. 4(a) and oriented top–down to overcome

the payload engine limitations. Both joint modules

had to follow the figure-eight trajectory given by

equation 12.

The results represented in Fig. 10 are given by

the two modules attached together from the begin-

ning, differently from Fig. 11 for which experiment

the two modules were initially separated and only

after 30 iterations were joined. In Figs. 10 and 11,

Fig. 10. The averaged MAE obtained with the modular
setup as result of the three control architectures a, b, and
c shown in Fig. 1. The two modules are joined from the
beginning of the test.

Fig. 11. The averaged MAE obtained with the modular
setup when one module is attached to the other after 30
iterations from the beginning of the test.

the averaged MAE among joints is around 2◦ and

1◦ at the last iteration for module 1 and 2 respec-

tively, by using our proposed control method. In

Fig. 10 the outcome of the three control architec-

tures in Figs. 1(a), 1(b) and 1(c) was compared.

Again, the combination Smith predictor and cere-

bellar feed-forward controller is the one making the

difference in the control during the experiment com-

pared to the other control strategies. The number of

RFs created by the LWPR was equal to 20 for the

experiment in Fig. 10 and 27 for the experiment in

Fig. 11. Finally, the outcome in Fig. 11 highlights the

high contribution of the cerebellum-like network with

the Smith predictor strategy. Indeed, the cerebellar-

like corrections enable a better robot performance

with the Smith predictor from the beginning of the

test and a fast reduction of the error after the two

modules are concatenated.

4. Discussion

4.1. Forward cerebellar model

contribution to robustness and

generalization capabilities

As anticipated, our findings support the hypothesis

that the cerebellum could use the Smith predictor

strategy based on forward model learning to provide

fast and accurate corrections. The sensory signals

were distributed in order to drive the learning and

compensate the time delays inherent to the control

system.
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Test results, in Sec. 3, about the performance

and validity of our controller in on-line motor con-

trol tasks revealed that: (1) the error decreases sig-

nificantly and fast during the tasks; (2) the control

is robust against changes in dynamics or in motion

input. The errors are compensated throughout the

generation of the internal forward model, prediction

errors, and cerebellar corrections. The results show

an improvement in the accuracy compared to a clas-

sic control approach and that the combination of

the Smith predictor with a forward cerebellar model

indeed contributes to deliver fine and effective cor-

rections (Fig. 5). The proposed control architecture

presents a lower final error than the one achieved

without the Smith predictor and without cerebellar-

like corrections during the control of the task. We

argue that the angular error is due to limits of the

hardware (gear set) and the motor’s resolution. It is

worth to mention that the system is friendly with

respect to the parameters setup. As a matter of fact,

all the experiments were run without any modifica-

tion in the internal control parameters. Besides, an

optimal feedback controller as well as an analytical

robot model are not needed.

4.2. Implications for cerebellar role in

anticipatory control

The results from experiments to changes in motion

(Figs. 6 and 7) and in dynamics (Figs. 8, 9, 10 and 11)

have confirmed that Smith control predictions help

to deal with the sensory delay of the control loop

and the modular RPUs adjust the control output to

those changes. Indeed these are central features of

cerebellar computation and function and they have

been investigated in a recent work.52

All the tests were performed on a physical mod-

ular robot in contrast with previous works based

on the recurrent cerebellar architecture in simulated

robotic tasks.13,20 Luque et al. (2011)20 evaluated

the capability of a spiking cerebellar model embed-

ded in a recurrent control loop to control a simu-

lated robot arm. In their work, they were able to get

as minimum MAE error approximately 4◦ after 100

iterations of the same task. In contrast with their

work, here both feedback-error-learning mechanism

and predictive actions of the robot plant were used

to enable a better improvement in the robot control

performance. This confirms the role of cerebellum in

driving the performance and at the same time get-

ting benefits from the learned output.8

In contrast with previous approaches,24,53 there

is no offline learning. This has two effects: from one

side, it allows the system to adapt to changes in

dynamics while performing the task, but it has the

downside of having an initial learning phase in which

the error is higher. However, it has been shown, with

similar controllers, that this issue can be overcome by

storing the learned forward model.29 Anyhow, results

show that active cerebellar corrections lower initial

errors from the first trials of the experiment. In our

model, at the same time, the forward model predicts

the future state, the cerebellum updates its synap-

tic weights and computes its corrections based on the

same sensory inputs of the former. This could explain

how the sensory signals are distributed in order to

drive the learning and anticipate corrections.

5. Concluding Remarks

In this work, a novel cerebellar-like adaptive Smith

predictor was obtained by integrating a computa-

tional model of the cerebellum circuit embedded in a

recurrent loop with a Smith predictor. The proposed

control architecture is biologically inspired by the

theory of the cerebellar internal forward models for-

mation for anticipatory motor control. Other authors

tried to provide anticipatory corrective responses

through learning from motor errors, but they show a

mechanism to correct feed-forward motor responses

that is tied to the dynamics of the plant and so,

they cannot be easily generalized to new robot con-

figurations. These previous works are based on the

combination of forward and inverse models with-

out using cerebellar computational algorithms for

robot control, such as Wolpert and Kawato,54 who

built a model for sensorimotor learning and con-

trol (MOSAIC), with the aim of learning and select-

ing the most appropriate set of internal models for

a given environment. Indeed, a modular approach

based on internal forward model pairing would lead

to advantages since the controller would be able of

providing appropriate motor commands for multiple

contexts, tasks and experiences.

This work was also inspired by the modularity

of the cerebellar network for implementing multiple

microzones, one of each is devoted to control and

learn the internal forward model of a single robot
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module. Future work will regard the study about

how the cerebellum processes the sensory inputs and

organizes its internal structures for motor control

tasks under changing morphologies and topologies.

In this case, more complex nonlinarities could be

handled by combining traditional PID approaches

with biologically plausible methods that give the

first ones the capability of continuously learning by

adapting the gains. Some attempts have already

been applied in control, such as membrane con-

trollers for trajectory tracking and Spiking Neural

P systems for communication strategy among neu-

rons.55,56 Finally, we argue that the performance

could be improved by using advanced techniques for

optimization of control parameters.57,58
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