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ABSTRACT 

This thesis derives a new learning system which is presented as 

both an improved cerebellar model and as a general purpose learning 

machine. It is based on a summary of recent publications concerning the 

operating characteristics and structure of the mammalian cerebellum and 

on standard interpolating and surface fitting techniques for functions 

of one and several variables. The system approximates functions as 

weighted sums of continuous basis functions. Learning, which takes 

place in an iterative manner, is accomplished by presenting the system 

with arbitrary training points (function input variables) and associated 

function values. The system is shown to be capable of minimizing the 

estimation error in the mean-square-error sense. The system is also 

shown to minimize the expectation of the interference, which results 

from learning at a single point, on a l l other points in the input space. 

In this sense, the system maximizes the rate at which arbitrary 

functions are learned. 
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NOTATION 

vii 

a) Standard Forms 

a = a scalar 

A = a vector 

A = a matrix 

aj = the i * - n element of A 

a^j = the element of A at co-ordinates (i,j) 

A T or AT = the transpose of A or A respectively 

b) Definition of Variables 

Ae = an error correcting function 

G = an arbitrary constant, G>0 

used as the acceptable estimation error 

f = Purkinje cell activity or estimated output function 

f = system corrected output 

(Subcortical Nuclear cell output) 

f(H) = target function 

A f = f - f = the estimation error 

G = Golgi feedback matrix 
H = region of definition in the hyperspace of the control 

function 

Hi = a particular point in H 

I = identity matrix 
k = convergence gain factor 



NOTATION (Continued) 

v i i i 

L = number of elements in the basis set {(*)} and in the weight 
set {TT} 

m = number of elements in a one-variable interpolation function 

n = number of independent input variables 
or arbitrary power 

{0} = the function-space basis set (Parallel fiber activity) 

{(D(HTJ} = the vector of values of {0} at the point 

{TT} = expanded input set 

s ( H ) = a cost density function 

0 = (I4G) - 1 = Granule-Golgi transfer matrix 

also used as an arbitrary non-singular matrix 

u ( H ) = the training point density function 

v = arbitrary scalar for optimization techniques 

{W} = the set of variable weights (effective synaptic weights) 

X = augmented matrix whose columns are eigenvectors 

XJ = the i f ch element of the input set 
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I INTRODUCTION 

Artificial intelligence and pattern recognition are currently areas 

of great interest. This thesis analyses a phylogenetically lower 

portion of the brain, the cerebellar cortex, in the belief that such an 

analysis will assist the development of a new type of intelligent 

system. It is further believed, since the higher regions of the brain 

are phylogenetically newer than the lower ones, that a study of the 

cerebellum is a logical starting point in the study of intelligent 

structures in general. 

The cerebellum is a part of the brain which is located in the rear 

portion of the head, at the base of the skull. It is generally accepted 

that the cerebellum is involved in maintaining posture and co-ordinating 

motor activities of the body [7,12,28]. Although other levels of the 

brain can perform these functions, i t has been postulated that the 

cerebellum is designed both to provide finer co-ordination than other 

levels and to relieve higher levels of most of the motor 

tasks [17,18,46]. Studying the cerebellar cortex is particularly 

appealing due to its extremely regular arrangemant of cells (which will 

be discussed in Chapter 2) and the fact that its inputs (only two types) 

and outputs (only one type) are so well differentiated. Although the 

following analysis is based on the structure and function of the 

cerebellum, i t should be established at this point that much additional 

research is required to show i f the cerebellum in fact operates 

according to the theory to be developed. 
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There are thus two main goals of this research: 

1. to present a model of the cerebellum which is consistent 

with current anatomical and physiological data; thus being 

an improvement over existing models, and 

2 . to develop a learning machine, incorporating the improved 

cerebellar model, which may form the basis of a new 

approach to designing intelligent machines. 

With these goals in mind, the thesis begins by describing the structure 

of the cerebellum. Chapter 3 presents recent cerebellar models, some of 

their deficiencies, and the requirements of an improved model. Next, 

Chapter 4 begins to analyse the nature of possible cerebellar 

computations, leading to Chapter 5 which ends with the development of an 

optimized learning algorithm which is consistent with the cerebellar 

system. The performance and operating characteristics of examples of 

this system are presented in Chapter 6. Finally, Chapter 7 discusses 

implications of both the new cerebellar model and the learning system, 

ending with suggestions for further research. 
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There have been numerous publications dealing with the cerebellum. 

Unless otherwise indicated, the following information is derived from 

some of those which deal with the cat [7,12,48]. A block diagram of the 

interconnections of neurons in the cerebellum is shown in Figure 2.1 in 
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F i g 2.1 Block Diagram of the Cerebellar System 

which the interconnections are marked to indicate whether they are 

excitatory or inhibitory. It can be seen that there are only six types 

of neurons in the cerebellum. Of these, five are interneurons located 
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in the cerebellar cortex which have no direct effect outside the 

cerebellum (Granule, Golgi, Basket, Stellate, and Purkinje cells), while 

the sixth (Subcortical Nuclear cells) are the only cells which do have a 

direct external effect. There are also only two types of input fibers 

(Mossy and Climbing fibers). 

The interconnections of the cerebellar neurons, particularly those 

in the cerebellar cortex, have been extensively studied, revealing the 

remarkably regular geometry of Figure 2.2. 

2.1 The Mossy Fiber Pathway 

The effects of Mossy fiber activity upon the cerebellum are very 

widespread. Upon entering the cerebellum, each Mossy fiber sends 

branches to numerous folia throughout the cerebellum. Some collaterals 

terminate on Subcortical Nuclear cells, while the branches which enter 

the cortex branch profusely before terminating as Mossy Rosettes in the 

Granular layer of the cerebellar cortex. The Rosettes form the nucleus 

of an excitatory synapse between a Mossy fiber, dendrites from numerous 

Granule cells, and dendrites from a few Golgi cells. 

Granule cells, each of which are contacted by 2 to 7 Mossy Rosettes 

(average 4.2), generate a single axon which climbs through the 

cerebellar folia to the Molecular layer where i t forms a "T"-shaped 

branch. Each branch of the axon, now classed as a Parallel fiber, runs 

longitudinally along the folia for a distance of up to 1.5 mm (2.5 mm in 

man [9]). 

Each Parallel fiber traverses a large number of characteristically 

flattened dendritic trees of Basket, Stellate, and Purkinje cells (up to 



5 

a) Perspective view of the cerebellar cortex (after [12]). BA=Basket 
cel l , CL=Climbing fiber, GO=Golgi c e l l , GR=Granule ce l l , MO=Mossy fiber, 
P=Purkinje ce l l , ST=Stellate c e l l . 

b) Diagramatic view of the Molecular layer of the cerebellar cortex 
showing the packing arrangement of Parallel fibers and Purkinje cell 
dendrites. 

Fig 2.2 Structure of the Cerebellar Cortex 
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300 of the latter). Although there is some uncertainty concerning the 

proportion of Parallel fiber-Purkinje cell intersections which in fact 

result in synapses, i t is clear that the geometry maximizes the number 

of possible synapses. Those intersections which do result in synapses 

between Parallel fibers and Purkinje cells, Basket cells, or Stellate 

cells are excitatory. The axons of Basket and Stellate cells form 

inhibitory synapses with the dendritic trees and pre-axon areas of 

nearby Purkinje cells. Purkinje axons terminate in inhibitory synapses 

on Subcortical Nuclear cells. 

As well as forming excitatory synapses with Basket, Stellate, and 

Purkinje cells, Parallel fibers also form excitatory synapses with the 

dendritic trees of Golgi cells. Unlike the dendritic trees of the other 

cerebellar interneurons, Golgi cell dendrites spread throughout a 

cylindrical volume whose base is in the Granular layer and whose top is 

in the Molecular layer of the cerebellar cortex. Each tree is divided 

into two regions, the top one being excited by Parallel fibers, the 

bottom one by Mossy Rosettes. Each Golgi cell generates axons which 

inhibit a large fraction of the Granule cells which are in the volume 

enclosed by the Golgi dendritic tree. 

The capacity of the cerebellum to process (co-ordinate) information 

is often discussed in terms of the divergence and convergence of 

information carrying neurons [13,14,28], Table 2.1 illustrates these 

properties. Of particular note is the remarkably large number of 

Parallel fibers (up to 200 000) which synapse with each Purkinje c e l l . 

This convergence factor is a direct consequence of long, thin, Parallel 

fibers forming a lattice with fan-shaped dendritic trees of Purkinje 

cells in the Molecular layer of the cerebellar cortex. 
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a) Mossy Fiber Pathway 

DIVERGENCE 

MOSSY FIBERS 

GRANULE CELLS 

PARALLEL FIBERS 

PURKINJE CELLS 

PARALLEL FIBERS 

BASKET CELLS 

PURKINJE CELLS 

460[14]-600[13] 

20 [14]-30[13] 

8[14]-50[13] 

CONVERGENCE 

4.2[14] 

100[14]-300[13] 100 000[14]-200 000[13] 

20 000[14] 

20 [13]-50[14] 

b) Climbing Fiber Pathway 

DIVERGENCE 

CLIMBING FIBERS 

10[14] 

PURKINJE CELLS 

CONVERGENCE 

1[14] 

eg. Each Mossy fiber makes synaptic contact with between 460 
and 600 Granule cells while each Granule cell is 
contacted by an average of 4.2 Mossy fibers. 
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2.2 The Climbing Fiber Pathway 

In contrast to Mossy f i b e r s , the e f f e c t s of Climbing f i b e r a c t i v i t y 

are very l o c a l i z e d . Although c o l l a t e r a l s which form e x c i t a t o r y synapses 

with Subcortical Nuclear c e l l s have been found, Climbing f i b e r s branch 

very l i t t l e a f t e r entering the cerebellum. Each Climbing f i b e r which 

enters the c e r e b e l l a r cortex t y p i c a l l y forms a synapse with only one, or 

with at most a few, Purkinje c e l l s . This synapse, which engulfs the 

dendrites and c e l l body of the Purkinje c e l l i s very strongly 

e x c i t a t o r y . Climbing f i b e r s also form e x c i t a t o r y synapses with the 

Basket and S t e l l a t e c e l l s which are i n close proximity to the target 

Purkinje c e l l . The r e l a t i o n of Climbing f i b e r s to Golgi c e l l s i s l e s s 

well understood. 
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3.1 Recent Cerebellar Models 

A number of theories have been proposed which explain some aspects 

of cerebellar function and organization. Unfortunately, most of the 

theories do not acceptably explain the mathematics of a learning 

algorithm which must be the basis of a truly valid model. 

Alternatively, those papers which do describe workable learning 

algorithms are not fully compatible with known cerebellar structure. 

In one of the first theories to utilize current knowledge of 

cerebellar structure, Marr [28] proposes that the cerebellum directs a 

sequence of elemental movements to generate a desired action. That is, 

the cerebellum acts as a pattern recognition device, relating patterns 

of Mossy fiber activity to learned outputs. The recognition is 

performed according to a "codon" (subset) of Parallel fibers which are 

active at a given time. Translating this into mathematical terminology, 

his proposal is that each Purkinje cell separates a binary hyperspace of 

Parallel fiber activity into linearly separable regions in which the 

Purkinje cell is either active or inactive. The orientation of the 

separating hyperplanes is learned by adjusting Parallel fiber-Purkinje 

cell synaptic strengths as a function of Climbing fiber activity. 

Albus [1,2] extended and modified Marr's theory by describing the 

cerebellum in terms of Perceptron theory [32,34,44,45]. A perceptron, 

which typically consists of binary inputs, a combinatorial network of 

"association cells", adjustable weights, and a summing device is shown 
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Fig 3.1 A Perceptron 

In Albus' model, real-valued data, such as a joint angle, is 

converted to a set of binary signals in a manner similar to the mapping 

shown in Figure 3.2. He proposes that these signals are transmitted 

along Mossy fibers before being recoded by the Granular layer into 

patterns of Parallel fiber activity which form an expanded set of binary 

signals. The purpose of expansion recoding is to map a l l possible 

patterns of Mossy fiber activity into sets of Parallel fiber activity 

which are linearly separable. Weights of synapses between Parallel 
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Fig 3.2 Albus1 Mossy Fiber Activity Pattern 

fibers and Purkinje cells, Basket cells, and Stellate cells are adjusted 

under the influence of Climbing fiber activity to obtain the desired 

Purkinje cell output. 

The effectiveness of this model in performing cerebellum-like 

functions has been convincingly demonstrated by its ability to learn to 

control a number of movements of a mechanical arm [2,3,4]. 

Unfortunately, Albus1 model is somewhat incompatible with some 

aspects of cerebellar structure and physiology. His expansion recoding 

scheme employs a hash-coding function which seems to be beyond the 

computational powers of the Granular layer. Furthermore, there is 
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l i t t l e evidence to support his proposed mapping scheme of joint angle to 

Mossy fiber activity [22,23]. 

A model which is somewhat similar to Albus1 has been proposed by 

Gilbert [17]. The model computes Purkinje cell activity as a weighted 

sum of Parallel fiber activity; the Parallel fiber-Purkinje cell and 

Basket and Stellate cell-Purkinje cell synapses being modifiable under 

the influence of Climbing fiber activity. The theory is consistent with 

cerebellar structure but does not describe the relation between the 

system's inputs, Mossy fiber activity, and Parallel fiber activity. 

In another theory, Kornhuber [24] emphasizes the capacity of the 

cerebellar cortex to act as a timing device. He proposes that the 

action potential velocity along long, thin, Parallel fibers provides a 

timing mechanism for the control of ballistic motions such as saccadic 

eye movement. His model, although not rejecting i t , does not propose a 

mechanism by which learning could take place. 

Calvert and Meno [11] use spatiotemporal analysis to show that 

interconnections found in the cerebellum may cause i t to act as an 

anisotropic spatial filter which enhances both the spatial and temporal 

details of Mossy fiber activity patterns. Their analysis assumes that 

a l l synaptic weights are determined strictly according to the type of 

pre and post-synaptic neuron. Hence, the model does not account for 

learning. 

Hassul and Daniels [20] present a theory, along with supporting 

experimental evidence, that at least part of the function of the 

cerebellum is to act as a higher order lead-lag compensator. They 

further propose that this compensation provides stability for reflex 

actions. The model does not propose a scheme whereby the correct 

compensation might be learned. 
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A number of computer simulations of activity in a cerebellum-like 

network have been presented [33,38,39,40]. A common prediction of these 

models is that lateral inhibition and Golgi cell feedback should cause 

the surface of the cerebellum to contain long, narrow, bands of active 

Parallel fibers. That is, Mossy fiber activity is "focussed" into 

regions of Parallel fiber activity. A similar study includes peripheral 

feedback and muscle fibers in the model [37]. 

A common problem with these computer simulations is that they 

assume a l l Parallel fiber-Purkinje cell synaptic weights are equal. 

That is, the models do not consider the effects of unequal synaptic 

weights which might result from the application of a learning process. 

3.2 Requirements of an Improved Cerebellar Model 

The above cerebellar theories form a good starting point to begin 

understanding the cerebellum. Unfortunately, each theory is deficient 

in at least one aspect. Furthermore, the theories tend to be mutually 

exclusive so that an a l l encompassing one is not easily synthesized as a 

combination of the strong points of each proposal. A common shortcoming 

of those models which do propose a learning scheme is their treatment of 

Parallel fiber activity as a binary quantity. In these models, learning 

operates to form linearly separable regions in a binary hyperspace of 

Parallel fiber activity. Although each action potential is undoubtedly 

binary, the information carried by a nerve is generally accepted to be a 

function of the frequency of action potentials [53], not the presence or 

absence of one. An improved model must therefore deal with signals 

which are interpreted as real, not binary, variables. 
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To be truly valid, the operations of a cerebellar model must be 

consistent with those operations which are feasible to implement using 

the known structure of the cerebellum. In particular, the mapping of 

Mossy fiber activity to Parallel fiber activity must be consistent with 

the arrangement of cerebellar neurons, and the memory requirements of 

the learning algorithm must be consistent with the number of modifiable 

synapses in the cerebellar cortex. 
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4.1 Arithmetic Functions of Cerebellar Neurons 

The basic assumption to be used in the following discussion is that 

cerebellar information processing may be interpreted as a number of 

mathematical operators acting upon real-valued data. That is, data 

which is translated into a sequence of action potentials whose average 

frequency is a function of some biologically significant variable, is 

processed, according to common mathematical operations, by cerebellar 

neurons. It has been shown that neurons and neural networks, using 

frequency coded data, can perform basic arithmetic operations (add, 

subtract, multiply, and divide) upon pre-synaptic action potential 

frequencies [8,43]. The operation performed by a particular neuron 

depends upon a number of factors including the location of the synapses 

relative to the post-synaptic neuron's cell body, the nature of each 

synapse (excitatory or inhibitory), the level of inherent inhibition or 

excitation of the post-synaptic neuron (ie. the level of resting 

activity or inhibitory threshold), and the relative activity of each 

pre-synaptic neuron. The model to be presented will thus use real 

numbers to represent data and a selection of the above arithmetic 

operations to represent the functions of relevant neurons. 

The frequency at which action potentials are transmitted is 

obviously a non-negative number. This restriction upon the values to be 

represented will be relaxed as i t is equally obvious that a fixed 

positive bias can be superimposed upon any bounded negative variable in 
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order to guarantee a net positive value. Similarly, although the nature 

of a particular synapse (excitatory or inhibitory) is fixed, either a 

bias, or an arrangement of interneurons can be established to permit a 

synapse to have a net effect which is either positive or 

negative [2,17], 

It is useful to regard the cerebellar cortex system as a form of 

associative memory [16,25,27], In such an approach, a set of memories 

(the firing frequencies of the Purkinje cells) is associated with a set 

of inputs (the activities of the Mossy and/or Climbing fibers). Due to 

their remarkable specificity to the output cells, i t seems most likely 

that Climbing fibers are equivalent to "data" lines while Mossy fibers 

are equivalent to "address" lines. The only other possible arrangement, 

Mossy fibers providing data and Climbing fibers providing the address, 

is exceedingly unlikely due to the dispersion of information between 

Mossy fibers and the system's output, Purkinje cells. 

The structure of the Mossy fiber pathway of the cerebellum suggests 

a number of possible formulations for the value of Purkinje cell 

activity (system output) as a function of Mossy fiber input. These are: 

a sum of sums, a sum of products, a product of products, and a product 

of sums. A moment's reflection will indicate that a sum of products is 

the most likely form for representing non-linear functions of several 

variables since both a product of sums and a product of products are 

always zero whenever any one of the primary terms is zero (either due to 

coincidence or to a faulty transmission line). Similarly, both a sum of 

sums and a product of products would not justify the two-stage structure 

of the system since a single neuron could perform the same computation. 

Furthermore, Taylor series expansions of functions of several variables 

show that any function can be adequately expressed as a sum of products, 
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providing enough terms are used. The choice of formulating system 

output as a weighted sum of products is not new as i t has been suggested 

by other workers, and i t seems highly plausible, that each Purkinje cell 

effectively computes a weighted sum of the activity of Parallel fibers 

which synapse with i t [2,17,28,32]. That is, 

Learning is assumed to take place by adjusting the synaptic weight set 

{W} as a function of Climbing fiber activity [2,17,21,28], 

The function of cerebellar interneurons (Granule, Basket, Stellate, 

and Golgi cells) in the model must now be considered. This model will 

take the same approach as a number of previous workers who have 

suggested that Basket and Stellate cells act to permit the net effect of 

some W J to be negative and to permit both increasing and decreasing 

wj [2,17,28]. (The nature of a synapse, excitatory or inhibitory, is 

fixed.) A simple and reasonable model is that Basket and Stellate cells 

compute an unweighted sum of the activities of the Parallel fibers with 

which they synapse. Since Basket and Stellate cells are inhibitory, 

this sum is then subtracted from Purkinje cell activity. That is, 

f = £>i(Di (4.1) 

where f =Purkinje cell activity 

w . = i t h synaptic weight 

(Inactivity of the i t n Parallel fiber. 

(4.2) 

c = effective (constant) synaptic connectivity 
between Parallel fibers and Purkinje cells 
via the Basket and Stellate cell route. 
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Re-arranging (4.2) yields 

f =5 (Pi-c)Oi. (4.3) 

Letting 

w i = P i _ c ' (4-4) 

will result in wj which may be positive or negative, depending upon the 

value of pj. This approach does, however, place a lower limit (-c) on 

the value of every ŵ . 

It should be noted that the dendritic tree of each Basket and 

Stellate cell is less widespread than that of a Purkinje ce l l . This 

arrangement reduces the volume of cortical cells by permitting a single 

Basket or Stellate cell to influence a number of Purkinje cells, despite 

the fact that each Purkinje cell has synapses with a slightly different 

subset of Parallel fibers. 

As for Granule cells, i t has been suggested above that (4.1) must 

represent a sum of products. This implies that each Granule cell forms 

a term which is the product of the activity of the Mossy fibers which 

make contact with its dendrites. To account for Golgi inhibition, 

Granule cells will be modeled as the two-part cells shown in Figure 4.1. 

The first part computes the product of the activity of relevant Mossy 

fibers while the second part subtracts Golgi cell activity (Golgi 

inhibition). The maximum number of different products is given by the 

number of a l l possible combinations of the set of input variables. The 

set of those products which are actually used in (4.1) (a set to be 

determined in following sections) will be represented by {TT}. In 

general, {TT} contains more elements than the number of Mossy fibers 

which enter the cerebellar cortex. The set will therefore also be 
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PARAL L EL F I BER 

MU L T I PL I ER 

GOLGI FEEDBACK 

Fig 4.1 Model Granule Cell 

referred to as the "Granule expanded input set". Such an expansion is 

consistent with the large Mossy fiber-Granule cell divergence shown 

previously in Table 2.1. 

Since Golgi cells have two distinct dendritic trees, and since the 

upper tree is much more dense [12], i t would seem that Parallel fiber 

synapses are more significant to the Golgi system and that Mossy fiber 

synapses are merely an improvement, possibly to reduce inherent time 

delays of the system. This assumption does tend to simplify the 

following analysis but is not an essential ingredient of its basic 

principles. In any case, the Parallel fiber-Golgi cell system will be 
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modeled as a negative feedback network of the form 

$ = TT - G(D (4.5) 

where G=Golgi feedback matrix 

Tf=<5ranule expanded input set. 

Once a steady-state condition has been reached, Parallel fiber activity 

can be expressed as 

(p = ( I+G) - 1 , i r . (4.6) 

This can be re-written as 

0 = 9T (4.7) 

where 9=(I+G)-1. (4.8) 

Substituting (4.7) into (4.1) and re-writing using vector notation, the 

system can be expressed as 

f = WT(D (4.9) 

= WT0Tr. (4.10) 

4.2 Cerebellar System Considerations 

The cerebellum functions as a peripheral controller. That is, 

using visual, tactile, and other forms of sensory feedback, higher 

levels of the brain "teach" the cerebellum to control desired motions. 

This procedure proves advantageous by relieving higher levels of these 

control tasks once the motions have been learned. To be most efficient, 
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the cerebellar system should be designed to learn the control parameters 

as they are being generated by the higher levels. In such a scheme, 

whenever the estimation error is deemed to be excessive, higher levels 

simultaneously correct the body position and adjust the weight set so as 

to reduce the estimation error for a subsequent estimation at that point 

in the control hyperspace. The existence of synapses between Climbing 

fibers and Purkinje cells, and between Climbing fibers and Subcortical 

Nuclear cells adds support to this proposal as i t may be further 

proposed that, during training, Climbing fiber activity overrides that 

of Purkinje cells in such a way as to first correct the body position 

and to then reduce the Purkinje cell's estimation error. Also, the 

cerebellum should be most effective in controlling the most usual 

motions, thus minimizing the amount of time spent by higher levels in 

controlling body motions. That is, since (4.1) really estimates a 

control function, the estimation error should be least in those regions 

which are used most frequently. 

Referring to equations (4.1) and (4.4) and the figures showing 

cerebellar structure, i t is apparent that the only variable elements in 

this model of the cerebellum are the weights of synapses between 

Parallel fibers and Purkinje cells. (Basket and Stellate cells may also 

have modifiable synapses without significantly changing the model.) 

These variable weights are considered by this model as the set {W}. 

From a different viewpoint, this means that the only stored values 

(memory) of the system are the current weights. This fact completely 

prevents the use of standard matrix inversion techniques in solving 

(4.1). It is therefore apparent that the system must learn by the use 

of an error correcting algorithm which effectively performs matrix 

inversion in an iterative manner. 
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A well known property of animals, particularly mammals, is their 

ability to adapt to changes in their size, strength, and environment. 

Therefore, the mammalian motion controller, the cerebellum, must be able 

to modify its control parameters at any stage in the animal's 

development. When considering the cerebellum as a learning machine, 

this means that the system must be able to learn any number of training 

points or patterns which may be presented at any time. 

A final consideration in any mathematical model of the cerebellum 

is the number of terms required in the summation given by (4.1). Motion 

co-ordination would seem to involve non-linear functions of numerous 

independent variables [42] (sets of current positions, current 

velocities, desired positions, desired velocities, etc). Each Purkinje 

cell must therefore generate a function of several variables; the larger 

the number of variables, the better the co-ordination. Unfortunately, 

increasing the number of variables rapidly increases the number of terms 

required. As the model must not require more terms than a Purkinje cell 

is capable of adding, an upper limit of approximately 200 000 is imposed 

upon the number of terms in each estimation function as this is the 

largest estimate of the number of Parallel fibers which synapse with a 

single Purkinje ce l l . 
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5.1 The Cerebellum and Estimation Functions 

The nature of the cerebellar system is suggestive of several 

properties of those mathematical procedures which will be referred to 

here as "estimation functions". These procedures include the related 

theories of curve fitting, regression, and interpolation. These 

theories are discussed in numerous books and papers, including [19], 

[35,36], and [41] respectively. Estimation procedures typically operate 

to minimize an expression of the error between a target function and an 

estimated function. The estimated function is generally expressed as a 

weighted sum of basis functions 

f=^wi(Di(H) (5.1) 

where H = a vector of one or more independent 
variables 

which is essentially the same equation as (4.1). 

There are two significantly different approaches to finding f which 

are reflected in the form of {(])(H)} in (5.1): those in which {$} is a 

set of functions which are continuous (and whose derivatives are a l l 

continuous) over the hyperspace of definition, and those in which {(*)} is 

a set of functions which are piecewise continuous (or whose derivatives 

are piecewise continuous). An advantage of the latter approach is that 

it simplifies the computations, which invariably involve matrix 

inversion, required to generate {W}. Piecewise continuous functions, 
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such as splines, can be arranged so that the matrix is banded, thereby 

making the inversion process simpler and less prone to numerical 

(round-off) errors [41]. 

The only restriction upon (0)} is that i t must be a linearly 

independent set of functions i f the resulting weight set is to be 

unique. That is, the Granule expanded input set {TT} forms a basis set 

which spans a function space. If the elements of {H1} are not linearly 

independent, some of them may be deleted, resulting in a reduced set 

which spans the same function space and is linearly independent. On the 

other hand, the practical advantages of improved system accuracy and 

reliability may result from a system in which Parallel fiber activity 

forms a set of functions which are not linearly independent [15,47]. 

Although the following derivations will assume linear independence, this 

condition may be relaxed in some cases. 

The choice of the form of {($} (ie. polynomials, trigonometric 

functions, exponentials, etc.) and of the number of elements in the set 

is a matter of judgement, dependent upon any known properties of the 

function which is to be estimated. 

The above mentioned estimation techniques have usually been 

developed either for functions of a single variable or for linear 

functions of several variables. Extension to non-linear functions of 

several variables is often not as straight-forward as one might expect. 

(See Chapter 5 of Prenter [41] for a discussion of interpolation 

functions of several variables.) A particularly severe problem is to 

ensure the continuity of functions which are interpolated with piecewise 

continuous interpolation functions. The usual solution to this problem 

is to form {(J)(H)} as the Cartesian product of interpolation functions of 

single variables. As an example, for interpolating a function of two 
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variables, one could use 

<Dk(x,y) = 0 i (x) -(Dj(y) (5.2) 

where k = j+m(i-l) 

m = the number of elements in {(D(x)} . 

An important disadvantage of this approach is that the number of 

elements in {0(H)} grows rapidly as the numbers of independent variables 

and elements in {0(x)} increase. That is, 

L = mn (5.3) 

where L = the number of elements in {(J)(H)} 

n = the number of independent variables. 

Fortunately, the extension, to several variables, of continuous 

interpolating functions is not similarly restricted. The space spanned 

by a continuous set {0(x)} may be extended to {(|)(H)} as a "reduced 

Cartesian product" in which only those terms with a total order which is 

less than or equal to some maximum value are retained. For example, the 

set 

{(p(x)} = {1, sin(x) , sin(2x)} 

may be extended to two dimensions as a full Cartesian product requiring 

9 terms, 

{(|)(x,y)} = {1, sin(x), sin(2x) , sin(y) , sin(2y) , sin(x)sin(y) , 
sin(x)sin(2y), sin(2x)sin(y), sin(2x)sin(2y)} 
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or as a reduced Cartesian product requiring only 6 terms. 

(0(x,y)} = {1, sin(x), sin(2x) , sin(y) , sin(2y), sin-(x) sin(y)} 

For a reduced Cartesian product, the number of terms required is given 

by 

L = (m-l+n)1 (5.4) 
(m-1)!n! 

Where m = the number of elements in the single 
variable set which is usually 

system order + 1. 

The effectiveness of using an extension based on the reduced Cartesian 

product is clearly demonstrated by Table 5.1 which compares the number 

of terms generated by ful l and reduced Cartesian product expansions for 

various values of m and n. It is particularly interesting to note the 

values of n and m which generate approximately 175 000 terms, a number 

which corresponds to the number of Parallel fibers which synapse with 

each Purkinje c e l l . 

A somewhat different approach to estimating functions of several 

variables has been taken by Specht [50]. Based on an analysis of 

discriminant functions [36], he develops polynomial discriminant 

functions which can be trained to distinguish between a number of 

patterns. This theory has been extended to include general regression 

surfaces [29,51] which can be interpreted, with a suitable change in 

normalization, as generalized functions of several variables. 

Unfortunately, the training procedure requires the selection of an 

arbitrary "smoothness" factor and pre-determining the fixed number of 

points in the training set. Also, since the technique is based upon 

approximating a Gaussian function at each point in the hyperspace of 

definition, a large number of terms must be used throughout the 
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procedure. 

Table 5.1 Number of Terms Generated 
by Full and Reduced Cartesian Products 

n m FULL PRODUCT REDUCED PRODUCT 

3 2 8 4 

3 4 64 20 

3 5 125 35 

6 7 117 649 924 

7 5 78 125 330 

8 5 390 625 495 

15 8 3.52-1013 170 544 

42 5 2.27-1029 163 185 

44 5 5.68-1030 194 580 

100 4 1.61-1060 176 851 

5.2 An Optimized Learning Algorithm 

Previous sections have stated a number of constraints under which 

learning is assumed to take place in a cerebellum-like system. These 

are: 

1. f = WT(D, (5.5) 

2. the system has no memory other than of the current values 

of synaptic weights {W}, 

3. the system must operate in an error correcting mode, 
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4. the order and number of training points neither needs to be 

fixed nor pre-determined, and 

5. the basis set, {$}, can be considered as a set of linearly 

independent functions of the form 

0 = 0TT (5.6) 

where {TP} is a reduced Cartesian product expansion of the 

input set. 

A traditional approach to solving estimation problems is to 

minimize the weighted mean-square estimation error over the domain of 

the input variables. 

J = J s(H) • (WTctKHJ-f (H) )2-dH (5.7) 
H 

where H is the hyperspace of definition 

f is the target function 

s(H) is the error cost density function. 

Then 

yielding 

dJ = 2̂  s(H)<D(H)'(d)T(H)W-f (H) )dH = 0 (5.8) 
d-W "

 H 

W = s(H)(D(H)(t)T(H)dH )~1 • $ s(H)0(H)f (H)dH (5.9) 
H H 

Since the cerebellar structure shows no apparent mechanism for 

evaluating (5.9) in a single operation, the problem is to select an 

iterative scheme which is both compatible with the given structure and 

converges toward the optimum weight set in a minimal number of 

iterations. If the system operates to correct errors, can only store 
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the current values of the weight set, and the order and number of 

training points i s not known, i t would seem reasonable that {W} should 

be changed, thus reducing the estimation error, so as to minimize the 

effect, of the changed estimation function, on a l l other points in the 

space. This scheme w i l l tend to minimize the number of iterations 

required to obtain a good approximation of the target function. 

Let 

Af(Hi) = f(H!) - f(Hi) (5.10) 

be the estimation error at some point, Hi. Then, adjusting the weight 

set so that 

AwTdXHiJ = Af(Hi) (5.11) 

wi l l result in an error correcting function 

Ae(H,H]_) = AWT0(H) (5.12) 

which i s superimposed upon the function which existed before the change. 

In order to minimize the effects of this superimposed error correcting 

function, use 

J = J s(H) Ae 2dH + v(AW T(t)(H 1)-Af (Hi)) . (5.13) 
H 

Standard optimization techniques can be applied to (5.13). 

dJ = 2\s(W)TAWdH + (D(Hi)v = 0 
dAW 

dJ = ^ ( H i ) AW - Af(Hi) = 0 
dv 

This can be re-written as a matrix equation. 
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2̂ sO0)TdH d)(Hi)\ / AW\  /  0 \ 

(PT(Hi) 0 j \  vj I Af ( H i ) i 

In order to simplify the notation, let 

P = ( s<D(DTdH. (5.15) 
JH 

Applying row reduction techniques to (5.14) gives an expression for the 

optimal adjustment, AW. 

AW = AftHiJ P-^OKHi.) (5.16) 

^ (H iJ P - id XH x) 

At this point i t is useful to look at some of the properties of P. 

Lemma 1. P is symmetric. 

pT = ($s00TdH)T = $s(dXDT)TdH 

= jJs0(DTdH 

= P. QED. 

Lemma 2. P is positive definite. 

Consider YTPY where Y is an arbitrary vector. 

Then 
YTPY = YT(jJs(t)0TdH)Y 

= JsY%DTYdH 

= Js(YT0(H))2dH 

Since {0} is a set of functions which are linearly independent over H, 

the only vector for which 

YTcD = 0 for a l l H 



Thus 

YTPY > 0 

for a l l non-zero Y (s(H) is positive 

definite. • 
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by definition) and P is positive 

QED. 

Lemma 3. P11 exists for a l l real valued n, is unique, and is 

symmetric. 

It is well known that the eigenvectors of a positive definite, real 

symmetric matrix are real and positive. Thus, let 

P = XLXT 

where X is an augmented matrix whose columns are the 
eigenvectors of P 

and L is a diagonal matrix whose entries are 
the eigenvalues of P. 

Then 

P° = XL nX T (5.17) 

and 

(P")T = (XL"xT)T 

= XL nXT = Pn. 

In particular this proves the existence of P~l. QED. 

Lemma 4. The error correcting function, Ae(H,Hi) is invariant for 

non-singular linear combinations of the basis set and is 

thus a unique function of the region (H), the function 

space spanned by {0}, and the estimation error Af(Hj). 

The error correcting function for the space spanned by {(J)} is given by 

Ae(H,Hi) = Af(Hi)0T(H1)p -1($)(D(H) (5.18) 

0 T(H 1 ) p - 1 (0)0 (Hi) 



Consider 

Ae(H,H l feO) 

where 9 is any non-singular matrix 

Ae(H,Hlreq» = Af(Hi)-(D
T(H1)eTp-1(e(t))-ecD(H) 

0 T
 (Hi) -eTp-1 (0(D) 90 (Hi) 

POO) = J seO(H)(DT(H)eTdH 

= ep((D)eT 

p-1(9(D) = (eT)-1?"1 (0 )e-i . 

Ae(H,Hlf00) = Af0T(Hi)P"1(0)0(H) 

0 T(H1)P-1 (0)0 (Hi) 

= Ae(H,Hlf0) . 

Lemmas 3 and 4 suggest a useful simplification, i 

0 = (( sTTTrTdH)-^ 

= P-£(TT) 

Since 0(H) = ©IT (H) . 

Combining (5.19) and (5.20), one obtains 

P(0) = ( s9TrirT0
TdH 

JH 

= 0P(T)0T 

= p-?P(P-C)T = l m 

Thus 

but 

and 

Thus 

AW = Af(H 1)0(H 1) 

OTfHnWH!) 
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and 

Ae(H,H1; = Af(Hi)(D
T(H1)(D(H) (5.22) 

0T(Hi)(J)(Hi) 

In this way, P _ 1 may be deleted from (5.16). 

Equation (5.21) results in a scheme which tends to reduce the 

estimation error for a given function. Further analysis of the set 

generated by 

(D = P(Tr ) - | 'i r (5.23) 

indicates an even more efficient approach, employing the properties of 

orthonormal functions. 

Lemma 5. The set of basis functions given by (5.23) is orthonormal 

over the weighted region. 

Consider 

rjj = (Oi(H)f0j(H)) 

= J s(Di(H)(Dj(H)dH 
H 

Then, R, the matrix whose entries are rjj can be written 

R = ( s(txDTdH 

= P . 

It has been previously shown that 

P(0) = I 
for 0 given by (5.23). 
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Thus 

(0 i f i * j 

r i j = 1 (5.24) 

( l i f i = j 

and {0(H)} i s an orthonormal set over the weighted region. QED. 

As a further improvement of (5.21). Consider 

AW = A f (Hi )fl)(Hi) (5.25) 
k 

where MAX[(DT(D] « 1. 
k 

Let the weight set be adjusted at a t o t a l of k points with a point 

density u(H). 

s(H) 

u(H) =7 (5.26) 
Js(H)dH 

The sequence of AW's at successive learning points, assuming a l l 

weights are i n i t i a l l y zero, w i l l be 

AWi = f f H i X M H i ) , 

AW2 = f(H 2 )0(H 2) - f (H! ) (J) T^2 ) 0 ( ^ ) 0 ^2), 

k  k 2 

AW3 = f ( H 3 ) 0 ( H 3 ) - f ( H 2 ) ( P T ( H 3 ) ( p ( H 2 ) ( J ) ( H 3 ) 

k  k 2 

4- f ( H 1 ) ( D T ( H 3 ) ( D ( H 2 ) ( D T ( H 2 ) ( D ( H 1 ) ( ] ) ( H 3 ) , 

k 3 

e t c . 
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Yielding 

W = 5 AWi 

k 
= _L If(Hi)(D(Hi) 

k i=l 
k 

--L_ If(H i_1)(DT(H i)(D(Hi_1)(l)(Hi) + ... 
k 2 i=2 

(5.27) 

Since the points have a density given by u(H), the first term of (5.27) 

is an approximation of the weighted integral 

Comparing (5.29) with (5.9) and applying Lemma 5, i t can be seen 

that, after k points, the weight set approximates the optimal set. 

Continuing the procedure with additional learning points will improve 

the estimate as long as 

Similarly, a sequence of learning steps at k points will adjust the 

weight set so that any resultant estimation error is approximately 

orthogonal to a l l elements of {(*)}. That is, the error is minimized and 

{W} approximates the optimum set. Unless the estimated function can be 

made to be identical to the target function and the training data is 

noiseless, the values of the elements of {W} will change at each point 

as learning is applied. That is, {W} will not in general converge in 

the usual sense, but will tend to fluctuate about the optimum weight 

set. The sequence of weight sets will, however, have a point of 

(5.28) 

- _ L l f (Hi)O(Hi) . (5.29) 
k 

A f i - A f i - i -
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accumulation at the location of the optimum set. 

It is important to note at this point that replacing the 

denominator of equation (5.21) with a constant, k, results in error 

corrections which are un-normalized. That is, despite applying (5.21) 

to correct an estimation error, an error may s t i l l exist. This 

variation of the learning algorithm, which will be discussed further in 

the following chapters, requires that an additional element be added to 

the system equations. Specifically, the system equations become 

f = WT<t) 

f = f + Af-g(t) (5.30) 

A f = f - f 

Aw = Af<D 

k 

where f = the estimated function 
(Purkinje cell output) 

Af=system error term 

f = system corrected output 
(Subcortical Nuclear cell output). 

g(t) =1 and g(t+At) = 0 

That is, the system requires an element which evaluates (f+Af ) 

prior to any weight adjustments being made, holds this value, then 

permits i t to decay to the new value of f. 

Various procedures are available to permit the learning procedure 

to be halted. The most direct approach is to require learning only i f 

the obtained response (either the estimated function or some physical 

response of the system) deviates sufficiently from the desired response. 

This in effect replaces the single valued target function with a band of 

acceptable estimations. 
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That is 

!

0 i f | A f l * e 
(5.31) 

AfQ i f I A f l > e 
k 

The learning algorithm is also effective even i f the distribution 

of points is not known a priori. If possible, the expected point 

density can be estimated, or i f not, i t may be replaced by a constant 

(over a closed reqion) when deriving the basis set. Each time the 

weights are adjusted, an error correcting function is superimposed upon 

the previous function. The learning algorithm ensures that interference 

effects at each point are minimized at a l l other points in the learning 

hyperspace. This approach will result in a sequence of weights which 

tends to converge toward the optimal set. Other researchers have 

presented arguments showing that similar devices such as /Adalines [10] 

and Perceptrons [32] exhibit strong convergence tendencies. /Although 

not optimized, these devices are similar to this one in that they also 

approximate functions as weighted sums. 

Regardless of the known and unknown parameters of the system, i t is 

necessary to select k in (5.25). There are two opposing considerations: 

stability and learning rate. Larger values of k reduce the magnitude of 

perturbations, due to points with low probability or high noise, of the 

estimation function, while smaller values of k reduce the number of 

points required before the estimation function begins to approximate the 

target function. Unless very rapid learning is required, k should be 

determined to ensure that the fluctuations in f are acceptably small. 
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That is, with re-arrangements to (5.25) 

MAX[Ae(H,H!)] = MAXfAf ( H X ) C D T (HT J O ( H ) ] . (5.32) 

k 

Thus, k must be sufficiently large so as to ensure that the effect, of 

an adjustment at a single point, is less than €• over a l l points in the 

space. 

e 

To guarantee that continuous iterations at any single point will be 

stable and converge to generate f(Hi) exactly (pointwise convergence), 

k 

The next chapter will present examples which demonstrate the effects, 

upon the learning system, of varying the values of k and €. 

5.3 System Properties 

The preceding section has developed a system which can learn to 

approximate, with minimum mean-square estimation error, arbitrary 

functions as linear combinations of an orthonormal set of basis 

functions. The system uses an iterative error correcting strategy in 

k > MAX [ A f (Hi) (|)T (Hi) (]) (Hi) ] (5.33) 

0 < (DT(Hi)(D(Hi) < 2. (5.34) 
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which the weights are adjusted at each stage according to the expression 

(repeated here for convenience) 

AW = Af JHi JCKHTj  .  
k 

The factor k depends upon: 

1. the basis set {0} chosen, 

2. the required precision of the final estimation function, 

and is a constant which may be computed in advance and/or altered at any 

time. 

Concerning the system's operating characteristics, a useful 

property i s that the resultant estimation function i s capable of 

estimating a target function with an error which i s less than the error 

correcting mechanism can detect. In other words, despite the training 

mechanism being rather inexact in i t s a b i l i t y to detect or correct an 

error, the final estimation function w i l l , in general, be a much more 

precise approximation of the target function. To support this 

statement, consider a learning system, the weights of which are 

corrected whenever the estimation error exceeds an acceptable (or 

detectable) tolerance, G, as given by (5.31). If the function space 

spanned by the basis functions is such that the tolerance of G can in 

fact be met for the whole hyperspace, then the resulting estimation w i l l 

l i e within a region bounded by 

f(H) -G < f (H) < f(H) +G (5.35) 

as shown in Figure 5.1. For such a bounded, continuous, estimation 

function 

| f(H!) - f t f i T j | « G (5.36) 
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^ - — f (H) - e 

H 

Fig 5.1 A Bounded Estimation Function 

over much of the region, H. Hence, f produces a better estimate, in 

terms of the desired result, than could be obtained using the error 

detecting/correcting mechanism alone. A somewhat similar property, 

called "learning with a c r i t i c " , has been described for an Automatically 

Adapted Threshold Logic Element (Adaline) [54]. In that experiment, the 

Adeline, i s taught the optimal strategy for playing the game of 

blackjack s t r i c t l y on the basis of whether i t wins or loses a game. 

That i s , despite the fact that the error detecting mechanism determines 

that the estimation function is in error i f , and only i f , a game i s 

lost, the Adaline learns to generate the function which optimizes the 



strategy for winning games. 
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VT SYSTEM PERFORMANCE 

6.1 General Considerations 

The previous chapter has derived an algorithm which minimizes the 

interference of learning arbitrary functions, when using an iterative, 

point-by-point algorithm, in a cerebellum-like system. This chapter 

w i l l demonstrate the effectiveness of the algorithm. 

The derivation of the learning algorithm i s independent of the 

function-space which is defined by the basis set. Thus, the algorithm 

guarantees optimal performance (for that space) for every linearly 

independent set of functions {<$}, which satisfy (5.19). The choice of 

which basis set to use is a matter of selecting, subject to 

implementation constraints, that function-space and basis set which are 

most l i k e l y to match the function or functions to be estimated. 

Multinomials are a reasonable choice for a large number of applications, 

and are the functions which w i l l be used in the examples presented in 

this chapter. That i s , the terms to be used are those generated by 

n 
(1 + £xi )m. (6.1) 

i=l 

Application of Lemma 4 permits the binomial coefficients to be dropped 

from each term, yielding 

T T = (l,x 1,x 2,...,x n,xi
2,..,x nm) (6.2) 

and <D = (C sTTH^dH TT (6.3) 
•'H 

Due to the absence of other information, s(H) w i l l be set to a 

constant in the following examples. 
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Some t y p i c a l , normalized, error c o r r e c t i n g functions, Ae(H,Hi ,0 ) , are 

shown i n Figure 6.1. I t can be seen that these functions bear a loose 

resemblance to normal p r o b a b i l i t y density functions with mean of Hi. 

The figures also show that l i m i t a t i o n s imposed by using a system based 

on low-order polynomials r e s u l t i n error correcting functions whose 

maxima are often "skewed" or s h i f t e d from H]_. 

In regard to {Tf}, i t should be noted that any number of the terms 

l i s t e d i n (6.2) may be deleted, without jeopardizing system performance, 

i f the c o e f f i c i e n t s of those terms, i n the target functions, are known 

to be zero. 

Another important parameter which was discussed i n the previous 

chapter i s k which must be selected i n r e l a t i o n to 

as given by (5.31), (5.32), (5.33). For any basis set {(*)}, b w i l l be 

maximum at some point, H5, where 

b(Hi,H 2) = MAX[ (DT(H1)0(H2)] (6.4) 

|0(H b)| > |<D(Hj)| (6.5) 

for a l l Hj 7* H b, 

since 

<DT(Hi)0)(Hj) = 10(Hi) I | <D(Hj) Icose (6.6) 

where e i s the "angl e" between the vectors 0(Hj) and 

<D(Hj) -

Thus 

b = (DT(Hb)(D(Hb) = |(p(Hb) |
2 c o s 0 • 

= IO(H b)I
2. (6.7) 
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Table 6.1 Values of b=MAX[OT0] for Various Values of m and n 

n m b Average* n m b Average 

1 2 4 2.0 2 3 26 6.9 

1 3 9 3.1 2 4 70 12.3 

1 4 16 4.2 2 5 155 20.0 

1 5 25 5.3 3 4 190 32.3 

1 6 36 6.4 3 5 553 67.0 

•Average: approximate average value of <1)T0 

The location of Hb and the value of b are properties of {(J)}. Table 6.1 

shows that, for multinomial-based functions, b grows rapidly as m and n 

increase. This in turn means that k, and hence the number of points 

required to obtain acceptable estimations, must be similarly increased. 

6.2 Examples of Learning a Function of a Single Variable 

In order to demonstrate the operation of the training algorithm, 

and i t s a b i l i t y to estimate functions, the function 

f = sin (2Tx) (6.8) 

over (0 <x< 1) 

was "taught" to a number of computer-based models of the system. The 

target function is shown in Figure 6.2. The optimal estimation 

functions, in a least-square-error sense, to the target function are 

shown in Figure 6.3 for polynomials of various orders. These functions 
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Fig 6.2 Target Function Sin (2TTx) over (0<x<l) 

were calculated using the optimizing formula derived as equation (5.9). 

Chapter 5 suggests that, as learning progresses, the estimation function 

grows, then settles, toward the optimal estimation of the target 

function. This sequence of functions i s shown in Figure 6.4. For large 

values of k, C=0, and many training points, Figure 6.5 shows that 

learned estimation functions can closely approximate the optimal 

functions shown previously. 
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C) m=6,7 RMS ERROR=0.0050 EMAX<=0.016 d) m=8,9 RMS ERROR=0.00019 EMAX=0.00066 

Fig 6.3 Optimal Polynomial /Approximations of Sin (2TTx) 
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0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0 

C) IS POINTS d) 40 POINTS 

Fig 6.4 Sequences of Estimations of Sin (2TTx) 

For m=4, k=8 



Fig 6.5 Near-optimal Estimations of Sin (2TTx) 
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Once the order of the estimation system has been selected, values 

of k and G must be determined. The effects, on the learning system, of 

varying k and G are shown by various calculated measures: 

1. EMAX, the maximum estimation error, Af(Hj), which was 

observed in the course of processing the preceeding J 

points, 

2. CHANGES, the total number of times the weight set has 

required adjustment, 

3. ERMS, an estimate of the RMS estimation error over the 

preceeding J points 

J 
ERMS = (1 £ Af 2(Hi) )<, (6.9) 

J i=l 

4. SF, a measure of the perturbations of the estimated 

function, which i s calculated as the change over the 

preceeding J points, in the values of the elements of the 

weight set (SF = st a b i l i t y factor) 

SF = (_1 (Wi-Wi_J)
T(Wi-Wi_J) )£ (6.10) 

L 

where is the current weight set 

Wi_j is the weight set prior to any 
adjustments resulting from applying the 
learning algorithm at the previous J 
points, 

5. POINTS, the total number of points which have been 

observed. 



Table 6.2 The Learning Algorithm as Effected by k and G 

Estimating Sin (2Tx) for 0<x<l 

m=4, J=100 

a) Effect of k €=0.0 

u(H)=s(H)=uniform 

POINTS k EMAX ERMS SF 

100 10 0.76 0.19 0.36 
200 0.29 0.077 0.059 
400 0.25 0.087 0.036 
600 0.34 0.093 0.035 

100 50 0.86 0.36 0.30 
200 0.19 0.080 0.042 
400 0.21 0.070 0.0086 
600 0.27 0.077 0.012 

100 100 0.91 0.46 0.21 
200 0.37 0.19 0.084 
400 0.17 0.074 0.0012 
600 0.23 0.074 0.0063 
800 0.22 0.069 0.0045 

b) Effect of G k=100 

u(H)=s(H)=uniform 

POINTS g CHANGES 

200 0.10 153 
400 224 
600 253 
800 262 

200 0.15 133 
400 178 
600 184 
800 184 

EMAX ERMS SF 

0.37 0.19 0.080 
0.17 0.079 0.015 
0.15 0.077 0.0090 
0.11 0.074 0.0012 

0.37 0.20 0.074 
0.20 0.095 0.0093 
0.16 0.098 0.0043 
0.15 0.088 0.0 
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These measures are used since they show important properties of the 

learning system, are relatively easy to calculate in conjunction with 

applying the learning algorithm, and automatically take into account the 

effect of non-uniformly distributed training points. It w i l l be noted, 

though, that due to the training points being randomly generated, the 

measures tend to oscillate rather than decrease monotonically. 

Table 6.2 demonstrates the following trade-offs in relation to k and G: 

1. increasing k increases the number of training points 

required before the system begins to settle toward the 

optimal estimate, 

2. once the estimation approaches the optimum, larger values 

of k reduce the magnitude of perturbations as indicated by 

smaller values of SF, 

3. smaller values of G produce estimation functions which tend 

to have less RMS error, and 

4. larger values of G tend to reduce the maximum estimation 

error at the cost of larger RMS errors. 

Chapter 5 also predicts that, although i t s performance w i l l be 

sub-optimal, the learning algorithm w i l l continue to function in cases 

where the point density i s not equivalent to the error cost density 

which was used to generate the basis set, as required by (5.26). 

Although Table 6.3 does support this prediction, i t also shows a 

disadvantage of this approach since many more training points (1500 

versus 1000 training points) are required before the estimated function 

approaches the optimum. 
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Table 6.3 Learning Sequences for Cases Where u(H)^s(H) 

Estimating Sin (2TTx) for 0< x < l 

6=0.0, k=100, J=100 , u(H) = :uniform 

is gaussian (mean=0 .5, variance=l.0) 

POINTS EMAX ERMS SF 

200 0.66 0.39 0.12 

400 0.34 0.19 0.056 

600 0.18 0.11 0.026 

800 0.19 0.074 0.0095 

1000 0.17 0.069 0.0058 

b) s(H) is gaussian (mean=0.5, variance=0.5) 

POINTS EMAX ERMS SF 

200 0.81 0.51 0.12 

400 0.58 0.34 0.077 

600 0.40 0.25 0.053 

800 0.29 0.16 0.033 

1300 0.15 0.081 0.012 

1500 0.13 0.067 0.0062 

6.3 Soft Failure 

An interesting, and potentially useful, factor to be considered 

when assessing the value of this learning algorithm is i t s property of 

soft-failure. That i s , should one or more elements of {0} or {W} become 

inoperative, the system w i l l s t i l l be capable of representing arbitrary 
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functions to any required accuracy, possibly after additional training, 

as long as the region of representation i s permitted to be sufficiently 

small. To prove this conjecture, i t is only necessary to show that at 

least one functional element of {$} is non-zero at the point where 

estimation is required. Multinomial-based systems can be arranged so 

that few (likely no more than n) elements of {0} have values of zero at 

the same point and hence systems based on these sets w i l l exhibit soft 

failure. In terms of a physical device which implements the algorithm, 

this means that the device may be useful, possibly over a reduced range, 

despite the failure of some of i t s components. When considering systems 

which employ splines or harmonic series, i t i s seen that at a number of 

points in the region of definition, a l l but a limited number of the 

elements of the basis function set are zero. Should faulty components 

cause a l l these non-zero elements to become inoperative, the system's 

output w i l l be a fixed, erroneous, value. Thus, the present system of 

multinomial-based functions has a significant, practical advantage. 

6.4 Learning Functions of Several Variables 

In order to demonstrate the a b i l i t y of the learning algorithm to 

learn and generate several functions of several variables, i t was 

applied to a more complicated model. The model used is based upon the 

geometry of a human arm as shown in Figure 6.6 [26], 

The system, whose model was programmed on a d i g i t a l computer, i s 

best described by the block diagram of Figure 6.7. In this figure, i t 

can be seen that a desired wrist position, i s used as the input to 
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Fig 6.6 The Geometry of the Model Arm 
(after [26]) 

the estimation (learning) system. Values of {(J)(HTJ} are then generated 

and used to compute each joint angle according to 

fjJHi) = (DT(Hi)Wi 

f 2(Hi) = 0 T(Hi)W2 

f 3(Hi) = (DT(Hi)W3 

f 4(Hi) = (DT(Hi)W4 (6.11) 

where is the weight set associated with fj.. 
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Fig 6.7 Block Diagram of the Arm Model Learning System 

These joint angles are then used to compute the resultant wrist 

position. This position i s compared with the desired one, and i f the 

error is greater than 6, the angular corrections are computed (modeling 

a sensory feedback loop), the system output, "f, i s corrected with A f to 

obtain the desired wrist position, and the learning algorithm i s 

applied. It is particularly interesting to note the s i m i l a r i t i e s 

between Figure 6.7 and the cerebellar system shown in Figure 2.1. 

The model was presented with randomly generated points which have a 
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uniform distribution inside a box which i s located in the region 

5 < x < 13 

-5 < y < 12 

0 < z < -9 

where a l l dimensions are in inches. 

Table 6.4 demonstrates the rapid learning rate of this model and shows 

that the model learns to position the wrist with good accuracy after 

learning at approximately 3000 points. The effect of varying G i s also 

demonstrated. That i s , larger values of € tend to reduce the maximum 

error while increasing the RMS error. 



Table 6.4 Learning Sequences for the Arm Model 

m=5 k=500 J=500 Arm flap (alpha)=40 degrees 

u(H) = s(H) = uniform 

ERMS and EMAX are in inches 

a) 6=0.0 

b) G 

POINTS CHANGES ERMS EMAX SF 

1000 1000 6.70 18.3 0.045 

2000 2000 0.99 2.52 0.0066 

3000 3000 0.19 0.73 0.0010 

4000 4000 0.13 0.48 0.0004 

5000 5000 0.14 0.84 0.0005 

5 = 0 . 4 

POINTS CHANGES ERMS EMAX SF 

1000 1000 6.70 18.3 0.045 

2000 1934 0.99 2.52 0.0065 

3000 2150 0.33 0.68 0.0003 

4000 2171 0.32 0.46 0.0001 

5000 2188 0.32 0.64 0.0003 
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•7.1 Physiological Implications 

The algorithm which has been developed in this thesis is based upon 

the known anatomy and physiology of the mammalian cerebellum. It i s 

therefore reasonable to predict that cerebellar operations may be very 

similar to those of the learning algorithm herein described. That i s , 

the mathematics of modifiable synapses, and the functions of cerebellar 

ce l l s may well be those given by equations (4.1), (4.3), (5.30), and 

(5.31) which specify the learning system derived by this thesis. 

An important property of this system is that a l l inputs are treated 

identically. That i s , there is no need to differentiate between those 

Mossy fiber inputs which are related to sensory or peripheral 

information and those which are related to "context" or commands. This 

permits both sensory and command parameters to be treated as continuous 

variables so that commands inherently contain rate factors. Thus 

"walk", "run", and "sprint" may be the same command, "move", at various 

intensities. The lack of specificity also means that there i s no need 

for an exact mapping of Mossy fibers to specific points (or to a 

specific Granule cell) in the cerebellar cortex. Rather, a general 

target area is a l l that is required, thus reducing the amount of 

information which must be stored by cerebellum-related genes. 

Both of the above properties represent significant improvements 

over existing cerebellar models. In particular, this model resolves the 

deficiencies of Albus 1 theory [2] by presenting a feasible mapping of 
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Mossy fiber activity to Purkinje c e l l activity and by treating a l l 

inputs, both commands and peripheral data, identically as continuous 

variables. 

The model has predicted that corrections to Purkinje c e l l activity 

are not normalized. That i s , Climbing fiber activity (Af) causes the 

synaptic weights of the target Purkinje c e l l to change, resulting in a 

change in the frequency of that Purkinje c e l l ' s action potentials (Af) 

which is not exactly equivalent to Af* To permit the proposed 

cerebellar system to function in this manner i t is necessary that 

Subcortical Nuclear c e l l s perform a "sample-and-hold" function, thus 

generating an output from the cerebellum (f) (see equation 5.30) which 

is corrected exactly. The weight adjustments, which correspond to 

learning, are not normalized for several reasons: 

1. to permit weight adjustments to be s t r i c t l y local 

computations; a function of the pre and post-synaptic 

act i v i t i e s at the synapse whose weight is being adjusted, 

2. to permit the optimal weight set to be computed as the 

approximation of an integral as given by equation (5.29), 

3. to speed convergence in the manner of convergence gain 

factors in numerical optimization and root finding 

techniques, and 

4. to aid system stabilty by reducing the effects of 

correcting errors at infrequent points. 

If further physiological experiments should disprove this 

un-normalized operation, the algorithm may be modified so that 

iterations at any single learning point act to compute weight 

adjustments which result in changing f by an amount equal to the exact 
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error at that point. That i s , continuous re-applications of the weight 

adjustment algorithm w i l l reduce the estimation error to zero, thus 

computing the weight adjustment as 

AW = AfO(Hi) k 
. ( 7 a ) 

k <DT ( H L )(D ( H L ) 

which i s really the equation given previously as (5.21). 

Future experiments may also show that Parallel fiber activity i s 

not constant as implied in Chapter 5. That i s , i t may be as suggested 

by Eccles [14], that Parallel fiber activity i s normally insignificant, 

rising during cerebellar computations, then returning to a near-zero 

level. In this case, Purkinje c e l l activity would also be transient, 

rising briefly, then returning to i t s normal, spontaneous, rate. To 

account for this modification of the nature of cerebellar operation, the 

theory again requires only slight variation. Namely phasic (or a 

combination of phasic and tonic) activity, rather than s t r i c t l y tonic 

activity, would be used to form the orthonormal set to which the 

learning algorithm is applied. 

7.2 The Learning Algorithm and Machine Intelligence 

The learning alogrithm described in this thesis may be applied 

directly to learning machines. The cerebellum, after which the system 

is modeled, i s an extremely effective motion controller. This suggests 

that the current system may prove effective in a number of applications 

as an adaptive controller. Potential applications include situations 

where complicated, possibly unknown, non-linear control equations of 
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several variables are found such as in power system control [52], in 

industrial process control [30,49], and in robotics [5,6], 

Another application of the system is in pattern recognition. The 

system has been shown to be capable of simultaneously learning to 

generate a number of functions of several variables. If these variables 

are parameters derived from a family of patterns, and i f the output 

functions are the probabilities that a given input pattern corresponds 

to each of a number of classes, then the device is really a pattern 

recognizer. 

In these and other applications, a hierarchical network of learning 

machines [4,31] such as that shown in Figure 7.1 may prove effective. 

In this arrangement, successively higher levels control correspondingly 

higher operations. Each device performs i t s own control functions, 

directs lower levels, and processes information to be used by higher 

levels. The Figure shows a conceptual arrangement. In practice, the 

large numbers of inputs and outputs which can be handled by a 

cerebellum-like learning machine permit a single physical device to act 

as several levels of the hierarchy simply by using computed (output) 

parameters as input variables. This feedback provides such a system 

with the capability to compute and/or control complicated functions. It 

also poses interesting problems regarding programming or teaching 

strategies for the system. 

The learning algorithm may also be considered as a refinement of 

the Polynomial Discriminant Functions [29,50,51] discussed in Chapter 5. 

The advantage of the new approach is to remove the requirement of using 

a fixed number of training points. With the new algorithm, there is no 

upper limit on the number of points which may be used for training 

purposes. 
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Fig 7.1 A Hierarchical System of Learning Machines 
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Finally, the parallel processing properties of this learning system 

are important. It should be remembered that the same basis functions 

are used to compute a l l the output functions so that any number of 

output functions and error corrections may be calculated simultaneously. 

A l l output c e l l s are isolated from each other, thus permitting selective 

adjustment of estimating functions; only those functions whose error is 

excessively large requiring adjustment at any time. 

7.3 Contributions Of This Thesis 

The major contribution of this thesis is the development of a 

system which has the capacity to learn to approximate arbitrary, high 

order functions of several variables. By representing estimated 

functions as weighted sums of continuous basis functions, and by 

employing an iterative solution rather than one which uses matrix 

inversion, the system requires relatively few variable elements 

(memory). 

The thesis has also shown that, for orthonormal basis sets, 

learning interference i s minimized i f estimation errors are reduced by 

adjusting the weight set {W} according to the expression 

AW = Af f HiMH] .) . (7.2) 

k 

This procedure thus reduces the number of iterations which are required 

before arbitrary functions are approximated to a required accuracy. The 

procedure has also been shown to result in a learned weight set which 

produces an estimated function closely approximating the 

least-square-error estimation of the target function. 
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Since the system is based on the structure of the mammalian 

cerebellum which is a very efficient adaptive controller, i t shows 

promise in a number of applications and as the basis of a new class of 

intelligent machines. 

A generalized method of constructing the orthonormal sets of 

functions required by the system has also been presented. 

The second significant contribution of this thesis is to present an 

improved cerebellar model which, being consistent with current 

anatomical and physiological data, is more plausible than previous 

models. Unlike other cerebellar models, this one simulates neural 

activities as continuous variables, rather than as binary variables, 

throughout a l l i t s operations. This is important since, despite the 

" a l l or nothing" character of action potentials, neural information is 

generally thought to be transmitted as frequency coded values. Also, 

the model proposes an alogorithm which adjusts synaptic weights s t r i c t l y 

according to the a c t i v i t i e s of the pre and post-synaptic neurons at that 

synapse. Referring to (7.2), the pre-synaptic activity i s <t)(Hi) while 

the post-synaptic activity i s Af (Hi). This property of localized 

learning i s of c r i t i c a l importance to a plausible cerebellar model as 

the long, narrow, and widespread structure of Purkinje c e l l dendrites 

makes an algorithm which requires computations involving non-local 

activity exceedingly unlikely. 

7.4 Areas of Further Research 

This thesis has succeeded in developing an optimized learning 

algorithm which models the cerebellum. However, as in most research, 
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while resolving some issues, i t leaves many interesting questions to be 

answered. 

In terms of the cerebellum, a number of physiological 

investigations are indicated: 

1. Determine the mathematical form of the mapping from Mossy 

fiber activity to Granule c e l l activity. In particular, 

determine whether the frequency of action potentials in 

Parallel fibers can be interpreted as a basis set of the 

form suggested by this thesis: 

S(H) = A-KD(H) (7.3) 

where {(f) (H)} is an orthonormal set 

A is a vector of constants to ensure S(H)>0 

{S(H)} is the set of actual Parallel fiber 
activity. 

2 . Determine whether the connectivity of Parallel 

fiber-Purkinje c e l l synapses is modifiable. If some form 

of p l a s t i c i t y i s found, determine the mathematical relation 

which governs this p l a s t i c i t y . 

3. Determine whether the cerebellum functions as a phasic or 

as a tonic device and whether Subcortical Nuclear c e l l s do 

in fact perform a "sample-and-hold" operation as proposed 

by this thesis. 1 



1 1 

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 
a) FIRST ORDER SPLINES 

in 

b ) SECOND ORDER SPLINES 

a 

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 

C) THIRD ORDER SPLINES 

Fig 7.2 One Dimensional Spline Functions 
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There are also a number of mathematical questions, relating to 

learning machines, posed by this research. The following investigations 

could prove most interesting: 

1. There are several properties of spline functions, in terms 

of basis functions for learning machines, which appear 

promising. As shown in Figure 7.2, each such function has 

a limited region of non-zero support. When considering 

learning algorithms, this means that weight adjustments 

produce error correcting functions of similarly limited 

support. In other words, spline-based error correcting 

functions would cause no interference outside of a small 

region. The major problem with splines is to generate a 

useful set of functions which produce continuous functions 

and do not require excessive numbers of elements [41]. 

Another possible problem, as discussed in Section 6.3, i s 

the potential system failure which could result from the 

failure of only a few elements of the basis set generator. 

2. The programs which demonstrate the effectiveness of this 

learning system use extended precision (64 b i t ) , floating 

point, d i g i t a l values in a l l computations. The effects of 

using analog, reduced precision, or noisy variables require 

further investigation. 

3. The operational characteristics of the system in a 

re a l i s t i c control system environment require testing. 

4. There is much theoretical work required to determine 

strategies for training or "programming" hierarchical 

networks of learning systems. 
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5. The system is relatively expensive and slow when modeled on 

a general purpose, d i g i t a l computer. To be most 

effective, the system should be constructed as a single, 

special purpose, device. 
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