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A CERTAIN FAMILY OF FRACTIONAL
DIFFERINTEGRAL EQUATIONS

Shih-Tong Tu, Yu-Tan Huang, I-Chun Chen and H. M. Srivastava

Abstract. In recent years, several workers demonstrated the usefulness
of fractional calculus in the derivation of particular solutions of a number
of familiar second-order differential equations associated (for example)
with Gauss, Legendre, Jacobi, Chebyshev, Coulomb, Whittaker, Euler,
Hermite, and Weber equations. The main object of this paper is to show
how some of the most recent contributions on this subject, involving the
Weber equations and their various generalized forms, can be obtained by
suitably applying a general theorem on particular solutions of a certain
family of fractional differintegral equations.

1. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES

The subject of fractional calculus (that is, derivatives and integrals of any
real or complex order) has gained importance and popularity during the past
three decades or so, due mainly to its demonstrated applications in numerous
seemingly diverse fields of science and engineering (see, for details, [3]). By
applying the following definition of a fractional differintegral (that is, frac-
tional derivative or fractional integral) of order ν ∈ R, many authors have
derived particular solutions of a number of families of homogeneous (as well
as nonhomogeneous) linear fractional differintegral equations.

Definition (cf. [1, 2, 4]). If the function f(z) is analytic and has no
branch point inside and on C, where

C :=
{C−, C+

}
,(1.1)
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C− is an integral curve along the cut joining the points z and −∞+ iI(z), C+

is an integral curve along the cut joining the points z and ∞+ iI(z),

fν(z) = Cfν(z) :=
Γ(ν + 1)

2πi

∫

C

f(ζ)dζ

(ζ − z)ν+1
(1.2)

(ν ∈ R\Z−;Z− := {−1,−2,−3, ...})
and

f−n(z) := lim
ν→−n

{fν(z)} (n ∈ N := {1, 2, 3, ...}) ,(1.3)

where ζ 6= z,

−π 5 arg (ζ − z) 5 π for C−,(1.4)

and

0 5 arg(ζ − z) 5 2π for C+,(1.5)

then fν(z) (ν > 0) is said to be the fractional derivative of f(z) of order ν and
fν(z) (ν < 0) is said to be the fractional integral of f(z) of order −ν, provided
that

|fν(z)| < ∞ (ν ∈ R).(1.6)

Remark 1. Throughout the present work, we shall simply write fν

for fν(z) whenever the argument of the differintegrated function f is clearly
understood by the surrounding context. Moreover, in case f is a many-valued
function, we shall tacitly consider the principal value of f in our investigation.
For the sake of convenience in dealing with their various (known or new) special
cases, we choose also to state each of the fundamental results (Theorems 1 and
2 below) for fractional differintegral equations of a general order µ ∈ R.

We find it to be worthwhile to recall here the following useful lemmas
and properties associated with the fractional differintegration which is defined
above (cf., e.g., [1, 2]).

Lemma 1 (Linearity Property). If the functions f(z) and g(z) are single-
valued and analytic in some domain Ω ⊆ C, then

(k1f + k2g)ν = k1fν + k2gν (ν ∈ R; z ∈ Ω)(1.7)

for any constants k1 and k2.
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Lemma 2 (Index Law). If the function f(z) is single-valued and analytic
in some domain Ω ⊆ C, then

(fµ)ν = fµ+ν = (fν)µ(1.8)

(fµ 6= 0; fν 6= 0; µ, ν ∈ R; z ∈ Ω).

Lemma 3 (Generalized Leibniz Rule). If the functions f(z) and g(z) are
single-valued and analytic in some domain Ω ⊆ C, then

(f · g)ν =
∞∑

n=0

(
ν

n

)
fν−n · gn (ν ∈ R; z ∈ Ω),(1.9)

where gn is the ordinary derivative of g(z) of order n(n ∈ N0 := N ∪ {0}), it
being tacitly assumed (for simplicity) that g(z) is the polynomial part (if any)
of the product f(z)g(z).

Property 1. For a constant λ,
(
eλz

)
ν

= λν eλz (λ 6= 0; ν ∈ R; z ∈ C) .(1.10)

Property 2. For a constant λ,
(
e−λz

)
ν

= e−iπν λν e−λz (λ 6= 0; ν ∈ R; z ∈ C).(1.11)

Property 3. For a constant λ,
(
zλ

)
ν

= e−iπν Γ(ν − λ)
Γ(−λ)

zλ−ν(1.12)

(ν ∈ R; z ∈ C; |Γ(ν − λ)/Γ(−λ)| < ∞).

Some of the most recent contributions on the subject of particular solutions
of fractional differintegral equations are those by Tu et al. [5], who considered
some generalizations of the classical Weber equations. We recall here the
main results of Tu et al. [5] as Theorems A and B below.

Theorem A (cf. [5, Theorems 1.1 and 1.3]). If the given function f satis-
fies the constraint (1.6) and f 1

2
(λ−1) 6= 0, then the generalized nonhomogeneous

Weber equation:

n∑

k=0

(1
2(1− λ)

k

)
[(zn)k φm−k(z)− 2(zn+1)k φm−k−1(z)]
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−2
(1

2(1− λ)
n + 1

)(
zn+1

)
n+1

φm−n−2(z) = f(z) e
1
2
z2

(1.13)

(m ∈ Z := N0 ∪ Z−; n ∈ N0; z ∈ C)

has a particular solution of the form:

φ(z) =

(((
f(z) · e 1

2
z2

)
1
2
(λ−1)

· z−n · e−z2

)

−1

· ez2

)

1
2
(1−λ)−m+1

,(1.14)

provided that the second member of (1.14) exists, λ being a given constant.
Furthermore, the generalized homogeneous Weber equation:

n∑

k=0

(1
2(1− λ)

k

)
[(zn)k φm−k(z)− 2

(
zn+1

)
k

φm−k−1(z)]

−2
(1

2(1− λ)
n + 1

) (
zn+1

)
n+1

φm−n−2(z) = 0(1.15)

(m ∈ Z; n ∈ N0; z ∈ C)

has solutions of the form:

φ(z) = K
(
ez2

)
1
2
(1−λ)−m+1

,(1.16)

where K is an arbitrary constant, λ is a given constant, and the second member
of (1.16) is assumed to exist.

Theorem B (cf. [5, Theorems 1.2 and 1.3]). If the given function f satis-
fies the constraint (1.6) and f 1

2
(λ−1) 6= 0, then the generalized nonhomogeneous

Weber equation:
n∑

k=0

(1
2(1− λ)

k

)[
(zn)k

(
φ(z) e

1
2
z2

)
m−k

− 2
(
zn+1

)
k

(
φ(z)e

1
2
z2

)
m−k−1

]

−2
(1

2(1− λ)
n + 1

)(
zn+1

)
n+1

(
φ(z) e

1
2
z2

)
m−n−2

= f(z) e
1
2
z2

(1.17)

(m ∈ Z; n ∈ N0; z ∈ C)

has a particular solution of the form:

φ(z) = e−
1
2
z2

(((
f(z) · e 1

2
z2

)
1
2
(λ−1)

· z−n · e−z2

)

−1

· ez2

)

1
2
(1−λ)−m+1

,

(1.18)
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provided that the second member of (1.18) exists, λ being a given constant.
Furthermore, the generalized homogeneous Weber equation:

n∑

k=0

(1
2(1− λ)

k

)[
(zn)k

(
φ(z)e

1
2
z2

)
m−k

− 2
(
zn+1

)
k

(
φ(z)e

1
2
z2

)
m−k−1

]

−2
(1

2(1− λ)
n + 1

) (
zn+1

)
n+1

(
φ(z)e

1
2
z2

)
m−n−2

= 0(1.19)

(m ∈ Z; n ∈ N0; z ∈ C)

has solutions of the form:

φ(z) = K e−
1
2
z2

(
ez2

)
1
2
(1−λ)−m+1

,(1.20)

where K is an arbitrary constant, λ is a given constant, and the second member
of (1.20) is assumed to exist.

The assertions of Theorems A and B are substantially the same results
stated with only simple notational changes. In fact, the assertions of Theorem
B would follow immediately from those of Theorem A by merely making the
following change of notations:

φ(z) 7→ φ(z) e
1
2
z2

(z ∈ C).(1.21)

Theorem A, on the other hand, would follow readily from Theorem B with
φ(z) replaced trivially by φ(z)e−

1
2
z2

. In view of these observations, it would
be sufficient to show here how Theorem A ( for example) can be derived by
suitably applying a general theorem on particular solutions of a certain class
of fractional differintegral equations.

2. A GENERAL THEOREM AND ITS APPLICATIONS

The following general theorem (due to Tu et al. [6]) provides a unification
as well as generalization of a considerably large number of widely scattered re-
sults on the solutions of various families of homogeneous and nonhomogeneous
fractional differintegral equations.

Theorem 1 (Tu et al. [6, Theorems 1 and 2]). Let P (z; p) and Q(z; q) be
polynomials in z of degrees p and q, respectively, defined by

P (z; p) :=
p∑

k=0

ak zp−k

= a0

p∏

j=1

(z − zj) (a0 6= 0; p ∈ N)
(2.1)
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and

Q(z; q) :=
q∑

k=0

bk zq−k (b0 6= 0; q ∈ N).(2.2)

Suppose also that f−ν (6= 0) exists for a given function f .
Then the nonhomogeneous linear ordinary fractional differintegral equa-

tion:

P (z; p)φµ(z) +

[
p∑

k=1

(
ν

k

)
Pk(z; p) +

q∑

k=1

(
ν

k − 1

)
Qk−1(z; q)

]
φµ−k(z)

+
(

ν

q

)
q! b0 φµ−q−1(z) = f(z)(2.3)

(µ, ν ∈ R; p, q ∈ N)

has a particular solution of the form:

φ(z) =
((

f−ν(z)
P (z; p)

eH(z;p,q)

)

−1

e−H(z;p,q)

)

ν−µ+1

(2.4)

(z ∈ C \ {z1, ..., zp}),
where, for convenience,

H(z; p, q) :=
∫ z Q(ζ; q)

P (ζ; p)
dζ (z ∈ C \ {z1, ..., zp}),(2.5)

provided that the second member of (2.4) exists.
Furthermore, the homogeneous linear ordinary fractional differintegral equa-

tion:

P (z; p)φµ(z) +

[
p∑

k=1

(
ν

k

)
Pk(z; p) +

q∑

k=1

(
ν

k − 1

)
Qk−1(z; q)

]
φµ−k(z)

+
(

ν

q

)
q! b0 φµ−q−1(z) = 0(2.6)

(µ, ν ∈ R; p, q ∈ N)

has solutions of the form:

φ(z) = K
(
e−H(z;p,q)

)
ν−µ+1

,(2.7)
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where K is an arbitrary constant and H(z; p, q) is given by (2.5), it being
provided that the second member of (2.7) exists.

Remark 2. It should be remarked in passing that Tu et al. [6, Sec-
tion 3] also gave the solutions of several general families of partial fractional
differintegral equations analogous to (2.3) and (2.6). More importantly, as
already observed in conclusion by Tu et al. [6], either or both of the polyno-
mials P (z; p) and Q(z; q), involved in Theorem 1, can be of degree 0 as well.
Thus, in the definitions (2.1) and (2.2) (as also in Theorem 1 and its such
consequences as Theorem 2 below), N may be replaced (if and where needed)
by N0.

With a view to applying Theorem 1, we first replace q by q + 1 and set

a0 = α (α 6= 0) and a1 = · · · = ap = 0(2.8)

and

b0 = β (β 6= 0) and b1 = · · · = bq+1 = 0,(2.9)

so that

P (z; p) = α zp (α 6= 0; p ∈ N)(2.10)

and

Q(z; q + 1) = βzq+1 (β 6= 0; q ∈ N0).(2.11)

We thus find from (2.5), (2.10), and (2.11) that

H(z; p, q + 1) =
β

α

∫ z

tq−p+1dt (p ∈ N; q ∈ N0)(2.12)

or, equivalently, that

H(z; p, q + 1) =





βzq−p+2

α(q − p + 2)
(p 6= q + 2)

β

α
log z (p = q + 2).

(2.13)

A special case of Theorem 1 can now be stated as

Theorem 2. Suppose that f−ν (6= 0) exists for a given function f . Then
the nonhomogeneous linear ordinary fractional differintegral equation:

αzp φµ(z) +

[
p∑

k=1

(
ν

k

)
(αzp)k +

q+1∑

k=1

(
ν

k − 1

)
(βzq+1)k−1

]
φµ−k(z)
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+β

(
ν

q + 1

)
(q + 1)!φµ−q−2(z) = f(z)(2.14)

(µ, ν ∈ R; α 6= 0; β 6= 0; p ∈ N; q ∈ N0)

has a particular solution of the form:

φ(z) =
((

f−ν(z)
αzp

eH(z;p,q+1)

)

−1

e−H(z;p,q+1)

)

ν−µ+1

(2.15)

(z ∈ C \ {z : zp = 0 (p ∈ N)}),
where H(z; p, q+1) is given by (2.13), it being provided that the second member
of (2.15) exists.

Furthermore, the homogeneous linear ordinary fractional differintegral equa-
tion:

αzp φµ(z) +

[
p∑

k=1

(
ν

k

)
(αzp)k +

q+1∑

k=1

(
ν

k − 1

)
(βzq+1)k−1

]
φµ−k(z)

+β

(
ν

q + 1

)
(q + 1)!φµ−q−2(z) = 0(2.16)

(µ, ν ∈ R; α 6= 0; β 6= 0; p ∈ N; q ∈ N0)

has solutions of the form:

φ(z) = K
(
e−H(z;p,q+1)

)
ν−µ+1

,(2.17)

where K is an arbitrary constant and H(z; p, q+1) is given by (2.12) or (2.13),
it being provided that the second member of (2.17) exists.

Remark 3. The function H(z; p, q + 1) given by (2.13) would further
simplify considerably if (for example) β = −2α, and we thus find from (2.13)
that

H(z; p, q + 1) =




− 2zq−p+2

q − p + 2
(p 6= q + 2)

−2 log z (p = q + 2).
(2.18)
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3. FURTHER DEDUCTIONS FROM THEOREM 2

In the preceding section, we have already shown how readily Theorem 2
would follow as a special case of Theorem 1 (of Tu et al. [6]). Theorem 2,
in turn, yields Theorem A (and hence also Theorem B) of Section 1 as one
of its many further special cases. Indeed, in view of Lemma 1 and the case
p 6= q + 2 in (2.13), in its special case when

µ = m (m ∈ Z), ν =
1
2
(1− λ), p = q = n (n ∈ N0), α = 1, and β = −2,

Theorem 2 (with, if relevant, f(z) replaced trivially by f(z) e
1
2
z2

) immediately
yields Theorem A. And, just as we remarked in Section 1, Theorem B follows
from Theorem A under the obvious notational change exhibited in (1.21).
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