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ABSTRACT

Over the years, email has evolved and grown to one of the most widely

used form of communication between individuals and organizations. Nonetheless,

the current information technology standards do not value the significance of email

security in today’s technologically advanced world. Not until recently, email services

such as Yahoo and Google started to encrypt emails for privacy protection. Despite

that, the encrypted emails will be decrypted and stored in the email service provider’s

servers as backup. If the server is hacked or compromised, it can lead to leakage

and modification of one’s email. Therefore, there is a strong need for point-to-point

(P2P) email encryption to protect email user’s privacy. P2P email encryption schemes

strongly rely on the underlying Public Key Cryptosystems (PKC). The evolution of

the public key cryptography from the traditional PKC to the Identity-based PKC

(ID-PKC) and then to the Certificateless PKC (CL-PKC) provides a better and more

suitable cryptosystem to implement P2P email encryption. Many current public-key

based cryptographic protocols either suffer from the expensive public-key certificate

infrastructure (in traditional PKC) or the key escrow problem (in ID-PKC). CL-PKC

is a relatively new cryptosystem that was designed to overcome both problems. In

this thesis, we present a CL-PKC group key agreement protocol, which is, as the

author’s knowledge, the first one with all the following features in one protocol: (1)

certificateless and thus there is no key escrow problem and no public key certificate

infrastructure is required. (2) one-way group key agreement and thus no back-and-

forth message exchange is required; (3) n-party group key agreement (not just 2- or

vi



3-party); and (4) no secret channel is required for key distribution. With the above

features, P2P email encryption can be implemented securely and efficiently. This

thesis provides a security proof for the proposed protocol using “proof by simulation”.

Efficiency analysis of the protocol is also presented in this thesis. In addition, we have

implemented the prototypes (email encryption systems) in two different scenarios in

this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This paper proposes a Certificateless One-way Group Key Agreement (CLOW-

GKA) protocol for Point-to-Point (P2P) email encryption. The main motivations

are that (1) email is the most used form of communication between individuals and

organizations; (2) most organizations do not value the significance of email security;

and (3) most email servers will backup messages the user sends to ensure delivery

and thus the possibility of exposing backup messages to public is a real threat if the

messages are not P2P encrypted.

P2P email encryption schemes are built on top of Public Key Cryptosystems

(PKC). The evolution of the public key cryptography from the traditional PKC to

the Identity-based PKC (ID-PKC) and then to the Certificateless PKC (CL-PKC)

provides a better and more suitable cryptosystem now for researchers to design secure

protocols for P2P email encryption.

The traditional PKC is still used mostly around the world till now, though its

certificate infrastructure is not easy to manage. In traditional PKC, each participant

assigns their own public and private keys. Thus, it requires a trusted Certificate

Authority (CA) to authenticate each participant’s public key. The additional server

for CA and the management (creation, revocation and storage) of all the certificates
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is a major issue the traditional PKC suffers.

PGP (Pretty Good Privacy) [1, 2] probably is the most popular P2P email

encryption scheme used in the world now, which was built and implemented based

on the traditional PKC. If a person wishes to use PGP to send a secure email, he/she

needs to:

1. encrypt the email using the International Data Encryption Algorithm (IDEA)

[3],

2. find and confirm the email receivers’ public keys by verifying the corresponding

public key certificates, and

3. encrypt the IDEA encryption key using the email receivers’ public keys.

The encrypted email along with the encrypted IDEA key can then be sent over a

regular emailing system. Upon receiving a PGP-encrypted email, each of the email

receivers needs to

1. use his/her private key to decrypt the IDEA encryption key, and

2. use the IDEA key to decrypt the email.

The emailing processes listed above are all fairly easy to implement with the

exception of finding and verifying email receivers’ public keys. This is the main

disadvantage of the traditional PKC and is even more of a problem when an email has

multiple receivers. In that case, the sender needs to perform the public key verification

process for each email receiver. Furthermore, the worse part of the traditional PKC

is the requirement of a certificate infrastructure to issue, store, and revoke all the

public key certificates.
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Shamir [4] was the first one to propose the idea of Identity-based Public Key

Cryptosystem ID-PKC to eliminate the certificate infrastructure. In ID-PKC, the

participants’ public keys are generated directly from their identities through some

public known functions (usually hash functions). Thus, every participant can directly

derive other participants’ public keys from their identities without having to verify

the validity of public keys. Since Shamir’s paper [4], many ID-PKC schemes such as

those in [5, 6, 7, 8, 9] have been proposed in literature. However, ID-PKC schemes

require a Key Generation Center (KGC) to generate and distribute private keys for

participants. This approach inevitably introduces the key escrow problem, in which if

the KGC is malicious or compromised, the whole system will be compromised (since

the KGC knows participants’ private keys).

In 2003, Al-Riyami et al. [10] introduced a first Certificateless Public Key

Cryptosystem (CL-PKC) to solve the key escrow problem. Following his paper,

many certificateless protocols [11, 12, 13, 14] were proposed for various applica-

tions, including secure encryption, signature, or key agreement. For application like

email encryption, certificateless signature schemes are not suitable. Certificateless

encryption schemes are not suitable for email encryption either since for an email

with multiple receivers the message or the encryption key may need to be encrypted

multiple times, once by each email receiver’s public key so that each receiver can use

his/her private key to decrypt the message (or decrypt the encryption key first and

then decrypt the message). Therefore, a secure key agreement protocol should be

the best choice to implement the P2P email encryption if the protocol is a one-way

and is an n-party protocol. Unfortunately, none of the certificateless key agreement

protocols proposed in literature were designed for P2P email encryption and thus are

not one-way and n-party.
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1.2 Thesis Statement

The proposed CLOW-GKA protocol in this thesis, to the author’s knowledge, is

the first key agreement protocol with all the following features in one protocol that

are required to implement a good P2P email encryption scheme.

• Certificateless: Certificateless public key cryptosystem CL-PKC is a relatively

new crypto-paradigm. The proposed CLOW-GKA is a key agreement protocol

based on the CL-PKC.

Though CL-PKC eliminates the need of the certificate infrastructure (suffered

in traditional PKC) and solves the key escrow problem (suffered in ID-PKC),

it introduces a milder problem that, unlike ID-PKC, participants in the CL-

PKC schemes cannot derive other participants’ public keys directly from their

identities. Instead, Alice needs to access a public directory to obtain Bob’s

public key and any well-designed CL-PKC scheme needs to ensure that Bob’s

public key can be verified by Alice without using certificates. In the proposed

CLOW-GKA protocol, all public keys can be certificatelessly verified and no

intervention from any server is required during the verification process. In

PKI we need an infrastructure which would be complex and expensive, because

it requires trusted authorities to obey strict security policies. We also need

additional server management and memory for creation, revocation and storage

of the certificates. In CLOW-GKA there is no need for certificates or Certificate

Authority. Hence there is no need for an additional server and management

because the KGC does not store any information. Even though the KGC

has be online for user registration, it is a one time process for each user and

the user never contacts the KGC again. But in PKI the user has to contact
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the Certificate authority everytime public key authentication is needed. There

exists a public directory in CLOW-GKA which contains the public keys where

there no need for expensive management as required in the PKI cryptosystem.

• One-way: Most existing group key agreement protocols require several rounds

of message exchanges before all participants can reach a group key. This

approach obviously does not work for P2P email encryption since not all par-

ticipants are online when the email sender sends emails. The proposed CLOW-

GKA protocol requires no back-and-forth message exchange. The sender only

needs to encrypt the email using a special constructed group key and then

attach a set of Key Derivation Keys (KDKs) in the email, one KDK for each

email receiver. Upon receiving the email, each receiver will based on his/her

own private key, the KDK in the email and the sender’s public key to derive

the group key (i.e., the encryption key).

• n-party: Most ID-based or certificateless-based group key agreement protocols

in literature were designed for 2-party or 3-party only, probably because they

are not one-way protocols and thus the amount of back-and-forth broadcast

messages may become un-manageable if the group size is n (especially when

n is big). The proposed CLOW-GKA has no such limitation and can support

arbitrary n parties.

• Public channels for key distribution: In order to eliminate the key escrow

problem, most CL-PKC protocols require the KGC to assign and distribute

a partial private key to each participant through some secret channels. The

proposed CLOW-GKA uses the binding-blinding technique [15] to eliminate

this secret channel requirement. That is, the KGC can send a quantity, in
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which the partial private key is embedded within it, to the participant using

any public channel. Only the participant receiving the quantity can recover the

partial private key.

Whether the proposed P2P email encryption scheme is secure relies on the security

of the underlying CLOW-GKA protocol. In Section 5 of this thesis, we provide

a security proof for the CLOW-GKA protocol using a relatively new methodology

“proof by simulation”.

This thesis is organized in seven chapters. Chapter 2 briefly describes some related

work in literature. Chapter 3 provides some preliminaries, including the elliptic curve

cryptography and bilinear pairings. Chapter 4 presents the CLOW-GKA protocol

for P2P email encryption. Chapter 5 proves the security of the protocol, followed by

analyzing the efficiency in Chapter 6. Chapter 7 presents our implementation of the

CLOW-GKA protocol. The thesis is concluded in Chapter 8.
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CHAPTER 2

RELATED WORK

2.1 Previous work

Other than PGP, the author did not find any paper in literature aimed at designing

protocols specific for P2P email encryption. That is, we cannot identify any existing

protocol which has all the four properties we described earlier in the previous section.

However, many protocols, which were not designed for email encryption, have some

of these four properties and thus are related to our work. In this section, we will

briefly describe these related work.

In 2003, Al-Riyami et al. [10] designed the first CL-PKC (certificateless public key

cryptosystem) to eliminate the key escrow problem by making the KGC to generate

only a partial private key for each participant. Upon receiving a partial private key

from KGC, each participant can then use it along with his/her own private key to

construct his/her public key. In this way, even a compromised or malicious KGC,

with only the knowledge of the partial private key, will not be able to derive any

participant’s private key and thus the key escrow problem can be prevented. However,

in their scheme the partial private keys have to be distributed to participants using

some secret channels. In addition, the paper, based on their CL-PKC setting, has only

sketched a 2-party (not n-party) key agreement protocol. Furthermore, the protocol

is not one-way. That is, it requires back-and-forth message exchanges for both parties
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to agree on a key. For P2P email encryption, this key agreement protocol obviously

is not suitable.

Xiong, Li and Qin proposed a certificateless threshold signature scheme in [11],

which uses Al-Riyami et al.’s [10] CL-PKC to eliminate the key escrow problem. In

this paper, threshold signature distributes the signing power among multiple signers in

order to share responsibility and authority. Tso, Huang and Susilo proposed another

certificateless signature scheme in [12], which eliminates the need for certificate

management. Signatures are used for validating users’ identities in this scheme.

Though these two papers are certificateless and solved the key escrow problem, they

are signature schemes and cannot be applied to implement P2P email encryption.

Baek’s [13] Certificateless public key encryption without pairing is a scheme where

they construct a new CLPKE scheme based on Schnorr signature [27] without bilinear

pairings and claim that their computational cost is more efficient than the traditional

CLPKE schemes which use pairings. Yang and Tan’s [14] paper presented a new

security model for certificateless key exchange, and a strongly secure CLKE protocol

without pairing. It also presented a formal study on certificateless key exchange. In

both these papers, based on their CLPKE setting, has only sketched a 2-party (not

n-party) key agreement protocol.

Das’s paper in [15] is a ID-PKC scheme which does not require a secure channel

to pass the private key from the KGC. In this paper they use a binding-blinding

techniques with the use of many parameters over the public channel to the KGC, and

thus is less efficient. Unlike their scheme, in our scheme we just send one parameter

over the public channel (please see Section 4.3 for details). Furthermore, the paper

described a signature scheme which cannot be applied to P2P email encryption.

Boneh and Franklin’s paper in [5] proposed an ID-PKC scheme which uses
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multiple KGCs to eliminate the key escrow problem. The KGC infrastructure in

this scheme is distributed and the master private key is jointly computed by these

multiple KGC’s in a way that no particular KGC has knowledge about the master

private key. This proposed use of multiple KGCs to solve the key escrow problem

is not feasible since the system infrastructure would be more complex to set up and

harder to maintain.

Lin and Zhou [16] also proposed a P2P scheme based on ID-PKC but solves the

key escrow problem based on CL-PKC. It is a P2P scheme designed for two-party

communication only, unlike our scheme which can support unlimited n parties. The

paper also proposed a scheme for sharing trust data through the concept of each party

having a trust value. The trust value of one party is randomly assigned to another

party in the network. The KGC is responsible for equally distributing the trust values

within the parties in the network. Any party A wanting to know the trust value of

another party B broadcasts a trust query and the party C which holds the trust value

of B replies back the value. Based on the received trust value, the party A can decide

to communicate with B further or not.

Zhang, Wu and Qin proposed an ID-PKC group key agreement protocol in [17],

where group members merely negotiate a common encryption key which is accessible

to any group member, but they hold their respective secret decryption keys. It is

a one-way protocol. This protocol needs to use multi-signatures to verify identities

and in addition it suffers from the key escrow problem since the KGC generates the

private keys for the participants. This paper uses the random oracle method for their

security proof. In our thesis, we use a relatively new method “proof by simulation”

to prove the security.

Yeh, Zeng and Long’s paper in [18] proposed an ID-PKC protocol for email
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encryption. Like most of other ID-PKC protocols, this protocol suffers from the key

escrow problem. Thus, the email encryption scheme proposed in their paper is not a

truly P2P email encryption since the KGC is capable of deriving the encryption key

to decrypt emails. In addition, their protocol requires secret channels for private key

distribution.

Yuen, Susilo and Mu’s paper in [19] proposed an ID-PKC scheme to solve the

key escrow problem, in which each user has his/her own public key and secret key.

The KGC generates the identity-based secret key for the user with respect to user’s

public key. Now the user uses both secret keys (his own secret key and ID-based

secret key) to sign a message. In this way, the key escrow problem can be solved since

the KGC only knows one of the two secret keys and therefore cannot forge any user’s

signatures.

There has been new schemes coming in to improve security, management, com-

plexity, certificateless, lesser cost and higher efficiency. Signatures schemes are in

the limelight in recent years and have been extensively used in many applications.

Though this paper presents a key agreement protocol, the proposed cryptosystem

setting can be easily adapted to develop efficient digital signature schemes. Unlike

our CLOW-GKA protocol, all the related papers described here do not have all those

four desired features and thus are not suitable for P2P email encryption.

2.2 Functionality comparison with different protocols

Table 2 provides a brief functionality comparison between the proposed CLOW-

GKA protocol: P2P email encryption, PGP (Pretty Good Privacy) [1, 2] P2P email

encryption, Yeh, Zeng and Long’s [18] ID-PKC protocol for email encryption and
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Al-Riyami et al. [10] CL-PKC (certificateless public key cryptosystem).

Table 2.1: Functionality comparison between CLOW-GKA, PGP, Yeh,
Zeng and Long’s ID-PKC and Al-Riyami et al’s CL-PKC, assuming there
are n recipients in an email

CLOW-GKA Yeh, Zeng and Al-Riyami et al’s PGP
Long’s ID-PKC CL-PKC

Certificateless • YES • YES • YES • NO
One-way • YES • YES • YES • YES
n-party • YES • YES • NO • YES
No private • YES • NO • NO • NO
channels
Solves Key escrow • YES • NO • YES • Not applicable
problem
Digital signature • NO • NO • NO • YES

Message replay • NO • NO • NO • NO
attack prevention

2.3 Existing email encryption softwares

Currently, there are some commercial secure email encryption softwares available

in the market today. HPE Secure email [33], Trend Micro email [34], Proofpoint [36]

and DataMotion SecureMail [35] are some of the most used email encryption software

which use Identity-Based Encryption (IBE). LuxSci SecureLine [37], ProtonMail [38]

and Mailvelope [39] are other email encryption software based on OpenPGP. Most of

these commercial software can be integrated with a variety of email provider services.

HPE Secure email is offered by Hewlett-Packard Enterprises and it is one of the

top reviewed products in the market today. HPE secure email is based on the Identity-

Based Encryption which works as follows. Let us consider the situation where Alice

wants to send an email to Bob. Alice encrypts the email using Bobs email address,
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as the public key. The encrypted email is then sent to the Bob. When bob receives

the email, bob contacts the key server. The key server then contacts a directory or

an external authentication source to authenticate the identity of Bob. Once Bob is

authenticated, the key server sends Bob’s private key to Bob, with which Bob can

decrypt the received message. Bob can use this private key to decrypt any following

messages too. Trend Micro Email also follows the same setup and their key server

generates private keys based on the Identity-Based Cryptosystem. Proofpoint and

DataMotion SecureMail also claim they use the Identity-Based Encryption.

Since all the above software products use IBE, the key server will generate the

private keys for all the users. This leads to the key escrow problem, in which if the

key server is malicious or compromised, the whole system will be compromised (since

the key server knows participants private keys). This key escrow problem will be

overcome in our proposed email encryption system based on CLOW-GKA protocol.

ProtonMail is an email service provider like google which uses OpenPGP. Mailve-

lope is a chrome extension which can be integrated within the email service provider’s

interface. It is very useful since it does not have to develop/create any separate

interface. Mailvelope also has a firefox addon. LuxSci SecureLine also uses OpenPGP

and claim to provide point-to-point email encryption. The disadvantage of PGP, as

discussed in Section 1.1, is the required certificate infrastructure for verifying email

receivers’ public keys. In our CLOW-GKA implementation all the public keys can

be verified by the sender without the need of public key certificates or any other

mechanism.

Most software products currently in the market still use the traditional public

key infrastructure or PGP/OpenPGP for key management which is very expensive to

maintain. Some newer email encryption software use the Identity-Based Encryption.



13

Though they eliminate the burden of key management but unfortunately it introduces

the key escrow problem. Our protocol eliminates both the public key infrastructure

requirement and the key escrow problem. In addition, our approach is based on a

key agreement protocol, where the email is encrypted by a key which can be agreed

(derived) by all the email participants. Thus, no need for multiple encryptions for a

group email with multiple email receivers.
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CHAPTER 3

PRELIMINARY

In this section, we describe the cryptographic basics of elliptic curves and bilinear

pairings that are used frequently in ID-based and certificateless-based cryptosystems.

3.1 Elliptic curves

Elliptic curve cryptosystem (ECC) [23, 24] is a popular cryptosystem used in

many different cryptographic protocols.

To set up an ECC, based on the National Security Agency’s recommendation [25],

an appropriate prime curve is Ep(a, b) : y2 = x3 + ax + b over a prime p and a base

point (generator) P with an order q (i.e., qP = O), where (4a3 + 27b2) 6= 0 mod p

and O is the infinity point. An ECC Ep(a, b) is an additive group with the following

operation rules. For all points A,B,C ∈ Ep(a, b),

1. A+O = A.

2. If A = (xA, yA), then −A = (xA,−yA) and thus A+ (xA,−yA) = O.

3. Given A = (xA, yA) and B = (xB, yB) with A 6= −B, another point C =

A+B = (xC , yC) can be calculated by the rules below:
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xC = (λ2 − xA − xB) mod p

yC = (λ(xA − xC)− yA) mod p

where

λ =


yB−yA
xB−xA

mod p if A 6= B

3x2
A+a

2yA
mod p if A = B

4. Multiplication is defined as repeated additions. For example, for some positive

integer k, the multiplication k · A = A + A + . . . + A, i.e., A adds itself k − 1

times.

There are many ECC encryption and signature algorithms available in literature.

All these algorithms are based on the hardness assumption of the Elliptic Curve

Discrete Logarithm Problem that states:

• Elliptic Curve Discrete Logarithm Problem (ECDLP): Given two points A and

B on a curve Ep(a, b) with an order q, if B = r · A for some r ∈ Z∗q , it is

computational hard to find r.

3.2 Bilinear pairings

Bilinear pairing has found recent use in various efficient encryption and signature

schemes [5, 6, 7, 9, 20, 21, 22]. A symmetric bilinear pairings cryptosystem is

described briefly in this section.

Let (G1,+) and (G2,×) be two cyclic groups of the same prime order q, and let

P be the generator of the additive group G1, and e : G1 × G1 → G2 is a bilinear

mapping if it has the following properties:
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Bilinearity:

∀A,B,C ∈ G1, and ∀ r1, r2 ∈ Z∗q ,

e(A,B) = e(B,A)

e(A,B + C) = e(A,B)e(A,C)

and thus

e(r1A, r2B) = e(A,B)r1r2 = e(r2A, r1B)

Non-degeneracy:

If P is a generator of G1, then e(P, P ) is a generator of G2.

Computability:

∀A,B ∈ G1 , there exists a polynomial-time algorithm to efficiently compute

the bilinear mapping e(A,B).

An elliptic curve is a typical example that can be used as the G1 group. The security

of most bilinear mapping based cryptographic algorithms is related to the hardness

assumption of the bilinear variants of the Diffie-Hellman problems, which are:

• Computational Bilinear Diffie-Hellman Problem (CBDHP): Given A, r1A, r2A

for r1, r2 ∈ Z∗q , compute r1r2A.

• Decision Bilinear Diffie-Hellman Problem (DBDHP): Given A, r1A, r2A, r3A for

r1, r2, r3 ∈ Z∗q , and an element g ∈ G2, decide if g = e(A,A)r1r2r3 .

• One Way Bilinearity (OWB): Given a random element g ∈ G2, find a pair

(A1, A2) ∈ G1 such that e(A1, A2) = g.

There is no algorithm available currently which is able to efficiently solve these hard

problems.
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CHAPTER 4

THE CLOW-GKA PROTOCOL FOR P2P EMAIL

ENCRYPTION

This section proposes the CLOW-GKA (certificateless one-way group key agree-

ment) protocol and describes its application to P2P email encryption.

4.1 KGC servers

For the proposed CLOW-GKA protocol to allow an email sender and a group of

n (≥ 1) email receivers to agree on a key for P2P email encryption, all of the email

participants must register through a same KGC (key generation center). This can

be easily achieved by letting the email service provider (such as Google) act as the

KGC. For some security sensitive organizations, for example, government agencies

may want to establish their own internal email system for their employees only, the

agency can also have a dedicated server serves as the KGC.

However, no matter in which cases (public or internal), the KGC will not be able

to know any participant’s private key, and thus not able to derive any agreed group

key (i.e., email encryption key) and subsequently decrypt any of the emails if the

KGC is compromised. Thus, the proposed CLOW-GKA protocol can implement a

truly P2P email encryption scheme, i.e., no other entity (except the email sender and

receivers) is able to decrypt the emails.
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4.2 CLOW-GKA for P2P email encryption

In this section, we formally present the CLOW-GKA protocol for P2P email

encryption. Within this protocol, several sub-protocols will be called and executed.

The entities participating in the protocol are the KGC and the email users, where each

email user can play different roles either as an email sender or as an email receiver.

CLOW-GKA protocol: P2P email encryption

Assume an email sender with an identity ID0 would like to send a P2P

encrypted email to n ≥ 1 email receivers with identities IDi,∀ 1 ≤ i ≤ n. This

protocol is based on a cryptosystem with a set of parameters set up by the KGC.

The KGC, ID0, and all IDi need to execute the steps described in this protocol.

1. The KGC server defines a cryptosystem and publishes a set of parameters

〈G1, G2, e, P, Ppub, q,H〉, where parameters G1, G2, e, P and q were defined

in Section 3.2. The KGC also chooses a master secret s ∈ Z∗q and then

computes Ppub = sP as the system’s public key. Finally, the KGC chooses

a hash function H : {0, 1}∗ → G1. The map-to-curve and map-to-point

algorithms from Weil pairings in [5, 8] are such functions that can map

users’ identities to points on an elliptic curve (the group G1).

2. Each email user, including ID0 and all IDi, ∀ 1 ≤ i ≤ n, needs to have

an email account before sending/receiving emails. Each email user executes

the Sub-protocol 1 to register an email account through the KGC. In

Sub-protocol 1, each email user will generate his/her private and public

keys.
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3. Each email user, including ID0 and all IDi, publishes his/her public key

along with his/her identity in a public directory.

4. The email sender ID0 executes the Sub-protocol 2 to send an encrypted

email to all email receivers IDi.

5. Each email receiver IDi executes the Sub-protocol 3 to receive and decrypt

the email.

4.3 Email account registration

All email users need to register an email account through the KGC first before

they can send or receive any P2P encrypted email.

Sub-protocol 1: Email account registration

Input: An email user with an identity IDj, ∀ 0 ≤ j ≤ n, and a random number

rj.

Output: IDj’s private key sj and public key 〈Pj, Rj〉.

A user IDj registers an email account and generates his/her private and public

keys through the KGC by the following steps:

1. IDj computes and sends rjQj to KGC, where rj is a random secret for IDj

and Qj = H(IDj).

2. KGC computes Dj = srjQj and sends it back to IDj through any public

channel, in which a partial private key sQj is embedded in Dj.
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3. IDj chooses his/her private key sj and then computes his/her public key

〈Pj, Rj〉, where

Pj = sjP (4.1)

Rj = s−1
j r−1

j Dj = s−1
j r−1

j rjsQj = s−1
j sQj (4.2)

Note that in the step 2 of the Sub-protocol 1, unlike other ID-based or certificateless-

based protocols, the proposed CLOW-GKA protocol does not require secret channels

for the KGC to distribute the partial private key sQj. We use the binding-blinding

technique to avoid the requirement of secret channels. Rather than sending the partial

private key sQj directly, the KGC sends Dj = srjQj to IDj through any public

channel, where only the IDj knows the random secret rj. Based on the hardness

assumption of the Elliptic Curve Discrete Logarithm problem, it is hard for everyone

(except the KGC and the user IDj) to derive the partial private key sQj even he/she

eavesdrops Dj from the public channel. The secrecy of the partial private key sQj is

important to the security of the protocol since if a third party is able to eavesdrop

sQj, then this party can create a fake public key for IDj. This malicious party just

needs to choose his/her own random secret s′j, and based on the eavesdropped sQj,

to generate 〈P ′j , R′j〉 and then claims that this fake public key is IDj’s public key.

Unfortunately the system cannot detect this illegal fabrication. That is, the fake

public key can pass the system provided public key verification check (see Equation

4.3 below).
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4.4 Sending a P2P encrypted email

The email sender ID0 needs to execute the Sub-protocol 2 below to send a P2P

encrypted email to a group of n email receivers IDi,∀ 1 ≤ i ≤ n.

Sub-protocol 2: Sending a P2P encrypted email

To send a P2P encrypted email to n email receivers IDi,∀ 1 ≤ i ≤ n, the

sender ID0 needs to perform the following steps:

1. ID0 obtains each email receiver IDi’s public key 〈Pi, Ri〉 from the public

directory.

2. ID0 verifies each IDi’s public key by checking the equality of the Equation

4.3 below.

e(Pi, Ri)
?
= e(Ppub, Qi) (4.3)

since

e(Pi, Ri) = e(siP, s
−1
i sQi) = e(sP, sis

−1
i Qi) = e(Ppub, Qi).

If the equality checking in Equation 4.3 returns true, the validity of the

public key 〈Pi, Ri〉 is verified.

3. ID0 chooses a random number r ∈ Z∗q and computes

xj = e(rQ0, s0Pj), ∀ 0 ≤ j ≤ n (4.4)
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4. ID0 computes n key derivation keys yi’s, one for each email receiver IDi,

where

yi = ⊕∀ j=0,1,...,i−1,i+1,...,n(xj), ∀ 1 ≤ i ≤ n (4.5)

5. ID0 computes the group key (will be used to encrypt the email message)

K = x0 ⊕ x1 ⊕ . . .⊕ xn (4.6)

6. ID0 uses the group key K to encrypt the email message and then sends the

encrypted email along with the key derivation keys and the random number

(y1, y2, . . . , yn, r) as an attachment to all n email receivers IDi’s.

For the Equation 4.3, the email sender only needs to use the KGC’s public

information Ppub and the email receiver’s identity IDi (or Qi = H(IDi)) to verify the

validity of the IDi’s public key 〈Pi, Ri〉. This certificateless public-key verification

capability (i.e., Any user can verify another user’s public key without the need to

have a third party to serve as a certificate authority) is an important feature for a

well-designed certificateless protocol.

4.5 Receiving a P2P encrypted email

Upon receiving the P2P encrypted email from the email sender ID0, each email

receiver IDi, ∀ 1 ≤ i ≤ n, needs to execute the Sub-protocol 3 to derive the group

key K and then use it to decrypt the message.
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Sub-protocol 3: Receiving a P2P encrypted email

Each email receiver IDi, ∀ 1 ≤ i ≤ n, performs the following three steps:

1. IDi first obtains the email sender ID0’s public key 〈P0, R0〉 from the public

directory.

2. IDi checks the validity of ID0’s public key 〈P0, R0〉 based on the Equation

4.3.

3. IDi derives the group key K using his/her own private key si, the cor-

responding key derivation key yi, and the email sender ID0’s identity Q0

(= H(ID0)) and public key P0. Equation 4.7 below describes this key

derivation process.

K = yi ⊕ e(siQ0, rP0) (4.7)

since

yi ⊕ e(siQ0, rP0) = yi ⊕ e(rQ0, siP0)

= yi ⊕ e(rQ0, sis0P )

= yi ⊕ e(rQ0, s0Pi)

= yi ⊕ xi

= (x0 ⊕ . . .⊕ xi−1 ⊕ xi+1 ⊕ . . . xn)⊕ xi

= K

4. Finally, IDi can decrypt the email using the just derived group key K.
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4.6 Example

For demonstration purpose, this section will give a walk through example. In this

example, we assume the email sender ID0 is sending an email to n = 3 receivers

ID1, ID2, and ID3.

1. Cryptosystem setup: The KGC sets up a cryptosystem with all the param-

eters as described in the step 1 of CLOW-GKA protocol in Section 4.2.

2. Email account registration: Each of the users ID0, ID1, ID2 and ID3 regis-

ters an email account through the KGC and during the registration, their public

keys will be generated.

3. Public key directory: All the users ID0, ID1, ID2 and ID3 publish their

public keys in a public directory.

4. Sending an encrypted email:

(1) The email sender ID0 accesses the public directory to obtain all email

receiver ID1’s, ID2’s and ID3’s public keys 〈P1, R1〉, 〈P2, R2〉, 〈P3, R3〉.

(2) The email sender ID0, based on Equation 4.3, verifies the validity of all

three public keys by checking

e(P1, R1)
?
= e(Ppub, Q1);

e(P2, R2)
?
= e(Ppub, Q2);

e(P3, R3)
?
= e(Ppub, Q3)

since

e(P1, R1) = e(s1P, s
−1
1 sQ1) = e(sP, s1s

−1
1 Q1) = e(Ppub, Q1)
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e(P2, R2) = e(s2P, s
−1
2 sQ2) = e(sP, s2s

−1
2 Q2) = e(Ppub, Q2)

e(P3, R3) = e(s3P, s
−1
3 sQ3) = e(sP, s3s

−1
3 Q3) = e(Ppub, Q3)

(3) The sender ID0 picks a random number r and computes



x0 = e(rQ0, s0P0)

x1 = e(rQ0, s0P1)

x2 = e(rQ0, s0P2)

x3 = e(rQ0, s0P3)

(4) The sender ID0 computes three key derivation keys as follows.


y1 = x0 ⊕ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2

(5) The sender ID0 generates the group (encryption) key

K = x0 ⊕ x1 ⊕ x2 ⊕ x3

(6) The sender encrypts the email using the group keyK and sends (y1, y2, y3, r)

along with the email.

5. Receiving an encrypted email:

(1) Each email receiver ID1, ID2 or ID3 needs to access the public directory

to obtain ID0’s public key 〈P0, R0〉.
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(2) Based on Equation 4.3, each email receiver ID1, ID2 or ID3 verifies the

sender ID0’s public key 〈P0, R0〉 by checking e(P0, R0)
?
= e(Ppub, Q0).

(3) The email receiver ID1 computes

y1 ⊕ e(s1Q0, rP0) = x0 ⊕ x2 ⊕ x3 ⊕ e(rQ0, s1P0)

= x0 ⊕ x2 ⊕ x3 ⊕ e(rQ0, s1s0P )

= x0 ⊕ x2 ⊕ x3 ⊕ e(rQ0, s0P1)

= x0 ⊕ x2 ⊕ x3 ⊕ x1

= K

The email receiver ID2 computes

y2 ⊕ e(s2Q0, rP0) = x0 ⊕ x1 ⊕ x3 ⊕ e(rQ0, s2P0)

= x0 ⊕ x1 ⊕ x3 ⊕ e(rQ0, s2s0P )

= x0 ⊕ x1 ⊕ x3 ⊕ e(rQ0, s0P2)

= x0 ⊕ x1 ⊕ x3 ⊕ x2

= K

The email receiver ID3 computes

y3 ⊕ e(s3Q0, rP0) = x0 ⊕ x1 ⊕ x2 ⊕ e(rQ0, s3P0)

= x0 ⊕ x1 ⊕ x2 ⊕ e(rQ0, s3s0P )

= x0 ⊕ x1 ⊕ x2 ⊕ e(rQ0, s0P3)

= x0 ⊕ x1 ⊕ x2 ⊕ x3

= K

Thus, all three email receivers are able to derive the same group key K

which was generated and used by the email sender to encrypt the email.
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(4) Finally all three email receivers can decrypt the encrypted email using the

group key K.
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CHAPTER 5

SECURITY ANALYSIS

5.1 Adversarial model

CLOW-GKA protocol is secure against static and non-colluding adversaries in the

semi-honest adversarial model, also called honest-but-curious. The adversary obtains

the internal state of the corrupted party, including the transcripts of all messages

received. It correctly follows the protocol specification while attempting to learn

private information from other parties. This model may also be of use in settings

where the use of the correct software running the correct protocol can be enforced.

Semi-honest adversaries are also called passive. Semi-honest adversaries can also be

static (the party is corrupted before the execution of the protocol) In the rest of this

section, we prove the security of our protocol in the setting of semi-honest adversarial

model.

5.2 Privacy by simulation

According to the simulation paradigm [26], a protocol is secure against semi-honest

adversaries if whatever can be computed by a party participating in the protocol

can be computed based merely on its input and output. If the view of a party is

simulatable based only on the party’s input and output, then whatever the adversary
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can learn from the input and output of the corrupted party, can be learned without

the execution of the protocol. If the view each party in the protocol is simulatable

based only on the it’s input and output, then we can conclude that the protocol is

privacy-preserving, and consequently secure.

Definition of security

• Let f = (fi, ..., fm) be a m-ary probabilistic polynomial-time functionality and

let Π be a multi-party protocol for computing f .

• The view of the ith party (i ∈ 1, 2, ..,m) during an execution of Π on x =

(x1, ...., xm) and security parameter n is denoted by viewΠ
i (x, n) and equals

(w, ri,mi,1, . . . ,mi,t) where w ∈ x = (x1, ...., xm) (its value depending on the

value of i), ri equals the contents of the ith party’s internal random tape, and

mi,j represents the j th message that it received.

• The output of the ith party during an execution of Π on x = (x1, ...., xm) and

security parameter n is denoted by outputΠi (x, n) and can be computed from

its own view of the execution. We denote the joint output of all parties by

outputΠi (x, n) = (outputΠ1 (x, n), ..., outputΠm(x, n))

In the case where the functionality f is deterministic (our protocol is deterministic

too), a simpler definition can be used. Specifically, we do not need to consider the joint

distribution of the simulators output with the protocol output. Rather we separately

require correctness, meaning that

{outputΠ(x, n)}x∈({0,1}∗);n∈N
c≡ {f(x, n)}x∈({0,1}∗);n∈N
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and in addition, that there exist probabilistic polynomial-time algorithm (simulator)

S such that for every I ⊆ {1, . . . ,m}:

{SI(1
n, xI , fI(x))}x∈({0,1}∗);n∈N

c≡ {viewΠ
I (x, n)}x∈({0,1}∗);n∈N

where
c≡ denotes computational indistinguishability. �

According to the security definition above, it is sufficient to show that we can

effectively simulate the view of each party in the two phases of CLOW-GKA protocol

given only the input and output of that party, in order to prove the protocol is secure.

1. User Registration Phase:

• Scenario 1: We will simulate the view of the user trying to register with

the KGC. Here the user would interact with a simulator (the simulator

will simulate KGC in the ideal world).

• Scenario 2: We will simulate the view of the KGC. Here the KGC would

interact with the simulator (the simulator will simulate the user).

2. Email Sending and Receiving Phase:

• Scenario 3: We will simulate the view of one receiver. Here the receiver

will only interact with the simulator (the simulator will simulate the sender

as well as other receivers).

5.2.1 User Registration Phase

Theorem 1: Let f be a polynomial-time two-party single-output functionality

that takes as input two private keys sj from user IDj and Dj from KGC, and
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outputs a public key pair 〈Pj, Rj〉. Then Sub-protocol 1 securely computes f in

the presence of static semi-honest adversaries.

Proof. In Sub-protocol 1, a user with an identity IDj first sends a parameter

to KGC. Then the KGC computes the partial private key and sends it back to

IDj, which uses it to computes its public key pairs. The interaction between

KGC and IDj is secure due to the binding-blinding technique which has the

hardness assumption of the Elliptic Curve Discrete Logarithm problem [29].

According to the simulation paradigm [26], A protocol is secure against static

semi-honest adversaries if whatever can be computed by a party participating

in the protocol can be computed based on its input and output only.

Case 1 - User with identity IDj is corrupted. We construct a simulator S1

that is given private key sj and public key 〈Pj, Rj〉 as inputs, and it generates

the view of IDj in Sub-protocol 1. We need to prove that:

{S1(sj, 〈Pj, Rj〉)}sj ,Pj ,Rj∈{0,1}*
c≡ {viewΠ

IDj
(sj, s)}sj ,s∈{0,1}* (5.1)

where S1(sj, 〈Pj, Rj〉) is the simulator as defined above and Π denotes Sub-

protocol 1, by proving that each simulated message received by IDj in Sub-

protocol 1 is indistinguishable from a message received in the real world. In

Step 2 of Sub-protocol 1, IDj receives Dj = srjQj. Therefore, S1 must generate

Dj and send it to IDj such that IDj is able to obtain 〈Pj, Rj〉. However, S1

cannot honestly generate Dj as it does not know KGC’s master key s. The

crux of this proof is in showing that D′j generated by S1 is computationally

indistinguishable from Dj that IDj receives in the real protocol execution. S1
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uniformly chooses random number r′j that IDj would use to generate rjQj (in

Step 1). Next, we know that

Rj = s−1
j r′

−1
j Dj (5.2)

So rewriting Equation 5.2 we get

Dj = Rjsjr
′
j

Since S1 knows Rj, sj and r′j, S1 is able to compute Dj without knowing s and

sends it to sends it to Dj. IDj can now generate 〈Pj, Rj〉 as it does in the real

execution.

Case 2 KGC is corrupted. We construct a simulator S2 that is given master

key of KGC s and public key 〈Pj, Rj〉 as inputs, and generates the view of KGC

in Sub-protocol 1. We need to prove that:

{S2(s, 〈Pj, Rj〉)}s,Pj ,Rj∈{0,1}*
c≡ {viewΠ

KGC(sj, s)}sj ,s∈{0,1}* (5.3)

where S2(s, 〈Pj, Rj〉) is the simulator as defined above and Π denotes Sub-

protocol 1. In Step 1 of Sub-protocol 1, KGC receives rjQj from IDj. S2

computes Qj = H(IDj). Next, it uniformly chooses random number r′j, com-

putes r′jQj and send it to KGC. rjQj is computationally indistinguishable from

r′jQj as both rj and r′j were randomly chosen from a uniform distribution. �
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5.2.2 Email Sending and Receiving Phase

Theorem 2: Let f: {0, 1}* × {0, 1}* × ...× {0, 1}* → {0, 1}* be a polynomial-

time multi-party single-output functionality, and let Sub-protocol 1 be a secure

user registration protocol in the presence of static semi-honest adversaries. Sub-

protocol 2 and Sub-protocol 3 securely computes f in the presence of static semi-

honest adversaries.

Proof: In Sub-protocol 2, a sender with identity ID0 sends an encrypted email

with some parameters to n email receivers IDi,∀ 1 ≤ i ≤ n. In Sub-protocol 3,

each receiver IDi receives an encrypted email with some parameters, derives the

decryption key, and then decrypts the email. In Step 2 of both Sub-protocol 2

and Sub-protocol 3, the user checks the validity of other user’s public key, e.g.,

ID0 checks for the validity of IDi’s public key pair 〈Pi, Ri〉:

e(Pi, Ri) = e(Ppub, Qi) (5.4)

since: e(Pi, Ri) = e(siP, s
−1
i sQi) = e(sP, sis

−1
i Qi) = e(Ppub, Qi)

Although parameters Pi, Ri, Ppub, Qi are all public, no secret information can be

derived from these parameters due to the hardness assumption of the Elliptic

Curve Discrete Logarithm problem [29]. Note that since in Sub-protocol 2 and

Sub-protocol 3 the sender does not receive any message, there is no need to

simulate the view of the sender. We only need to simulate the view of one

receiver (let us assume it to be ID1) in each sub-protocol to prove they are

secure according to the simulation paradigm.
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Case 3 - Receiver with identity ID1 is corrupted:

In this case, we construct a simulator S3 that is given encryption key K and

private key s1 of ID1 as inputs, and generates the view of ID1 in Sub-protocol 2

and Sub-protocol 3. S3 will simulate sender ID0 and other receivers IDi,∀ 2 ≤

i ≤ n. We need to prove that:

{S3(s1, K)}
s1,K∈{0,1}*

c≡ {viewΠ
ID1

(s1, (xi,∀ 0 ≤ i ≤ n))}
s1,(xi,∀ 0≤i≤n)∈{0,1}*

(5.5)

where S3(s1, K) is the simulator as defined above and Π denotes Sub-protocol

2 and Sub-protocol 3 combined. S3 uniformly chooses random number r′ that

ID0 would choose. Notice that ID0 first computes x0 and xi,∀ 1 ≤ i ≤ n using

its private key s0 in the real execution. S3 cannot honestly compute x0 and

xi,∀ 1 ≤ i ≤ n because it does not know private key s0 of ID0. Next, ID0

computes yi,∀ 1 ≤ i ≤ n and K and encrypts the email using K and sends

(y1, y2, . . . , yn, r) along with the encrypted email in the real protocol execution.

The crux of this proof is in showing that (y1, y
′
2, . . . , y

′
n, r
′) along with the

encrypted email (generated by S3) is computationally indistinguishable from

the real (y1, y2, . . . , yn, r) along with the encrypted email that ID1 receives in

the real protocol execution. We know that:

x1 = e(r′Q0, s0P1)

S3 computes x1 with input (s1, K) as follows:
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x1 = e(s1Q0, r
′P0)

= e(r′Q0, s1s0P )

= e(r′Q0, s0P1) (as computed by ID0)

S3 now knows s1, Q0, r
′, P0, and S3. Since:

y1 = x0 ⊕ x2 ⊕ . . .⊕ xn

K = x0 ⊕ x1 ⊕ x2 ⊕ . . .⊕ xn

S3 computes y1 as follows:

y1 = K ⊕ x1

= x0 ⊕ x1 ⊕ x2 ⊕ . . .⊕ xn ⊕ x1

= x0 ⊕ x2 ⊕ . . .⊕ xn (as computed by ID0)

S3 now has K, r′, y1. It can now encrypt email using K as in real execution.

Since S3 uses the same K as in real execution the encrypted email generated by

S3 will be computationally indistinguishable from the encrypted email generated

in the real execution. Even though S3 has all the parameters that receiver ID1

needs to derive back K and decrypt the email we still need to make sure the

message (y1, y
′
2, . . . , y

′
n, r
′) along with the encrypted email is computationally

indistinguishable from the real execution message. So S3 has to compute

y′2, . . . , y
′
n. But S3 does not know x0 and xi,∀ 2 ≤ i ≤ n. Therefore, S3 randomly

chooses n-1 elliptic curve points and applies bilinear mapping to generate x′0 and

x′i,∀ 2 ≤ i ≤ n, from which it computes y′2, . . . , y
′
n as shown in Equation 4.5.
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Next, S3 sends (y1, y
′
2, . . . , y

′
n, r
′) along with the encrypted email to receiver ID1.

Since x′0 and x′i,∀ 2 ≤ i ≤ n were randomly generated and based on the One-way

Bilinearity problem [28], y′2, . . . , y
′
n are computationally indistinguishable from

the real y2, . . . , yn. �

Theorem 3: Let Π be a polynomial-time multi-party protocol which is CLOW-

GKA protocol: P2P email encryption and let Sub-protocol 1, Sub-protocol 2 and

Sub-protocol 3 be secure in the presence of static semi-honest adversaries, then

Π securely executes in the presence of static semi-honest adversaries.

Proof: By Theorem 1 it is possible to securely execute Sub-protocol 1 and by

Theorem 2 it is possible to securely execute Sub-protocol 2 and Sub-protocol

3 assuming the existence of static semi-honest adversaries. Furthermore, recall

that CLOW-GKA protocol: P2P email encryption is made up of the sub-

protocol blocks mentioned above. Combining these facts with Theorem 3 we

can come to the conclusion that CLOW-GKA protocol: P2P email encryption

is secure in the presence of static semi-honest adversaries.
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CHAPTER 6

EFFICIENCY ANALYSIS

In this section we analyze our proposed CLOW-GKA protocol: P2P email encryp-

tion scheme in four subsections. First, we analyze the computational cost for each of

our protocol blocks. Secondly, we analyze the efficiency with respect to email size.

Next, we analyze the efficiency of our protocol with other related protocols with the

use of a table. Finally, we do a functionality comparison. In our analysis we use the

following notations for the operations associated with our CLOW-GKA scheme.

PM Point multiplication in group G1

BP Bilinear pairing

HASH Map-to-point hash algorithm [5] [8][H : {0, 1}∗ → G1. ]

HASH2 [10] defined this hash function as [H : G2 → {0, 1}n

where n is bit length of plaintexts]

We can note that if a practical elliptic curve E/F3163 is used to implement

the group G1, then one BP operation requires ≈ 11, 110 modular multiplications in

F3163 [21]. Also, a PM operation of E/F3163 requires only a few hundred modular

multiplications in F3163.
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6.1 Computational cost of the protocol

In this subsection we are going to analyse the computational cost of the main

protocol block and its sub-protocol blocks.

6.1.1 CLOW-GKA protocol: P2P email encryption

In this protocol block, the KGC server defines a cryptosystem and publishes

a set of parameters. The KGC here uses a PM operation to compute the the

system’s public key. This operation is quite efficient and does not represent a

significant cost.

6.1.2 Sub-protocol 1

Each email user needs to register an email account through the KGC. The user

first uses a HASH and a PM operation to send a parameter to KGC. The KGC

again uses a PM operation to compute the partial private key and sends it back

to the user. The user computes its public key pair using 2 PM operations as

shown in the equations 4.1 and 4.2. So the total computational cost for each

user is (4 PM + 1 HASH). If there are n email users then the total cost would

be n×(4 PM + 1 HASH).

6.1.3 Sub-protocol 2

To send an email to n recipients, the sender is required to

1. verify n recipients public key by using the Equation 4.3. This requires 1

HASH and 2 BP operations for verifying each recipients public key.
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2. calculate x0, x1, x2, . . . , xn: From Equation 4.4 and we see that each

computation requires 1 HASH, 2 PM, and a BP operation. Since HASH

is already done in Sub-protocol 1 we exclude that from the cost.

3. calculate y1, y2, . . . , yn: From Equation 4.5, the calculation of each yi

requires ⊕ing all xj’s ∀ j 6= i.

4. derive the encryption key K. From Equation 4.6, this derivation requires

⊕ing all xi’s.

5. AES encrypt the email using the encryption key K.

The bit-wise ⊕ operation is extremely efficient, making the costs for calculating

K and yi’s negligible. From the email sender’s perspective, the main compu-

tational cost stems from the public key verification, AES encryption and the

calculation of X = {x0, x1, . . . , xn}. Since each xi calculation requires a 2 PM,

and a BP operation and each public key verification requires 1 HASH and 2 BP

operations, the total cost for this block is (n) HASH, (2n+ 2) PM and (3n+ 1)

BP operations.

6.1.4 Sub-protocol 3

To receive an email, a recipient needs to

1. verify the sender’s public key by using the Equation 4.3. This requires 1

HASH and 2 BP operations.

2. re-construct the group key using Equation 4.7. This requires 1 HASH, 2

PM and 1 BP operation (the ⊕ operation is again ignored).
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3. AES decrypt the message using the re-constructed group key K.

So the total cost is 2 HASH, 2 PM and 3 BP operations. We see that the

computational cost of sending an email is linearly proportional to the number

of recipients while the cost of receiving an email is constant.

6.2 Email size analysis

Our proposed CLOW-GKA for P2P email encryption is a n−party protocol and

so the size of an email will increase depending on the number of recipients. The

most important factor for the increase in the email size is due to the inclusion of

key agreement information (r, y1, y2, . . . , yn) with all emails. Each one of the key

agreement information will have the same size as the key of the selected curve, since

the bilinear pairing uses an elliptic curve to implement our scheme. An elliptic

curve with a key size of ≈ 2n bits is required for the security of a symmetric

encryption scheme with an n-bit key according to the National Institute of Standards

and Technology. So the increase in the size of an email to n recipients would be a

256× (n+1) bit increase when using an elliptic curve and a 128-bit security. Another

factor which leads to increase in size is due to use of AES. AES uses block ciphers

which if not full will fill the blocks with random bits. Since AES has a block size of

256 bits the added size is not that significant.

6.3 Efficiency comparison with different protocols

Table 1 provides a brief efficiency comparison between the proposed CLOW-GKA

protocol: P2P email encryption, PGP (Pretty Good Privacy) [1, 2] P2P email encryp-
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tion, Yeh, Zeng and Long’s [18] ID-PKC protocol for email encryption and Al-Riyami

et al. [10] CL-PKC (certificateless public key cryptosystem).

Table 6.1: Efficiency comparison between CLOW-GKA, PGP, Yeh, Zeng
and Long’s ID-PKC and Al-Riyami et al’s CL-PKC, assuming there are n
recipients in an email

CLOW-GKA Yeh, Zeng and Al-Riyami et al’s PGP
Long’s ID-PKC CL-PKC

System Setup • 1 PM; • None • 1 PM; • PGP application installation
Key distribution • 1 HASH; • 1 HASH; • 1 HASH; • Generate public/private key pair
and generation • 4 PM; • 1 PM; • 2 BP; using the PGP application

• 4 PM;
Encryption • (2n + 2) PM; • (n + 1) PM; • 1 HASH; • Encrypt message using IDEA

• (3n + 1) BP; • (n + 1) BP; • 1 HASH2; using one time session key
• (n) HASH; • (n + 1) HASH; • 3 BP; • Encrypt session key using RSA
• Email encryption. • Email encryption. • 1 PM; with recipients public key

and include with message
• Signature by creating a hash code

using SHA-1 and encrypting
the message digest using RSA
with sender’s private key

Decryption • 2 PM; • 1 PM; • 1 BP; • Decrypt session key using RSA
• 3 BP; • 1 BP; • 1 HASH2; • Decrypt message using session
• 2 HASH; • 1 HASH; key
• Email decryption. • Email decryption. • Verify signature

Message size • Encrypted message • Encrypted message • Encrypted • Encrypted message
along with all along with all ciphertext along with digital signature
yi’s (the key yi’s (the key and n encrypted session keys
agreement info). agreement info).

In Al-Riyami et al. [10] CL-PKC (certificateless public key cryptosystem) the

encryption cost is for just one recipient since it is not an n-party scheme.
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CHAPTER 7

IMPLEMENTATION

In our implementations we have used the Java Pairing-Based Cryptography (JPBC)

library for system parameter setup and pairing calculation. JPBC is a wrapper

for the PBC library. The PBC library is a free C library that performs all the

mathematical operations of pairing-based cryptosystems. BLS signatures [30], Joux

tripartite Diffie-Hellman [31], and Boneh-Lynn-Shacham short signature [22] are

some of the protocols demonstrated using the PBC library. We can implement our

CLOW-GKA protocol for email encryption in three different scenarios, out of which

we have implemented two. These two implementations will be discussed in detail in

the following sections.

7.1 Scenarios of CLOW-GKA implementation

1. Software Application: This is an application and can be downloaded and in-

stalled on one’s personal computer, through which the user can register with

the CLOW-GKA cryptosystem, login to the user’s registered email accounts,

view emails, encrypt and decrypt emails. There is an online server acting as

the KGC. Once the user has registered with the online KGC server all the user

parameters will be stored in the user’s local machine. The user now can use this

application to send and receive encrypted emails to other users who have also
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registered with the same KGC server. We used a simple java GUI to implement

this scenario and a local server simulation that acts as the KGC.

Pros:

• Personal keys are stored locally and thus more safer.

Cons:

• Since all the user parameters (including public/private keys) are stored

locally, the user can encrypt emails only on the devices with the application

installed.

• Application must be downloaded and installed to each personal device the

user usually uses (such as desktop, laptop, phone, etc).

• Due to having to connect to the email service provider’s server and pull

all of the information onto the local GUI, application might be slow.

• Needs a different version for each operating system which leads to more

work in updating application across all platforms.

2. Web Application: This type of web application is more suitable for organi-

zations with a central server. In this scenario, employees can just login into

their organization accounts online on a web browser and can register with the

system(KGC) which will also be present on the centralized organization server.

Since this type of application is specific to an organization, only the employees

of the organization will be able to register and use this cryptosystem. All the

user parameters (including public/private keys) are stored in a database on the

organization’s server. We have used servlets and jsp to implement this scenario
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and we used Tomcat for our server and HSQLDB as our database to store the

user parameters.

Pros:

• Is accessible anytime and anywhere.

• Good for an organization having its own servers.

• No need for any software installation on any personal devices.

Cons:

• Not entirely point to point email encryption because it is first sent to the

organization server.

• Not good for a public service as all the secret files are stored on the server

and if the server is compromised the whole system is compromised.

3. Web-browser Plugin: In this scenario, the CLOW-GKA would be implemented

as a plugin which can be installed on web-browsers and this would be an add

on to the existing interface of the email service providers. The user will be able

to use the plugin to register, send encrypted emails and decrypt received emails

directly from the existing email provider’s interface.

Pros:

• Is accessible anytime and anywhere.

• Versatile, fast, and easy to use.

• No need for special interface to send and receive emails.

Cons:
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• Updating the plugin is not easy.

• Due to needing a different version for each email service provider and web

browser, we are once again looking at a high number of versions of this

software.

• Would need to re-register one’s email account for each web browser on

each device one would be using this program on (desktop, laptop, phone,

tablet, etc).

7.2 Common steps in our implementation

• KGC parameters and system setup

• User registration

• Connecting with Gmail server

• Sending, receiving, encrypting and decrypting emails

7.2.1 KGC parameters and system setup

The algorithm defined in the protocol has a set of parameters 〈G1, G2, e, P, Ppub, q,H〉,

where parameters G1, G2, e, P and q were defined in Section 3.2. The KGC also

chooses a master secret s ∈ Z∗q and then computes Ppub = sP as the system’s public

key. Finally, the KGC chooses a hash function H : {0, 1}∗ → G1. The map-to-curve

and map-to-point algorithms from Weil pairings in [5, 8] are such functions that can

map users’ identities to points on an elliptic curve (the group G1).

Initially when the KGC is setup, our implementation will generate (1) an elliptic

curve for the pairing as the group G1; (2) A master key s which is chosen randomly



46

in Z∗q ; (3) A random generator P is chosen; (4) Hash function takes in a string which

is the email address and it first performs a standard hash function on it and then

the output array is mapped to an element in the cyclic group as H : {0, 1}∗ → G1

(5) The system’s public key Ppub is calculated. Finally all the system parameters are

made public except the master key s which should be known only to the KGC itself.

Implementation in Software Application

Here the KGC is an online server. At first when the KGC server is setup it

undergoes the same setup as defined above and then the KGC is made available for

user registration. The KGC server here will be used only for user registration and

none of the user’s private parameters are stored here.

Implementation in Web Application

In this implementation the KGC will be on the organization’s central server. The

same setup as defined above are done and KGC is made available for user registration.

Unlike the KGC in the software application the KGC server will store all of the user’s

parameters.

7.2.2 User registration

After the KGC parameters are setup, the KGC server is made available for user

registration. In the user registration part user IDj registers an email account and

generates his/her private and public keys through the KGC. IDj computes and sends

rjQj to KGC. KGC computes Dj = srjQj and sends it back to IDj through any

public channel. IDj chooses his/her private key sj then computes his/her public key

〈Pj, Rj〉 as shown in Section 4.3. The public keys generated are published to a public
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directory. In the two subsections below we will see how they are implemented for

each scenario.

Implementation in Software Application

In the software application the user registration process is described using a

flowchart in Figure 7.1. When the application is opened the user can login into their

email account. The user’s email account should have been registered with the KGC

in order to login. If not they should register their email account with the KGC server.

Once the user’s email account has been registered, all the user’s private parameters

are stored locally on the machine in which the software application has been installed.

Now the user publishes their public keys to a public directory. In this scenario the

KGC server is only used for user registration part and the server is never used again

for any other process.

Implementation in Web Application

After the KGC setup, the user can open any browser on any machine that is

connected to the internet and login to their employee account provided by the orga-

nization. Only users with valid employee accounts will be able to register with the

system to use CLOW-GKA cryptosystem. Once they have logged into their employee

profile, they can register with the system in the web browser. The organization server

will get the email address and will register with the system and generate/store the

user parameters in a database on the server. The user parameters are generated in

the same way as defined in the protocol.

Note that all the user’s parameters are stored on the organization’s server and not

on any local machine. Once registered the user can now login to their email account
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Figure 7.1: Flowchart of user registration steps in software application
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Figure 7.2: Flowchart of user registration steps in web application
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using the web browser. Since all the user’s private parameters are stored in the

organization’s server the user will be able to login to their email account from any

browser and on any device with an internet connection and use the CLOW-GKA

protocol via their employee account. The flow of steps in this implementation scenario

is shown in Figure 7.2.

7.2.3 Connecting with mail server

After user registration the user will be able to login to their email accounts. After

validating the credentials of the user’s email account, the messages can be retrieved

from the mail server. Figure 7.3 shows the process of retrieving emails and how

to use methods to retrieve specific parts of the email like subject. This process is

common for both implementations.

Implementation in Software Application

In this scenario the application directly connects to the mail server and retrieves

the messages and displays them in the inbox interface of the application. A simple

Figure 7.4 illustrating the flow of events in our software implementation.

Implementation in Web Application

In this scenario the credentials are first sent to the organization’s server for veri-

fication, then the server connects to the email provider’s server to retrieves messages

and sends them to the browser for display. Figure 7.5 shows the flow of events in

our web implementation.
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Figure 7.3: Javamail message parts

Figure 7.4: Logging into mail and retrieving emails for software application
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Figure 7.5: Logging into mail and retrieving emails for web application

7.2.4 Sending, receiving, encrypting and decrypting emails

After the user is logged into his email account and his emails have been retrieved,

the user now can view the emails in his inbox, send emails as either encrypted or in

plaintext, decrypt received emails that have been encrypted. Note that in order to

encrypt and send an email to another user, that user must have registered with the

same CLOW-GKA cryptosystem.

To send a P2P encrypted email to n email receivers IDi,∀ 1 ≤ i ≤ n, the

sender ID0 first obtains each email receiver IDi’s public key 〈Pi, Ri〉 from the public

directory. Then ID0 verifies each IDi’s public key by checking e(Pi, Ri)
?
= e(Ppub, Qi).

ID0 chooses a random number r ∈ Z∗q and computes xj ∀ 0 ≤ j ≤ n. Now ID0

computes n key derivation keys yi’s, one for each email receiver IDi and computes

the group key K as shown in Equations 4.5 and 4.6 respectively in Section 4.4. Finally,

ID0 uses the group key K to encrypt the email message and then sends the encrypted
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email along with the key derivation keys and the random number (y1, y2, . . . , yn, r) as

an attachment to all n email receivers IDi’s.

To decrypt a received encrypted email, each email receiver IDi,∀ 1 ≤ i ≤ n first

obtains the email sender ID0’s public key 〈P0, R0〉 from the public directory. IDi

checks the validity of ID0’s public key based on the Equation 4.3. IDi derives the

group key K using his/her own private key si, the corresponding key derivation key

yi, and the email sender ID0’s identity Q0 (= H(ID0)) and public key P0 as shown

in Equation 4.7 in Section 4.5. Finally, IDi can decrypt the email using the just

derived group key K.

Implementation in Software Application

Figure 7.6 flowchart shows the scenario of this implementation. When the user

wants to send an encrypted group email, the user composes a new email and fills in

email addresses of all the recipients the user wishes to send the email to. When the

user presses ”send encrypted email” button, the application will (1) retrieve the public

keys of the all the recipients from the public directory and verifies them; (2) derive

the group key with which it will encrypt the email; and then (3) send the encrypted

email with the key derivation keys (as attachment) to the mail service provider’s

server, which in turn will send the email to all the intended recipients using its

own service. The recipient now can decrypt the email using this application. When

the recipient wants to decrypt the email, the application will retrieve the required

parameters, including the private key of the recipient which is stored locally on the

device, and then derive the group key to decrypt the email.
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Figure 7.6: Flow of emails in software Application
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Implementation in Web Application

Figure 7.7 flowchart shows the scenario of this implementation. When the user

wants to send an encrypted group email, the user composes a new email on the

browser and fills in the email addresses of all the recipients the email is intended

to. When the user clicks ”send encrypted email” button, the browser sends all the

information to the organization’s server. The organization’s server will now derive

the group key because all the user parameters (including public and private keys) are

stored in a database on the same server. After the email has been encrypted using the

group key, the organization’s server sends the encrypted email to the email provider’s

server which will send the email to all the recipients using its own service. When the

recipient wants to decrypt the email, the encrypted email is sent to the organization’s

server where it will derive the group key to decrypt the email and then send it back

to the browser. The organization’s server is able to derive the group key because as

mentioned above all the user’s private parameters are stored in a database on the

organization’s server.

Screenshots of our implementation of software and web application’s interface can

be found on Appendix A and Appendix B respectively.

7.3 Future Implementations

In the future, the third implementation scenario for a web browser plugin can be

developed and implemented. The web browser plugin would be a good addition since

the user can just use his email service provider’s interface on the browser with the

added point-to-point email encryption feature. Moreover, different open source email

applications can be used to implement the protocol using the implemented software
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Figure 7.7: Flow of emails in web Application
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application as a model. These open source email applications will have more user

friendly features that our basic implementation does not have. The same can be said

for our web application where more features can be implemented to make the user

experience more satisfying and convenient. Our implementations can only connect

with gmail for now. In the future it can be extended to as many leading email service

providers as possible.
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CHAPTER 8

CONCLUSIONS

8.1 Thesis Conclusion

To protect email privacy, a point-to-point email encryption scheme is required,

where only the email sender and receivers can decrypt the emails. In this thesis, we

proposed a certificateless one-way group key agreement protocol with four features

which are either necessary or suitable to implement point-to-point email encryption

schemes. These four features are (1) certificateless, (2) one-way, (3) n-party and

(4) no secret channels. To the author’s best knowledge, no other existing group key

agreement protocol has these four features simultaneously. This thesis also gives a

security proof of the proposed protocol using a methodology ”proof by simulation”.

This methodology is relatively new and thus very few examples (or case studies) can

be found in literature. The proof presented in this thesis can serve as a good example

for future researchers who would like to use this methodology to prove other protocols’

security. In addition, the efficiency of the protocol is also analyzed. Finally, three

implementation scenarios for our CLOW-GKA protocol are discussed, in which two

scenarios have been implemented in this thesis.
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8.2 Future directions

In Chapter 4, Section 4.3 we know that each user IDj computes and sends rjQj

to KGC, where rj is a random secret for IDj and Qj = H(IDj). KGC computes

Dj = srjQj and sends it back to IDj through any public channel, in which a partial

private key sQj is embedded in Dj. Here, the KGC does not verify whether the rjQj

received is from the actual IDj. So if an attacker IDa impersonates IDj sends his

own raQj then the KGC will compute Da = sraQj for the attacker and send it back.

This illegal fabrication cannot be detected in our system. One of the future direction

would be to solve this problem. As explained in the future implementation section

of Chapter 7, further features can be added to make the implementations more user

friendly. The third scenario of using web-browser plugins will be the major task of

our future work.
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APPENDIX A

SOFTWARE APPLICATION INTERFACE

This Appendix contains the screenshots of our implemented graphical user inter-

face of our software application.

A.1 User Email Login and Register Interface

This is the first interface the user comes across when the application is opened. If

the user is new, they can register with the system by clicking on the new user button.

A.2 Inbox Interface

Once successfully logged in, the inbox interface would have all the emails pulled

up from the email provider’s server and displays it. The user can view each email by

clicking on it.
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A.3 Compose and Sending Interface

The user can compose a new email and attach files. The user will have an option

to either send the email encrypted or as plaintext.
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A.4 Decrypt Email Interface

When the user is viewing a decrypted email, they can decrypt it by clicking the

decrypt button which would decrypt the email and display it. The attachments are

also decrypted and downloaded. The path of the downloaded file is displayed after

downloading.
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APPENDIX B

WEB APPLICATION INTERFACE

This Appendix contains the screenshots of our implemented graphical user inter-

face of our web application.

B.1 Organisation Login Interface

The first page the user would encounter would be the login to their employee

account in an organisation. Only after logging into the user’s employee account will

he able to register with the CLOW-GKA system
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B.2 User Email Login and Register Interface

After logging into his employee account, the user can now register and login to

his email account.
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B.3 Inbox Interface

Once the user has successfully logged into his email account, the inbox interface

would have all the emails pulled up from the email provider’s server and displays it.

The user can view each email by clicking on it.
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B.4 Compose and Sending Email Interface

The user can compose and email and attach files from their device. The user will

have the option of choosing whether to send the email encrypted or not.
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B.5 Decrypt Email Interface

The following contains the screenshot when a user views an email and decrypts it.
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