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Ring signature is a kind of digital signature which can protect the identity of the signer. Certi	cateless public key cryptography not
only overcomes key escrow problem but also does not lose some advantages of identity-based cryptography. Certi	cateless ring
signature integrates ring signature with certi	cateless public key cryptography. In this paper, we propose an e
cient certi	cateless
ring signature; it has only three bilinear pairing operations in the verify algorithm. �e scheme is proved to be unforgeable in the
random oracle model.

1. Introduction

In the traditional cryptography, the communicating parties
distribute a private key by sending the key in advance over
some secure channels. But there is amajor barrier that the key
distributionwill cost and delay large teleprocessing networks.
In 1976, Di
e and Hellman [1] 	rst introduced the con-
cept of public key cryptography (PKC) and proposed some
techniques to solve this longstanding problem in traditional
cryptography. But the traditional public key infrastructure
confronted with the problem of certi	cate management.
In order to solve this problem, Shamir [2] proposed an
identity-based cryptography scheme based on public key
cryptography (ID-PKC) in 1995. In his scheme, every user
chooses his fundamental information as his public key and
the user’s private key is generated directly by a private key
generation (PKG) referred as master key. But there is a prob-
lem that the third party PKG has the private keys of all users
and must be fully trusted; we call it the key escrow problem.

In 2003, Al-Riyami and Paterson [3] introduced the
concept of certi	cateless public key cryptography (CL-PKC).
CL-PKC not only overcomes key escrow problem but also
does not lose some advantages of ID-PKC. Key generation
cryptography (KGC) in CL-PKC only issues the partial
private key to a user. �en, the user combines the private
key from KGC with a self-generated secret key to generate

his actual private key, so that the KGC does not access user’s
private key fully like in ID-PKC. Moreover, the public key of
a user is generated by user himself by computing the KGC’s
public parameters and the secret values of the user. Over last
years, the certi	cateless signature (CLS) has been investigated
successfully and attracted great attention [4–8].

In 2001, Rivest et al. [9] 	rst proposed the concept of ring
signature (RS). Ring signature is designed for the situation
that a member in a group wants to sign messages on behalf of
the group while keeping his identity anonymous. �erefore,
ring signature can protect the identity of the signer. In a ring
signature, the signer forms a group (called a ring) only by
collecting the public keys of all the groupmembers including
himself to keep the singer’s identity anonymous. In addition,
ring signature is characterizedwith spontaneity; it means that
the singer can generate a valid signature without help of any
other members of the ring. Due to above two characteristics
of ring signature, it is now widely used in electronic voting.

A ring signature should meet the following three proper-
ties:

(i) Veri�ability. �e veri	er can be convinced of the
signer’s agreement on the signed message.

(ii) Unforgeability. No one, even any member of the ring,
can forge other ring members to generate a valid ring
signature.
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(iii) Unconditional Anonymity. No one can determine the
identity of the signer through the 	nal ring signature.

A�er ring signature given by Rivest et al. [9], many
researchers have been proposing ring signature schemes and
their variants such as threshold ring signatures [10–12] and
constant-size ring signatures [13–16]. Ring signature schemes
based on standard assumptions without random oracles were
proposed in [17–20].

As we know ring signature has been studied greatly in
traditional PKC [18, 21, 22] and ID-PKC [17, 23–27]. But the
applications of ring signature in traditional PKC and ID-PKC
are restricted since there are some �aws in them. In fact, in
a ring signature based on PKC, the veri	er must check the
validity of certi	cates of some group members, which will
make the signature scheme ine
cient since the computa-
tional cost will increase with the group size. Moreover, the
ring signature based on ID-PKC has the key escrow problem.
As described before, certi	cateless cryptography canmake up
the drawbacks in traditional PKC and ID-PKC. �erefore,
several certi	cateless ring signatures (CLRS) integrating ring
signature with certi	cateless cryptography have been pro-
posed [28–30].

Over the last few decades, certi	cateless signature and
ring signature have been studied extensively; however there is
little work on certi	cateless ring signatures [28, 31–33]. Chow
and Yap [32] presented a CLRS scheme based on a security
model they proposed, but their scheme requires �+ 1 pairing
operations and 2 exponentiation operations. Later, a CLRS
scheme only requiring 5 pairing operations and 4� + 1 expo-
nentiation operations was proposed by Zhang et al. (see [33]).
Two years later Chang et al. [31] constructed a concrete CLRS
scheme, which reduces the pairing operations to 4 while it
needs 4� + 2 exponentiation operations.

We know that it is always interesting to design a crypto-
graphic scheme with less pairing operations to speed up the
computation of pairing function in recent years. To the best of
our knowledge, themost e
cient certi	cateless ring signature
scheme based on bilinear pairings requires at least four bilin-
ear maps. In this paper, we will propose a certi	cateless ring
signature. Our scheme only needs 3 bilinear maps in the
veri	cation phase. By the analysis in Section 6, we know
that our scheme is more e
cient compared with other
certi	cateless ring signature schemes [31–33].

�e rest of the paper is organized as follows. Section 2
presents the basic concepts of bilinear pairings and some
related mathematical problems. Section 3 presents a formal
de	nition and security model of a certi	cateless ring signa-
ture scheme. Section 4 presents our certi	cateless ring sig-
nature scheme. We prove its security in Section 5. Schemes
comparison will be given in Section 6. Finally, we give some
conclusions in Section 7.

2. Preliminaries

2.1. Bilinear Pairing. Let G1 be a cyclic additive group of
prime order and G2 be a cyclic multiplicative group of the
same order.

We call � a bilinear pairing if � : G1 × G1 → G2 is a map
with the following three properties:

(1) Bilinearity: �(��, ��) = �(�, �)��, and �,� ∈ G1.

(2) Nondegeneracy: there exist �,� ∈ G1 such that�(�, �) ̸= 1.
(3) Computability: there is an e
cient algorithm to

compute �(�, �) for any two random elements �,� ∈
G1.

Security of the proposed scheme relies on the following
questions and assumptions.

De�nition 1 (computationalDi
e-Hellman (CDH) problem).
Let G = (�, +), where � is an elliptic curve over a 	nite 	eld
F� and � ∈ � is a point having prime order � = |�|/2. Let
G1 = ⟨�⟩ ≤ G, the computational Di
e-Hellman (CDH)
Problem is that given two random elements ��, �� ∈ G1 for
unknown �, � ∈ Z

∗
� , to compute ���.

De�nition 2 (computational Di
e-Hellman (CDH) assump-
tion). Let G be a CDH parameter generator. We say that an
algorithmA has advantage �(�) in solving the CDH problem
forG if, for a su
ciently large �,

AdvG,A (�) = Pr [A (�,G1, ��, ��) = ��� | (�,G1)
←� G (1�) , � ←� G1, �, � ←� Z

∗
�] ≥ � (�) .

(1)

Given an upper limitation time �, we say that G satis	es
the CDH assumption if for any randomized polynomial-time
algorithmA, we have that AdvG,A(�) is a negligible function.
WhenG satis	es the CDH assumption, we say that the CDH
problem is hard in G1 generated byG.

De�nition 3 (computational co-Di
e-Hellman (co-CDH)
problem). Let G = (�, +), where � is an elliptic curve over
a 	nite 	eld F� and � ∈ � is a point having prime order� = |�|/2. Let G1 = ⟨�⟩ ≤ G; the Computational co-
Di
e-Hellman (co-CDH) Problem is that given two random
elements ��,� ∈ G1 for unknown � ∈ Z

∗
� , to compute ��.

De�nition 4 (computational co-Di
e-Hellman (co-CDH)
assumption). Let G be a co-CDH parameter generator. We
say that an algorithmA has advantage �(�) in solving the co-
CDH problem forG if, for a su
ciently large �,

AdvG,A (�) = Pr [A (�,G1, ��,�) = �� | (�,G1)
←� G (1�) , �,� ←� G1, � ←� Z

∗
�] ≥ � (�) .

(2)

Given an upper limitation time �, we say that G satis	es
the (co-CDH) assumption if for any randomized polynomial-
time algorithm A, we have that AdvG,A(�) is a negligible
function.WhenG satis	es the (co-CDH) assumption, we say
that the (co-CDH) problem is hard in G1 generated byG.

3. Formal Definition and Security Model

3.1. Formal De�nition of a Certi�cateless Ring Signature
Scheme. A certi	cateless ring signature scheme (CLRS) can
be speci	ed by seven algorithms: Setup, Partial Private Key
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Extract, Set Secret Value, Set Private Key, Set Public Key,
CLRS Generation, and CLRS Veri	cation. Every algorithm is
depicted as follows.

(i) Setup. Given a security parameter, it outputs a list of
system parameters.

(ii) Partial Private Key Extract. On input a master key, a
user’s identity ID�, and systemparameters, it generates
the user’s partial private key �ID� .

(iii) Set Secret Value. Given a user’s identity ID�, it outputs
the user’s secret value �� ∈ Z

∗
� and computes � = ���.

(iv) Set Private Key. �e user takes the pair (�ID� , ��) as its
private key.

(v) Set Public Key. �e user with identity ID� constructs
his public key pair ( �,�ID�

) responding to �� and �ID� ,
respectively.

(vi) CLRS Generation. Given a message!, signer chooses� − 1 other users to form a ring U; then it outputs a
ring signature " on behalf of the ringU.

(vii) CLRS Veri�cation. Given a message !, a ring signa-
ture ", and the public keys  1, . . . ,  	 of the � signers,
it outputs “accept” if " is a valid ring signature and
“reject” otherwise.

3.2. Security Model of Certi�cateless Ring Signature Scheme.
In our certi	cateless ring signature scheme, we consider the
following two attackers.

Type I Adversary. Adversary AI does not have access to the
master key, but AI can replace the public keys of any entity
with a value of his choice, because there is no certi	cate
involved in CLRS.

Type II Adversary. �is type of adversary AII is a malicious
KGC. Adversary AII is allowed to have access to the master
key but does not replace any user’s public key. A type II
adversary should also be allowed to change a user’s partial
private key.

Game 1 for Type I Adversary. Type I adversary advantage
AdvCLRS,AI

is de	ned as its probability of success in the
following game between a challengerC and a type I adversary
AI.

(i) Setup. Given a security parameter, challenger C runs
the setup algorithm to obtain a list of system param-
eters. And challenger C sends system parameters to
type I adversaryAI.

(ii) Hash Queries. AI submits any value he chooses, and
challengerC returns the corresponding hash value to
him.

(iii) User Public Key Queries.AI requests any public key of
a user ID� whomhe chooses, and challengerC returns
the corresponding public key  � to him.

(iv) Partial Private Key Queries. AI requests any partial
private key of a user ID� whom he chooses, and chal-
lengerC returns the corresponding partial private key�ID� to him.

(v) User Public Key Replacements. AI submits a new
public key value  
� with respect to a user ID�.
ChallengerC replaces the current public key with the
value  
� .

(vi) Secret Value Queries. AI requests any secret value of
a user ID� whose public key was not replaced, and
challenger C returns the corresponding secret value�� toAI. If a user’s public key was replaced,AI cannot
query the corresponding secret value.

(vii) Ring Signature Queries. AI submits any message he
chooses, and challenger C returns a ring signature "
to him.

(viii) Forge. Eventually, AI outputs a certi	cateless ring
signature "∗ on a message!∗ such that

(1) "∗ is a valid certi	cateless ring signature;

(2) AI can not query the partial private key of
anyone inU;

(3) !∗ has never been submitted to the ring signa-
ture queries.

De�nition 5. A forger AI(#, ��1 , ��2 , ��, �, �RS, �) breaks a
certi	cateless ring signature scheme (CLRS) meaning that if
AI runs in time at most #, AI makes at most ��1 $1 Hash
queries, at most ��2 $2 Hash queries, at most �� partial
private key queries, at most � user public key queries, and�RS ring signature queries; then AdvCLRS,AI

is at least �.
A certi	cateless ring signature scheme is (#, ��1 , ��2 , ��, �,�RS, �)-existentially unforgeable under an adaptively chosen-
message attack if no forger (#, ��1 , ��2 , ��, �, �RS, �) breaks
it.

Game 2 for Type II Adversary. Type II adversary advantage
AdvCLRS,AII

is de	ned as its probability of success in the
following game between a challenger C and a type II
adversaryAII.

(i) Setup. Given a security parameter, challenger C runs
the setup algorithm to obtain a list of system parame-
ters. And challenger C sends system parameters and
the master key % to type II adversaryAII.

(ii) Hash Queries.AII submits any value he chooses, and
challengerC returns the corresponding hash value to
him.

(iii) User Public KeyQueries.AII requests any public key of
a user ID� whomhe chooses, and challengerC returns
the corresponding public key  � to him.

(iv) Partial Private Key Queries. Because AII has the
system master key %, so AII can compute the partial
private key of any user by himself.

(v) User Public Key Replacements. AII submits a new
public key value  
� with respect to a user ID�.
ChallengerC replaces the current public key with the
value  
� .

(vi) Secret Value Queries. AII requests any secret value of
a user ID� whose public key was not replaced, and
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challenger C returns the corresponding secret value�� to AII. If a user’s public key was replaced, AII

cannot query the corresponding secret value.

(vii) Ring Signature Queries. AII submits any message he
chooses, and challenger C returns a ring signature "
toAII.

(viii) Forge. Eventually, AII outputs a certi	cateless ring
signature "∗ on a message!∗ such that

(1) "∗ is a valid certi	cateless ring signature;

(2) AII can not query the secret value of anyone in
U;

(3) AII can not replace the user public key of anyone
inU;

(4) !∗ has never been submitted to the ring signa-
ture queries.

De�nition 6. A forgerAII(#, ��1 , ��2 , ��, ��, �, �RS, �) breaks
a certi	cateless ring signature scheme (CLRS) means that
if AII runs in time at most #, AII makes at most ��1 $1
Hash queries, at most ��2 $2 Hash queries, at most �� secret
value queries, at most �� user public key replacement queries,
at most � user public key queries, and �RS ring signature
queries; thenAdvCLRS,AII

is at least �. A certi	cateless ring sig-

nature scheme is (#, ��1 , �H2 , ��, ��, �, �RS, �)-existentially
unforgeable under an adaptively chosen-message attack if no
forger (#, ��1 , ��2 , ��, ��, �, �RS, �) breaks it.
Game 3 Anonymity of a Certi�cateless Ring Signature Scheme.
LetU = (&1, &2, . . . , &	) be � signers and' be the � signers’
identities.A be an adversary andC be a challenger whom are
all involved in the game 3.

(i) �e challenger C runs the setup algorithm to obtain
a list of system parameters. And challenger C sends
system parameters to adversaryA.

(ii) �e adversary A adaptively make a polynomially
bounded number of queries.

(iii) In the challenge phase, the adversary outputs a mes-
sage !, a group of � users’ identities ', and two
di�erent members ID0, ID1 ∈ ' to the challengerC.
�e challenger C randomly chooses a bit * ∈ {0, 1}
and sendsA to a ring signature " = RS(!,', ��).

(iv) �e adversary A can make a polynomially bounded
number of queries.

(v) Finally, adversaryA outputs a bit *
 ∈ {0, 1}.
�e adversaryA wins the above game if and only if * = *
.
De�nition 7. De	ne the probability of success in the game 3
of adversaryA as succ(A) = Pr[* = *
] = 1/2 + �. A certi	-
cateless ring signature scheme is said to have unconditional
anonymity if no adversary has no nonnegligible advantage in
winning the above game. �at is to say, A certi	cateless ring
signature scheme is said to have unconditional anonymity if� = 0.

4. Our Scheme

In this section, we propose a certi	cateless ring signature
scheme. Participants in the program include � signers U =(&1, &2, . . . , &	) and a veri	er -. Our scheme is described as
follows:

(i) Setup. Given a security parameter 5, KGC outputs a
large prime �. Let G1 be a cyclic additive group of
prime order �. LetG2 be a cyclic multiplicative group
of the same order. Let �,� be two generators of G1.
KGC chooses themaster private key % ∈ Z

∗
� randomly

and computes the master public key �Pub = %�. Let� : G1 × G1 → G2 be a bilinear map. Let $1 :{0, 1}∗ → G1,$2 : {0, 1}∗ × G1 × G1 → Z
∗
� , and$3 :{0, 1}∗ ×G1 ×G1 → Z

∗
� be three secure cryptographic

hash functions. KGC publishes system parameters(G1,G2, �, �, �, �Pub, �, $1, $2, $3) and secretly keeps
the master key %.

(ii) Partial Private Key Extract. Given a user’s identity ID�,
KGC computes �ID�

= $1(ID�) and �ID� = %�ID�
.

�en KGC sends the user’s partial private key �ID� to
him. �e user can check its correctness by checking
whether �(�ID� , �) = �(�ID�

, �Pub).
(iii) Set Secret Value. User ID� selects �� ∈ Z

∗
� randomly as

her secret value.�enUser computes the correspond-
ing value Y� = ���.

(iv) Set Private Key. User ID� takes the pair PRK = (��,�ID�) as its private key.
(v) Set Public Key. User ID� takes the pair PUK = ( �,�ID�

) as its public key.
(vi) CLRS Generation. Given amessage!,' = {ID1, ID2,. . . , ID	} is a set of � users’ identities. An actual signer&� ∈ U can propose a certi	cateless ring signature ".

�e signer &� operates as follows:
(1) Choose6�, 7� ∈ G1 (8 = 1, 2, . . . , �\9) randomly

and compute

;� = $2 (! ‖ ', 6�,  �) ,
8 = 1, 2, . . . , 9 − 1, 9 + 1, . . . , �,

�� = $3 (! ‖ ;� ‖ ',7�,  �) ,
8 = 1, 2, . . . , 9 − 1, 9 + 1, . . . , �.

(3)

(2) Select ;, � ∈ Z
∗
� and compute

6� = ;� −∑
� ̸=�
(;��ID�

+ 6�) ,
7� = �� −∑

� ̸=�
(�� � + 7�) ; (4)

then compute:

;� = $2 (! ‖ ', 6�,  �) ,
�� = $3 (! ‖ ;� ‖ ',7�,  �) . (5)
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(3) Compute - = ;�Pub + ;��ID� + ����� + ��.
(4) Output " = (61, 62, . . . , 6	, 71, 72, . . . , 7	, !,-).

(vii) CLRS Veri�cation. Given public keys of the � signer, a
veri	er - can verify a certi	cateless ring signature "
by checking if the following equation holds:

� (�, -)
= �( 	∑
�=1
;��ID�

+ 6�, �Pub)�( 	∑
�=1
�� � + 7�, �) . (6)

If it holds, the veri	er “accepts” the signature and
“rejects” otherwise.

5. Security Analysis

In this section, we mainly focus on the unforgeability of the
proposed certi	cateless ring signature scheme. Now, we give
the following three theorems.

5.1. Unforgeability against Type I Adversary

�eorem 8. �e scheme is unforgeable against a type I
adversaryA� in the random oracle model if the CDH problem
is hard.

Proof. Suppose challenger C receives a random instance(�, ��, ��) of the CDHproblem and has to compute the value
of ���. ChallengerC sets the system public key �Pub = ��.C
will runAI as a subroutine and act asAI’s challenger in game
1. Without loss of generality, we assume that all the queries
are distinct. Now, we will show how challenger C answers a
type I adversaryAI’s queries in the following.

Initialization. At the beginning of the game, challenger C

runs the setup algorithmwith the parameter 5 and then gives
adversary AI the system parameters: (G1,G2, �, �, �, �Pub, �,$1, $2, $3).

(i) $1 Queries. Challenger C maintains the list B1 of
tuple (ID�, V��). �e list is initially empty. When
adversary AI makes a query $1(ID�), challenger C
responds as follows. ChallengerC chooses a random
integer C in [1, ��1] 	rstly. At the 8th $1 query, if8 ̸= C, challengerC randomly selects a value V� ∈ Z

∗
� ,

and sets $1(ID�) = V��; otherwise, challenger C sets$1(ID∗) = ��.
(ii) $2 Queries. Challenger C maintains the list B2 of

tuple (D�, ℎ2). �e list is initially empty. When AI

makes a query$2(D�), challengerC selects a value ℎ2
randomly, and sets $2(D�) = ℎ2. �en challenger C
adds (D�, ℎ2) to the$2 list and returns ℎ2 toAI.

(iii) $3 Queries. Challenger C maintains the list B3 of
tuple (F�, ℎ3). �e list is initially empty. When AI

makes a query$3(F�), challengerC selects a value ℎ3
randomly and sets $3(F�) = ℎ3. �en challenger C
adds (F�, ℎ3) to the$3 list and returns ℎ3 toAI.

(iv) User Public Key Queries. Challenger C maintains the
list B of tuple (ID�,  �, ��). �e list is initially empty.
When adversaryAI makes a user public key query for
ID�, challenger C selects a value �� ∈ G∗� , and sets � = ���. �en challenger C adds (ID�,  �, ��) to theB list and returns  � toAI.

(v) Partial Private Key Queries. Challenger C maintains
the list B� of tuple (ID�, �ID�).�e list is initially empty.
When adversary AI makes a user partial private key
query for ID�, if ID� = ID∗, C fails and stops.
Otherwise challengerC computes �ID� = V��Pub.�en
challengerC adds (ID�, �ID�) to the B� list and returns�ID� toAI.

(vi) User Public Key Replacements. Challenger C main-
tains the listB� of tuple (ID�,  �,  
� ).�e list is initially
empty.WhenAI makes a user public key replacement
request for &� with other public value  
� , C replaces � with  
� and adds (ID�,  �,  
� ) to the B� list.

(vii) Secret Value Queries. Challenger C maintains the listB� of tuple (ID�, ��). �e list is initially empty. When
adversaryAI makes a user secret value query for ID�,
C checks the lists B 	rstly. If the tuple (ID�, ��) is
found in the list B, C returns �� to AI. Otherwise
challengerC randomly chooses �� ∈ G∗� , returns �� to
AI, and adds (ID�, ��) to the B� list.

(viii) Ring Signature Queries. AI submits a message ! and
a set of � users’ identities ' = {ID1, ID2, . . . , ID	}.
C outputs a ring signature as follows. If there exists a
user ID� ∈ ' such that ID� ̸= ID∗ and ID� ∉ B�, then
challenger C returns the ring signature " by calling
the signing algorithm, where ID� is the actual signer.
Otherwise, challengerC does as follows:

(1) Selects 6�, 7� ∈ I1 randomly for all 8 ∈ (1, 2,. . . , �) and 8 ̸= 9.
(2) For all 8 ∈ (1, 2, . . . , �), selects ;�, �� ∈ Z

∗
� ran-

domly.

(3) Chooses two values ;, � ∈ Z
∗
� randomly and

computes

6� = ;� − 	∑
�=1
;��ID�

−∑
� ̸=�
6�,

7� = �� − 	∑
�=1
�� � −∑

� ̸=�
7�.

(7)

(4) Computes - = ;�Pub + ��.
(5) Outputs " = (61, 62, . . . , 6	, 71, 72, . . . , 7	, !,-).

Forge. AdversaryAI outputs a ring signature "∗ on amessage!∗ that ful	lls the following conditions:
(1) "∗ is a valid ring signature.

(2) AI cannot query the partial private key of anyone in
U.

(3) �e forged signature "∗ is not from signature query.
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Output. It follows from the forking lemma that if � ≥7K	��2 /2�, adversary AI can give a valid forged signature

within time �� in the above interaction; then we can con-
struct another algorithmA



I
that outputs two signedmessages

within time 2�� with probability at least �2/66K	��2 . For the
resemble construction, C can get two valid ring signature "
and "
 satisfying
" = (61, 62, . . . , 6�−1, 6�, 6�+1, . . . , 6	, 71, . . . , 7	, !, -) ,
"
 = (61, 62, . . . , 6�−1, 6
�, 6�+1, . . . , 6	, 71, . . . , 7	, !, -
) . (8)

So we have

- = ;�Pub + ;��ID� + ����� + ��,
-
 = ;�Pub + ;
��ID� + ����� + ��.

(9)

ChallengerC outputs

��� = �ID� = (;� − ;
�)−1 (- − -
) . (10)

Probability. Let ��1 , ��2 , ��3 , ��, �, and �RS be times
of $1 queries, $2 queries, $3 queries, partial private key
queries, user public key queries, and ring signature queries,
respectively.�e probability that ID∗’s partial private key was
not queried by AI during the queries is (��1 − ��)/��1 . �e
probability that ID∗ belongs to the groups' is �/(��1 − ��).
�e probability that ID∗ is the actual signer is 1/�. So the
combined probability is (��1 − ��)/��1 ⋅ �/(��1 − ��) ⋅ 1/� =1/��1 .

�erefore, according to the forking lemma, if the attacker
AI can succeed in making a valid ring signature with a
probability �, the advantage of challenger C solving an

instance of CDH problem in game 1 is at least �2/66K	��2 ⋅1/��1 .
5.2. Unforgeability against Type II Adversary

�eorem 9. �e scheme is unforgeable against a type II
adversary A�� in the random oracle model if the co-CDH
problem is hard.

Proof. Suppose challenger C receives a random instance(��,�) of the co-CDH and has to compute the value of ��.
Challenger C sets � = �. Challenger C will run adversary
AII as a subroutine and act asAII’s challenger in the game 2.
Without loss of generality, we assume that all the queries are
distinct. Now, we will show how challengerC answers type II
adversaryAII’s queries in the following.

Initialization. At the beginning of the game, challenger C

runs the setup algorithm with the parameter 5 and gives
adversaryAII the system parameters: (G1,G2, �, �, �, �Pub, �,$1, $2, $3) and the system master secret key %.

(i) $1 Queries. Challenger C maintains the list B1 of
tuple (ID�, V��). �e list is initially empty. When
adversary AII makes a query $1(ID�), challenger C

selects a value V� ∈ Z
∗
� randomly and computes$1(ID�) = V��. �en challenger C adds (ID�, V��) to

the$1 list and returns V�� toAII.

(ii) $2 Queries. Same as that in the proof of �eorem 8.

(iii) $3 Queries. Same as that in the proof of �eorem 8.

(iv) User Public Key Queries. Challenger C maintains the
list B of tuple (ID�,  �, ��). �e list is initially empty.
When adversaryAIImakes a user public key query for
ID�, challenger C responds as follows. Challenger C
chooses a random integer N in [1, �] 	rstly. At the 8th� query, if 8 ̸= N, challengerC selects a value �� ∈ Z

∗
�

randomly and sets  � = ���. Otherwise, challengerC
sets ID� = ID∗ and  ∗ = ��.

(v) Partial Private Key Queries. Adversary AII can com-
pute the partial private keys of any identities by
himself with the master secret key.

(vi) User Public Key Replacements. Same as that in the
proof of �eorem 8.

(vii) Secret Value Queries. Challenger C maintains the listB� of tuple (ID�, ��). �e list is initially empty. When
adversary AII makes a user partial private key query
for ID�, if ID� = ID∗, C fails and stops. Otherwise
challenger C 	nds the tuple (ID�, ��) in the list B.
�en challenger C adds (ID�, ��) to the B� list and
returns �� toAII.

(viii) Ring Signature Queries. Same as that in the proof of
�eorem 8.

Forge. Eventually,AII outputs a ring signature"∗ ful	lling the
following conditions:

(1) "∗ is a valid ring signature.

(2) AII cannot query the secret value of anyone inU.

(3) AII cannot replace any users’ public key inU.

(4) �e forged signature "∗ is not from signature query.

Output. It follows from the forking lemma that if � ≥7K	��3 /2�, adversary AII can give a valid forged signature

within time �� in the above interaction; then we can
construct another algorithm A



II
that outputs two signed

messages within time 2�� with probability at least �2/66K	��3 .
For the resemble construction, C can get two valid ring
signature " and "
 satisfying
" = (61, . . . , 6	, 71, 72, . . . , 7�−1, 7�, 7�+1, . . . , 7	, !, -) ,
"
 = (61, . . . , 6	, 71, 72, . . . , 7�−1, 7
� , 7�+1, . . . , 7	, !, -
) . (11)

So we have

- = ;�Pub + ;��ID� + ����� + ��,
-
 = ;�Pub + ;��ID� + �
���� + ��.

(12)

Challenger K outputs

�� = ��� = (�� − �
�)−1 (- − -
) . (13)
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Table 1: Cryptographic operation time (in milliseconds).

PO �PO �� ��
20.01 6.38 0.83 5.31

Table 2: Comparison of the e
ciency of several certi	cateless ring signature schemes.

Schemes Sign phase Verify phase Time (� = 10)
Scheme [32] PO + (3� − 2)�� + �� �PO + ��� + �� 256.96

Scheme [33] 2PO + 3��� + (2� + 1)�� 3PO + 2��� 253.06

Scheme [31] 2PO + �PO + (2� + 1)�� 2PO + �PO + (2� + 1)�� 315.82

Our scheme (2� + 4)�� 3PO + �PO + 2��� 102.93

Table 3: Comparison of the security of several certi	cateless ring signature schemes.

Schemes Hard problems Models

Scheme [32] �-CAA problem and mICDH problem Random oracle model (ROM)

Scheme [33] DL problem and CDH problem ROM

Scheme [31] DL problem and CDH problem ROM

Our scheme CDH problem and co-CDH problem ROM

Probability. Let ��1 , ��2 , ��3 , ��, ��, �, and �RS be the times
of $1 queries, $2 queries, $3 queries, secret value queries,
user public key replacement requests, user public key queries,
and ring signature queries, respectively.

For simpli	cation, we may assume that B� ∩ B� = P. �e
probability that ID∗’s secret value was not queried and ID∗’s
public key was not replaced byAII during the queries is (�−�� − ��)/�. �e probability that ID∗ belongs to the groups' is �/(� − �� − ��). �e probability that ID∗ is the actual
signer is 1/�. So the combined probability is: (�−��−��)/�⋅�/(� − �� − �R) ⋅ 1/� = 1/�.

�erefore, according to the forking lemma, if the attacker
AII can succeed in making a valid ring signature with
a probability �, the advantage of challenger C solving an
instance of co-CDH problem in the game 2 is at least�2/66K	��3 ⋅ 1/�.
5.3. Unconditional Anonymity

�eorem 10. Our certi�cateless ring signature scheme has
the property of unconditional anonymity. For any algorithm
A, any set of signers U = (&1, &2, . . . , &	) and a random&� ∈ U, the probability �;[* = *
] = 1/2, where " =(61, 62, . . . , 6	, 71, 72, . . . , 7	, !, -) is a ring signature on U

generated by &�.
Proof. (i)�e challengerC runs the setup algorithm to obtain
a list of system parameters. And challenger C sends system
parameters to adversaryA.

(ii) �e adversary A adaptively makes a polynomially
bounded number of queries.

(iii) �e adversary A outputs a message !, two di�erent
members ID1, ID2 ∈ ' to the challenger C. �e challenger
C randomly chooses a bit * ∈ {0, 1} and sends A to a ring
signature " = RS(!,', ��).

(iv) �e adversary A can make a polynomially bounded
number of queries.

(v) Finally, adversaryA outputs a bit *
 ∈ {0, 1}.
In our scheme, since 6�, 7� are chosen randomly from

G1, ;�, �� are also random elements from Z
∗
� . Moreover, ;�, ��

are chosen randomly fromZ
∗
� , so- is also a random element

from G1. For anyone of a set of signers U, message !,
the distribution of " = (61, 62, . . . , 6	, 71, 72, . . . , 7	, !, -)
is independently and uniformly distributed no matter who
the actual signer is. �e fact illustrates that anyone has
no advantage to know who signs the certi	cateless ring
signature. Hence, Pr[* = *
] = 1/2; the anonymity holds.

6. Comparison

6.1. Comparison of the E�ciency. We will compare the
performance of our scheme with several certi	cateless ring
signature schemes; see Table 2. �e running times are listed
in Table 1. We de	ne some notations as follows:

(i) PO: a pairing operation.

(ii) �PO: a pairing-based scalar multiplication operation.

(iii) ��: an ECC-based scalar multiplication operation.

(iv) ��: a modular exponent operation in G2.

6.2. Comparison of the Security. We will give the comparison
of the security of our scheme and several previous certi	cate-
less ring signature schemes [31–33] from the hard problems
that these schemes rely on and the models these schemes
depend on; see Table 3.

7. Conclusion

�ere are some certi	cateless ring signature schemes based
on bilinear pairings, which have been proposed over last
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years. But the computation cost of the pairings is very
high. �erefore it is always interesting to design a crypto-
graphic scheme with less pairing operations to speed up the
computation of pairing function. In this paper, we propose
an e
cient certi	cateless ring signature scheme with only
three bilinear parings. We also prove the unforgeability of
our signature scheme against type I and type II adversaries
in the random oracle based on the hardness of Computa-
tional Di�e-Hellman problem and co-Computational Di�e-
Hellman problem. From Table 2, we can see that our scheme
ismore e
cient than the previous related schemes. Due to the
good properties of our scheme, it is very useful for practical
applications.
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