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Abstract. Parameter optimization problems constrained by partial differential equations (PDEs)
appear in many science and engineering applications. Solving these optimization problems may re-
quire a prohibitively large number of computationally expensive PDE solves, especially if the dimen-
sion of the design space is large. It is therefore advantageous to replace expensive high-dimensional
PDE solvers (e.g., finite element) with lower-dimensional surrogate models. In this paper, the re-
duced basis (RB) model reduction method is used in conjunction with a trust region optimization
framework to accelerate PDE-constrained parameter optimization. Novel a posteriori error bounds
on the RB cost and cost gradient for quadratic cost functionals (e.g., least squares) are presented
and used to guarantee convergence to the optimum of the high-fidelity model. The proposed certified
RB trust region approach uses high-fidelity solves to update the RB model only if the approximation
is no longer sufficiently accurate, reducing the number of full-fidelity solves required. We consider
problems governed by elliptic and parabolic PDEs and present numerical results for a thermal fin
model problem in which we are able to reduce the number of full solves necessary for the optimization
by up to 86%.
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1. Introduction. Optimization problems governed by partial differential equa-
tions (PDEs) appear in many settings across engineering and science disciplines, in-
cluding engineering design optimization, optimal control problems, and inverse prob-
lems. Because typical optimization algorithms require numerous PDE evaluations,
using classical discretization techniques (e.g., finite element) to solve these problems
may be time-consuming and, in some cases, prohibitively expensive. One way to
accelerate the solution of these problems is to replace expensive PDE evaluations
with cheaper surrogate models. In this paper, we consider surrogate models based on
projection-based reduced models.

The use of surrogate models in optimization has an extensive literature (see, e.g.,
the review in [12]). Our interest is in formulations that retain convergence guaran-
tees even when approximate information is employed throughout the optimization
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S435

solution process. Trust region methods are one class of approaches that have a rich
history of convergence results; see, for example, [9], for a detailed discussion of trust
region methods. Traditionally, trust region methods replaced high-fidelity objective
function evaluations with local linear or quadratic Taylor expansions. These local
approximations automatically satisfy first-order consistency conditions (i.e., the ap-
proximate model’s objective and gradient evaluations are locally exact), which in turn
provide guarantees that the resulting optimization solution will satisfy the optimal-
ity conditions of the original high-fidelity system. The influence of inexact gradient
information is considered in [7, 28], and of inexact gradient and function information
in [6, 8, 9]. In [1], the authors consider a trust region framework with more general
approximation models of varying fidelity and show how adaptive corrections may be
used to achieve the first-order consistency conditions required to achieve a provably
convergent formulation for general approximation models.

In addition to providing a theoretical framework that yields a convergent sur-
rogate-based optimization formulation, trust region methods also provide an iterative
framework for adaptation of the surrogate to the optimization problem of interest.
Generating globally accurate surrogate models is typically prohibitively expensive,
particularly when the underlying system is governed by PDEs. Thus, approaches
that tailor the surrogate model—in our case a projection-based reduced model—to
the optimization problem are of particular interest. While a number of adaptation
approaches have been proposed for projection-based reduced models (see, e.g., [10,
20, 23, 25]), the challenge in the optimization setting is that regions of interest are not
known a priori. Iterative approaches that adapt the reduced model as the optimization
progresses have been considered in [5, 24]. In this paper we similarly adapt the reduced
model as the optimization progresses, while also constructing our adaptation so as to
rigorously address the convergence of the resulting optimization formulation.

We use the reduced basis (RB) method, a projection-based reduced-order mod-
eling method, together with a trust region approach. The use of projection-based
reduced models as surrogates in trust region optimization was first explored using
proper orthogonal decomposition (POD) in [2]. In [2], the authors assume an upper
bound on the inexactness of the function and gradient information resulting from the
POD model and prove convergence of their algorithm using the results from [6, 28].
Unfortunately, verification of this upper bound in practice requires evaluation of the
high-fidelity model. The work [33] further extends the results of [6, 28] to prove con-
vergence (to a high-fidelity optimum) of a modified trust region algorithm that relies
only on surrogate reduced-order model evaluations. In particular, [33] shows that by
using upper bounds to the error in the cost functional and the gradient approxima-
tions, one can prove that the trust region solution converges to the exact solution.
The work [33] further introduces heuristic error estimators for Krylov–Padé interpola-
tory reduced models and uses these estimators in the modified trust region algorithm.
However, its reliance on heuristic estimators means that only heuristic convergence
could be demonstrated and realized in practice. Heuristic error indicators have also
been applied to trust region optimization for POD models [34], and in a stochastic
context, an approximation based on sparse grids [19].

The RB method is a reduced-order modeling technique for parametrized PDEs
which supports rigorous a posteriori error estimation (see [27] for a review). We
propose an RB trust region method for solving optimization problems constrained by
elliptic and parabolic PDEs which avoids the costly offline phase of the traditional RB
method and iteratively builds the reduced model along the optimization trajectory as
the algorithm progresses. After introducing the problem statement in section 2, we
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S436 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

present the following contributions:
1. In section 3, we present rigorous a posteriori error bounds for the optimiza-

tion cost functional and its gradient. Our bounds are based on a primal-dual
formulation and are rigorous and efficiently computable. The dual formu-
lation permits us to efficiently evaluate the gradient of the cost functional
and at the same time derive error bounds for the cost functional which are
superlinearly convergent with respect to the primal and dual error bound.

2. The error bounds play a crucial role in the RB trust region method introduced
in section 4—unlike heuristic error indicators, they allow us to rigorously
show convergence of the proposed approach to the (unknown) high-fidelity
optimum. Furthermore, they allow us to efficiently control the accuracy of the
RB surrogate model during the optimization. We avoid the computationally
expensive offline phase and build the reduced model adaptively along the
optimization trajectory, thus keeping the number of high-fidelity solves to a
minimum.

In section 5, we present numerical results for parameter optimization problems
constrained by elliptic and parabolic PDEs. We consider a thermal fin model problem
with up to six variable parameters and compare the performance of our proposed RB
trust region approach to that of a traditional optimization using high-fidelity PDE
evaluations. We also compare it to a “classical” RB approach, where the reduced
model is first generated during an offline stage and then used for the optimization in
the online stage.

2. Problem formulation. In this section we introduce the PDE-constrained
parameter optimization problem for both the elliptic and parabolic settings.

2.1. Preliminaries. Let Ω be a physical domain in Rd with Lipschitz continuous
boundary ∂Ω. We define the Hilbert space Xe such that H1(Ω) ⊃ Xe ⊃ H1

0 (Ω)
and Y e := L2(Ω), where H1(Ω) =

{
v | v ∈ L2(Ω),∇v ∈

(
L2(Ω)

)d}, H1
0 (Ω) ={

v | v ∈ H1(Ω), v|∂Ω = 0
}

, and L2(Ω) is the space of square-integrable functions over
Ω. We associate with Xe and Y e the inner products (w, v)Xe and (w, v)Y e as well as
the induced norms ‖·‖Xe =

√
(·, ·)Xe and ‖·‖Y e =

√
(·, ·)Y e , respectively; for example,

(w, v)Xe :=
∫

Ω∇w · ∇v +
∫

Ω wv ∀w, v ∈ X
e, and (w, v)Y e :=

∫
Ω wv ∀w, v ∈ Y

e. We
denote the corresponding dual spaces by Xe′ and Y e′. The superscript · e indicates
that we are dealing with the “exact” continuous domain. Finally, let D ⊂ RP be a
P -dimensional set in which our P -tuple parameter µ := (µ1, . . . , µP ) resides.

We now define the conforming N -dimensional finite element (FE) approximation
space X ⊂ Xe and define Y := Y e, inheriting inner product and norm definitions from
Xe and Y e, respectively. For the parabolic case, we directly consider a time-discrete
framework associated to the time interval I := ]0, tf ], where Ī := [0, tf ] is divided
into K uniform subintervals of length ∆t = tf

K . We introduce K := {1, . . . ,K} for
notational convenience and define tk := k∆t ∀k ∈ K, and finally I := {t0, . . . , tk}. We
shall assume that N and K are large enough—i.e., X is sufficiently rich and the time-
discretization sufficiently fine—such that the FE approximation guarantees a desired
accuracy over the whole parameter domain D.

We introduce the parameter-dependent bilinear form a(·, ·;µ) : X ×X → R and
its derivative in the ith component of µ, aµi(·, ·;µ) : X × X → R ∀i ∈ {1, . . . , P}.
We also introduce the parameter-independent bilinear forms m(·, ·) : X×X → R and
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S437

d(·, ·) : X ×X → R. We assume that all bilinear forms are continuous: ∀µ ∈ D,

0 < γa(µ) := sup
w∈X\{0}

sup
v∈X\{0}

a(w, v;µ)
‖w‖X‖v‖X

≤ γa0 <∞,(1)

0 < γaµi (µ) := sup
w∈X\{0}

sup
v∈X\{0}

aµi(w, v;µ)
‖w‖X‖v‖X

≤ γaµi0 <∞, i = 1, . . . , P,(2)

0 < γm := sup
w∈X\{0}

sup
v∈X\{0}

m(w, v)
‖w‖Y ‖v‖Y

<∞,(3)

0 < γd := sup
w∈X\{0}

sup
v∈X\{0}

d(w, v)
‖w‖X‖v‖X

<∞.(4)

We also assume they are symmetric, i.e., ∀w, v ∈ X, ∀µ ∈ D, a(v, w;µ) = a(w, v;µ),
aµi(v, w;µ) = aµi(w, v;µ), m(v, w) = m(w, v), and d(v, w) = d(w, v). Additionally,
we assume that a(·, ·;µ) and m(·, ·) are coercive:

(5) 0 < αa0 ≤ α(µ) := inf
v∈X

a(v, v;µ)
‖v‖2X

∀µ ∈ D, 0 < αm0 := inf
v∈X

m(v, v)
‖v‖2Y

.

We next introduce two X-continuous linear functionals, the parameter-dependent
f(·;µ) : X → R and the parameter-independent `(·) : X → R. Finally, we assume
that all parameter-dependent linear and bilinear forms depend affinely on functions
of the parameter µ; i.e., we require that a(w, v;µ) and f(v;µ) can be expressed as

(6) a(w, v;µ) =
Qa∑
q=1

Θq
a(µ)aq(w, v), f(v;µ) =

Qf∑
q=1

Θq
f (µ)fq(v)

∀w, v ∈ X and µ ∈ D, where Qa and Qf are some (preferably) small integers, the
functions Θq

a(µ),Θq
f (µ) : D → R are twice continuously differentiable and depend on

µ, but the continuous bilinear and linear forms aq(·, ·) : X ×X → R and fq : X → R
do not depend on µ. We note that the functions Θq

a(µ) and Θq
f (µ) may depend

nonlinearly on the parameter µ, and thus the forms a(w, v;µ) and f(v;µ) may also
depend nonlinearly on µ. For simplicity, we assume that m(·, ·), d(·, ·), and `(·)
are parameter-independent, although extensions to affine parameter dependence are
readily admitted [27]. We note that the bilinear and linear forms d and ` will appear
as the quadratic and linear cost terms in the next section, and that the bilinear form
m represents the mass term in the parabolic problem statement.

For the development of the a posteriori error bounds we also require the following
ingredients. We assume that we have access to a positive lower bound αLB(µ) : D →
R+ for the coercivity constant α(µ) defined in (5) such that

(7) 0 < αa0 ≤ αLB(µ) ≤ α(µ) ∀µ ∈ D

and an upper bound for the continuity constants γaµi (µ) defined in (2) such that

(8) γUBaµi
(µ) ≥ γaµi (µ) ∀µ ∈ D.

We note that these lower and upper bounds are used in the a posteriori error bound
formulation to replace the actual coercivity and continuity constants, respectively. We
thus require that these lower and upper bounds can be efficiently evaluated online,
i.e., the computational cost is independent of the FE dimension N . Various recipes
exist to obtain such bounds [18, 27]; see subsection 3.3 for more details.
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S438 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

2.2. Elliptic PDE-constrained optimization. We consider the constrained
minimization of the output least-squares cost functional

min
µ∈D

‖L(u(µ))− gref‖2D + λR(µ)(9a)

s.t. u(µ) ∈ X satisfies a(u(µ), v;µ) = f(v;µ) ∀v ∈ X,(9b)

where L : X → D is a linear (output) functional and gref ∈ D is a reference output,
e.g., obtained from experimental measurements. Furthermore, D is a suitable Hilbert
space of observations with inner product (·, ·)D and induced norm ‖ · ‖D =

√
(·, ·)D,

and λ ∈ R+ and with the twice continuously differentiable function R : D → R form a
scaled regularization term. Given our assumptions, it follows that the cost functional
is continuous, and thus at least one solution to (9) exists [16]. Note that we do not
consider the parameter constraint setting in this paper.

We next expand (9a) to get

(L(u)− gref ,L(u)− gref)D = (L(u),L(u))D − 2(L(u), gref)D + (gref , gref)D.

Thus, defining d(w, v) := (L(w),L(v))D ∀w, v ∈ X and `(v) := −2(L(v), gref)D ∀v ∈
X and dropping the constant term (gref , gref)D, we obtain the following equivalent
formulation for the optimization problem:

min
µ∈D

J(µ) where J(µ) := d(u(µ), u(µ)) + `(u(µ)) + λR(µ)(10a)

s.t. u(µ) ∈ X satisfies a(u(µ), v;µ) = f(v;µ) ∀v ∈ X.(10b)

In what follows, we will use this more general quadratic cost formulation in developing
the theory of the method.

Gradient-based optimization methods require access to the cost derivatives, which
may be efficiently calculated using adjoint methods. We thus introduce the FE adjoint
(dual) problem associated with our primal problem and cost in (10) [29, 16] as follows:
Given µ ∈ D and the associated solution u(µ) to (10b), find p(µ) ∈ X satisfying

(11) a(v, p(µ);µ) = 2d(u(µ), v) + `(v) ∀v ∈ X.

We also introduce the gradient of the cost function, ∇µJ(µ) ∈ RP , with respect to
the parameter µ given by

(12) ∇µJ(µ) =
(
∂J(µ)
∂µ1

∂J(µ)
∂µ2

. . .
∂J(µ)
∂µP

)T
,

where [16]

(13)
∂J(µ)
∂µi

= fµi(p(µ);µ)− aµi(u(µ), p(µ);µ) + λ
∂R(µ)
∂µi

, i = 1, . . . , P,

is the partial derivative of the cost function with respect to the ith parameter µi.
We note that the formulation of the adjoint problem (11) is tied to the specific cost

functional (10a). The approach presented in this paper thus only holds for quadratic
and/or linear cost functionals, which are prevalent in applications. Other functionals
would require different adjoint problems tailored to the specific case.
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S439

Remark 1. The trust region approach to be introduced in section 4 requires the
Lipschitz continuity of the cost functional and its gradient. Given our assumptions
stated in subsection 2.1, it is shown in [11] that the solution of the primal problem
(10b) is indeed Lipschitz continuous with respect to the parameter µ; i.e., given any
µ, µ̃ ∈ D, there exists a positive constant C̃ such that ‖u(µ) − u(µ̃)‖X ≤ C̃‖µ − µ̃‖.
It thus follows from the continuity of d(·, ·) and `(·) that the solution of the ad-
joint problem (11) is also Lipschitz continuous. Finally, we conclude from the defini-
tions of the cost functional (10a) and its gradient (13)—invoking again the continuity
of the involved (bi)linear forms and the continuous differentiability of the functions
Θq
a(µ),Θq

f (µ)—that the cost functional and its gradient are also Lipschitz continuous
with respect to the parameter.

2.3. Parabolic PDE-constrained optimization. The parabolic optimization
formulation is analogous to the elliptic case. We therefore directly consider the fol-
lowing (time-discrete) constrained minimization problem with quadratic cost:

min
µ∈D

J(µ), where J(µ) := ∆t
K∑
k=1

[
d
(
uk(µ), uk(µ)

)
+ `
(
uk(µ)

)]
+ λR(µ),(14a)

s.t. uk(µ) ∈ X satisfies

m
(
uk(µ)− uk−1(µ), v

)
∆t

+ a
(
uk(µ), v;µ

)
= f(v;µ)y

(
tk
)
∀v ∈ X, k ∈ K,(14b)

with initial condition

u0(µ) = 0,(14c)

where y
(
tk
)

is a (known) time-dependent forcing input, and we assume zero initial
conditions for simplicity. Note that we consider an Euler-backward discretization
for the time integration; however, we can also readily treat higher-order schemes
such as Crank–Nicolson. In this work we assume and thus limit our discussion to
time-independent regularization terms. Similar to the elliptic case, we introduce the
FE adjoint (dual) problem associated with our primal problem (14b) and cost in
(14a): Given µ ∈ D and the associated solution uk(µ), k ∈ K, to (14b), the adjoint
pk(µ) ∈ X,K ≥ k ≥ 1, satisfies

(15)
m
(
v, pk(µ)− pk+1(µ)

)
∆t

+ a
(
v, pk(µ);µ

)
= 2d

(
uk(µ), v

)
+ `(v) ∀v ∈ X, k ∈ K,

with final condition pK+1(µ) = 0. Note that the adjoint field variable evolves back-
ward in time. Similar to the elliptic case, we define the gradient, ∇µJ(µ) ∈ RP , with
entries

(16)
∂J(µ)
∂µi

= ∆t
K∑
k=1

[
fµi
(
pk(µ)

)
− aµi

(
uk(µ), pk(µ);µ

)]
+ λ

∂R(µ)
∂µi

, i = 1, . . . , P,

which are the partial derivatives of the cost functional (14a) with respect to the ith
parameter µi.

We briefly comment on the Lipschitz continuity of the cost functional and its
gradient in the time-discrete parabolic case as stated in this section. To this end, we
first note that the result in [11], i.e., directly showing the Lipschitz continuity of the
solution to the elliptic problem, can also be extended to the parabolic setting. We
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S440 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

also note that Lipschitz continuity follows from the boundedness of the sensitivity
derivative which, given our assumptions, is shown for the parabolic state equation
in [13].

3. Reduced basis method. The RB method is a projection-based model re-
duction method for parametrized PDEs [27]. Traditionally, it consists of an expensive,
time-consuming offline phase, in which the reduced basis is built, and an inexpensive
online phase, during which the prebuilt RB may be exploited for rapid and certified
simulations of the PDE at any parameter within the admissible parameter domain. In
this section, we present primal-dual RB approximations and associated novel a pos-
teriori error estimation procedures for the elliptic and parabolic PDE-constrained
parameter optimization problems introduced in the last section. To this end, we em-
ploy the RB approximations as surrogate models in the optimization problems (10)
and (14) and develop new rigorous and efficiently evaluable error bounds for the cost
functional and its gradient. In this work, we leverage these new error bounds to break
from the offline/online paradigm in the optimization; i.e., we build the RB approx-
imation on the fly during the iterative optimization procedure. Our error bounds
guide the RB updates and at the same time allow us to guarantee convergence of
the surrogate optimization to the (unknown) optimal solution of the original (FE)
optimization problem. We note, however, that the results presented here also apply
to the traditional offline/online RB setting.

Subsections 3.1 and 3.2 present the RB approximation and error estimation re-
sults for the elliptic and parabolic case, respectively. Subsection 3.3 discusses the
computational aspects of the RB approximation.

3.1. Elliptic problems. This section introduces the RB approximation and
error estimation results for the elliptic optimization problem (10).

3.1.1. Approximation. Given X-orthogonal sets of primal and dual basis vec-
tors ζn and ψn, n = 1, . . . , N , we denote the N -dimensional primal and dual RB
approximation spaces by Xpr

N and Xdu
N , defined as

Xpr
N := span{ζn, 1 ≤ n ≤ N} = span{u(µpr

n ), 1 ≤ n ≤ N},
Xdu
N := span{ψn, 1 ≤ n ≤ N} = span{p(µdu

n ), 1 ≤ n ≤ N}.

We will comment on how µpr
n and µdu

n are chosen in subsections 3.3 and 4.1. For
simplicity, we assume that the dimensions of the primal and dual RB spaces are the
same, but results in this section extend directly to the case with different dimensions.

The RB approximation is then obtained via a Galerkin projection: Given µ ∈ D,
the RB primal approximation uN (µ) ∈ Xpr

N satisfies

(17) a(uN (µ), v;µ) = f(v;µ) ∀v ∈ Xpr
N ,

and the RB dual approximation pN (µ) ∈ Xdu
N is given by

(18) a(v, pN (µ);µ) = 2d(uN (µ), v) + `(v) ∀v ∈ Xdu
N .

The RB cost functional and its derivative with respect to µi can the be computed
from

JN (µ) = d(uN (µ), uN (µ)) + `(uN (µ)) + λR(µ),(19)
∂JN (µ)
∂µi

= fµi(pN (µ);µ)− aµi(uN (µ), pN (µ);µ) + λ
∂R(µ)
∂µi

.(20)
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S441

3.1.2. A posteriori error estimation. We turn to the a posteriori error
bounds. We first require the following.

Definition 2. The residuals of the primal and dual equations are defined by

rpr(v;µ) := f(v;µ)− a(uN (µ), v;µ) ∀v ∈ X, ∀µ ∈ D,(21)

rdu(v;µ) := 2d(uN (µ), v) + `(v)− a(v, pN (µ);µ) ∀v ∈ X, ∀µ ∈ D.(22)

We also define the primal and dual errors as follows:

epr(µ) := u(µ)− uN (µ) and edu(µ) := p(µ)− pN (µ).(23)

We can now prove the following.

Lemma 3. Let u(µ) and uN (µ) be the solutions to (10b) and (17), respectively.
Furthermore, let p(µ) and pN (µ) be the solutions to the associated dual equation (11)
and (18). The error in the primal variable, epr(µ) = u(µ)− uN (µ), is bounded by

(24) ‖epr(µ)‖X ≤ ∆pr
N (µ) :=

‖rpr(·;µ)‖X′

αLB(µ)
∀µ ∈ D

and the error in the dual variable, edu(µ) = p(µ)− pN (µ), by

(25) ‖edu(µ)‖X ≤ ∆du
N (µ) :=

∥∥rdu(·;µ)
∥∥
X′ + 2γd∆

pr
N (µ)

αLB(µ)
∀µ ∈ D.

Proof. The bound (24) is standard; see, e.g., [27]. We follow an analogous proce-
dure to show (25). We first note from (11) and (22) that the dual error satisfies

(26) a(v, edu(µ);µ) = rdu(v;µ) + 2d(epr(µ), v).

Choosing v = edu(µ) and invoking (5), (7), and (4) we obtain

αLB(µ)‖edu(µ)‖2X ≤
∥∥rdu(·;µ)

∥∥
X′‖edu(µ)‖X + 2γd‖epr(µ)‖X‖edu(µ)‖X .

The result (25) then follows from (24).

We may now consider the error in the cost functional and its gradient.

Theorem 4. The error in the cost functional, eJ(µ) := J(µ)− JN (µ), satisfies

(27) |eJ(µ)| ≤ ∆J
N (µ) :=

∥∥rdu(µ)
∥∥
X′∆

pr
N (µ) + γd ∆pr

N (µ)2 + |rpr(pN (µ);µ)| ∀µ ∈ D,

where ∆pr
N (µ) is the primal bound defined in Lemma 3.

Proof. It follows from (10a) and (19) that

eJ(µ) = d(u(µ), u(µ))− d(uN (µ), uN (µ)) + `(epr(µ)).

Adding and subtracting rpr(pN (µ);µ) on the right-hand side and recalling the primal
error-residual relationship, a(epr(µ), v;µ) = rpr(v;µ) ∀v ∈ X, we obtain

eJ(µ) = d(u(µ), u(µ))− d(uN (µ), uN (µ)) + `(epr(µ))
+ rpr(pN (µ);µ)− a(epr(µ), pN (µ);µ).
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S442 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

If we also add and subtract the term 2d(uN (µ), epr(µ)) on the right-hand side and
invoke (22), it follows that

eJ(µ) = rdu(epr(µ);µ) + d(u(µ), u(µ))− d(uN (µ), uN (µ))
+ rpr(pN (µ);µ)− 2d(uN (µ), epr(µ)).

Expanding d(uN (µ), epr(µ)) = d(uN (µ), u(µ)− uN (µ)), we obtain

eJ(µ) = rdu(epr(µ);µ) + rpr(pN (µ);µ) + d(u(µ), u(µ))
− 2d(uN (µ), u(µ)) + d(uN (µ), uN (µ))

= rdu(epr(µ);µ) + rpr(pN (µ);µ) + d(epr(µ), epr(µ)).

Using the continuity of the bilinear form d yields

|eJ(µ)| ≤
∥∥rdu(µ)

∥∥
X′‖epr(µ)‖X + γd‖epr(µ)‖2X + |rpr(pN (µ);µ)|.

The desired result directly follows from Lemma 3.

Before presenting the result for the cost gradient, we make several remarks. First,
since our goal is to develop effective a posteriori error bounds for the cost functional
as opposed to increasing the accuracy of the RB cost functional,1 we incorporate the
residual correction term in the bound (27) instead of correcting the RB cost functional;
see, e.g., the discussion in [30]. Second, the dual problem plays two roles in our setting:
it allows us to (i) efficiently compute the cost gradient from (20) without having to
resort to sensitivity derivatives, and (ii) devise an a posteriori error bound for the
cost functional which converges superlinearly to zero as N → N with respect to the
primal and dual bounds [26]. Finally, we note that certified RB approximations for
quadratic outputs have been previously considered in [17]. As opposed to the dual
problem defined in (11) in this paper, the authors in [17] introduce a dual problem
which is dependent on the RB solution uN (µ), e.g., for p(µ) ∈ X,

a(v, p(µ);µ) = d(u(µ) + uN (µ), v) + `(v) ∀v ∈ X.

Although we would obtain a similar bound to (27) for the cost functional using this
formulation, the dual variable p(µ) thus defined cannot be used to compute the cost
gradient from (13). We now turn to the error bound for the cost gradient.

Theorem 5. The error in the cost gradient, e∇J(µ) = ∇µJ(µ)−∇µJN (µ), sat-
isfies

(28)
∥∥e∇J(µ)

∥∥ ≤ ∆∇JN (µ) :=
∥∥∥∆∇µJN (µ)

∥∥∥,
where ‖ · ‖ is the Euclidean norm and ∆∇µJN (µ) is a vector whose ith component is
the bound on the error in the ith component of the gradient, given by

∆∇µiJN (µ) = ‖fµi(·;µ)‖X′∆du
N (µ)

+ γUBaµi
(µ)
(
∆pr
N (µ)∆du

N (µ) + ∆pr
N (µ)‖pN (µ)‖X + ‖uN (µ)‖X∆du

N (µ)
)
,

(29)

where ∆pr
N (µ) and ∆du

N (µ) are the primal and dual error bounds defined in Lemma 3.

1We will observe in section 5 that the RB cost functional as defined in (19) is sufficiently accurate
for our purposes.
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S443

Proof. We consider the error in the derivative of the cost with respect to µi, the
ith element of the parameter vector µ. It follows from (13) and (20) that

(30) e∇µiJ(µ) = fµi(edu(µ);µ)− (aµi(u(µ), p(µ);µ)− aµi(uN (µ), pN (µ);µ)).

We next note that

(31) aµi(u(µ), p(µ);µ)− aµi(uN (µ), pN (µ);µ)
= aµi(epr(µ), edu(µ);µ) + aµi(epr(µ), pN (µ);µ) + aµi(uN (µ), edu(µ);µ).

Plugging (31) into (30) and invoking (2) and (8), we obtain

(32)
e∇µiJ(µ) ≤ ‖fµi(·;µ)‖X′‖edu(µ)‖X + γUBaµi

(µ)‖epr(µ)‖X‖edu(µ)‖X
+ γUBaµi

(µ)‖epr(µ)‖X‖pN (µ)‖X + γUBaµi
(µ)‖uN (µ)‖X‖edu(µ)‖X .

The result (29) then follows from Lemma 3, and (28) is obtained by taking the norm
of all components.

In contrast to the a posteriori error bound for the cost functional, the bound for
the gradient does not exhibit a superlinear convergence with respect to the primal and
dual error. However, even fairly large relative errors (of 50% or more) in the gradient
are permissible in the trust-region framework without jeopardizing the overall con-
vergence [6, 8]. We thus expect our gradient error bound to be sufficient to guarantee
convergence of the RB trust region approach; see also the discussion in subsection 4.1
and the numerical results in section 5.

Although we consider only upper bounds for the various error terms in this pa-
per, lower bounds are sometimes of interest from a theoretical point of view, e.g., to
quantify the convergence properties of greedy approaches to construct the reduced
basis. Although it is possible to derive lower bounds for the error terms in Lemma 3
(see [27] for the primal error), similar results are not known for the error in the cost
functional and gradient as well as for the parabolic case discussed in the next section.
However, the convergence theory for the trust region method discussed in section 4
only requires upper bounds, which is the main focus of the paper.

3.2. Parabolic problems. This section introduces the RB approximation and
error estimation results for the parabolic case.

3.2.1. Approximation. We introduce the primal and dual RB spaces

Xpr
N = span{ζn, 1 ≤ n ≤ N}, Xdu

N = span{ψn, 1 ≤ n ≤ N},

where the ζn (and the ψn), n = 1, . . . , N , are mutually X-orthogonal basis functions.
We comment on their construction in subsections 3.3 and 4.1.

The primal and dual RB approximations are obtained from a Galerkin projection:
Given µ ∈ D, the primal approximation ukN (µ) ∈ Xpr

N to uk(µ) ∈ X satisfies

(33)
m
(
ukN (µ)− uk−1

N (µ), v
)

∆t
+ a
(
ukN (µ), v;µ

)
= f(v;µ)y

(
tk
)
∀v ∈ Xpr

N ,

and the dual approximation pkN (µ) ∈ Xdu
N to pk(µ) ∈ X is given by

(34)
m
(
v, pkN (µ)− pk+1

N (µ)
)

∆t
+ a
(
v, pkN (µ);µ

)
= 2d

(
ukN (µ), v

)
+ `(v) ∀v ∈ Xdu

N .
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S444 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

We can then calculate the RB cost and its derivative with respect to the µi via

JN (µ) := ∆t
K∑
k=1

[
d
(
ukN (µ), ukN (µ)

)
+ `
(
ukN (µ)

)]
+ λR(µ),(35)

∂JN (µ)
∂µi

= ∆t
K∑
k=1

[
fµi
(
pkN (µ)

)
− aµi

(
ukN (µ), pkN (µ);µ

)]
+ λ

∂R(µ)
∂µi

.(36)

3.2.2. A posteriori error estimation. The a posteriori error estimation pro-
cedure for the parabolic problem is analogous to that of the elliptic problem. In this
section, we present the error bounds necessary for the trust region approach proposed
in section 4, deferring proofs to Appendix A. We first introduce the residuals in
Definition 6.

Definition 6. The residuals of the primal and dual equations are defined by

rkpr(v;µ) = f(v)y
(
tk
)
− a
(
ukN (µ), v;µ

)
− 1

∆t
m
(
ukN (µ)− uk−1

N (µ), v
)
,(37)

rkdu(v;µ) = 2d
(
ukN (µ), v

)
+ `(v)− a

(
v, pkN (µ);µ

)
− 1

∆t
m
(
v, pkN (µ)− pk+1

N (µ)
)

(38)

∀v ∈ X and ∀µ ∈ D.

For the parabolic case, we also require the “spatiotemporal” energy norms for the
primal and dual problem as follows.

Definition 7. The spatiotemporal energy norms for the primal and dual problem
are given by

|||vk(µ)|||pr :=

[
m(vk(µ), vk(µ)) + ∆t

k∑
k′=1

a(vk
′
(µ), vk

′
(µ);µ)

] 1
2

∀v ∈ X,(39a)

|||vk(µ)|||du :=

[
m(v1(µ), v1(µ)) + ∆t

K∑
k′=k

a(vk
′
(µ), vk

′
(µ);µ)

] 1
2

∀v ∈ X.(39b)

We may now prove the following results for the primal and dual RB errors.

Lemma 8. Let uk(µ) and ukN (µ), k ∈ K, be the solutions to (14b) and (33), and
let pk(µ) and pkN (µ), k ∈ K, be the solutions to the associated dual equations (15)
and (34). Then the following bounds for the error in the primal variable, ekpr(µ) =
uk(µ)− ukN (µ), and the dual variable, ekdu(µ) = pk(µ)− pkN (µ), hold ∀µ ∈ D:

|||eKpr(µ)|||pr ≤ ∆pr
N,K(µ) :=

(
∆t

αLB(µ)

K∑
k=1

∥∥rkpr(·;µ)
∥∥2

X′

) 1
2

,(40)

|||e1
du|||du ≤ ∆du

N,1(µ) :=

8γ2
d

(
∆pr
N,K(µ)
αLB(µ)

)2

+
2∆t

αLB(µ)

K∑
k=1

∥∥rkdu(·;µ)
∥∥2
X′

 1
2

.(41)

With Lemma 8 in hand, we may bound the parabolic cost and cost gradient as
we did in Theorems 4 and 5 for the elliptic case.
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Theorem 9. The error in the cost functional, eJ(µ) := J(µ) − JN (µ), may be
bounded by

(42) eJ(µ) ≤ ∆J
N (µ) :=

(
∆t

K∑
k=1

∥∥rkdu(·;µ)
∥∥2
X′)
) 1

2 ∆pr
N,K(µ)√
αLB(µ)

+
γd

αLB(µ)
(∆pr

N,K(µ))2 + ∆t

∣∣∣∣∣
K∑
k=1

rkpr
(
pkN (µ);µ

)∣∣∣∣∣ ∀µ ∈ D,
where ∆pr

N,K(µ) is defined in Lemma 8.

Theorem 10. The error in the cost gradient, e∇J(µ) = ∇µJ(µ) − ∇µJN (µ),
satisfies

(43)
∥∥e∇J(µ)

∥∥ ≤ ∆∇JN (µ) :=
∥∥∥∆∇µJN (µ)

∥∥∥ ∀µ ∈ D,

where ∆∇µJN (µ) is a vector whose ith component is the bound on the error of the ith
component of the gradient, given by

(44) ∆∇µiJN (µ) :=

(
∆t

K∑
k=1

‖fµi(·;µ)‖2X′

) 1
2 ∆du

N,1(µ)√
αLB(µ)

+
γUBaµi

(µ)

αLB(µ)
∆pr
N,K(µ)∆du

N,1(µ) +
γUBaµi

(µ)√
αLB(µ)

∆pr
N,K(µ)

(
∆t

K∑
k=1

∥∥pkN (µ)
∥∥2
X

) 1
2

+
γUBaµi

(µ)√
αLB(µ)

∆du
N,1(µ)

(
∆t

K∑
k=1

∥∥ukN (µ)
∥∥2
X

) 1
2

,

and ∆pr
N,K(µ) and ∆du

N,1(µ) are defined in Lemma 8.

3.3. Computational procedure. Like other model reduction methods, the RB
method is traditionally divided into a computationally expensive offline phase and a
computationally efficient online phase. A detailed discussion of the necessary com-
putations and computational cost can be found, e.g., in [27]; we thus only present a
short summary and focus on the main ingredients and costs.

During the offline phase, the reduced basis for elliptic problems (resp., parabolic
problems) is usually built incrementally using a greedy (resp., POD-greedy) algo-
rithm [31]. The greedy algorithm chooses the parameters µpr

n and µdu
n at which snap-

shots are taken by searching for the largest a posteriori error bound over a training
parameter set. In the elliptic case, the snapshots u(µpr

n ) and p(µdu
n ) are computed,

orthonormalized, and added directly to the basis. In the parabolic case, the X-
orthogonal projection of uk(µpr

n ) and pk(µdu
n ), k ∈ K, onto the current basis is com-

puted, and the largest POD mode of the time history of the projection error is added
to the basis. The costs of calculating the FE snapshots during the offline phase are
thus 2N N -dimensional A(µ)-solves (one primal and one dual solve for each N) for
the elliptic case, and 2NK N -dimensional A(µ)-solves in the parabolic case (the cost
of time integration without LU-factorization for both the dual and the primal for each
N). Here, A(µ) is the FE matrix corresponding to the bilinear form a.

Additionally, in order to facilitate efficient online error estimation, the offline
phase requires (Qa+Qf )N -dimensional solves of theX-inner product matrix (denoted
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S446 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

X) per vector added to the basis. Since the matrix X is parameter-independent, we
may precompute its (sparse) LU-factorization once at the start of the optimization,
allowing the necessary X-solves to be efficiently executed offline.

As mentioned in subsection 2.1, we also assume that we have access to αLB(µ),
a lower bound on α(µ), and to γUBaµ (µ), an upper bound on γaµ(µ). If the bilinear
form a(w, v;µ) is symmetric and parametrically coercive, i.e., the Θq

a(µ) > 0 ∀µ ∈ D,
1 ≤ q ≤ Qa, and aq(v, v) ≥ 0 ∀w ∈ X, 1 ≤ q ≤ Qa, we may obtain the coercivity
lower bound, for example, via the “min-theta” approach [27], i.e., if we specify the
inner product (·, ·)X = a(·, ·; µ̄) for some reference parameter µ̄, and can then choose

αLB(µ) = min
q∈{1,...,Qa}

Θq
a(µ)

Θq
a(µ̄)

.(45)

This is also the approach used in the numerical results in section 5. A similar approach
can be used to compute γUBaµ (µ) if the derivative bilinear forms aµi(·, ·;µ) are para-
metrically coercive. However, in the more general setting the successive constraint
method may be used [18]. We also assume access to the continuity constant γd, which
may be obtained via a generalized eigenvalue problem. To this end, given v ∈ X,
we first define the supremizer ρv = arg supw∈X

d(v,w)
‖w‖X , noting that (ρv, w)X = d(v, w)

∀v ∈ X from the Riesz representation theorem, and thus

sup
w∈X

d(v, w)
‖w‖X

= ‖ρv‖X .

It follows that γ2
d is the maximum eigenvalue of the generalized eigenproblem

γ2
d = sup

v∈X

(
‖ρv‖X
‖v‖X

)2

= sup
v∈X

(ρv, ρv)X
(v, v)X

.

Since the bilinear form d is parameter independent, we can compute γd offline a single
time before the optimization.

4. Trust region framework. The canonical trust region optimization frame-
work solves a set of successive optimization subproblems, defined as

min
s
Mk

(
µk + s

)
s.t. ‖s‖ ≤ δk,

where µk is the current optimization iterate, Mk(µ) is the model function used to
approximate the true objective function J(µ), δk is the trust region radius, and we
solve for s, the optimal step within the defined trust region; we refer the reader to
the book [9] for an extensive resource on trust region methods. The model function
Mk(µ) changes at each trust region iteration and is often a local quadratic Taylor
expansion. Other surrogates, however, have also been considered in the literature
[1, 2, 19, 21, 33].

To determine if the step s should be accepted, the ratio ρk =
M(µk)−M(µk+1)
J(µk)−J(µk+1) ,

a measure of how well the model predicts decrease in the true cost, is computed.
The value of ρk is used to determine not only whether or not the optimization step
is accepted, but also whether and how to change trust region radius for the next
optimization subproblem. One criticism of this approach in the POD or general
surrogate model context is that the computation of ρk requires evaluating the true
objective function J(µ), which may be computationally expensive [2, 33].
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In this work, the reduced basis cost JkN (µ) serves as the model function Mk(µ).
The a posteriori error bounds developed in section 3 are used (i) to minimize the
number of true objective evaluations required, and (ii) together with a recent result
from Yue and Meerbergen [33], to guarantee convergence of the approach to the
optimum of the high-fidelity model.

We stress here that our approach breaks from the traditional RB offline/online
strategy here; i.e., we generate the RB approximation on the fly during the optimiza-
tion: we use the online evaluation to efficiently solve the trust region subproblems and
update the reduced basis along the optimization trajectory only if the a posteriori er-
ror bounds indicate a need to do so. The offline and online stages thus intertwine and
each RB update requires an FE snapshot computation and update of the error bound
computation as discussed in section 3.

4.1. Convergence. Standard trust region convergence theory requires (i) that
the model function mk satisfy the first-order condition, i.e., the model function must
match the true objective and gradient at the current iterate exactly, and (ii) that each
iterate of the optimization meet a sufficient decrease condition. It has been shown,
however, that trust region optimizations converge even if inexact model and gradient
information is used [7, 15, 28]. In [33], Yue and Meerbergen relax the stringent first-
order accuracy requirements to consider the general setting of an unconstrained trust
region optimization algorithm using surrogate models with the following properties:

1. a bound on the error in the model function exists over the entire parameter
space;

2. at any point within the parameter domain, we may reduce the approximation
error to within any given tolerance ε > 0; and

3. the model function must be smooth with finite gradient everywhere.
Given the above conditions, [33] replaces the first-order condition with the following
relaxed first-order condition (adapted to our notation from sections 2 and 3:∣∣JkN(µk)− J(µk)∣∣ ≤ ∆J,k

N

(
µk
)

and
∥∥∇µJkN(µk)−∇µJ(µk)∥∥ ≤ ∆∇J,kN

(
µk
)
,(46a)

∆J,k
N

(
µk
)

JkN (µk)
≤ τJ and

∆∇J,kN

(
µk
)∥∥∇µJkN (µk)
∥∥ ≤ τ∇J(46b)

for any given τJ > 0 and τ∇J > 0. There are two parts to this condition: (46a)
requires that error bounds exist for both the cost function and its gradient, while
(46b) requires that the RB model be able to meet arbitrarily small tolerances τJ and
τ∇J . The sufficient decrease condition is similarly replaced, with an “error-aware
sufficient decrease condition” (EASDC):

(47) Jk+1
N

(
µk+1) ≤ JkN(µkAGC),

where µAGC is known as the “approximate generalized Cauchy point,” a point that
achieves sufficient decrease in the RB model in a descent direction.

To ensure that all optimization iterates satisfy the EASDC, Yue and Meerbergen
present a procedure designed to reject steps which violate this condition [33]. We
summarize the procedure in [33] using our notation here and begin by noting that a
sufficient condition for (47) is

JkN
(
µk+1)+ ∆J,k

N

(
µk+1)+ ∆J,k+1

N

(
µk+1) ≤ JkN(µkAGC).

However, we do not have access to ∆J,k+1
N

(
µk+1

)
. Instead, it is sufficient to check

(48) JkN
(
µk+1)+ ∆J,k

N

(
µk+1) < JkN

(
µkAGC

)
,
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S448 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

because we may update the RB model with basis functions taken at µk+1 before the
next subproblem solve to ensure that ∆J,k+1

N

(
µk+1

)
= 0, thus satisfying the sufficient

condition. We can check this cheaply, and if it holds, we may accept the iterate µk+1,
updating the RB model at µk+1 as necessary.

Otherwise, we note that a necessary condition for (47) is

(49) JkN
(
µk+1)−∆J,k

N

(
µk+1)−∆J,k+1

N

(
µk+1) ≤ JkN(µkAGC),

so we check

(50) JkN
(
µk+1)−∆J,k

N

(
µk+1) ≤ JkN(µkAGC).

If this condition fails, satisfying (49) may require a large error bound in the next
model, leading to inaccurate approximations, so we reject the iterate µk+1, shrink
the trust region (set εL = κtrεL for some κtr ∈ (0, 1)), and re-solve the optimization
subproblem. Otherwise, if (50) holds, we update the model at µk+1 and check (47).
If it holds, then we accept µk+1. Otherwise, we reject µk+1, shrink the trust region,
and re-solve the optimization subproblem.

If the relaxed first-order condition is satisfied, and all iterates satisfy the EASDC,
Yue and Meerbergen show convergence of the trust region algorithm to the optimum
of the high-fidelity model under mild assumptions [33]: besides constraints on the
parameters for the trust region algorithm summarized in Table 1, which are eas-
ily satisfied, we also require lower boundedness of the cost functional and Lipschitz
continuity of cost gradient and the constraints. To this end, we first note that the
Lipschitz continuity of the cost functional and its gradient discussed in section 2 for
the FE problem also hold for the RB approximation. Concerning the Lipschitz conti-
nuity of the a posteriori error bound appearing in the constraint, we again refer the
reader to [11], where the authors consider an elliptic problem and prove the Lipschitz
continuity of the dual norm of the primal residual. This proof also directly applies to
the dual norm of the adjoint residual, from which we can infer the Lipschitz continuity
of the a posteriori error bound. Furthermore, these results can again be extended to
the parabolic setting.

4.2. Trust region reduced basis algorithm. The optimization subproblem
for the trust region RB algorithm is defined as follows:

min
µk+1

JkN
(
µk+1) s.t.

∣∣∣∣∣∆
J,k
N

(
µk+1

)
JkN (µk+1)

∣∣∣∣∣ ≤ εL,(51)

where εL is the maximum allowable relative error in the cost. We note that the error
bound on the cost functional, ∆J,k

N (µ), is used to implicitly define the trust region; if
the subproblem solver steps outside of this region, we use backtracking to return to a
region where ∆J,k

N (µ) is sufficiently low.
For each subproblem solve, we have two possible termination criteria: either (a)

the line search method locates a stationary point within the trust region, or (b) the
line search gets close to the boundary of the current trust region, i.e.,

(52) (a)
∥∥∇JkN (µ)

∥∥ ≤ τsub or (b) βεL ≤
∆J,k
N (µ)
JkN (µ)

≤ εL

for some small τsub ≥ 0 and for some β ∈ (0, 1), generally close to 1. The latter
criterion prevents the algorithm from expending too much effort optimizing close to
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S449

the trust region boundary where the model becomes inaccurate. Overall convergence
is reached when the norm of the true gradient is less than a tolerance τ ≥ τsub, i.e.,∥∥∇J(µk)∥∥ ≤ ∥∥∇JkN(µk)∥∥+ ∆∇µJ,kN

(
µk
)
≤ τ.

The reduced model employed is an iteratively built RB model that is updated
only when the subproblem optimization terminates on condition (52b), indicating
that our RB model is not sufficiently accurate. In the elliptic case, updating the RB
model entails adding u

(
µk
)

and ψ
(
µk
)

to the primal and dual bases. In doing so, we
automatically satisfy (46b), since the reduced basis is able to exactly represent the
FE solution µk. In the parabolic case, we may add singular modes from the primal
and dual solutions at the current iterate until (46b) is satisfied.

The algorithm steps are summarized in Algorithm 1.

Algorithm 1. RB trust region optimization.
1: Initialize. Let k = 0, and choose τ ≥ τsub ≥ 0, τ∇J ∈ (0, 1), and β ∈ (0, 1).

Additionally, choose µ0, εL, and κtr < 1, a trust region decrease factor. Initialize
the initial reduced basis model at µ0.

2: Solve the optimization subproblem (51) with termination criteria (52).
3: if the sufficient condition (48) holds then
4: Accept and update the reduced model at µk+1 and go to line 15.
5: else if the necessary condition (50) fails then
6: Reject µk+1, set εL = κtrεL and return to line 2.
7: else
8: Update the model at µk+1.
9: if the EASDC (47) holds then

10: Accept µk+1 and go to line 15.
11: else
12: Reject µk+1, set εL = κtrεL and return to line 2.
13: end if
14: end if
15: If

∥∥∇Jk+1
N

(
µk+1

)∥∥ + ∆∇µJ,k+1
N

(
µk+1

)
≤ τ , return µk+1 and stop. Otherwise, go

to line 2.

5. Numerical tests. In this section, we introduce a thermal fin model opti-
mization problem. The optimization is then solved using three different approaches:

1. an FE-only approach, consisting of an interior point optimizer [3, 4, 32] as
implemented in the MATLAB routine fmincon, using the high-dimensional
FE model for its function and gradient evaluations;

2. a traditional RB approach, consisting of an offline phase, in which a global
reduced basis is built, and an online phase, in which the MATLAB interior
point implementation in fmincon is used to solve the optimization using RB
function and gradient evaluations; and

3. the trust region RB algorithm presented in subsection 4.2, employing the
BFGS quasi-Newton method to solve each trust region subproblem using only
reduced evaluations, and solving the full model as needed to progressively
build the reduced basis along the optimization trajectory.

In subsection 5.2 we present results regarding the quality of the RB approximation
employed in the traditional RB approach. Subsection 5.3 compares performance of
the three optimization approaches for a two- and six-parameter optimization. The
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S450 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

Table 1
RB trust region algorithm parameters used in numerical tests.

Parameter Symbol Value for numerical tests
“Close” to trust region boundary threshold β 0.95

Trust region boundary εL 0.1
RB gradient error tolerance τ∇J 0.1

Subproblem convergence tolerance τsub 1e-8
Overall convergence tolerance τ 5e-4

Fig. 1. Thermal fin geometry.

algorithm parameters used for the optimization tests and construction of the reduced
bases for the traditional offline/online approach are shown in Table 1.

5.1. Thermal fin model problem. We consider a two-dimensional thermal
fin with a fixed geometry (Figure 1) consisting of a central post and four horizontal
subfins, with interior Ω and boundary Γ [22]. The fin conducts heat away from a
uniform heat flux source at the root of the fin, Γroot, through the post and subfins to
the surrounding air. The fin is characterized by a six-dimensional parameter vector
µ = (k0, k1, k2, k3, k4,Bi) containing the heat conductivities, ki ∈ [0.1, 10], of the
subfins and the central post and the Biot number, Bi ∈ [0.01, 1], a nondimensional heat
transfer coefficient relating the convective heat transfer coefficient to the conductivity
of the fin. We will consider a two-parameter and a six-parameter optimization. In
the two-parameter optimization, we fix k0 = 1 and constrain the subfin conductivities
to vary together (i.e., k1 = k2 = k3 = k4). In the six-parameter optimization, all
six components of µ may vary independently. As the reference parameter, we choose
µ̄ = (1, 1, 1, 1, 1, 0.1).

5.1.1. Elliptic model problem. The temperature distribution within the fin,
u(µ), is governed by the steady heat equation with a unit Neumann flux boundary
condition at the root of the fin to model a heat source. Robin boundary conditions on
all other external boundaries model convective heat losses, and we enforce continuity
of both u and its gradient at interfaces between the fin post and subfins. The output
of interest is the average temperature of the fin root, Troot(µ) = L(u(µ)) =

∫
Γroot

u(µ).
For the high-fidelity model we consider a piecewise linear FE approximation space X
on a quasi-uniform unstructured mesh of dimension dim(X) = N = 17899.

For our optimization, we generate artificial experimental measurements T̂root by
considering a thermal fin whose parameters are fixed but unknown. We then aim to
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S451

infer the unknown parameters by minimizing the output least-squares formulation

(53) s(µ) =
1
2

(Troot(µ)− T̂root)2 =
1
2

∥∥∥L(u(µ))− T̂root

∥∥∥2

R
.

To obtain a cost function of the form presented in subsection 2.2, we define d(u, v) ≡
1
2 (Lu,Lv)R and `(v) ≡ −

(
Lv, T̂root

)
R, drop the constant term 1

2 (T̂root, T̂root)R, and
introduce the regularization R(µ) = ‖µ−µ̂µ̂ ‖

2
R, where µ̂ ∈ D.

5.1.2. Parabolic model problem. We now consider the time-varying tem-
perature distribution within the fin in the time interval I = ]0, 10] governed by the
time-dependent heat equation with a sinusoidal control input y(t) = cos(t) at the root
of the fin. As in the elliptic problem, we enforce Robin boundary conditions at all
other external boundaries and continuity of temperature and heat flux at all internal
interfaces. In the parabolic problem, our output of interest is the average temperature
of the entire fin at the current timestep, T kavg(µ) = L(uk(µ)) =

∫
Ω u

k(µ). Again, we
generate artificial output data T̂ kavg ∀k ∈ K by considering a fin whose parameters are
fixed but unknown. Thus, our output least-squares formulation is given by

(54) s(µ) = ∆t
K∑
k=1

1
2

(T kavg(µ)− T̂ kavg)2 = ∆t
K∑
k=1

1
2

∥∥∥L(uk(µ)
)
− T̂ kavg

∥∥∥2

R
.

Analogous to the elliptic case, we may obtain a least-squares cost functional of
the form presented in subsection 2.3 by defining d(u, v) ≡ 1

2 (Lu,Lv)R and `(v) ≡
−
(
Lv, T̂avg

)
R, dropping the constant term 1

2 (T̂ kavg, T̂avg)R, and introducing the regu-
larization R(µ) = ‖µ−µ̂µ̂ ‖

2
R, where µ̂ ∈ D.

5.1.3. Problem data. In subsection 5.3, we compare the performance of our
trust region algorithm to that of the FE-only and RB-only fmincon interior point
approaches for the 2D and 6D elliptic and parabolic optimizations. Optimization trials
in each case are run on ten different least-squares cost functionals, corresponding to
ten randomly selected values for µ∗ within the parameter domain. For each randomly
selected µ∗-value, we obtain T̂root or T̂ kavg from the high-fidelity FE model. The value
µ∗ is then used as the regularization function parameter µ̂. Table 2 specifies the data
used to generate numerical results in subsequent sections.

Table 2
Problem data used for generation of numerical results. The X-inner product was defined as

(·, ·)X = a(·, ·; µ̄) for µ̄ = (1, 1, 1, 1, 1, 0.1)T .

Parameter Symbol Elliptic Parabolic
FE dimension N 17899

d-continuity constant γd 0.7999 9.6970
Number of timesteps K – 100

Regularization scaling factor λ 1 0.01

5.2. Global reduced basis approximation quality. In order to compare the
performance of the proposed trust region RB approach to the performance of a tra-
ditional RB approach, we generate a reduced basis offline. We introduce a training
set Dtrain ⊂ D of size ntrain and an initial parameter µ(1), and employ a cost-based
greedy algorithm to build the reduced basis based on the a posteriori error bounds on
the cost and cost gradient. The exact procedure employed is given in Algorithm 2,
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S452 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

in which the tolerance values τ and τ∇J are those required for the optimization (see
Table 1). This ensures that error everywhere on the training grid is low enough to
meet the convergence tolerances. However, we note that this does not guarantee low
error over the entire parameter domain.

Algorithm 2. Generate global reduced basis.
1: Choose Dtrain ⊂ D, τ > 0, and τ∇J > 0.
2: Initialize primal and dual reduced bases at µ(1) ∈ Dtrain.

3: while maxµ∈Dtrain

∆J
N (µ)

JN (µ) > τ or maxµ∈Dtrain

∆
∇µJ
N (µ)

‖∇µJN (µ)‖ > τ∇J do

4: if maxµ∈Dtrain

∆J
N (µ)

JN (µ) > τ then

5: µ∗ ← arg maxµ∈Dtrain

∆J
N (µ)

JN (µ)
6: else
7: µ∗ ← arg maxµ∈Dtrain

∆
∇µJ
N (µ)

‖∇µJN (µ)‖
8: end if
9: Update the reduced basis at µ∗.

10: end while

We now present the standard convergence results for both the two- and the six-
parameter cases. Specifically, Tables 3–6 present, as a function of N , the maxi-
mum relative error bounds ∆pr

rel,max, ∆du
rel,max, ∆J

rel,max, ∆∇µJrel,max, as well as the av-
erage effectivities η̄pr, η̄du η̄J , and η̄∇J , over a randomly generated test set Ξ ⊂ D
of size ntrain = 100; i.e., for the elliptic case we have ∆pr

rel,max = maxµ∈Ξ
∆pr
N (µ)

‖u(µ)‖X
,

∆du
rel,max = maxµ∈Ξ

∆du
N (µ)

‖p(µ)‖X
, ∆J

rel,max = maxµ∈Ξ
∆J
N (µ)
J(µ) , ∆∇µJrel,max = maxµ∈Ξ

∆
∇µJ
N (µ)
∇µJ(µ) ,

and ηpr(µ) = ∆pr
N (µ)

‖epr(µ)‖X
, ηdu(µ) = ∆du

N (µ)
‖edu(µ)‖X

, ηJ(µ) = ∆J
N (µ)
|eJ (µ)| , η∇µJ(µ) = ∆

∇µJ
N (µ)

‖e∇µJ (µ)‖ .

The corresponding definitions for the parabolic case are similar and thus omitted.
We observe that the effectivities of the primal bounds are close to 1 for all cases

considered, thus indicating very sharp bounds. Dual effectivities are considerably
larger, due to the propagation of the primal error to the dual problem and entering
into the dual error bound formulation. The error bounds for the cost functional
converge quickly, enabling us to achieve the required error tolerance for the trust
region approach. Except for small N , the cost effectivities have a range of O(10−100)
for the elliptic case and O(100−1000) for the parabolic case, which is acceptable given
the fast convergence of the RB approximation. As anticipated, the bounds for the cost
gradients have the highest effectivities. However, as discussed in subsection 3.1.2, even
fairly large relative errors in the gradient are permissible in the trust region approach,
and this result thus poses no impediment for our approach.

Table 3
2D elliptic thermal fin problem: convergence rate and effectivities of traditional reduced basis.

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆∇µJ

rel,max η̄∇µJ

4 2.36 2.22 80.5 47.1 0.55 54.9 37.1 439
6 1.91 2.76 62.2 44.9 3.1e-2 53.2 3.38 605
8 0.64 2.52 43.4 44.2 1.2e-2 39.9 1.76 1047
10 0.41 3.24 34.1 48.4 7.5e-3 40.3 1.66 1882
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CERTIFIED TRUST REGION REDUCED BASIS OPTIMIZATION S453

Table 4
6D elliptic thermal fin problem: convergence rate and effectivities of traditional reduced basis.

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆∇µJ

rel,max η̄∇µJ

8 5.83 5.39 8.1e2 85.8 0.84 250 323 2.4e3
16 1.70 6.25 1.2e2 144 2.0e-2 174 45.4 4.2e3
32 0.66 6.23 9.85 190 4.0e-4 97.9 0.68 6.6e4
48 0.16 6.88 2.00 190 1.8e-5 129 9.7e-2 4.9e5

Table 5
2D parabolic thermal fin problem: convergence rate and effectivities of traditional reduced basis.

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆∇µJ

rel,max η̄∇µJ

15 0.31 2.05 2.9e2 5.1e2 0.41 2.1e3 4.2e2 3.5e4
30 3.3e-2 1.79 34.0 3.4e3 9.8e-3 4.3e3 29.8 2.8e4
45 1.2e-2 1.77 7.48 5.7e3 6.6e-4 7.2e2 7.21 8.4e4
60 5.8e-3 1.84 4.58 2.0e4 1.2e-4 5.3e2 4.40 4.2e5

Table 6
6D parabolic thermal fin problem: convergence rate and effectivities of traditional reduced basis.

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆∇µJ

rel,max η̄∇µJ

60 4.3e-2 3.0 29 1.6e3 3.1e-2 3.1e3 47 6.0e4
100 6.0e-3 3.0 6.4 2.4e3 8.6e-4 1.1e3 4.8 9.1e4
140 1.1e-3 3.0 1.1 3.3e3 2.1e-5 7.6e2 0.98 4.9e5
180 2.5e-4 3.2 0.17 2.1e3 7.8e-7 1.3e2 0.15 9.9e5

5.3. Algorithm performance. The optimization problem is solved using the
FE-only interior point, traditional RB interior point, and trust region RB approaches.
We consider ten random least-squares cost functions (as discussed in subsection 5.1.3)
and solve the optimization for each cost function using the same set of ten random
initial conditions, resulting in a total of 100 optimization trials. Algorithm parameters
and problem data used are tabulated in Tables 1 and 2. Performance results measured
in terms of run time and required number of FE evaluations for the elliptic case are
presented in Figures 2 and 3, and in Figures 4 and 5 for the parabolic case. Note that
in the parabolic case the number of FE evaluations stated in the figures corresponds
to the number of full forward integrations in time.

Overall, the combined trust region RB optimization approach consistently reduces
the number of FE evaluations required to locate an optimum relative to the two other
approaches tested. On average, compared to the FE-only method, the trust region RB
approach requires 39% (30%) as many full solves in the 2D (6D) elliptic case. In the
parabolic case, the trust region RB approach requires 30% (14%) as many full solves
in the 2D (6D) case. We also note that in our numerical trials, line 12 of Algorithm 1
is never reached—i.e., we never “waste” a full solve by updating the model (line 8)
at a potential iterate only to reject it. Although we cannot guarantee this behavior
in general, by defining the trust region systematically via the error estimates, we can
influence how often this would occur.

By building the reduced basis adaptively along the optimization trajectory, the
trust region RB method also reduces the number of full evaluations needed relative to
the number of full solves needed in the offline phase of the traditional RB approach:
on average, the trust region RB requires 37% and 12% of the full solves needed for the
2D and 6D elliptic cases, and 25% and 3% of the full solves required in the 2D and 6D
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Fig. 2. Run time comparison for optimizations constrained by elliptic PDEs. In contrast,
the traditional offline-online RB approach for a 2D ( 6D) optimization runs in 0.04 (0.10) seconds
online, but requires 1.6 (4800) seconds offline (on average).
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Fig. 3. Number of full model evaluations required for optimizations constrained by elliptic
PDEs. The traditional offline-online RB approach requires 0 full evaluations online and an average
of 9 (48) full evaluations in the 2D ( 6D) case offline.

parabolic cases. Finally, the trust region RB approach is able to reduce the number
of evaluations of the reduced system relative to the offline phase of the traditional RB
approach, by a mean factor of 3 (3000) in the 2D (6D) elliptic case, and by a mean
factor of 6 (8600) in the 2D (6D) parabolic case.

Whether or not the achieved reduction in number of full FE solves translates into
a run time speedup depends on the size and complexity of the problem. The trust
region RB run time averages 83% of the FE interior point run time in the elliptic 2D
case, 82% in the elliptic 6D case, and 72% and 44% in the parabolic 2D and 6D cases,
respectively. Gains in the elliptic case are small because the full elliptic problem can
be solved inexpensively. In the parabolic 2D case, the overhead involved in building
the reduced basis fills most of the time saved by the three-fold reduction in full solves.
In contrast, in the parabolic 6D optimization, the seven-fold reduction in full solves
makes the RB overhead a much smaller portion of the overall optimization time. The
offline computational investment in the traditional RB approach makes it slower than
both our proposed approach and the FE-only approach for all cases tested.

We summarize the achieved gains in Table 7. Our results suggest that there
may be potential for greater savings in optimizations of higher parameter dimension.
Additionally, we note that the size of our FE discretization is fairly small, especially
relative to the size of FE discretizations that might be encountered in real-world
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Fig. 4. Run time comparison for optimizations constrained by parabolic PDEs. For comparison,
the average traditional offline-online RB 2D ( 6D) optimization runs in 0.23 (2.7) seconds online,
but requires 125 seconds ( 60 hours) offline.
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Fig. 5. Number of full model evaluations required for optimizations constrained by parabolic
PDEs. The traditional offline-online RB approach requires 0 full evaluations online and an average
of 15 (151) full evaluations in the 2D ( 6D) case offline.

Table 7
Summary of gains made by proposed trust region RB optimization approach relative to MAT-

LAB fmincon. Time gains are seen in the majority of test cases, and a reduction in the number
of required FE function evaluations is seen in all cases tested, with the largest reduction in the 6D
parabolic optimization.

Trust region RB run time
FE-fmincon run time

Trust region RB # FE solves
FE-fmincon # FE solves

min mean max min mean max
2D elliptic 0.20 0.83 1.48 0.09 0.39 0.75
6D elliptic 0.31 0.82 2.32 0.13 0.30 0.70

2D parabolic 0.38 0.72 1.32 0.20 0.30 0.44
6D parabolic 0.21 0.44 0.80 0.10 0.14 0.24

problems. Because the trust region approach is able to significantly reduce the number
of FE solves relative to the FE-only approach, there is also potential for greater gains
in problems with higher-dimensional discretizations.

6. Conclusions. We have introduced a combined reduced basis trust region
framework for PDE-constrained optimization of quadratic cost functionals, as well
as novel a posteriori error bounds for the reduced basis cost approximation and its
gradient. In this approach, reduced basis models are leveraged in several ways: First,
reduced basis models are used as the model function within the trust region opti-
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mization, reducing the time for each optimization function evaluation. Second, the
reduced basis a posteriori error bounds are used to choose when to accept and reject
trust region optimization iterates. Third, the error bounds are used to systematically
determine when to update the reduced model. Fourth and finally, the existence of
error bounds for the reduced basis models allows rigorous proof of convergence of the
algorithm to a stationary point of the full model. We have implemented the proposed
algorithm on a thermal fin model problem using least-squares cost functions with up
to 6 variable parameters, and we achieve reductions in the number of full evaluations
needed relative to a high-fidelity interior point approach in all cases tested, with up
to three-fold gains in the elliptic case and seven-fold gains in the parabolic case.

Appendix A. Parabolic a posteriori error estimation.

A.1. Proof of Lemma 8.

Proof. We refer the reader to [14] for the proof of (40). We thus only need to
show (41). It follows from (15) and (38) that the error in the dual variable, ekdu ∈ X,
satisfies

(55) m
(
v, ekdu − ek+1

du

)
+ ∆t · a

(
v, ekdu;µ

)
= ∆t · 2d

(
ekpr, v

)
+ ∆t · rkdu(v;µ).

Following the usual procedure, we choose v = ekdu to obtain

m
(
ekdu, e

k
du − ek+1

du

)
+ ∆t · a

(
ekdu, e

k
du;µ

)
= 2∆t · d

(
ekdu, e

k
pr
)

+ ∆t · rkdu
(
ekdu;µ

)
.(56)

First, we invoke the Cauchy–Schwarz and Young’s inequalities to get

m
(
ekdu, e

k+1
du

)
≤ 1

2
m
(
ekdu, e

k
du
)

+
1
2
m
(
ek+1

du , ek+1
du

)
.(57)

Also, from Young’s inequality it follows that

rkdu
(
ekdu(µ);µ

)
≤ 1
αLB

∥∥rkdu(·;µ)
∥∥2
X′ +

αLB
4

∥∥ekdu(µ)
∥∥2
X

(58)

and

d
(
ekdu, e

k
pr
)
≤ 2γ2

d

αLB(µ)

∥∥ekpr

∥∥2

X
+
αLB

8

∥∥ekdu

∥∥2
X
,(59)

where we also used the continuity of (4) of the bilinear form d. Substituting (57),
(58), and (59) into (56) we obtain

m
(
ekdu, e

k
du
)
−m

(
ek+1

du , ek+1
du

)
+ 2∆t · a

(
ekdu, e

k
du;µ

)
≤ 2∆t
αLB(µ)

∥∥rkdu(·;µ)
∥∥2
X′ +

8γ2
d∆t

αLB(µ)

∥∥ekpr

∥∥2

X
+ αLB(µ)∆t

∥∥ekdu

∥∥2
X
.(60)

Finally, summing over k = 1, . . . ,K it follow that

(61)

m
(
e1

du, e
1
du
)

+ ∆t
K∑
k=1

a(ekdu(µ), ekdu(µ);µ)

≤
K∑
k=1

(
8γ2
d∆t

αLB(µ)

∥∥ekpr

∥∥2

X
+

2∆t
αLB(µ)

∥∥rkdu(·;µ)
∥∥2
X′

)
.

The result (41) follows from (40).
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A.2. Proof of Theorem 9.

Proof. We first note from (14a) and (35) that

eJ(µ) = ∆t
K∑
k=1

{
d
(
uk(µ), uk(µ)

)
− d
(
ukN (µ), ukN (µ)

)
+ `
(
ekpr(µ)

)}
.(62)

Adding and subtracting d
(
2ukN (µ), ekpr(µ)

)
within the sum, we obtain

(63)
eJ(µ) = ∆t

K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
+ d
(
uk(µ), uk(µ)

)
− d
(
ukN (µ), ukN (µ)

)
− d
(
2ukN (µ), ekpr(µ)

)
}

and note that

(64)

d
(
uk(µ), uk(µ)

)
− d
(
ukN (µ), ukN (µ)

)
− d
(
2ukN (µ), ekpr(µ)

)
= d
(
uk(µ), uk(µ)

)
− d
(
2ukN (µ), uk(µ)

)
+ d
(
ukN (µ), ukN (µ)

)
= d
(
ekpr(µ), ekpr(µ)

)
.

Thus, combining (63) and (64), we have

(65) eJ(µ) = ∆t
K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
+ d
(
ekpr(µ), ekpr(µ)

)
}.

Taking (38) with v = ekpr(µ), we can express the first two terms of (65) as follows:

(66)

K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
} =

K∑
k=1

{rkdu
(
ekpr(µ);µ

)
+ a
(
ekpr(µ), pk(µ);µ

)
+

1
∆t

m
(
ekpr(µ), pkN (µ)− pk+1

N (µ)
)
}.

Since e0
pr(µ) = 0 and pk+1

N (µ) = 0, we observe that

(67)
K∑
k=1

m
(
ekpr(µ), pkN (µ)− pk+1

N (µ)
)

=
K∑
k=1

m
(
ekpr(µ)− ek+1

pr (µ), pkN (µ)
)
.

We may then substitute the primal error-residual relationship,

rkpr(v;µ) = a
(
ekpr(µ), v;µ

)
+

1
∆t

m
(
ekpr(µ)− ek+1

pr (µ), v
)
∀v ∈ X,

with v = pkN (µ) into (66) to obtain

(68)
K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
} =

K∑
k=1

{rkdu
(
ekpr(µ);µ

)
+ rkpr

(
pkN (µ);µ

)
}.

Substituting (68) into (65), we get

(69) eJ(µ) = ∆t
K∑
k=1

{rkdu
(
ekpr(µ);µ

)
+ rkpr

(
pkN (µ);µ

)
+ d
(
ekpr(µ), ekpr(µ)

)
}.
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It then follows from the continuity of d(·, ·) that

(70) eJ(µ) ≤ ∆t
K∑
k=1

{∥∥rkdu(·;µ)
∥∥
X′

∥∥ekpr(µ)
∥∥
X

+ γd
∥∥ekpr(µ)

∥∥2

X
+ rkpr

(
pkN (µ);µ

)}
.

We now invoke the Cauchy–Schwarz inequality for the first term on the right-hand
side, which yields

(71) eJ(µ) ≤

(
∆t

K∑
k=1

∥∥rkdu(·;µ)
∥∥2
X′)

) 1
2
(

∆t
K∑
k=1

∥∥ekpr(µ)
∥∥2

X

) 1
2

+ γd∆t
K∑
k=1

∥∥ekpr(µ)
∥∥2

X
+ ∆t

∣∣∣∣∣
K∑
k=1

rkpr
(
pkN (µ);µ

)∣∣∣∣∣.
Finally, we note that

∆t
K∑
k=1

‖ekpr(µ)‖2X ≤
∆t

αLB(µ)

K∑
k=1

a(ekpr(µ), ekpr(µ);µ) ≤ 1
αLB(µ)

|||eKpr(µ)|||2pr(72)

to arrive at the desired results by invoking (40).

A.3. Proof of Theorem 10.

Proof. Similar to the elliptic case, we define e∇µiJ(µ) to be the error in the
derivative of the cost with respect to µi, the ith element of the parameter vector µ.
It then follows from (16) and (36) that

(73) e∇µiJ(µ) = ∆t
K∑
k=1

{
fµi
(
ekdu(µ);µ

)
−
[
aµi
(
uk(µ), pk(µ);µ

)
− aµi

(
ukN (µ), pkN (µ);µ

)]}
.

Following the same steps as in the proof of Theorem 5, we arrive at

(74)
e∇µiJ(µ) = ∆t

K∑
k=1

{
‖fµi(·;µ)‖X′

∥∥ekdu(µ)
∥∥
X

+ γUBaµi
(µ)
∥∥ekpr(µ)

∥∥
X

∥∥ekdu(µ)
∥∥
X

+ γUBaµi
(µ)
∥∥ekpr(µ)

∥∥
X

∥∥pkN (µ)
∥∥
X

+ γUBaµi
(µ)
∥∥ukN (µ)

∥∥
X

∥∥ekdu(µ)
∥∥
X

}
.

Invoking the Cauchy–Schwarz inequality and Lemma 8, we obtain (44).
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