
A certifying algorithm for 3-colorability of P5-free
graphs
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Abstract. We provide a certifying algorithm for the problem of deciding whether
a P5-free graph is 3-colorable by showing there are exactly six finite graphs that
are P5-free and not 3-colorable and minimal with respect to this property.

1 Introduction

An algorithm is certifying if it returns with each output a simple and easily verifiable
certificate that the particular output is correct. For example, a certifying algorithm for
the bipartite graph recognition would return either a 2-coloring of the input graph prov-
ing that it is bipartite, or an odd cycle proving it is not bipartite. A certifying algorithm
for planarity would return a planar embedding or one of the two Kuratowski subgraphs.
The notion of certifying algorithm [9] was developed when researchers noticed that a
well known planarity testing program was incorrectly implemented. A certifying al-
gorithm is a desirable tool to guard against incorrect implementation of a particular
algorithm. In this paper, we give a certifying algorithm for the problem of deciding
whether a P5-free graph is 3-colorable. We will now discuss the background of this
problem.

A class C of graphs is called hereditary if for each graph G in C, all induced sub-
graphs of G are also in C. Every hereditary class of graphs can be described by its
forbidden induced subgraphs, i.e. the unique set of minimal graphs which do not be-
long to the class. A comprehensive survey on coloring of graphs in hereditary classes
can be found in [12]. An important line of research on colorability of graphs in heredi-
tary classes deals with Pt-free graphs. The induced path on t vertices is called Pt, and
a graph is called Pt-free if it does not contain Pt as an induced subgraph.

It is known that 4-COLORABILITY is NP-complete for P9-free graphs [14] and
5-COLORABILITY is NP-complete for P8-free graphs [10]. And most recently it was
proved that 6-COLORABILITY is NP-complete for P7-free [2]. On the other hand, the
k-COLORABILITY problem can be solved in polynomial time for P4-free graphs (since
they are perfect). In [5] and [6], it is shown that k-COLORABILITY can be solved for
the class of P5-free graphs in polynomial time for every particular value of k. For
t = 6, 7, the complexity of the problem is generally unknown, except for the case
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of 3-COLORABILITY of P6-free graphs [13]. Known results on the k-COLORABILITY
problem in Pt-free graphs are summarized in Table 1 (n is the number of vertices in the
input graph, m the number of edges, and α is matrix multiplication exponent known to
satisfy 2 ≤ α < 2.376 [3]).

k\t 3 4 5 6 7 8 9 10 11 12 . . .
3 O(m) O(m) O(nα) O(mnα) ? ? ? ? ? ? . . .
4 O(m) O(m) P ? ? ? NPc NPc NPc NPc . . .
5 O(m) O(m) P ? ? NPc NPc NPc NPc NPc . . .
6 O(m) O(m) P ? NPc NPc NPc NPc NPc NPc . . .
7 O(m) O(m) P ? NPc NPc NPc NPc NPc NPc . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. Known complexities for k-colorability of Pt-free graphs

In this paper, we study the coloring problem for the class of P5-free graphs. This
class has proved resistant with respect to other graph problems. For instance, P5-free
graphs is the unique minimal class defined by a single forbidden induced subgraph
with unknown complexity of the MAXIMUM INDEPENDENT SET and MINIMUM INDE-
PENDENT DOMINATING SET problems. Many algorithmic problems are known to be
NP-hard in the class of P5-free graphs, for example DOMINATING SET [7] and CHRO-
MATIC NUMBER [8]. In contrast to the NP-hardness of finding the chromatic number
of a P5-free graph, it is known [5] that k-COLORABILITY can be solved in this class in
polynomial time for every particular value of k. This algorithm produces a k-coloring if
one exists, but does not produce an easily verifiable certificate when such coloring does
not exist. We are interested in finding a certificate for non-k-colorability of P5-free
graphs. For this purpose, we start with k = 3.

Besides [5], there are several polynomial-time algorithms for 3-coloring a P5-free
graph ([6, 11, 14]) but none of them is a certifying algorithm. In this paper, we obtain a
certifying algorithm for 3-coloring a P5-free graphs by proving there are a finite number
of minimally non-3-colorable P5-free graphs and each of these graphs is finite.

Theorem 1.1. A P5-free graph is 3-colorable if and only if it does not contain any of
the six graphs in Fig. 1 as a subgraph.

It is an easy matter to verify the graphs in Fig. 1 are not 3-colorable, the rest of the paper
involves proving the other direction of the theorem. In the last Section, we will discuss
open problems arising from our work.

2 Definition and Background

Let k and t be positive integers. An MNkPt is a graph G that (i) is not k-colorable and
is Pt-free and (ii) every proper subgraph of G is either k-colorable or has a Pt. We will
be interested specifically in the case where k = 3 and t = 5. We will use the following
notations. Let G be a simple undirected graph. A set S of vertices of G is dominating if
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Fig. 1. All 6 MN3P5s

every vertex in G − S has a neighbor in S. A k-clique is a clique on k vertices. u ∼ v
will mean vertex u is adjacent to vertex v. u � v will mean vertex u is not adjacent
to vertex v. For any vertex v, N(v) denotes the set of vertices that are adjacent to v.
We write G ∼= H to mean G is isomorphic to H . The clique number of G, denoted by
ω(G), is the number of vertices in a largest clique of G. The chromatic number of G,
denoted by χ(G), is the smallest number of colors needed to color the vertices of G. A
hole is an induced cycle with at least four vertices, and it is odd (or even) if it has odd
(or even) length. An anti-hole is the complement of a hole. A k-hole (k-anti-hole) is a
hole (anti-hole) on k vertices. A graph G is perfect if each induced subgraph H of G
has χ(G) = ω(G).

Theorem 2.1 (The Strong Perfect Graph Theorem [4]). A graph is perfect if and
only if it does not contain an odd hole or odd anti-hole as an induced subgraph.

Let G = {K4,W5, S1, S2, T, B} be the set of graphs in Fig. 1. We will denote these
graphs in the following way.

– P5(v1v2v3v4v5) means there is a P5 being v1, v2, v3, v4 and v5.
– K4(wxyz) means {w, x, y, z} form a K4.
– W5(v1v2v3v4v5, w) means v1, v2, v3, v4, v5 and w form a W5 where v1v2v3v4v5

form a 5-cycle and w is adjacent to every other vertex.
– S1(v1v2v3v4v5, u2, u5) means v1, v2, v3, v4, v5, u2, u5 form an S1 where v1 is the

only degree 4 vertex and N(v1) = {u5, u2, v5, v2}. Also N(v3) = {v4, v2, u2}
and N(v4) = {v3, v5, u5}, and v1v2v3v4v5 form a 5-cycle.

– S2(v1v2v3v4v5, w, x) means v1, v2, v3, v4, v5, w and x form an S2 where N(w) =
{v2, v3, v4, v5}, N(x) = {v1, v3, v4} and v1v2v3v4v5 form a 5-cycle.

– T (u1uAuBu2, v1vAvBv2, x1, x2) means a T graph is present as shown previously.
– B(w, u0u1u2u3u4u5, v0v1v2v3v4v5) means a B graph is present as shown previ-

ously.



We will rely on the following result.

Theorem 2.2 ([1]). Every connected P5-free graph has a dominating clique or a dom-
inating P3.

The following lemma is folklore.

Lemma 2.1 (The neighborhood lemma). Let G be a minimally non k-colorable graph.
If u and v are two non-adjacent vertices in G, then N(u) * N(v).

Proof. Assume N(u) ⊆ N(v). Then the graph G− v admits a k-coloring. By giving u
the color of v, we see that G is k-colorable, a contradiction. ut

The neighborhood lemma is used predominantly throughout this paper. Writing
N(v,w) → u will denote the fact that N(v) * N(w) by the neighborhood lemma
so there exists a vertex u where u ∼ v, but u � w.

The following fact is well-known and easy to establish.

Fact 2.1. In a minimally non k-colorable graph every vertex has degree at least k. 2

3 Intermediate Results

In this section, we establish a number of intermediate results needed for proving the
main theorem.

Lemma 3.1. Let G be an MN3P5 graph with a 5-hole C = {v1, v2, v3, v4, v5} and a
vertex w adjacent to at least 4 vertices of C. Then G ∈ G.

Proof. If w is adjacent to all five vertices of C, then G clearly is isomorphic to W5.
Now, assume N(w) ∩ {v1, v2, v3, v4, v5} = {v2, v3, v4, v5}.

We have N(v1,w) → x.
Assume for the moment that x � v3, v4. We have

x ∼ v5, otherwise, we have P5(xv1v5v4v3).
x ∼ v2, otherwise, we have P5(xv1v2v3v4).

But then G contains S1(v1v2v3v4v5, x, w). This means x ∼ v3 or x ∼ v4. By sym-
metry, we may assume x ∼ v3. We have x ∼ v2 or x ∼ v4, otherwise, G contains
P5(xv1v2wv4). If x ∼ v2 then G properly contains S1(v1v2v3v4v5, x, w), a contradic-
tion. This means x ∼ v4; so G contains S2(v1v2v3v4v5, w, x) and G ∼= S2. ut

Theorem 3.1. Every MN3P5 graph different from K4 contains a 5-hole.

Proof. Let G be an MN3P5 graph different from a K4. We have ω(G) ≤ 3 and χ(G) ≥
4. Thus, G is not perfect. By Theorem 2.1, G contains an odd hole or an odd anti-hole
H . H cannot be a hole of size 7 or greater because G is P5-free. We may assume H is
an anti-hole of length at least seven, for otherwise we are done (observe that the hole
on five vertices is self-complementary). Let v1, v2, v3, v4, v5, v6, v7 be the cyclic order
of the hole in the complement of G. Then G properly contains S1(v4v6v3v5v2, v1, v7),
a contradiction. ut



Lemma 3.2. Let G be an MN3P5 graph that has a dominating clique {a, b, c}. Also
assume that there is a vertex v /∈ {a, b, c} adjacent to two vertices from {a, b, c}. Then
G ∈ G.

Proof. The proof is by contradiction. Suppose that G /∈ G. We may assume v is ad-
jacent to b and c. We have v � a, otherwise, G contains K4(abcv). Through repeated
applications of the Neighborhood Lemma, we will eventually add nine vertices to G
to arrive at a contradiction. In the end, we will obtain the graph B (see Fig. 2 for the
order in which vertices are added). Each time we add a vertex we will consider its adja-
cency to the other vertices of the graph. In every case, the adjacency can be completely
determined at each step.
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Fig. 2. The graph B obtained in the proof of Lemma 3.2

N(v,a) → v1.
• v1 ∼ c: since {a, b, c} is dominating, v1 is adjacent to either b or c. Without
loss of generality, assume v1 ∼ c.
• v1 � b: otherwise, G contains K4(bcvv1).

N(v1,b) → v2.
• v2 ∼ a: assume v2 � a. We have v2 ∼ v, otherwise, G contains P5(v2v1vba).
Also, v2 ∼ c since {a, b, c} is a dominating set. But then, G contains K4(v1v2vc).
• v2 � c: otherwise, G contains W5(abvv1v2, c).
• v2 ∼ v: otherwise, c has four neighbors in the 5-hole v2abvv1 contradicting
Lemma 3.1.

N(v2, c) → v3.
• v3 ∼ b: assume v3 � b. We have v3 ∼ a since {a, b, c} is a dominating
set. We have v3 � v1, otherwise, G contains S1(vbav3v2, c, v1). But then G
contains P5(v3v2v1cb).
• v3 � v; otherwise, G contains W5(bcv1v2v3, v).
• v3 ∼ v1: otherwise, v has four neighbors in the 5-hole v3bcv1v2 contradict-
ing Lemma 3.1.
• v3 � a: otherwise G contains S1(v3acvv1, b, v2).



N(v3,v) → v4.
• v4 ∼ c: assume v4 � c. Then we have v4 ∼ v2, for otherwise G contains
P5(v4v3v2vc); v4 � v1, for otherwise G contains K4(v1v2v3v4); v4 � b,
for otherwise G contains S1(v1v2v4bc, v3, v); v4 ∼ a because {a, b, c} is
dominating. But then G contains P5(v4abvv1).
• v4 � v1: for otherwise G contains W5(v4v3v2vc, v1).
• v4 � b: for otherwise, G contains S1(vv1v3v4b, v2, c).
• v4 � a: for otherwise, G contains P5(v4abvv1).
• v4 ∼ v2: for otherwise the vertex v1 has exactly four neighbors in the 5-hole
v4v3v2vc contradicting Lemma 3.1.

N(a,v) → v5.
• v5 � v3: Assume v5 ∼ v3. Then we have v5 ∼ v1, for otherwise G contains
P5(av5v3v1v); v5 � v2, for otherwise G contains K4(v1v2v3v5); v5 ∼ c, for
otherwise G contains P5(v5v3v2vc). But now G contains W5(v5cvv2v3, v1).
• v5 ∼ b: assume v5 � b. Then we have v5 ∼ v1, for otherwise G contains
P5(v5abvv1). But then c has four neighbors in the 5-hole v5abvv1 contradict-
ing Lemma 3.1.
• v5 � c: for otherwise G contains K4(abcv5).
• v5 ∼ v1: for otherwise G contains P5(v5acv1v3).
• v5 ∼ v4: for otherwise G contains P5(v3v4cav5).
• v5 � v2: for otherwise G contains S1(cvv2v5a, v1, b).

N(v5, c) → v6.
• v6 ∼ v: assume v6 � v. We have v6 ∼ a, for otherwise G contains
P5(v6v5acv); v6 � b, for otherwise G contains K4(abv5v6); v6 ∼ v1, for
otherwise, G contains P5(v6abvv1). But c has four neighbors in the 5-hole
v6abvv1 contradicting Lemma 3.1.
• v6 � b: for otherwise G contains W5(v5v6vca, b).
• v6 � v2: for otherwise G contains P5(v2v6v5bc).
• v6 ∼ v3: for otherwise G contains P5(v5v6vv2v3)
• v6 ∼ a: for otherwise G contains P5(v3v6v5ac).
• v6 � v1: for otherwise G contains S1(v6abcv, v5, v1).
• v6 � v4: for otherwise G contains T (v6av5b, v3v2v1v, v4, c).

N(v4,v1) → v7.
• v7 ∼ v: assume v7 � v. Then we have v7 ∼ v3, for otherwise G contains
P5(v7v4v3v1v); v7 � v2, for otherwise G contains K4(v2v3v4v7); v7 ∼ c,
for otherwise G contains P5(v7v3v2vc). Now, G contains S1(v2vcv7v3, v1, v4).
• v7 � v2: for otherwise G contains W5(vv1v3v4v7, v2).
• v7 � v6: for otherwise G contains P5(v6v7v4v2v1).
• v7 ∼ a: for otherwise G contains P5(v4v7vv6a).
• v7 ∼ v3: for otherwise G contains P5(av7vv1v3).
• v7 � c: for otherwise G contains S1(v3v4cvv1, v7, v2).
• v7 � b: for otherwise G contains P5(v7bcv1v2).
• v7 � v5: for otherwise G contains T (av7v5v4, cvv1v2, b, v3).



N(v6,b) → v8.
• v8 ∼ c: assume v8 � c. Then we have v8 ∼ a because {a, b, c} is a dom-
inating set; v8 ∼ v5, for otherwise G contains P5(v8v6v5bc). But now, G
contains K4(av5v6v8).
• v8 � a: for otherwise G contains W5(v8v6v5bc, a).
• v8 � v1: for otherwise G contains P5(bav6v8v1).
• v8 ∼ v2: for otherwise G contains P5(v2v1cv8v6).
• v8 ∼ v5: for otherwise G contains P5(v8v2v1v5b).
• v8 � v4: for otherwise G contains P5(v4v8v6ab).
• v8 � v: for otherwise G contains S1(bcv8v6a, v, v5).
• v8 � v3: for otherwise G contains T (v6av5b, v3v2v1v, v8, c).
• v8 ∼ v7: for otherwise G contains P5(v8v5bv3v7).

N(v8,a) → v9.
• v9 ∼ b: assume v9 � b. We have v9 ∼ v2, for otherwise G contains
P5(v9v8v2ab); v9 ∼ v6, for otherwise G contains P5(v9v8v6ab). This means
G contains T (v6v8v9v2, abcv, v5, v1).
• v9 ∼ v1: assume v9 � v1. We have v9 ∼ v2, for otherwise G contains
P5(v9bav2v1). This means G contains T (v2vv1c, v8v6v5a, v9, b).
• v9 ∼ v6: for otherwise G contains P5(v1v9bav6).
• v9 ∼ v7: for otherwise G contains P5(v1v9bav7).
• v9 ∼ v4: assume v9 � v4. Then we have v9 ∼ v2, for otherwise G contains
P5(v9bav2v4). This means G contains T (v6av5b, v9v2v1v, v8, c).

But this means G contains B(c, v5abv6v7v8, v2v1vv3v9v4), a contradiction. ut

Lemma 3.3. Let G be an MN3P5 with a dominating clique {a, b, c}. Let A = N(a)−
{b, c}, B = N(b)− {a, c} and C = N(c)− {a, b}. Suppose A, B and C are pairwise
disjoint. Then G ∈ G.

Proof. Some observations are necessary for this proof.

Observation 3.1. Let X and Y be two distinct elements of {A,B, C}. Let X ′ be a
component in X with at least two vertices, and y be a vertex in Y . Then either y is
adjacent to all vertices of X ′ or to no vertex of X ′.

Proof. Suppose the Observation is false. Then there are adjacent vertices v1, v2 ∈ X
such that y is adjacent to exactly one of v1, v2. Without loss of generality, we may
assume X = A and Y = B. Now, {c, b, y, v2, v1} induces a P5, a contradiction. ut

Observation 3.2. Every component in A, B or C is a single edge or one vertex.

Proof. Assume that one of A, B or C contains a vertex of degree 2. Without loss of
generality, assume there is such a vertex a0 ∈ A that is adjacent to two other distinct
vertices a1 and ax in A. Now we have a1 � ax, for otherwise G contains K4(a1axa0a).
The Neighborhood Lemma implies N(a1,ax) → a2 and N(ax,a1) → ay. Observa-
tion 3.1 implies a2, ay ∈ A. We have ay � a0, for otherwise G contains K4(aa0axay);
a2 � a0, for otherwise G contains K4(aa0a1a2); ay ∼ a2, for otherwise G contains
P5(ayaxa0a1a2). Then G contains W5(ayaxa0a1a2, a), a contradiction. ut



We continue the proof of the Lemma. Assume G /∈ G. Consider the case that two
of A, B or C contain an edge. Without loss of generality, assume A contains an edge
a1a2 and B contains an edge b1b2. If a vertex in {b1, b2} is adjacent to a vertex in
{a1, a2} then by Observation 3.1, G contains K4(a1a2b1b2), a contradiction. Suppose
some vertex c0 ∈ C is adjacent to a vertex in {a1, a2, b1, b2}. We may assume c0 ∼
a1. By Observation 3.1, we have c0 ∼ a2. If c0 � bi (i = 1, 2) then G contains
P5(bibcc0a1). So, c0 is adjacent to all vertices of {a1, a2, b1, b2}. But now, G contains
S1(c0a1abb1, a2, b2). So, no vertex in C is adjacent to a vertex in {a1, a2, b1, b2}. By
Fact 2.1 and Observation 3.2, there exists a vertex a3 ∈ A with b1, b2 ∼ a3 and a
vertex b3 ∈ B with a1, a2 ∼ b3. Also by Fact 2.1, C contains a vertex c0. We have
a3 ∼ c0, for otherwise G contains P5(a3b1bcc0); b3 ∼ c0, for otherwise G contains
P5(b3a1acc0); a3 ∼ b3, for otherwise G contains P5(b1a3c0b3a1). But now G contains
T (aa1a2b3, bb1b2a3, c, c0) which is a contradiction. So, at most one of A,B,C contains
an edge.

If all of A,B,C is a stable set, then G is obviously 3-colorable. We may assume
B,C are stable sets, and A contains an edge. Now there must be one vertex b0 ∈
B with N(b0) contains two adjacent vertices in A. Otherwise, G admits a 3-coloring
f as follows. The vertices of C are colored with color 3. Now, for each edge in A,
its endpoints are arbitrarily colored with colors 1, 2. The remaining vertices of A are
colored with color 1. The vertices of B are colored with color 2 (no vertex of B is
adjacent to an endpoint of a edge of A by Observation 3.1), and let f(a) = 3, f(b) =
1, f(c) = 2. Thus, f is a 3-coloring which is a contradiction. Therefore, there is a vertex
b1 ∈ B adjacent to both endpoints in some edge ab1ab2 in A. By a similar argument,
there is a vertex c1 ∈ C adjacent to both endpoints in some edge ac1ac2.

Suppose that ab1ab2 and ac1ac2 are the same edge. For simplicity, write a1a2 =
ab1ab2 = ac1ac2. We have b1 � c1, for otherwise G contains K4(a1a2b1c1).

• N(b1,a) → c2. We have c2 ∈ C by the fact that B is an independent set.
• N(c1,a) → b2. We have b2 ∈ B by the fact that C is an independent set.
• b2, c2 � a1, a2. Otherwise, suppose b2 ∼ a1. Then by Observation 3.1, we
have b2 ∼ a2 so G contains K4(a1a2b2c1).
• b2 ∼ c2. Otherwise, G contains P5(c1b2bb1c2).

Now, G contains P5(b2c2caa1). Thus, ab1ab2 and ac1ac2 are distinct edges. We
have b1 � ac1, ac2 and c1 � ab1, ab2, for otherwise we are done by the previous case.
We have b1 ∼ c1, for otherwise G contains P5(b1ab1aac1c1). But now G contains
S1(ab1ab1b1c1ac1, ab2, ac2), a contradiction. ut

Lemma 3.4. Let G be an MN3P5 with a dominating clique {a, b, c}. Then G ∈ G.

Proof. If there is a vertex other than a, b and c adjacent to at least two of a, b or c then
by Lemma 3.2, G ∈ G. Otherwise, the conclusion follows from Lemma 3.3. ut

Lemma 3.5. Let G be an MN3P5 with a dominating clique {a, b} of size 2. Then G ∈
G.

Proof. Assume G /∈ G. We may assume G contains no dominating 3-clique, for other-
wise we are done by Lemma 3.4. It follows that no vertex v is adjacent to both a, b.



By Theorem 3.1, there is 5-hole C = v1v2v3v4v5 in G because G 6= K4. Clearly C
cannot contain both a and b. WLOG, assume that |N(a) ∩ C| ≥ |N(b) ∩ C|. If b /∈ C
then since {a, b} is a dominating clique of G we have |N(a) ∩ C| ≥ 3. If b ∈ C, then
a must be adjacent to the 2 vertices in C not adjacent to b. Thus, since a ∼ b we also
have |N(a) ∩ C| ≥ 3. The case when |N(a) ∩ C| ≥ 4 is handled by Lemma 3.1, so
WLOG we may assume either N(a) ∩ C = {v1, v2, v3} or N(a) ∩ C = {v1, v3, v4}.

Suppose N(a)∩C = {v1, v2, v3}. Since {a, b} is a dominating clique, we have b 6∈
C and b ∼ v4, v5. Since no vertex is adjacent to both a and b, G contains P5(bv5v1v2v3),
a contradiction. Now, we may assume N(a) ∩ C = {v1, v3, v4}. There exists a vertex
x with x � a, v3, v4, for otherwise {a, v3, v4} is dominating 3-clique. If x ∼ v5, then
x ∼ v2, for otherwise G contains P5(xv5v4v3v2); but now G contains P5(v2xv5v4a).
Thus, we have x � v5 and by symmetry x � v2. Since {a, b} is a dominating clique,
we have x ∼ b, and b ∼ v2, v5. Recall that no vertex is adjacent to both a, b. Now, G
contains P5(xbv5v4v3) which is a contradiction. ut

Theorem 3.2. If G is an MN3P5 with a dominating clique then G ∈ G.

Proof. If G has a dominating clique of size one or two, then it has a dominating clique
of size 2 since G contains no isolated vertices. By Lemma 3.5, G ∈ G. If G has a
dominating clique of size 3, then Lemma 3.4 implies G ∈ G. If G has a dominating
clique of size 4 or more, then G contains a K4 so G = K4 ∈ G by minimality. ut

Lemma 3.6. Let G be an MN3P5 with a dominating 5-hole. Then G has a dominating
K3 or G ∈ G.

Proof. Let C = v1v2v3v4v5 be an induced 5-hole of G. Assume G does not have a
dominating clique. Let Xi be the set of vertices adjacent to vi−1 and vi+1 and not
adjacent to vi+2 and vi+3 with the subscript taken modulo 5 (i.e., v0 = v5), for i =
1, 2, 3, 4, 5. We now prove every vertex of G belongs to exactly one Xi.

Consider a vertex w 6∈ C. By Lemma 3.1, we have 1 ≤ |N(w) ∩ C| ≤ 3. If w has
one neighbor in C, then G obviously contains a P5. Suppose w has two neighbors a, b
in C. If a ∼ b, then G obviously contains a P5. Otherwise, a and b have distance two on
C and so w belongs to some Xi. We may now assume w has three neighbors on C. If
these three neighbors are consecutive on C, then w belongs to some Xi. Now, we may
assume w ∼ v1, v3, v4. There is a vertex x with x � w, v4, v3, for otherwise {w, v4, v3}
is a dominating clique. Vertex x must have a neighbor in {v1, v2, v5} because C is a
dominating set. If x ∼ v5, then x ∼ v2, for otherwise G contains P5(xv5v4v3v2);
but now G contains P5(v2xv5v4w). Thus, we have x � v5 and by symmetry x � v2.
Now, we have x ∼ v1, and G contains P5(xv1v5v4v3). Thus, X1, X2, X3, X4, X5 is a
partition of V (G).

If there are nonadjacent vertices x1, x2 with x1 ∈ X1, x2 ∈ X2, then G contains
P5(x1v5v4v3x2). Thus, there are all possible edges between Xi and Xi+1 for all i.
If every Xi is a stable set, then G is obviously 3-colorable, a contradiction. So we
may assume WLOG X5 contains an edge ab. Then X1 is a stable set, for otherwise G
contains a K4 with one edge in X1 and one edge in X5. Similarly, X4 is a stable set. If
X2 contains an edge cd, then G contains S1(v1cv3v4a, d, b). If X3 contains an edge fg,
then G contains S1(v4fv2v1a, g, b). Thus, Xi is a stable set for i = 1, 2, 3, 4. Consider



the subgraph H of G induced by X5. If H contains an odd cycle D, then D ∪ {v1} is
a K4 or W5, or D contains a P5. Thus H is bipartite. By coloring X5 with colors 2,3,
X1 ∪X4 with color 1, X2 with color 2, X3 with color 3, we see that G is 3-colorable,
a contradiction. ut

4 Proof of Theorem 1.1

We can now prove the main theorem.
It is a routine matter to verify the “only if” part. We only need prove the “if” part.

Suppose G does not contain any of the graphs in Fig. 1 but is not 3-colorable. Then G
contains an induced subgraph that is minimally not 3-colorable. It follows that we may
assume G is a connected MN3P5 graphs. By Theorem 2.2, G contains a dominating
clique or P3. If G contains a dominating clique, then we are done by Theorem 3.2. So,
we may assume G contains no dominating clique and thus contains a dominating P3

with vertices v1, v2, v3 and edges v1v2, v2v3. There is a vertex v4 with v4 ∼ v3 and
v4 � v1, v2 since v1v2 is not a dominating edge. Similarly, there is a vertex v5 with
v5 ∼ v1 and v5 � v2, v3. We have v5 ∼ v4, for otherwise G contains a P5. Thus,
v1v2v3v4v5 is a dominating 5-hole of G, and we are done by Lemma 3.6. 2

5 Conclusion and Open Problems

In this paper, we provide a certifying algorithm for the problem of 3-coloring a P5-graph
by showing there are exactly six finite minimally non-3-colorable graphs. Previously
known algorithms ([6, 11, 14]) provide a yes-certificate by constructing a 3-coloring if
one exists. Our algorithm provides a no-certificate by finding one of the six graphs of
Fig. 1. Since these graphs are finite, our algorithm runs in polynomial time. We do not
know if there is a fast algorithm running in, say, O(n4) to test if a graph contains one
of the six graphs of Fig. 1 as a subgraph. We leave this as an open problem.

In [5, 6], it is shown for every fixed k, determining if a P5-free graph is k-colorable
is polynomial-time solvable. It is tempting to speculate that these two algorithms work
because for every fixed k, there is a function f(k) such that every minimally non-
k-colorable P5-free graph has at most f(k) vertices. The result of this paper can be
viewed as a first step in this direction.
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