
A Certifying Compiler for Zero-Knowledge

Proofs of Knowledge Based on Σ-Protocols�

José Bacelar Almeida1, Endre Bangerter2, Manuel Barbosa1,
Stephan Krenn3, Ahmad-Reza Sadeghi4, and Thomas Schneider4

1 Universidade do Minho, Portugal
{jba,mbb}@di.uminho.pt

2 Bern University of Applied Sciences, Biel-Bienne, Switzerland
endre.bangerter@jdiv.org

3 Bern University of Applied Sciences, Biel-Bienne, Switzerland, and
University of Fribourg, Switzerland

stephan.krenn@bfh.ch
4 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) are impor-
tant building blocks for numerous cryptographic applications. Although
ZK-PoK have a high potential impact, their real world deployment is
typically hindered by their significant complexity compared to other
(non-interactive) crypto primitives. Moreover, their design and imple-
mentation are time-consuming and error-prone.

We contribute to overcoming these challenges as follows: We present
a comprehensive specification language and a compiler for ZK-PoK pro-
tocols based on Σ-protocols. The compiler allows the fully automatic
translation of an abstract description of a proof goal into an executable
implementation. Moreover, the compiler overcomes various restrictions
of previous approaches, e.g., it supports the important class of exponenti-
ation homomorphisms with hidden-order co-domain, needed for privacy-
preserving applications such as DAA. Finally, our compiler is certifying,
in the sense that it automatically produces a formal proof of the sound-
ness of the compiled protocol for a large class of protocols using the
Isabelle/HOL theorem prover.

Keywords: Zero-Knowledge, Protocol Compiler, Formal Verification.

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between
a prover and a verifier, which allows the prover to convince the verifier that
he knows a secret value that satisfies a given relation (proof of knowledge or

� This work was in part funded by the European Community’s Seventh Framework
Programme (FP7) under grant agreement no. 216499. The compiler can be found at
http://zkc.cace-project.eu, and a full version of this paper is given in [1].

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 151–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://zkc.cace-project.eu


152 J.B. Almeida et al.

soundness), without the verifier being able to learn anything about the secret
(zero-knowledge). For a formal definition we refer to [2].

Almost all practically efficient ZK-PoK are based on so-called Σ-protocols,
and allow one to prove knowledge of a preimage under a homomorphism (e.g.,
a secret discrete logarithm). These preimage proofs can then be combined to
considerably more complex protocols. In fact, many systems in applied crypto-
graphy use such proofs as building blocks. Examples include voting schemes [3],
biometric authentication [4], group signatures [5], interactive verifiable compu-
tation [6], e-cash [7], and secure multiparty computation [8].

While many of these applications only exist at the specification level, directed
applied research efforts have already brought innovative systems using ZK-PoKs
to the real world. The probably most prominent example is Direct Anonymous
Attestation (DAA) [9], a privacy enhancing mechanism for remote authentication
of computing platforms. Another example is the idemix anonymous credential
system [10] for user-centric identity management.

Up to now, design, implementation and verification of the formal security
properties (i.e., zero-knowledge and soundness) as well as code security proper-
ties (e.g., security against side channel vulnerabilities, etc.) is done “by hand”.
Past experiences, for example in realizing DAA and idemix, have shown that
these are time consuming and error prone tasks. This is certainly due to the
fact that ZK-PoK are considerably more complex than other non-interactive
cryptographic primitives such as encryption schemes.

In particular, the soundness property needs to be proved for each ZK-PoK
protocol from scratch. The proofs often are not inherently complex, but still
require an intricate knowledge of the techniques being used. This is a major
hurdle for the real world adoption of ZK-PoK, since even experts in the field are
not immune to protocol design errors. In fact, minor flaws in protocol designs
can lead to serious security flaws, see for example [11] reporting a flaw in [12].

In this paper we describe a compiler and integrated tools that support and par-
tially automate the design, implementation and formal verification of ZK-PoK
based on Σ-protocols. Our goal is to overcome the aforementioned difficulties
concerning ZK-PoK, and thus to bring ZK-PoK to practice by making them
accessible to a broader group of crypto and security engineers.

Our Contributions. In a nutshell, we present a toolbox that takes an abstract
description of the proof goal1 of a ZK-PoK as input, and produces a C im-
plementation of a provably sound protocol. More precisely, we extend previous
directions with multiple functionalities of practical and theoretical relevance:

– We present a compiler for ZK-PoK based on Σ-protocols. The compiler (and
its input language) support all relevant basic Σ-protocols and composition
techniques found in the literature. The user can specify preimage proofs for
arbitrary group homomorphisms, and combine them by logical AND and OR
operators. Also, algebraic relations among the secrets can be proved.

1 By proof goal, we refer to what a prover wants to demonstrate in zero-knowledge.
For instance, the proof goal can be to prove knowledge of a discrete logarithm.



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 153

Examples of protocols that can be automatically generated by our com-
piler include [3,4,5,6,7,8,9,10,13,14,15,16].

– The compiler absorbs certain design-level decisions, for example by auto-
matically choosing security parameters and intervals used in the protocols
to assert the statistical ZK property for proofs in hidden order groups. It thus
eliminates the potential of security vulnerabilities resulting from inconsistent
parameter choices. Further, the compiler has capabilities to automatically
rewrite the proof goal to reduce the complexity of the generated protocol.

– Last but not least, our compiler partially alleviates the implementor from the
responsibility to establish a theoretical security guarantee for the protocol,
by producing a formal proof of its soundness2. Technically, the compiler
produces a certificate that the protocol generated by the compiler fulfills its
specification. The validity of the certificate is then formally verified by the
Isabelle/HOL formal theorem prover [17]. Our tool can therefore be seen as
a certifying compiler. The formal verification component currently supports
a subset of the protocols for which our compiler can generate code, but it
already covers a considerable class of applications, including [7,13,14].

Related Work. Compiler based (semi-)automatic generation of cryptographic
protocols has attracted considerable research interest recently, for instance in
the field of multi-party computations [18,19,20].

A first prototype ZK-PoK compiler was developed in [21,22] and extended
within the CACE project [23,24]. Yet, this compiler offers no optimization or
verification functionalities and can only handle a subset of the proof goals sup-
ported by our compiler whose architecture was presented in [25].

Very recently, Meiklejohn et al. [26] presented another ZK-PoK compiler for
specific applications such as e-cash. To maximize efficiency, their tool generates
protocols which exploit precomputations, a feature which is not yet supported
by our compiler. However, our compiler provides a substantially broader class
of proofs goals such as Or-compositions, and homomorphisms such as RSA [27].
Further, formal verification is left as an “interesting area of study” in [26].

Symbolic models that are suitable for expressing and formally analyzing pro-
tocols that rely on ZK protocols as building blocks were presented in [28,29].
In [28] the first mechanized analysis framework for such protocols was proposed
by extending the automatic tool ProVerif [30]. The work in [31] proposed an
alternative solution to the same problem based on a type-based mechanism. Our
work does not overlap with these contributions, and can be seen as complemen-
tary. The previous frameworks assume that the underlying ZK-PoK components
are secure under adequate security models in order to prove the security of higher
level protocols. We work at a lower level and focus on proving that specific ZK-
PoK protocols generated by our compiler satisfy the standard computational

2 The soundness property is arguably the most relevant security property for many
practical applications of ZK-PoK, as it essentially establishes that it is infeasible to
prove an invalid knowledge claim. However, our tool is currently being expanded to
cover other relevant security properties, namely the zero-knowledge property.



154 J.B. Almeida et al.

security model for this primitive. Recent results in establishing the computa-
tional soundness of ZK-PoK-aware symbolic analysis can be found in [32]. Cur-
rently, we do not establish a connection between the security properties offered
by the ZK-PoK protocols produced by our compiler and the level of security
required to enable the application of computational soundness results.

We follow a recent alternative approach to obtaining computational security
guarantees through formal methods: directly transposing provable security argu-
ments to mechanized proof tools. This allows to deal directly with the intricacies
of security proofs, but the potential for mechanization is yet to match that of
symbolic analysis. In this aspect, our work shares some of its objectives with par-
allel work by Barthe et al. [33] describing the formalization of the theory of ZK-
PoK in the Coq-based CertiCrypt tool [34]. This formalization includes proofs
for the general theorems that establish the completeness, soundness and special
honest-verifier ZK properties for Σ-protocols based on homomorphisms. Proving
that a concrete protocol satisfies this set of properties can then be achieved by
instantiating these general proofs with concrete homomorphisms. Although not
completely automatic, this requires relatively small interaction with the user. In
this work we provide further evidence that the construction of computational
security proofs over mechanized proof tools can be fully automatic. The catch
is that our verification component is highly specialized for (a specific class of)
ZK-PoK and relies on in-depth knowledge on how the protocol was constructed.

Our work is also related to the formal security analysis of cryptographic pro-
tocol implementations. A tool for the analysis of cryptographic code written in
C is proposed in [35]. In [36,37], approaches for extracting models from protocol
implementations written in F#, and automatically verifying these models by
compilation to symbolic models (resp. computational models) in ProVerif [38]
(resp. CryptoVerif [39]), can be found. As above, the latter works target higher
level protocols such as TLS that use cryptographic primitives as underlying com-
ponents. Furthermore, the static cryptographic library that implements these
primitives must be trusted by assumption. Our work can be seen as a first step
towards a tool to automatically extend such a trusted computing base when ZK-
PoK protocols for different goals are required.

Structure of this document. In §2 we recap the theoretical framework used
by our compiler, which we then present in §3. Finally, the formal verification
infrastructure is explained in §4.

2 Preliminaries

Before recapitulating the basics of Σ-protocols we introduce some notation. By
s ∈R S we denote the uniform random choice of s from set S. The order of
a group G is denoted by ord(G), and the smallest prime dividing a ∈ Z by
minDiv(a). We use the notation from [40] for specifying ZK-PoK. A term like

ZPK

[
(χ1, χ2) : y1 = φ1(χ1) ∧ y2 = φ2(χ2) ∧ χ1 = aχ2

]



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 155

means “zero-knowledge proof of knowledge of values χ1, χ2 such that y1 = φ1(χ1),
y2 = φ2(χ2), and χ1 = aχ2” with homomorphisms φ1, φ2. Variables of which
knowledge is proved are denoted by Greek letters, whereas publicly known quan-
tities are denoted by Latin letters. Note that this notation only specifies a proof
goal : it describes what has to be proved, but there may be various, differently
efficient protocols to do so. We call a term like y = φ(χ) in the proof goal an
atom. A predicate is the composition of atoms and predicates using arbitrary
many (potentially none) boolean operators And (∧) and Or (∨).

2.1 Σ-Protocols as ZK-PoK Protocols

Most practical ZK-PoK are based on Σ-protocols. Given efficient algorithms
P1,P2,V, these have the following form: to prove knowledge of a secret χ satis-
fying a relation with some public y, the prover first sends a commitment t :=
P1(χ, y) to the verifier, who then draws a random challenge c from a predefined
challenge set C. Receiving c, the prover computes a response s := P2(χ, y, c).
Now, if V(t, c, s, y) = true, the verifier accepts the proof, otherwise it rejects.
Whenever the verifier accepts, we call (t, c, s) an accepting transcript.

Formally, for the protocol to be a proof of knowledge with knowledge error κ,
the verifier must always accept for an honest prover. Furthermore, there must
be an algorithm E′ satisfying the following: whenever a (potentially malicious)
prover can make the verifier accept with probability ε > κ, E′ can extract χ from
the prover in a number of steps proportional to (ε − κ)−1 [2]. For Σ-protocols,
this boils down to the existence of an efficient knowledge extractor E, which takes
as inputs two accepting protocol transcripts (t, c′, s′), (t, c′′, s′′) with c′ �= c′′, and
y, and outputs a value χ′ satisfying the relation [41,42].

A Σ-protocol satisfies the ZK property, if there is an efficient simulator S,
taking c, y as inputs, and outputting tuples that are indistinguishable from real
accepting protocol transcripts with challenge c [41,42].

2.2 Proving Atoms

We next summarize the basic techniques for proving atoms.

The Σφ-Protocol. The Σφ-protocol allows to efficiently prove knowledge of
preimages under homomorphisms with a finite domain [13,43]. For instance,
it can be used to prove knowledge of the content of ciphertexts under the
Cramer/Shoup [44] or the RSA [27] encryption schemes. Also, it can be used
for all homomorphisms mapping into a group over elliptic curves.

The protocol flow, as well as inputs and outputs of both parties, are shown
in Fig. 1. Depending on the homomorphism φ, the knowledge error κ of the
Σφ-protocol varies significantly. We thus recall a definition by Cramer [41].

A homomorphisms φ : G → H is called special, if there is a v ∈ Z \ {0}, such
that for every y ∈ H a preimage u of yv can efficiently be computed. The pair
(u, v) is then called a pseudo-preimage of y. For instance, all homomorphisms
with known-order codomain are special: if ord(H) = q, a pseudo-preimage of
y ∈ H is given by (0, q), as we always have φ(0) = 1 = yq.



156 J.B. Almeida et al.

P[y, x] V[y]

P1 r ∈R G
t := φ(r) t � c ∈R C

P2 s := r + c · x c�

s � φ(s)
?
= t · yc → true/false V

Fig. 1. The Σφ-protocol for performing ZPK[(χ) : y = φ(χ)]

We now state the knowledge error that can be achieved by the Σφ-protocol:

Theorem 1 ([41]). Let φ be a homomorphism with finite domain. Then the
Σφ-protocol using C = {0, . . . , cmax − 1} is a ZK-PoK with κ = 1/cmax, if either
cmax = 2, or φ is special with special exponent v and cmax ≤ minDiv(v).

The ΣGSP- and the Σexp-Protocols. The practically important class of expo-
nentiation homomorphisms with hidden-order codomain (including, for example,
φ : Z → Z

∗
n : a �→ ga, where n is an RSA modulus, and g generates the quadratic

residues modulo n) cannot be treated with the Σφ-protocol.
Two Σ-protocols for such homomorphisms can be found in the literature.

The ΣGSP-protocol generalizes the Σφ-protocol to the case of infinite domains
(i.e., G = Z), and can be used very efficiently if assumptions on the homo-
morphism φ are made [45,46]. On the other hand, the so-called Σexp-protocol
presented in [23,47] takes away these assumptions, by adding an auxiliary con-
struction based on a common reference string and some computational overhead.

2.3 Operations on Σ-Protocols

Next, we briefly summarize some techniques, which allow one to use Σ-protocols
in a more general way than for proving atoms only.

Reducing the knowledge error. The knowledge error of a Σ-protocol can be
reduced from κ to κr by repeating the protocol r times in parallel. In this way,
arbitrarily small knowledge errors can be achieved [2].

Composition techniques. In practice, it is often necessary to prove knowledge
of multiple, or one out of a set of, secret values in one step. This can be achieved
by performing so-called And- or Or-compositions, respectively. While the former
requires the prover to know the secrets for all combined predicates to convince
the verifier, he only needs to know at least one of them for the latter [48].

For a Boolean And, the only difference to running the proofs for the combined
predicates independently in parallel is that the verifier only sends one challenge
c, which is then used in all combined predicates.

Combining n predicates by a Boolean Or is slightly more involved. The prover
is allowed to simulate all-but-one accepting protocol transcripts (for the pred-
icates it does not know the secrets for) by allowing it to choose the according



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 157

ci. The remaining challenge is then fixed such that
∑n

i=1 ci ≡ c mod cmax. To
ensure this, the response is now given by ((s1, c1), . . . , (sn, cn)), where si is the
response of the i-th predicate. In addition to running all verification algorithms,
the verifier also checks that the ci add up to the challenge c.

In principle, any Boolean formula can be proved by combining these two
techniques. Yet, when proving knowledge of k out of n secrets this becomes very
inefficient if n is large. A much more efficient way for performing such n-out-of-
k threshold compositions is to apply the technique from [49], instantiated with
Shamir’s secret sharing scheme [50].

Non-interactivity. By computing the challenge as hash of the commitment t
with a random oracle, a Σ-protocol can be made non-interactive [51]. Besides
reducing the round- and communication complexity of the proofs, this technique
allows conversion into signature proofs of knowledge as well.

Algebraic relations among preimages. By re-adjusting the atoms of a proof
goal, virtually any algebraic relations among the preimages can be proven. For
examples we refer to [16,45,46,48,52,53].

3 Compiler

In this section we present a compiler, which is easy to use and that can generate
code and documentation for the ZK-PoK protocols used in most systems found
in the literature. Its modular design allows one to easily extend its functionality
with minor effort only. Finally, an integrated tool is capable of formally verifying
the soundness of the generated protocols for special homomorphisms.

3.1 Architecture

Our compiler is built from multiple components as shown in Fig. 2. These com-
ponents are again designed modularly themselves. Thus, enhancing the compiler
on a high level (e.g., adding backends) and on a low level (e.g., changing libraries
used in the backends) can be done without affecting unrelated components.

Protocol Specification. We call the input language of our compiler Protocol
Specification Language (or PSL). It is based on the standard notation for ZK-
PoK introduced in [40], but takes away any ambiguity by also containing group
specifications, etc. On a high level, PSL allows one to specify the protocol inputs,
the algebraic setting, the types of Σ-protocols to be used, and how they should
be composed (cf. §2.2 and §2.3). For a more detailed discussion of PSL see §3.2.

Protocol Compiler. The Protocol Compiler translates a PSL file into a proto-
col implementation formulated in our Protocol Implementation Language (PIL).
This language can be thought of as a kind of pseudo-code describing the se-
quence of operations computed by both parties (including group operations,
random choices, checks, etc.) and the messages exchanged.



158 J.B. Almeida et al.

BackendsLATEXC

Protocol
Specification

Language (PSL)

Protocol
Compiler

Plugins

Σ2NIZK

Costs

Protocol
Verification
Toolbox

Protocol
Implementation
Language (PIL)

Code Documentation

Proof of
Soundness

Fig. 2. Architecture of our ZK-PoK compiler suite

Backends. Backends allow to transform the protocol implementation into vari-
ous output languages. The C Backend generates source code in the C program-
ming language for prover and verifier which can be compiled and linked together
with the GNU multi-precision arithmetic library [54] into executable code. The
LATEX Backend generates a human-readable documentation of the protocol.

Protocol Verification Toolbox. This component takes as inputs a PSL file
together with the corresponding PIL file obtained from a compilation run. It first
extracts the necessary information for constructing a formal proof of the sound-
ness property of the generated protocol. The theorem prover Isabelle/HOL [55,56]
is then used to automatically check the generated formal proof. We give more
details on this toolbox in §4.

Plugins. Currently, two plugins are available in our compiler. The Σ2NIZK-
plugin transforms the generated protocol in a non-interactive version thereof
by applying the technique from [51], cf. §2.3. Its functionality could easily be
extended to signature proofs of knowledge. The Costs plugin determines the ab-
stract costs of the protocol by computing the communication complexity and the
number of group operations needed in any of the involved groups. This enables
a comparison of the efficiency of different protocols already on an abstract level.

3.2 Protocol Specification Language and Optimizations

Next, we illustrate usage of our compiler (and, in particular, PSL) using the
following informal statement from a group-oriented application as example:

“One of two legitimate users has committed to message m without re-
vealing m or the identity of the user who committed.”

For the example we assume that Pedersen commitments [14] were used to commit
to m. Such commitments are of the form c = gmhr for randomly chosen r. Here,
〈g〉 = 〈h〉 = H where H is a subgroup of prime order q of Z

∗
p for some prime p.

Further logg h must not be known to the committing party.



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 159

Declarations { Prime(1024) p;
Prime(160) q;
G=Zmod+(q) m, r, sk_1, sk_2;
H=Zmod*(p) g@{order=q}, h@{order=q}, c@{order=q},

pk_1@{order=q}, pk_2@{order=q}; }
Inputs { Public := p,q,g,h,c,pk_1,pk_2;

ProverPrivate := m,r,sk_1,sk_2; }
Properties { KnowledgeError := 80;

ProtocolComposition := P_0 And (P_1 Or P_2); }
GlobalHomomorphisms { Homomorphism (phi : G -> H : (a) |-> (g^a)); }
// Predicates
SigmaPhi P_0 { Homomorphism (psi : G^2 -> H : (a,b) |-> (g^a * h^b));

ChallengeLength := 80; Relation ((c) = psi(m,r)); }
SigmaPhi P_1 { ChallengeLength := 80; Relation ((pk_1) = phi(sk_1)); }
SigmaPhi P_2 { ChallengeLength := 80; Relation ((pk_2) = phi(sk_2)); }

Fig. 3. PSL Example

To authenticate users we use Diffie-Hellman keys: each user randomly picks a
sufficiently large secret key ski, computes the public key pki = gski and publishes
pki. For simplicity, we use the same group H for commitments and keys of users,
but the compiler could use different groups as well.

Now, given c, pk1, pk2, the informal statement translates into this proof goal:

ZPK

[
(μ, ρ, σ1, σ2) : c = gμhρ ∧ (

pk1 = gσ1 ∨ pk2 = gσ2
)]
.

With homomorphisms ψ : (a, b) �→ gahb and φ : (a) �→ ga we rewrite this as

ZPK

[
(μ, ρ, σ1, σ2) : c = ψ(μ, ρ)︸ ︷︷ ︸

P0

∧(
pk1 = φ(σ1)︸ ︷︷ ︸

P1

∨pk2 = φ(σ2)︸ ︷︷ ︸
P2

)]
,

where the atoms are P0, P1, and P2. This proof goal together with the underlying
algebraic setting can be expressed in PSL as shown in Fig. 3 and described next.
Each PSL file consists of the following blocks:

Declarations. All variables used in the protocol must first be declared here.
PSL supports several data types with a given bit-length such as integers (Int)
or primes (Prime). Also intervals ([a,b]) and predefined multiplicative and ad-
ditive groups are supported, e.g., Zmod*(p) (Z∗

p, ∗) and Zmod+(q) (Zq,+). Iden-
tifiers can be assigned to groups and constants can be predefined in this section.
The compiler also supports abstract groups, which can later be instantiated with
arbitrary groups (e.g., those over elliptic curves). The order of elements can be
annotated for verification purposes, e.g., as g@{order=q}.

Inputs. Here, the inputs of both parties have to be specified. Only inputs that
have been declared beforehand can be assigned.

Properties. This section specifies the properties of the protocol to be generated.
For instance, KnowledgeError := 80 specifies an intended knowledge error of
κ = 2−80. The proof goal can be specified by arbitrarily nesting atoms using
Boolean And and Or operators. Furthermore, the compiler supports k-out-of-n-
threshold compositions [49] based on Shamir secret sharing [50] (cf. §2.3).



160 J.B. Almeida et al.

Validate PSL/PIL
Extract Proof Goal 
and Verifier Code

Identity Proof 
Template

Instantiate Proof 
Template

Generate Isabelle 
Input File

Run Isabelle

PSL File PIL File

Accept/Fail

1 2 3

456

Fig. 4. Internal operation of the Protocol Verification Toolbox (PVT)

GlobalHomomorphisms. Homomorphisms that appear in multiple atoms can
be defined globally in this optional section. Describing homomorphisms in PSL
is a natural translation from their mathematical notation consisting of name,
domain, co-domain, and the mapping function.

Predicates. Finally, the atoms used in ProtocolComposition are specified.
Each predicate is proved with a Σ-protocol: one of SigmaPhi, SigmaGSP or
SigmaExp. For each Σ-protocol, the relation between public and private values
must be defined using local or global homomorphisms. ChallengeLength speci-
fies the maximum challenge length that can be used to prove this atom with the
given Σ-protocol (cf. §2.2 for details). Note that, in general, this value cannot be
automatically determined by the compiler. It may depend, for example, on the
size of the special exponent of the homomorphism, whose factorization might
not be available. The compiler then automatically infers the required number of
repetitions of each atom from this specification.

Optimizations. The compiler automatically transforms the proof goal in order
to reduce its complexity. For instance, P_1 Or P_2 Or (P_1 And P_2) is sim-
plified to P_1 Or P_2, which halves the complexity of the resulting protocol. By
introspecting the predicates, further optimizations could be implemented easily.

4 Verification

The Protocol Verification Toolbox (PVT) of our compiler suite (cf. Fig. 2) au-
tomatically produces a formal proof for the soundness property of the compiled
protocol. That is, it formally validates the guarantee obtained by a verifier exe-
cuting the protocol: “The prover indeed knows a witness for the proof goal.”

Overview. The internal operation of the PVT is sketched in Fig. 4; the phases
(1) to (6) are explained in the following. As inputs, two files are given: the pro-
tocol specification (a PSL file) that was fed as input to the compiler, and the
protocol implementation description that was produced by the compiler (a PIL
file). The PVT first checks (1) the syntactic correctness of the files and their
semantic consistency (e.g., it verifies that the PSL and PIL files operate on the



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 161

same groups, and other similar validations). Then, the information required for
the construction of the soundness proof is extracted (2). This information essen-
tially consists of the proof goal description from the PSL file and the code for the
verifier in the implementation file. In particular, the former includes the defini-
tion of the concrete homomorphisms being used in the protocol, and information
about the algebraic properties of group elements and homomorphisms3.

The reason for the verification toolbox only considering the verifier code is
that by definition [2] the soundness of the protocol essentially concerns providing
guarantees for the verifier, regardless of whether the prover is honestly executing
the protocol or not. Looking at the description of Σ-protocols in §2, one can see
that the verifier code typically is very simple. The exception is the final algebraic
verification that is performed on the last response from the prover, which deter-
mines whether the proof should be accepted. The theoretical soundness proof
that we construct essentially establishes that this algebraic check is correct with
respect to the proof goal, i.e., that it assures the verifier that the prover must
know a valid witness. The soundness proof is then generated in three steps:

a) An adequate proof template is selected from those built into the tool (3). If
no adequate template exists, the user is notified and the process terminates.

b) The proof template is instantiated with the concrete parameters correspond-
ing to the input protocol (4) and translated into an output file (5) compatible
with the Isabelle/HOL proof assistant: a theory file.

c) The proof assistant is executed on the theory file (6). If the proof assistant
successfully finishes, then we have a formal proof of the theoretical sound-
ness of the protocol. Isabelle/HOL also permits generating a human-readable
version of the proof that can be used for product documentation.

The process is fully automatic and achieving this was a major challenge to our
design. As can be seen in Fig. 4, our tool uses Isabelle/HOL [56] as a back-end (6).
In order to achieve automatic validation of the generated proofs, it was necessary
to construct a library of general lemmata and theorems in HOL that capture,
not only the properties of the algebraic constructions that are used in ZK-PoK
protocols, but also the generic provable security stepping stones required to es-
tablish the theoretical soundness property. We therefore employed and extended
the Isabelle/HOL Algebra Library [57], which contains a wide range of formal-
izations of mathematical constructs. By relying on a set of existing libraries such
as this, development time was greatly shortened, and we were able to create a
proof environment in which we can express proof goals in a notation that is very
close to the standard mathematical notation adopted in cryptography papers.
More information about Isabelle/HOL can be found in [55,56].

Remark. No verification is carried out of the executable code generated from the
PIL file. This is a program correctness problem rather than a theoretical security
problem, and must be addressed using different techniques not covered here.

We next detail the most important aspects of our approach.

3 This justifies the verification-specific annotations in the PSL file, as described in §3.



162 J.B. Almeida et al.

Proof strategy. Proving the soundness property of the ZK-PoK protocols pro-
duced by the compiler essentially means proving that the success probability of
a malicious prover in cheating the verifier is bounded by the intended knowledge
error. As described in §2.1, this involves proving the existence of (or simply to
construct) an efficient knowledge extractor.

Our verification component is currently capable of dealing with the Σφ-
protocol, which means handling proof goals involving special homomorphisms
(cf. §2.2) for which it is possible to efficiently find pseudo-preimages. As all spe-
cial homomorphisms used in cryptography fall into one of two easily recognizable
classes, the verification toolbox is able to automatically find a pseudo-preimage
for any concrete homomorphism that it encounters without human interaction.

A central stepping stone in formally proving the existence of an efficient knowl-
edge extractor is the following lemma (which actually proves Theorem 1) that
we have formalized in HOL.

Lemma 2 (Shamir’s Trick [47]). Let (u1, v1) and (u2, v2) be pseudo-preimages
of y under homomorphism φ. If v1 and v2 are co-prime, then there exists a poly-
nomial time algorithm that computes a preimage x of y under φ. This algorithm
consists of using the Extended Euclidean Algorithm to obtain a, b ∈ Z such that
av1 + bv2 = 1, and then calculating x = au1 + bu2.

Given a special homomorphism and two accepting protocol transcripts for a ZK-
PoK of an atom, we prove the existence of a knowledge extractor by ensuring
that we are able instantiate Lemma 2.

The PVT also supports Boolean And and Or composition. If multiple predi-
cates are combined by And, the verification tool defines as proof goal the exis-
tence of a knowledge extractor for each and all of them separately: one needs to
show that the witness for each predicate can be extracted independently from
the other predicates. In case of Or proofs (i.e., knowledge of one out of a set of
preimages), the proof strategy looks as follows. First, for each atom, an Isabelle
theorem proves the existence of a knowledge extractor. In a second step, it is
then shown that the assumptions of at least one of these theorems are satisfied
(i.e., that at least for one predicate we actually have different challenges).

Isabelle/HOL formalization. The HOL theory file produced by the Protocol
Verification Toolbox is typical, in the sense that it contains a set of auxiliary
lemmata that are subsequently used as simplification rules, and a final lemma
with the goal to be proved. The purpose of the auxiliary lemmata is to decompose
the final goal into simpler and easy to prove subgoals. They allow a systematic
proof strategy that, because it is modularized, can handle proof goals of arbitrary
complexity. Concretely, the proof goal for a simple preimage ZK-PoK such as
those associated with Diffie-Hellman keys (pk = gsk) used in the example in §3
looks like the following theorem formulation:

Theorem (Proof Goal). Let G and H be commutative groups, where G rep-
resents the group of integers. Take as hypothesis the algebraic definition of the
exponentiation homomorphism φ : G → H, quantified for all values of G: fix
g ∈ H with order q and assume ∀a ∈ G. φ(a) = ga. Furthermore, take a prime



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 163

q > 2 and cmax ∈ Z such that 0 < cmax < q, take t, pk ∈ H such that the order
of pk is q, take s′, s′′ ∈ G and c′, c′′ ∈ Z such that 0 < c′, c′′ < cmax and c′ �= c′′,
and assume φ(s′) = t · pkc′ ∧ φ(s′′) = t · pkc′′ . Then there exist a, b ∈ Z such
that φ(au+ bΔs) = pk ∧ av + bΔc = 1, where Δs := s′ − s′′ and Δc := c′ − c′′,
and (u, v) = (0, q) ∈ G× Z is a pseudo-preimage of pk under φ.

Instrumental in constructing the proof goal and auxiliary lemmata for the formal
proof are the verifier’s verification equations extracted from the PIL file. Indeed,
the part of the proof goal that describes the two transcripts of the protocol
(t, c′, s′) and (t, c′′, s′′) is constructed by translating this verification equation
into Isabelle/HOL. For example, the following PIL-statement:

Verify((_t*(pk^_c)) == (g^_s));

will be translated into the Isabelle/HOL formalization

t⊗H (pk(∧H)c′) = g(∧H)s′; t⊗H (pk(∧H)c′′) = g(∧H)s′′; c′ �= c′′;

where ⊗H and (∧H) represent the multiplicative and exponentiation operations
in H , respectively. A typical proof is then structured as follows.

A first lemma with these equations as hypothesis allows the system to make
a simple algebraic manipulation, (formally) proving that

(t⊗H (pk(∧H)c′)) ⊗H invH(t⊗H (pk(∧H)c′′)) = g(∧H)s′ ⊗H invH(g(∧H)s′′)

where invH represents the inversion operation for H . The subsequent lemmata
continue simplifying this equation, until we obtain:

pk(∧H)(c′ − c′′) = g(∧H)(s′ − s′′).

By introducing the homomorphism φ : G→ H we are able to show

pk(∧H)(Δc) = φ(Δs)

where Δc = c′ − c′′ and Δs = s′ − s′′. We thus obtained (Δs,Δc) as a first
pseudo-preimage. The second one needed in Lemma 2 is found by analyzing the
proof goal in the PSL file, which in our case was Relation((pk) = phi(sk)).

As we have embedded in our tool the domain specific knowledge to generate
pseudo-preimages for the class of protocols that we formally verify, we can intro-
duce another explicit pseudo-preimage as an hypothesis in our proof, e.g. (0, q),
and prove that it satisfies the pseudo-preimage definition. At this point we can
instantiate the formalization of Lemma 2, and complete the proof for the above
theorem, which implies the existence of a knowledge extractor.

Proof goals for more complex Σ-protocols involving And and Or compositions
are formalized as described in the previous subsection and in line with the theo-
retic background introduced in §2. For And combinations, the proof goal simply
contains the conjunction of the independent proof goals for each of the simple



164 J.B. Almeida et al.

preimage proofs provided as atoms. For Or combinations, the proof goal assumes
the existence of two transcripts for the composed protocol

((t1, . . . , tn), c′, ((s11, c
1
1), . . . , (s

n
1 , c

n
1 )) with

n∑
i=1

ci1 ≡ c′ mod cmax

and analogously for c′′, such that c′ �= c′′. It then states that for some i ∈
{1, . . . , n} we can construct a proof of existence of a knowledge extractor such as
that described above. The assumptions regarding the consistency of the previous
summations are, again, a direct consequence of the verifier code as stated in §2.3.

Acknowledgments. We gratefully acknowledge Wilko Henecka and Andreas
Grünert for their support on the implementation of the compiler. Also, we would
like to thank Stefania Barzan for implementing a preliminary version of the PVT.

References

1. Almeida, J., Bangerter, E., Barbosa, M., Krenn, S., Sadeghi, A.R., Schneider, T.: A
certifying compiler for zero-knowledge proofs of knowledge based on Σ-protocols.
Cryptology ePrint Archive, Report 2010/339 (2010)

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

3. Han, W., Chen, K., Zheng, D.: Receipt-freeness for Groth e-voting schemes. Journal
of Information Science and Engineering 25, 517–530 (2009)

4. Kikuchi, H., Nagai, K., Ogata, W., Nishigaki, M.: Privacy-preserving similarity
evaluation and application to remote biometrics authentication. Soft Comput-
ing 14, 529–536 (2010)

5. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Dis-
crete Logarithm Problem. PhD thesis, ETH Zurich, Konstanz (1998)

6. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product
of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (1999)

7. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

8. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS
2004, pp. 132–145. ACM Press, New York (2004)

10. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS 2002, pp. 21–30. ACM Press, New
York (2002)

11. Kunz-Jacques, S., Martinet, G., Poupard, G., Stern, J.: Cryptanalysis of an efficient
proof of knowledge of discrete logarithm. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 27–43. Springer, Heidelberg
(2006)

12. Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of discrete
logarithms and representations in groups with hidden order. In: Vaudenay, S. (ed.)
PKC 2005. LNCS, vol. 3386, pp. 154–171. Springer, Heidelberg (2005)



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 165

13. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4,
161–174 (1991)

14. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

16. Lipmaa, H.: On diophantine complexity and statistical zeroknowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003)

17. Paulson, L.: Isabelle: a Generic Theorem Prover. Volume 828 of LNCS. Springer
(1994)

18. MacKenzie, P., Oprea, A., Reiter, M.K.: Automatic generation of two-party com-
putations. In: ACM CCS 2003, pp. 210–219. ACM, New York (2003)

19. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX Security 2004 (2004)

20. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) Public
Key Cryptography – PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidel-
berg (2009)

21. Briner, T.: Compiler for zero-knowledge proof-of-knowledge protocols. Master’s
thesis, ETH Zurich (2004)

22. Camenisch, J., Rohe, M., Sadeghi, A.R.: Sokrates - a compiler framework for zero-
knowledge protocols. In: WEWoRC 2005 (2005)

23. Bangerter, E., Camenisch, J., Krenn, S., Sadeghi, A.R., Schneider, T.: Automatic
generation of sound zero-knowledge protocols. Cryptology ePrint Archive, Report
2008/471, Poster Session of EUROCRYPT 2009 (2008)

24. Bangerter, E., Briner, T., Heneka, W., Krenn, S., Sadeghi, A.R., Schneider, T.:
Automatic generation of Σ-protocols. In: EuroPKI 2009 (to appear, 2009)

25. Bangerter, E., Krenn, S., Sadeghi, A.R., Schneider, T., Tsay, J.K.: On the design
and implementation of efficient zero-knowledge proofs of knowledge. In: Software
Performance Enhancements for Encryption and Decryption and Cryptographic
Compilers – SPEED-CC 2009, October 12-13 (2009)

26. Meiklejohn, S., Erway, C., Küpçü, A., Hinkle, T., Lysyanskaya, A.: ZKPDL: A
language-based system for efficient zero-knowledge proofs and electronic cash. In:
USENIX 10 (to appear, 2010)

27. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

28. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy – SP 2008, pp. 202–215. IEEE, Los Alamitos
(2008)

29. Baskar, A., Ramanujam, R., Suresh, S.P.: A dolev-yao model for zero knowledge. In:
Datta, A. (ed.) ASIAN 2009. LNCS, vol. 5913, pp. 137–146. Springer, Heidelberg
(2009)

30. Blanchet, B.: ProVerif: Cryptographic protocol verifier in the formal model (2010)

31. Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In: ACM CCS
2008, pp. 357–370. ACM, New York (2008)



166 J.B. Almeida et al.

32. Backes, M., Unruh, D.: Computational soundness of symbolic zero-knowledge
proofs against active attackers. In: IEEE Computer Security Foundations
Symposium - CSF 2008, 255–269 Preprint on IACR ePrint 2008/152 (2008)

33. Barthe, G., Hedin, D., Zanella Béguelin, S., Grégoire, B., Heraud, S.: A machine-
checked formalization of Σ-protocols. In: 23rd IEEE Computer Security Foundations
Symposium, CSF 2010, IEEE, Los Alamitos (2010)

34. Barthe, G., Grégoire, B., Béguelin, S.: Formal certification of code-based crypto-
graphic proofs. In: ACM SIGPLAN-SIGACT POPL 2009, pp. 90–101 (2009)

35. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real
C code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer,
Heidelberg (2005)

36. Bhargavan, K., Fournet, C., Gordon, A., Tse, S.: Verified interoperable implemen-
tations of security protocols. ACM Trans. Program. Lang. Syst. 31(1), 1–61 (2008)

37. Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Cryptographically verified
implementations for TLS. In: ACM CCS 2008, pp. 459–468. ACM, New York (2008)

38. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Workshop on Computer Security Foundations – CSFW 2001, p. 82. IEEE, Los
Alamitos (2001)

39. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE Symposium on Security and Privacy – SP 2006, pp. 140–154. IEEE, Los
Alamitos (2006)

40. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (ex-
tended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997)

41. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, CWI and University of Amsterdam (1997)

42. Damg̊ard, I.: On Σ-protocols, Lecture on Cryptologic Protocol Theory, Faculty of
Science, University of Aarhus (2004)

43. Guillou, L., Quisquater, J.J.: A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

44. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

45. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

46. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 77–85. Springer, Heidelberg (2002)

47. Bangerter, E.: Efficient Zero-Knowledge Proofs of Knowledge for Homomorphisms.
PhD thesis, Ruhr-University Bochum (2005)

48. Smart, N.P. (ed.): Final Report on Unified Theoretical Framework of Efficient
Zero-Knowledge Proofs of Knowledge. CACE project deliverable (2009)

49. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

50. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
51. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)



A Certifying Compiler for ZK-PoK Based on Σ-Protocols 167

52. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-
ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.
Springer, Heidelberg (1997)

53. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae
and applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433,
pp. 272–288. Springer, Heidelberg (2002)

54. Granlund, T.: The GNU MP Bignum Library (2010), http://gmplib.org/
55. Nipkow, T., Paulson, L.: Isabelle (2010), http://isabelle.in.tun.de
56. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-

order logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
57. Ballarin, C., Kammüller, F., Paulson, L.: The Isabelle/HOL Algebra Library

(2008), http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

http://gmplib.org/
http://isabelle.in.tun.de
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

	A Certifying Compiler for Zero-KnowledgeProofs of Knowledge Based on Σ-Protocols
	Introduction
	Preliminaries
	Σ-Protocols as ZK-PoK Protocols
	Proving Atoms
	Operations on -Protocols

	Compiler
	Architecture
	Protocol Specification Language and Optimizations

	Verification
	References


