
SIAM J. CONTROL OPTIM. c© 2014 Society for Industrial and Applied Mathematics
Vol. 52, No. 3, pp. 1862–1885

A CHAIN OBSERVER FOR NONLINEAR SYSTEMS WITH
MULTIPLE TIME-VARYING MEASUREMENT DELAYS∗

FILIPPO CACACE† , ALFREDO GERMANI‡ , AND COSTANZO MANES§

Abstract. This paper presents a method for designing state observers with exponential error
decay for nonlinear systems whose output measurements are affected by known time-varying delays.
A modular approach is followed, where subobservers are connected in cascade to achieve a desired
exponential convergence rate (chain observer). When the delay is small, a single-step observer is
sufficient to carry out the goal. Two or more subobservers are needed in the the presence of large
delays. The observer employs delay-dependent time-varying gains to achieve the desired exponential
error decay. The proposed approach allows to deal with vector output measurements, where each
output component can be affected by a different delay. Relationships among the error decay rate, the
bound on the measurement delays, the observer gains, and the Lipschitz constants of the system are
presented. The method is illustrated on the synchronization problem of continuous-time hyperchaotic
systems with buffered measurements.
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1. Introduction. The state estimation of dynamical systems based on delayed
output measurement is an important problem in many engineering applications, for
example, when the system is controlled or monitored by a remote device through
a communication channel, or when the measurement process intrinsically causes a
nonnegligible time delay, as in biochemical reactors. For this reason the issue of state
reconstruction in the presence of time delays in the system equations and/or in the
measurement process is receiving increasing attention.

State observers and observability conditions for both linear and nonlinear systems
with time delays in the state equations have been studied by many authors (see, e.g.,
[20, 21, 24, 11, 29, 32] and the references therein). This paper considers nonlinear
systems without delays in the state equations but with delayed measurements. The
design of state observers that predict the current state by processing delayed output
measurements is central for the design of state feedback controllers. In the case of
stable linear systems, the control problem is solved by the Smith predictor [25]. An
extension of the Smith approach to closed-loop control of nonlinear systems with
delayed input was presented in [18, 22], where, as in the case of linear systems, the
state prediction is obtained by an open-loop algorithm, so that the accuracy of the
predicted state is not guaranteed for unstable systems.
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The idea of achieving the convergence of the state estimate by using a cascade of
two observers (elementary chain observer) was first proposed in [10], while the idea
of using more than two observers in the chain to deal with large measurement delays
has been proposed in [12]. In [10] it has been shown that a chain of two observers
is sufficient for asymptotic state reconstruction as long as the measurement delay is
below a given threshold, which depends on the Lispchitz constants of the system.
When the time delay exceeds such a threshold, more links must be added to the chain
[12]. Each observer in the chain is in charge of predicting the system state for a suitable
fraction of the total delay. The structure of the basic observer in the chain is the one
proposed in [5, 6] for undelayed measurements. A similar approach has been used
in [16], where some restrictions of the chain observer in [12] have been overcome. In
[3] another predictor for nonlinear systems with delayed output, based on a cascade
of observers, has been proposed. Sufficient conditions for the convergence of this
predictor have been derived using linear matrix inequalities. This predictor has been
extended in [1] to triangular systems. Other recent proposals include the nonlinear
observer of [21], for systems that are linearizable by additive output injection, and
the constant gain observer design method proposed in [27]. In [26] the case of time-
varying measurements delay has been investigated, although restricted to linear time
invariant systems. In particular the stability properties of a chain observer have been
investigated, under the assumption that the delay is known and piecewise constant.

Recently, the framework of high-gain observers has been used to design observers
for nonlinear systems with time-varying measurement delay. In [4] a Razumikhin
approach has been used to prove the asymptotic convergence to zero of the estimation
error of a high-gain observer derived from [5, 6]. In [28] an observer derived from the
one in [9] has been proposed, and a Liapunov–Krasovskii approach is used to derive the
convergence result in the presence of time-varying delay. The exponential convergence
to zero of the estimation error of this observer has been proved in [2].

This work contains two main contributions. The first is the proposal of a single-
step observer for nonlinear systems with time-varying measurement delays that ex-
tends the one in [4] in two directions: it allows one to deal with vector measurements
(multi-input-multi-output systems) and achieves prescribed exponential error decay,
provided that the maximum delay is below a suitable bound. This result is obtained
by use of time-varying delay-dependent gains in the observer. The delays are assumed
uniformly bounded but not necessarily continuous functions of time. Moreover, each
component of the vector output can have its own delay.

The second contribution is the proposal of a chain observer with uniform struc-
ture, which allows one to deal with the case in which the prescribed exponential
convergence cannot be achieved by a single-step observer (i.e., the maximum mea-
surement delay is too large). To the best of our knowledge, this is the first proposal
of a chain observer for the time-varying delay case. Relationships among the expo-
nential error decay rate, the bound on the measurement delays, the observer gains,
and the Lipschitz constants of the system are investigated. In order to have a simpler
and shorter exposition, only global convergence results are derived in this paper, for
which we need to assume rather strong global Lipschitz and observability properties
on the systems under investigation. However, local convergence results can be derived
as well under weaker local Lipschitz and observability assumptions.

The paper is organized as follows. In section 2 the class of systems under investi-
gation and the state observation problem are formulated. The single-step observer is
presented in section 3, together with the convergence results. In section 4 the chain
observer is described and the convergence analysis is provided. Some guidelines for



1864 F. CACACE, A. GERMANI, AND C. MANES

tuning the observer parameters are given in section 5, and in section 6 the approach
is illustrated on the state estimation problem of a hyperchaotic system (hyperchaos
synchronization) with buffered measurements. Conclusions follow. In order to get a
smoother presentation, some auxiliary results are reported as appendices.

Notation. Given q objects Hi, for i = 1 : q (functions, vectors, matrices, . . . ),
throughout this paper the symbol diagqi=1{Hi} denotes the block-diagonal matrix,
whose diagonal blocks are the objects Hi. In the same way, if all the Hi have the
same number of columns (rows) the symbol colqi=1{Hi} (rowq

i=1{Hi}) denotes the
block-column (row) matrix made with the Hi. N denotes the set of natural numbers
(strictly positive integers). The norm of a multi-index s̄ = {si}q1 ∈ Nq is |s̄| =∑q

i=1 si.
For a given p ∈ N, �p ∈ Rp is the column vector of ones in Rp, while Ip is the identity
matrix in Rp×p. Σp×p

+ ⊂ Rp×p is the set of n× n symmetric positive definite (SPD)
real matrices. R+ and R− are the sets of strictly positive and strictly negative real
numbers, respectively. Given Δ ∈ R+ and n ∈ N, the symbol Cn

Δ denotes the space
of continuous functions that map the interval [−Δ, 0] into Rn, endowed with the sup
norm. The meaning of the norm symbol ‖ · ‖ depends on the context: if φ ∈ Cn

Δ,

then ‖φ(t)‖ =
(
φT (t)φ(t)

)1/2
and ‖φ‖ = supτ∈[−Δ,0] ‖φ(τ)‖. For a given continuous

function x : R �→ Rn, the symbol xt denotes its restriction to the interval [t −Δ, t],
i.e., xt ∈ Cn

Δ with xt(τ) = x(t− τ) ∈ Rn.

2. Preliminaries. We consider the problem of state observation for nonlinear
systems with delayed vector output, in the case where each output component is
measured with its own time delay. The measurement delays, possibly time-varying,
are assumed to be known in real time, and are bounded by a known constant Δ. The
systems considered here have the form

ẋ(t) = F
(
x(t), u(t)

)
, t ≥ −Δ,(1)

ȳi(t) = hi
(
x(t− δi(t))

)
, i = 1:q, t ≥ 0,(2)

x(−Δ) = x̄ ∈ R
n,(3)

where x(t) ∈ Rn is the system state, u(t) ∈ Rp is a known input, ȳ(t) ∈ Rq is the
measured output, and δi(t) ∈ [0,Δ] is the time-varying measurement delay of the ith
output. The function F : Rn × Rp �→ Rn is affine in the input, i.e.,

(4) F (x, u) = f(x) +G(x)u = f(x) +

p∑
k=1

gk(x)uk,

where f(x) and gk(x) are C∞ vector fields. hi(x), i = 1 : q, are C∞ functions.
Let ȳ(t) ∈ Rq denote the vector collecting all the delayed measurements ȳi(t), i.e.,
ȳ(t) = colqi=1

{
ȳi(t)

}
, and let y(t) = colqi=1

{
hi(x(t))

}
denote the vector of undelayed

measurements. The delays δi(t) are collected in δ̄(t) = {δi(t)}qi=1. The component
yi(t) will be available for processing at a time t′i such that t′i = t+ δi(t

′
i).

Remark 1. We assume that the measurement delays δi(t) are known in real time,
which means that the information available for processing at time t, with t ≥ 0, is the
pair

(
ȳ(t), δ̄(t)

) ∈ Rq × [0,Δ]q, whose components (ȳi(t), δi(t)) satisfy the identities
(2), for i = 1 : q. The issue of robustness with respect to uncertainties in the delay
is not investigated in this paper and deserves further research work. Notice that the
assumption that the delay is known is realistic in many applications. A common case
is that of networked control systems [13], when the measurements are buffered and
then sent over a reliable network that introduces a variable delay. In this case, the
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delay is typically computed by comparing the time at which the packet is delivered
with the time-stamp included in the packet at the sender side.

Although in principle it is possible to estimate x(t− δ) by exploiting the outputs
yi(t) of (1)–(2) in an ordinary observer, and then to use such an estimate for estimating
x(t) by integrating the system equation (1) in the interval [t − δ, t], this approach is
not used in the literature mainly for two reasons: the implementation of predictors
containing integral terms (distributed predictors) may be computationally prohibitive
for real-time applications, and the open-loop structure of the integral predictor makes
it sensitive to uncertainties and modeling errors. In addition, it is not trivial to
estimate x(t− δ) when the delay δ is not constant.

Thus, the integral predictor approach, although conceptually simple, may not
be suited for many applications. As a consequence, predictors with state-observer
structure, i.e., written in the form of measurements driven differential equations (or
delay-differential equations), are generally preferred.

Throughout the paper, given a vector w(t) = colqi=1{wi(t)} and a set of delays
δ̄(t) = {δi(t)}q1, the vector function wδ̄(t) is defined as

(5) wδ̄(t) =
q

col
i=1

{wi(t− δi(t))}.

Thus, we have ȳ(t) = yδ̄(t). Let Lk
fλ(x) denote the kth Lie derivative of the scalar

function λ(x) along a vector field f(x), defined as (see [15])

(6) L0
fλ(x) = λ(x), Lk

fλ(x) =
dLk−1

f λ

dx
f(x), k > 0,

and let LGλ(x) denote the row vector [Lg1λ · · · Lgpλ]. Following [6], we build the
observability map using the Lie derivatives 0, 1, . . . , si−1 of each output function
hi(x). For a given multi-index s̄ = {si}q1, let the vector functions Φsi

i (x) ∈ Rsi and
Yi,si(t) ∈ Rsi be defined as follows:

Φsi
i (x) =

si
col
k=1

{Lk−1
f hi(x)} = [ hi(x) Lfhi(x) . . . L

si−1
f hi(x) ]

T ,(7)

Yi,si(t) =
si
col
k=1

{y(k−1)
i (t)} = [ yi(t) y

(1)
i (t) . . . y

(si−1)
i (t) ]T(8)

(y
(k)
i (t) denotes the kth derivative of the ith undelayed output), and let

Φs̄(x) =
q

col
i=1

{
Φsi

i (x)
}
, Ys̄(t) =

q

col
i=1

{
Yi,si(t)

}
.(9)

Note that Φsi
i (x) are maps from Rn to Rsi and do not depend on time. As discussed

in [6, 7], if u(t) = 0, then Yi,si(t) = Φsi
i (x(t)) and Ys̄(t) = Φs̄(x(t)). If, for some

s̄, such that |s̄| = n, the square map z = Φs̄(x) is invertible, then the knowledge of
Ys̄(t) theoretically allows instantaneous exact reconstruction of the state x(t). This
property justifies the following definition (see [6]).

Definition 1. For a given multi-index s̄ such that |s̄| = n, the map Φs̄(x) defined
in (9) is said to be an observability map in a set Ω ⊆ Rn, for system (4)–(2), if it is
a diffeomorphism in Ω. A system that admits an observability map Φs̄(x) in Ω is said
to be drift-observable in Ω. A system is said to be uniformly Lipschitz drift-observable
in Ω if it is drift-observable in Ω and the maps Φs̄ and Φ−1

s̄ are uniformly Lipschitz
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(in Ω and Φs̄(Ω), respectively). If Ω = Rn the system is said to be globally uniformly
Lipschitz drift-observable (GULDO).

The observability property described in Definition 1 only depends on the drift
component of (4) (i.e., f(x)). For this reason the term drift-observability (i.e., observ-
ability for null input) has been coined in [6].

Note that the components si of a multiindex s̄ that satisfy the assumptions of
Definition 1 coincide with the observability indices defined in [19].

If a system is drift-observable in Ω, then the Jacobian

(10) Qs̄(x) =
dΦs̄(x)

dx
=

q

col
i=1

{
dΦsi

i (x)

dx

}
is nonsingular ∀x ∈ Ω, and the inverse map x = Φ−1

s̄ (z) exists in all Φs̄(Ω).

Definition 2 (see [6, 7]). The observation relative degree of the ith output hi(x)
of system (1)–(2) in a set Ω ⊆ Rn is a natural number ri such that

∀x ∈ Ω : LGL
k
fhi(x) = 0, k = 0 : ri − 2,(11)

∃x ∈ Ω : LGL
ri−1
f hi(x) �= 0.(12)

If Ω = Rn, the ith output is said to have uniform observation relative degree ri.

Note that Definition 2 of the observation relative degree (taken from [6]) is not
related to the measurement delay. (The functions in (11) and (12) are maps from Rn

to Rp.) Moreover, if si ≤ ri, i = 1 : q, we still have Ys̄(t) = Φs̄

(
x(t)

)
, as in the case

of absence of input, and the drift-observability property implies the observability for
any input (see [6] for further details).

Now, consider the map Φsi
i (x) defined in (7), and assume that si ≤ ri. Let

(Asi , Bsi , Csi) denote a Brunowsky triple of size si (see Appendix A.1). Then

dΦsi
i

dx
F (x, u) =

dΦsi
i

dx

(
f(x) +G(x)u

)
= AsiΦ

si
i (x) +Bsi L̃i(x, u),(13)

where L̃i(x, u) = Lsi
f hi(x) + LGL

si−1
f hi(x)u.(14)

(Note that if si < ri, then LGL
si−1
f hi(x) = 0.) Let zi(t) = Φsi

i (x(t)). Taking into
account (13) and the identity hi(x) = CsiΦ

si
i (x), we get

żi(t) = Asizi(t) + BsiL̃i(x(t), u(t)),(15)

ȳi(t) = Csizi
(
t− δi(t)

)
,(16)

zi(τ) = Φsi
i (x̄).(17)

Note that, since si ≤ ri, if follows that zi(t) = Yi,si (t). If the system (1)–(2) is globally
drift-observable and Φs̄(x) is a global observability map, with si ≤ ri, i = 1 : q,
then z = Φs̄(x) defines a change of coordinates. In the new coordinates z(t) =
colqi=1

{
zi(t)

}
, the undelayed vector measurement is y(t) = Cs̄z(t), and the system

equations are

ż(t) = As̄z(t) +Bs̄p(z(t), u(t)), t ≥ −Δ,(18)

ȳi(t) = Csizi(t− δi(t)), i = 1:q, t ≥ 0,(19)

z(−Δ) = Φs̄(x̄),(20)
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where As̄ ∈ Rn×n, Bs̄ ∈ Rn×p, Cs̄ ∈ Rq×n are

(21) As̄ =
q

diag
i=1

{Asi}, Bs̄ =
q

diag
i=1

{Bsi}, Cs̄ =
q

diag
i=1

{Csi},

and the function p(z(t), u(t)) ∈ Rq is defined as

(22) p(z, u) =
q

col
i=1

{
pi(z, u)

}
, where pi(z, u) = L̃i

(
Φ−1

s̄ (z), u
)
,

with L̃i(·, ·) defined in (14). The representation (18)–(19) of system (1)–(2) will be
useful in the proof of the observer convergence.

3. Single-step exponential observer. This section presents a single-step ob-
server for system (1)–(2) and the relevant convergence analysis. The hypotheses
needed are the following:

H1 The system (1)–(2) is GULDO, i.e., there exists a multi-index s̄ = {si}q1
such that the map z = Φs̄(x) defined in (9) and its inverse x = Φ−1

s̄ (z) are
uniformly Lipschitz in Rn.

H2 The function p(z, u) defined in (22) is globally uniformly Lipschitz with re-
spect to z, with the Lipschitz coefficient γp depending on ||u||, i.e.,

(23) ‖p(z1, u)− p(z2, u)‖ ≤ γp(||u||)‖z1 − z2‖ ∀z1, z2 ∈ R
n.

H3 The components si of the multi-index s̄ in H1 are such that si ≤ ri, i = 1:q.
(ri is the uniform observation relative degree of each of the output functions
hi(x) in (1)–(2).)

Note that the hypothesisH2 could be equivalently given in terms of uniformly Lip-
schitz assumption on L̃i(x, u), because by definition pi(z, u) = L̃i

(
Φ−1

s̄ (z), u
)
, where

Φ−1
s̄ (z) is uniformly Lipschitz by hypothesis H1.

The proposed observer for the system (1)–(2) is the following delay system:

˙̂x(t) = F
(
x̂(t), u(t)

)
+
(
Qs̄(x̂(t))

)−1
Ks̄(t)ν(t), t ≥ 0,(24)

x̂(τ) = φ(τ), τ ∈ [−Δ, 0],

where

Ks̄(t) =
q

diag
i=1

{
e−ηδi(t)ki

}
with ki ∈ R

si , η ∈ R+,(25)

ν(t) =
q

col
i=1

{
νi(t)

}
=

q

col
i=1

{
ȳi(t)− hi

(
x̂(t− δi(t))

)}
.(26)

The matrix Qs̄(x̂) is the Jacobian of Φs̄(x̂), defined in (10). The gain vectors ki and
the constant η are the only design parameters for the observer. In particular, η in (25)
is a desired exponential decay rate for the observation error. The function φ ∈ Cn

Δ is
used for the observer initialization.

Definition 3 (global η-exponential convergence). For a given η ∈ R+ a system
of the type (24)–(26) is said to be a global η-exponential observer for system (1)–(2)
if, for any given φ ∈ Cn

Δ and initial state x(−Δ) ∈ Rn, there exists c ∈ R+ such that

(27) ‖x(t)− x̂(t)‖ ≤ c e−ηt ∀t ≥ 0.
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The observer equations (24) can be written in the z-coordinates by defining ẑi(t) =
Φsi

i (x̂(t)) and ẑ(t) = colqi=1

{
ẑi(t)

}
= Φs̄

(
x(t)

)
. Differentiating and using (13)–(14)

we get

˙̂z(t) = As̄ẑ(t) +Bs̄p(ẑ(t), u(t)) +Ks̄(t)ν(t), t ≥ 0,(28)

ẑ(τ) = Φs̄(φ(τ)), τ ∈ [−Δ, 0].

Let z̃i(t) = zi(t)− ẑi(t) be the components of the observation error in z-coordinates.
Using (16), the ith block of ν(t) in (26) can be written as

(29) νi(t) = ȳi(t)− Csi ẑi(t− δi(t)) = Csi z̃i(t− δi(t)).

The error z̃(t) = colqi=1{z̃i(t)} is also z̃(t) = z(t)− ẑ(t) = Φs̄

(
x(t)

) − Φs̄

(
x̂(t)

)
.

Subtracting equations (18) and (28) and defining

(30) p̃
(
z(t), u(t), z̃

)
= p
(
z(t), u(t)

)− p
(
z(t)− z̃, u(t)

)
,

where p(·, ·) is defined in (22), we obtain the following differential equation for z̃:

˙̃z(t) = As̄z̃(t) +Bs̄p̃
(
z(t), u(t), z̃(t)

)−Ks̄(t)Cs̄z̃δ̄(t), t ≥ 0,(31)

z̃(τ) = z(τ)− Φs̄

(
φ(τ)

)
, τ ∈ [−Δ, 0],

where z̃δ̄(t) = zδ̄(t)− ẑδ̄(t) = colqi=1{z̃i(t− δi(t))}. By the Lipschitz assumption H2

(32) ‖p̃(z(t), u(t), z̃)‖ ≤ γp(‖u(t)‖) ‖z̃‖.
Remark 2. Under assumption H1, the inequality (27) that defines the global

η-exponential convergence in Definition 3 is equivalent to

(33) lim
t→∞ eηt‖z̃(t)‖ = 0 ∀φ ∈ Cn

Δ, ∀x(−Δ) ∈ R
n.

Before giving the main convergence theorem, we need the following lemma. (The
proof is in Appendix A.2.)

Lemma 4. For a given multi-index s̄ = {si}q1 such that |s̄| = n, consider the q
Brunowsky triples (Asi , Bsi , Csi), i = 1 : q. Then, for any given a > 0 and b > 0,
there exist q vectors ki ∈ Rsi and q matrices Pi ∈ Σsi×si

+ such that the following q
inequalities hold for i = 1:q:

(34) (Asi − kiCsi)
TPi + Pi(Asi − kiCsi) + aPi + b Isi

q∑
i=1

(BT
siPiBsi) ≤ 0.

Moreover, given q vectors vi ∈ R
si− , i = 1 : q, with distinct and negative components,

the pairs
(
k̄i(ρ), P i(ρ)

)
are defined, for i = 1:q, as follows:

k̄i(ρ) = −
si

diag
h=1

{ρh}V −1(vi)v
(si)
i , P i(ρ) =

si
diag
h=1

{ρ−h}V T (vi)V (vi)
si

diag
h=1

{ρ−h}ρ2si ,
(35)

where V (vi) is the Vandermonde matrix associated to vi, and v
(si)
i is the vector of

componentwise sith powers of vi (see definitions (100) in Appendix A.1), are solution
pairs

(
k̄i(ρ), P i(ρ)

)
of (34) if

(36) ρ > max

{
1,

q
max
i=1

{
a+ b n ‖V −1(vi)‖2

2wi

}}
,

where wi = −maxph=1{(vi)h} (i.e., wi is the smallest component of −vi).
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Now the main convergence theorem can be given.
Theorem 5. Consider the system (1)–(2), with δi(t) ∈ [0,Δ], i = 1 : q, under

assumptions H1, H2, H3, and assume that ‖u(t)‖ ≤ ū ∀t ≥ −Δ, for some ū > 0.
Then, for any assigned η > 0, there exist q gain vectors ki ∈ Rsi , i = 1:q, and a

positive Δ such that if Δ < Δ, then (24)–(26) is a global η-exponential observer for
system (1)–(2).

In particular, the q gains ki can be chosen to satisfy, together with q matrices Pi,
the inequalities (34), with a = 2η + α + 1, where α > 0 is arbitrarily chosen, and
b = γ2p(ū). With this choice, the η-exponential convergence is ensured if Δ < Δ, with

(37) Δ =
α

2 + β
, where β =

q∑
i=1

(kTi Piki)‖P−1
i ‖ (1 + η2 + (ki)

2
1

)
.

((ki)1, i = 1:q, are the first components of the vectors ki, i.e., (ki)1 = Csiki.)
Proof. Note first that the uniformly Lipschitz assumptions in H1 and H2 guar-

antee the existence of solutions in [0,∞) of both the system and the observer. By
assumption, the observer gains ki are chosen such to satisfy the q inequalities

(38) (Asi−kiCsi)
TPi+Pi(Asi−kiCsi)+(2η+α+1)Pi+γ

2
p(ū) Isi

q∑
i=1

(BT
siPiBsi) ≤ 0,

where the matrices Pi are symmetric and positive definite. In order to get more
compact formulas, let us define the matrices

(39) Āsi = Asi + ηIsi , Āi = Asi − kiCsi + ηIsi

(i.e., Āi = Āsi − kiCsi) so that inequalities (38) can be rewritten as

(40) ĀT
i Pi + PiĀi + Pi + γ2p(ū) Isi

q∑
i=1

(BT
siPiBsi) ≤ −αPi.

As discussed in Remark 2, the assumption H1 allows us to prove the exponential
convergence by showing that (33) holds. By defining the variables

(41) εi(t) = eηtz̃i(t), ε(t) =
q

col
i=1

{εi(t)} = eηtz̃(t),

the condition (33) becomes limt→∞ ‖ε(t)‖ = 0.
Let K0 = diagqi=1{ki}, so that Ks̄(t) = K0 diag

q
i=1{e−ηδi(t)}. Then, the feedback

term in (31) is

(42) Ks̄(t)Cs̄z̃δ̄(t) = K0Cs̄

q

col
i=1

{e−ηδi(t)z̃i(t− δi(t))}.

By definitions (41) we have e−ηδi(t)z̃i(t − δi(t)) = e−ηtεi(t − δi(t)), so that (42) can
be written as

(43) Ks̄(t)Cs̄z̃δ̄(t) = K0Cs̄

q

col
i=1

{e−ηtεi(t− δi(t))} = e−ηtK0Cs̄ εδ̄(t),

where εδ̄(t) = colqi=1{εi(t − δi(t))}. The computation of the time derivative of ε(t)
gives

(44) ε̇(t) = ηε(t) + eηt ˙̃z(t).
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Replacing ˙̃z(t) in (44) with (31), and using (43) we get the system

ε̇(t) = (As̄ + ηIn)ε(t) +Bs̄ϕ
(
t, ε
)−K0Cs̄εδ̄(t), t ≥ 0,(45)

ε(τ) = eη tz̃(τ) = z(τ)− φ(τ), τ ∈ [−Δ, 0],

where ϕ(t, ε) = eηtp̃
(
z(t), u(t), e−ηtε

)
=

q

col
i=1

{eηtp̃i(z(t), u(t), e−ηtε)},

where p̃(·, ·, ·) has been defined in (30). From (32), under the assumption ||u(t)|| ≤ ū,
it follows that

(46) ‖ϕ(t, ε)‖ ≤ eηtγp(ū)‖e−ηtε‖ = γ̄p‖ε‖ ∀t ≥ Δ, ∀ε ∈ R
n,

where γ̄p = γp(ū). Now, to prove the theorem it is sufficient to prove the global
asymptotic stability of the solution ε ≡ 0 of the system (45), because this ensures the
limit (33), which in turn implies η-exponential convergence of the observer.

Let ε̃i(t) = εi(t)− εi(t− δi(t)) and ε̃(t) = colqi=1{ε̃i(t)}, so that

(47) ε̃(t) = ε(t)− εδ̄(t).

Then, adding to and subtracting from (45) the term K0Cs̄ ε(t) we get

(48) ε̇(t) = (As̄ + ηIn −K0Cs̄)ε(t) +Bs̄ϕ
(
t, ε
)
+K0Cs̄ε̃(t),

so that (45) can be rewritten as

ε̇(t) = Āε(t) +Bs̄ϕ(t, ε) +K0Cs̄ε̃(t), t ≥ 0,(49)

ε(τ) = eητ z̃(τ), τ ∈ [−Δ, 0]

with Ā = As̄ −K0Cs̄ + ηIn = diagqi=1{Āi}. For t ≥ Δ, each ε̃i(t) ∈ Rsi satisfies the
integral equation

ε̃i(t) = εi(t)− εi(t− δi(t)) =

∫ 0

−δi(t)

ε̇i(t+ θ)dθ

(50)

=

∫ 0

−δi(t)

(
(Asi + ηIsi )εt,i(θ)− kiCsiεt,i(θ − δi(t+ θ)) +Bsiϕi

(
t+ θ, εt(θ)

))
dθ

with εt(θ) = ε(t+ θ), εt,i(θ) = εi(t+ θ), and ϕi(t, ε) = eηtp̃i(z(t), u(t), e
−ηtε).

Substitution into (49), taking into account that kiCsiBsiϕi(t, ε) = 0, provides the
following functional differential equation for ε(t) that holds for t ≥ Δ:

ε̇(t) = Āε(t) +Bs̄ϕ(t, ε(t)) +K0Cs̄

⎡⎢⎢⎢⎢⎢⎣
∫ 0

−δ1(t)

Ās1εt,1(θ) − k1Cs1εt,1(θ − δ1(t+ θ))dθ

. . .∫ 0

−δq(t)

Āsq εt,q(θ) − kqCsq εt,q(θ − δq(t+ θ))dθ

⎤⎥⎥⎥⎥⎥⎦ ,
(51)

where Āsi = Asi + ηIsi .
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In order to prove the asymptotic stability of ε ≡ 0, we consider the auxiliary
time-delay system, defined for t ≥ Δ,

ξ̇(t) = Āξ(t) +Bs̄ϕ(t, ξ(t)) +K0Cs̄

⎡⎢⎢⎢⎢⎢⎣
∫ 0

−δ1(t)

Ās1ξt,1(θ) − k1Cs1ξt,1(θ − δ1(t+ θ))dθ

. . .∫ 0

−δq(t)

Āsqξt,q(θ) − kqCsqξt,q(θ − δq(t+ θ))dθ

⎤⎥⎥⎥⎥⎥⎦ ,
(52)

ξ(θ) = ψ(θ), θ ∈ [−Δ, Δ],

where ψ(·) ∈ C([−Δ,Δ],Rn) is the initial condition. Clearly, the dynamics of (52)
include the dynamics of (51) when ξ(θ) = ε(θ), θ ∈ [−Δ, Δ]. (Note that ξ(t) is not
required to obey a differential equation of the type (51) in the interval [0,Δ].) As
a consequence, asymptotic stability of (52) implies the asymptotic stability of (51).
Let us rewrite (52) as

ξ̇i(t) = Āiξi(t) +Bsiϕi(t, ξ(t)) + kiCsiμi(ξt), t ≥ Δ, i = 1:q,(53)

μi(ξt) =

∫ 0

−δi(t)

Āsiξt,i(θ) − kiCsiξt,i(θ − δi(t+ θ))dθ.(54)

Now we can apply the Razumikhin method (see, e.g., [17]) to prove the asymptotic
stability of system (53)–(54). Consider the Liapunov–Razumikhin function candidate

(55) V(ξ) =
q∑

i=1

Vi(ξ) with Vi(ξ) = ξTi Piξi,

where the q matrices Pi, symmetric and positive definite, satisfy (40). The computa-
tion of the derivative of V̇(ξ(t)) gives

V̇(ξt) = q∑
i=1

ξTi (t)
(
ĀT

i Pi + PiĀi

)
ξi(t)(56)

+

q∑
i=1

2ξTi (t)PikiCsiμi

(
ξt
)
+ 2ξTi (t)PiBsiϕi

(
t, ξ(t)

)
.

In light of Razumikhin theorem it is sufficient to show that if the inequality V(ξt(θ)) ≤
κV(ξ(t)) holds ∀θ ∈ [−2Δ, 0], for some κ > 1, then V̇(ξt)) ≤ −ακV

(
ξ(t)

)
, for some

ακ > 0.
Let us compute upper bounds for each term in the right-hand side of (56). Con-

sider the rightmost term, which contains both ξi(t) and ξ(t). By applying the in-
equality |2xTPb| ≤ xTPx+ bTPb and the Lipschitz condition (46) we have

(57) |2ξTi PiBsiϕi| ≤ ξTi Piξi + BT
siPiBsi |ϕi|2 ≤ ξTi Piξi + γ̄2p(B

T
siPiBsi)ξ

T ξ.

Substitution in (56) gives

V̇(ξt) ≤ q∑
i=1

ξTi (t)
(
ĀT

i Pi + PiĀi + Pi

)
ξi(t) +

(
q∑

i=1

γ̄2p(ū)(B
T
siPiBsi)

)
ξT (t)ξ(t)(58)

+

q∑
i=1

2ξTi (t)PikiCsiμi

(
ξt
)
.
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Taking into account that ξT ξ =
∑q

i=1 ξ
T
i ξi and thanks to (40) we get

V̇(ξt) ≤ q∑
i=1

ξTi (t)

(
ĀT

i Pi + PiĀi + Pi + γ̄2p(ū)Isi

q∑
i=1

(BT
siPiBsi)

)
ξi(t)(59)

+

q∑
i=1

2ξTi (t)PikiCsiμi

(
ξt
)

≤ −
q∑

i=1

αξTi (t)Piξi(t) +

q∑
i=1

2ξTi (t)PikiCsiμi

(
ξt
)
.

From this

(60) V̇(ξt) ≤ −αV(ξ(t))+ q∑
i=1

2ξTi (t)PikiCsiμi

(
ξt
)
.

Consider now the terms in the summation in (60). Using (54) we have

2ξTi PikiCsiμi ≤
∫ 0

−δi(t)

∣∣2ξTi (t)PikiCsiĀsiξt,i(θ)
∣∣dθ(61)

+

∫ 0

−δi(t)

∣∣2ξTi (t)PikiCsikiCsiξt,i(θ − δi(t+ θ))
∣∣dθ.

Using again |2xTPb| ≤ xTPx+ bTPb, we have for the first integrand

|2ξTi (t)PikiCsiĀsiξt,i(θ)| ≤ ξTi (t)Piξi(t) +
(
ki

TPiki
)‖Csi(Asi + ηIsi)‖2‖ξt,i(θ)‖2.

(62)

Noting that ‖Csi(Asi + ηIsi )‖2 ≤ ‖Csi(Asi‖2 + η2‖Csi)‖2 = 1 + η2, due to the
Brunowsky structure of the pair (Asi , Csi), and that for any P > 0 it is ‖x‖2 ≤
‖P−1‖xTPx, the following bound holds for the first integrand:

|2ξTi (t)PikiCsiĀsiξt,i(θ)| ≤ ξTi (t)Piξi(t) +
(
ki

TPiki
)
(1 + η2)‖P−1

i ‖ξTt,i(θ)Piξ
T
t,i(θ)

(63)

≤ Vi(ξi(t)) +
(
kTi Piki

)
(1 + η2)‖P−1

i ‖Vi(ξt,i(θ)).

Thus, under the Razumikhin hypothesis V(ξt(θ)) ≤ κV(ξ(t)) at time t, κ > 1, which
obviously implies Vi(ξt,i(θ)) ≤ κV(ξ)), for i = 1:q, we get the following bound for the
first integral of (61):∫ 0

−δi(t)

∣∣2ξTi (t)PikiCsi Āsiξt,i(θ)
∣∣dθ(64)

≤ δi(t)
(Vi

(
ξi(t)

)
+ κ(1 + η2)

(
kTi Piki

)‖P−1
i ‖V(ξ(t))) .

Similarly, for the second integrand of (61) we have∣∣2ξTi (t)PikiCsikiCsiξt,i(θ − δi(t+ θ))
∣∣(65)

≤ ξTi (t)Piξi(t) +
(
kTi Piki

)‖Csiki‖2‖Csiξt,i(θ − δi(t+ θ))‖2
≤ Vi

(
ξi(t)

)
) +

(
kTi Piki

)
k2i,1‖P−1

i ‖Vi(ξt,i(θ − δi(t+ θ))),
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where ki,1 = Csiki is the first element of the vector ki. Under the Razumikhin
condition we have the following bound for the integral:∫ 0

−δi(t)

∣∣2ξTi (t)PikiCsikiCsiξt,i(θ − δi(t+ θ))
∣∣dθ(66)

≤ δi(t)
(Vi

(
ξi(t)

)
+ κ k2i,1

(
kTi Piki

)‖P−1
i ‖V(ξ(t))) .

Putting together (64) and (66), and taking into account the bound δi(t) ≤ Δ, from
(61) the following inequality is obtained, which holds in all times t ≥ Δ, where the
Razumikhin condition holds:

2ξTi (t)PikiCsiμi(ξt) ≤ Δ
(
2Vi

(
ξi(t)

)
+ κ (1 + η2 + k2i,1)

(
kTi Piki

)‖P−1
i ‖V(ξ(t))) .(67)

The substitution of the bound (67) into (60), after simple manipulations, gives

(68) V̇(ξ(t)) ≤ (−α+Δ(2 + κβ))V(ξ(t)),
where β =

∑q
i=1(1 + η2 + k2i,1)(k

T
i Piki)‖P−1

i ‖ has been defined in (37).
Recall that if at time t the Razumikhin condition is verified for some κ > 1 (i.e.,

V(ξt(θ)) ≤ −κV(ξ(t)), for θ ∈ [−2Δ, 0]), then the inequality (68) holds true. It

remains to show that if Δ < Δ = α/(2 + β) (see (37)), then there exists κΔ > 1
and ακΔ > 0 such that in all t ≥ Δ where the Razumikhin condition is verified, the
inequality V̇(ξ(t)) ≤ −ακΔV

(
ξ(t)

)
holds. To this aim, consider the function

(69) π(κ) =
(2 − κ)α

2 + κβ
,

which is such that π(1) = Δ and π(2) = 0. Being π(κ) monotonically decreasing in
the interval [1, 2], it follows that for any given Δ ∈ (0,Δ) there exists κΔ ∈ (1, 2) such
that π(κΔ) = Δ. The pair (Δ, κΔ) is such that (2 + κΔβ)Δ = (2 − κΔ)α, and its
substitution into (68) gives

(70) V̇(ξ(t)) ≤ (−α+ (2− κΔ)α))V
(
ξ(t)

)
= (1− κΔ)αV(ξ(t)) = −ακ V

(
ξ(t)

)
,

where ακ = (κΔ − 1)α > 0 (recall that κΔ ∈ (1, 2)). This proves that Δ given in
(37) is such that for any Δ < Δ there exists κΔ > 1 that satisfies the conditions
of the Razumikhin theorem for the equilibrium ξt = 0 of system (52). As previously
discussed, this implies ε(t) → 0, and this in turn implies the η-exponential convergence
to zero of the observation error, in both x- and z-coordinates.

The following theorem provides a more explicit criterion for the choice of the
observer gains ki and for the associated bound Δ on the maximum delay.

Theorem 6. Consider system (1)–(2) under the same assumptions as Theorem 5.
Let vi ∈ R

si− , i = 1 : q, be q vectors with distinct and negative components, and let
wi = −maxsih=1{(vi)h}. Consider the family of observer gains k̄i(ρ), with ρ ∈ R+,
defined as

(71) k̄i(ρ) = −
si

diag
h=1

{ρh}V −1(vi)v
(si)
i , i = 1:q.

Then, given a desired exponential decay rate η > 0, and given an arbitrary α > 0,
the system (24)–(26) is a global η-exponential observer for system (1)–(2) for any ρ
satisfying
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(72) ρ > max

{
1,

q
max
i=1

{
2η + α+ 1 + γ̄2p(ū)n ‖V −1(vi)‖2

2wi

}}
,

provided that Δ ∈ [0,Δ), where

(73) Δ =
α

2 + β(ρ)
with β(ρ) =

q∑
i=1

ρ2si‖v(si)i ‖2‖V −1(vi)‖2
(
1 + η2 + ρ2(�T

sivi)
2
)
.

Proof. When ρ satisfies (36), the gains k̄i(ρ) in (71) together with the SPD ma-
trices P i(ρ) defined in (35) are solution pairs of the inequalities (34). Since ρ > 1,

we have
∥∥(P i(ρ)

)−1∥∥ ≤ ‖V −1(vi)‖2. Moreover, k̄Ti (ρ)P i(ρ)k̄i(ρ) = ‖v(si)i ‖2ρ2si , and(
k̄i(ρ)

)
1

= ρ(�T
sivi). Using these in (37), the formula (73) for Δ is easily

obtained.
Remark 3. The global convergence results of Theorems 5 and 6 have been ob-

tained under the global Lipschitz and observability assumptionsH1 and H2. However,
weaker local results can be obtained if local Lipschitz and observability assumptions
are adopted instead. For those systems that admit compact invariant subsets of the
state space, the assumptions H1 and H2 need to be satisfied only in such sets. The
convergence of the observer (24)–(26) in such invariant sets can be proved following
the same lines of the proof of Corollary 1 in [5].

4. Chain observer. It may happen that the maximum measurement delay Δ
in system (1)–(2) is too large for a single-step observer of the type (24)–(26) (e.g.,
for any η > 0 the observer gains kj that achieve η-exponential convergence may not
satisfy the condition Δ < Δ of Theorem 5, with Δ given by (37)). In this case we can
resort to a chain observer, in which, roughly speaking, the delay Δ is split into smaller
subdelays in order to satisfy the convergence conditions. For a precise description of
the operations of a chain observer the following definition is useful.

Definition 7. Given a delay Δ > 0 and an integer m > 1, an m-partition of Δ
is a strictly increasing sequence σ̄ = {σj}mj=0, such that σ0 = 0 and σm = Δ, so that

Δ =
∑m

j=1 σ̃j , where σ̃j = σj − σj−1.
As a general statement, given an integer m > 1 and an m-partition σ̄ of the

maximum delay Δ, a chain observer is a set of (m or m+1) interconnected observers,
each one devoted to the observation of the state at time t − σj . Previous proposals
of chain observers (e.g., [12, 16, 2]) considered only the case of a single constant mea-
surement delay, i.e., δi(t) ≡ Δ, and used a uniform m-partition of Δ. In this paper
we extend this framework to multiple and time-dependent delays, using a nonneces-
sarily uniform m-partition. In the proposed approach, we consider a cascade of m
observers, numbered with j = 1 :m, where the output of the jth observer, denoted
x̂j(t), is aimed at estimating x(t − σj−1). The output of the first observer, x̂1(t), is
devoted to the observation of the current state x(t) (i.e., x(t− σ0)) and is the output
of the chain observer. As we will see below, the jth observer is driven by the available
measurement pairs

{
ȳi(t), δi(t)

}q
1
or by the output x̂j+1(t) of the previous observer of

the chain, depending on whether δi(t) ≤ σj or δi(t) > σj .
Given the system (1)–(2), where x(t) is defined for t ≥ −Δ, and given σ̄, an

m-partition of Δ, let us define the delayed variables xj(t) = x(t − σj−1), defined for
t ≥ −Δ+σj−1, which obey them equations ẋj(t) = F

(
xj(t), u(t−σj−1)

)
, j = 1:m. In

order to achieve a correct overall behavior, each observer in the chain must be driven
by a suitable transformation of the measurement pairs

{
ȳi(t), δi(t)

}q
1
, as described

below. The proposed chain of m observers is as follows:



OBSERVER FOR SYSTEMS WITH MEASUREMENT DELAYS 1875

˙̂xj(t) = F
(
x̂j(t), u(t− σj−1)

)
+
(
Qs̄(x̂j(t))

)−1
Kj(t)

q

col
i=1

{νj,i(t)}, t ≥ 0,(74)

x̂j(τ) = φ(τ − σj−1), τ ∈ [−σ̃j , 0], (σ̃j = σj − σj−1), j = 1:m,

Kj(t) =
q

diag
i=1

{e−ηj δj,i(t)Kj,i}, Kj,i ∈ R
si , ηj > 0,(75)

νj,i(t) = ȳj,i(t)− hi
(
x̂j(t− δj,i(t))

)
,(76)

where the transformed measurements
(
ȳj,i(t), δj,i(t)

)
are defined, for i :q, as

ȳj,i(t) = yi(t− σj−1), δj,i(t) = 0 if δi(t) ∈ [0, σj−1), j = 2:m,

ȳj,i(t), = ȳi
(
t
)
, δj,i(t) = δi(t)− σj−1 if δi(t) ∈ [σj−1, σj ], j = 1:m,

ȳj,i(t) = hi(x̂j+1(t)), δj,i(t) = σ̃j if δi(t) ∈ [σj ,Δ], j = 1:m−1.

(77)

Note that when δi(t) ∈ [0, σj−1), the measured output ȳi(t) is further delayed:
ȳi(t

∗) is used in the place of ȳi(t), with an additional delay σj−1 − δ(t∗), where
t∗ = t+ δ(t∗)− σ−1. Overall, we have ȳj,i(t) = yi(t− σj−1), so that the jth observer
behaves as a delayless observer (δj,i(t) = 0) aimed at estimating xj(t) = x(t− σj−1).
When δi(t) ∈ [σj−1, σj ] the measurement is not modified, but from the viewpoint of
the jth observer the delay is δj,i(t) = δi(t)−σj−1. When δi(t) ∈ (σj ,Δ], the measured
output is replaced by hi(x̂j+1(t)), that is, the estimate of yi(t− σj) coming from the
(j + 1)th observer of the chain. In this case the delay with respect to x(t − σj−1) is
δj,i(t) = σ̃j . Using definitions (77) the modified measurements ȳj,i(t) and the output
error terms νj,i(t) = ȳj,i(t)− hi

(
x̂j(t− δj,i(t))

)
in (74) are as follows:

δi(t) ∈ [0, σj−1)

j = 2 : m

}
⇒

{
ȳj,i(t) = yi(t− σj−1), δj,i(t) = 0,

⇒ νj,i(t) = yi(t− σj−1)− hi
(
x̂j(t)

)
,

δi(t) ∈ [σj−1, σj ]

j = 1 : m

}
⇒

{
ȳj,i(t) = yi(t− δi(t)), δj,i(t) = δi(t)− σj−1,

⇒ νj,i(t) = yi(t− δi(t))− hi
(
x̂j(t− δj,i(t))

)
,

δi(t) ∈ (σj ,Δ]

j = 1 : m− 1

}
⇒

{
ȳj,i(t) = hi

(
x̂j+1(t)

)
, δj,i(t) = σj − σj−1 = σ̃j ,

⇒ νj,i(t) = hi
(
x̂j+1(t)

)− hi
(
x̂j(t− σ̃j)

)
.

(78)

Figure 1 shows the chain configuration in the case of a scalar measurement, q = 1 and
y = h(x(t− δ(t))). The chain has four observers, and the case illustrates the situation
when σ2 > δ(t) > σ1. Here the current output is used for the observer x̂2(t), whereas
the previous observers x̂3(t), x̂4(t) use past measurements. The first observer, x̂1(t),
that provides the estimate of x(t) uses the estimated output provided by x̂2(t).

Remark 4. The new delays δj,i(t) are defined in (77) in such a way that δj,i(t) ∈
[0, σ̃j ], where σ̃j = σj − σj−1 < Δ, and δi(t) =

∑m
j=1 δj,i(t) ∀t ≥ 0 (delay decom-

position). Note that in order to artificially introduce the delay σj−1 − δi(t) in the
measurement ȳi(t), when δi(t) ∈ [0, σj−1), the delays δi(t) must be continuous func-
tions of t ≥ 0.

Now, consider, as in section 3, the change of coordinates zj = Φs̄(xj), and let
ζj,i(t) = Φsi

i

(
xj(t)

)
, so that zj(t) = colqi=1{ζj,i(t)} (zj(t) ∈ Rn). The dynamics of
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Fig. 1. Configuration of a chain of four observers, scalar measurement, when σ2 > δ(t) > σ1.

zj(t) = Φs̄

(
xj(t)

)
is żj(t) = As̄zj(t) + Bs̄p

(
zj(t), u(t− σj−1)

)
, t ≥ −Δ+ σj−1, while

the dynamics of ẑj(t) = Φs̄

(
x̂j(t)

)
is

˙̂zj(t) = As̄ẑj(t) +Bs̄p(ẑj(t), u(t− σj−1)) +Kj(t)
q

col
i=1

{νj,i(t)}, t ≥ 0,(79)

ẑj(τ) = Φs̄

(
φ(τ − σj−1)

)
, τ ∈ [−σ̃j , 0].

In the z-coordinates, the modified outputs ȳj,i(t) defined in (77) can be written as

(80) ȳj,i(t) =

{
Csiζj,i(t− δj,i(t)) if δi(t) ∈ [0, σj ],

Csi ẑj+1,i(t) if δi(t) ∈ (σj ,Δ].

Remark 5. The measurement transformations (77) can be considerably simplified
if known lower and upper bounds ΔL and ΔU exist for the measurement delays, i.e., if
δi(t) ∈ [ΔL,ΔU ] ∀t ≥ 0, i = 1:q. In this case, if an m-partition σ̄ is chosen such that
σm−1 = ΔL and σm = ΔU , then the modified measurement pairs

{
ȳj,i(t), δj,i(t)

}m
j=1

defined in (77) are as follows:

ȳj,i(t) = hi
(
x̂j+1,i(t)

)
, δj,i(t) = σ̃j , j = 1:m− 1,(81)

ȳm,i(t) = ȳi(t), δm,i(t) = δi(t)− σm−1.

Note that in this case the delays δi(t) do not need to be continuous. In the particular
case of constant delays δi(t) = Δ, i = 1:q, then the second of (81) is replaced by

ȳm,i(t) = ȳi(t), δm,i(t) = σ̃m.(82)

4.1. Convergence analysis. Before giving the main convergence result for the
chain observer (74), a preliminary lemma is needed. (The proof is in Appendix A.3.)

Lemma 8. Consider a delay system of the type

(83) ξ̇(t) = b(t, ξt) + μ(t), t ≥ 0, with ξ0(τ) = φ(τ), τ ∈ [−Δ, 0],

where ξt is the system state, with initial value φ ∈ Cn
Δ. μ(t) ∈ Rn is an input function,

and b : R+ × Cn
Δ �→ Rn is such that, for some γb > 0,

(84) ‖b(t, φ1)− b(t, φ2)‖ ≤ γb‖φ1 − φ2‖ ∀φ1, φ2 ∈ Cn
Δ, ∀t ≥ 0.
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Assume that, for a given η̄ > 0, the solution ξt = 0 is globally η̄-exponentially stable:

(85) μ(t) = 0 ∀t ≥ 0 ⇒ ∀ξ0 ∈ Cn
Δ, ∃c̄ > 0 : ‖ξ(t)‖ ≤ e−η̄tc̄ ∀t ≥ 0.

Then, given arbitrary μ̄ > 0 and η ∈ (0, η̄), we have

(86) ‖μ(t)‖ ≤ e−η̄tμ̄ ∀t ≥ 0 ⇒ ∀ξ0 ∈ Cn
Δ, ∃c > 0 : ‖ξ(t)‖ ≤ e−ηtc ∀t ≥ 0.

Theorem 9. Consider system (1)–(2) with δi : R+ �→ [0,Δ] continuous func-
tions, i = 1 : q. Let conditions H1, H2, H3 be satisfied, and assume that ‖u(t)‖ ≤ ū
∀t ≥ −Δ for some ū > 0. For a given integer m > 1, consider an m-partition
σ̄ of Δ. Let η > 0 be a given desired error decay rate. Consider a strictly in-
creasing sequence of m positive numbers {ηj}m0 with η0 = η. Consider m ·q pairs
(Kj,i, Pj,i) ∈ Rsi × Σsi×si

+ , for (i, j) ∈ (1 :q) × (1 :m), that satisfy m·q inequalities of
the type (34), with a = 2ηj + α+ 1, with arbitrary α > 0. For j = 1:m let

(87) Δj =
α

2 + βj
with βj =

q∑
i=1

(KT
j,iPj,iKj,i)‖P−1

j,i ‖
(
1 + η2j + (Kj,i)

2
1

)
.

Then, if σ̃j < Δj, for j = 1 :m, the system (74)–(76) is a global η-exponential chain
observer for system (1)–(2).

Proof. Consider the error equation of the jth observer in z-coordinates. Exploiting
the variables ζj,i(t) and ẑj,i(t), and using (80), the forcing terms νj,i(t) of the observer,
defined as νj,i(t) = ȳj,i(t)− hi

(
x̂j(t− δj,i(t))

)
, can be rewritten as

(88) νj,i(t) =

{
Csi

(
ζj,i(t− δj,i(t))− ẑj,i(t− δj,i(t))

)
if δi(t) ∈ [0, σj ],

Csi

(
ẑj+1,i(t)− ẑj,i(t− σ̃j)

)
if δi(t) ∈ (σj ,Δ].

Let us define the error components z̃j,i(t) = ζj,i(t)− ẑj,i(t). Notice that, by definition,
ζj+1,i(t) = ζj,i(t− σ̃j), so that in (88) we have

ẑj+1,i(t)− ẑj,i(t− σ̃j) = ẑj+1,i(t)− ẑj,i(t− σ̃j)− ζj+1,i(t) + ζj,i(t− σ̃j)(89)

= z̃j,i(t− σ̃j)− z̃j+1,i(t),

and from this, recalling that δj,i(t) = σ̃j when δi(t) ∈ (σj ,Δ],

(90) νj,i(t) =

{
Csi z̃j,i

(
t− δj,i(t)

)
if δi(t) ∈ [0, σj ],

Csi z̃j,i
(
t− δj,i(t)

) − Csi z̃j+1,i(t) if δi(t) ∈ (σj ,Δ].

Thus, we can write in short

(91) νj,i(t) = Csi z̃j,i(t− δj,i(t))− Csiχj

(
δi(t)

)
z̃j+1,i(t), δi(t) ∈ [0,Δ],

where χj : [0,Δ] �→ {0, 1} is the characteristic function of the interval (σj ,Δ] (i.e.,
χj(δ) = 0 if δ ∈ [0, σj), χj(δ) = 1 if δ ∈ (σj ,Δ]). Using (91) we can rewrite (79) as

˙̃zj(t)=As̄z̃j(t)+Bs̄p̃j
(
z(t), u(t), z̃j(t)

)
+Kj(t)Cs̄z̃j,δ̄j (t)−Kj(t)Cs̄ñj(t, δ̄(t)), t ≥ 0,

z̃j(τ) = z(τ − σj−1)− Φs̄

(
φ(τ − σj−1)

)
, τ ∈ [−σ̃j , 0],

where z̃j,δ̄j (t) =
q

col
i=1

{
z̃j,i
(
t− δj,i(t)

)}
, ñj(t, δ̄(t)) =

q

col
i=1

{
χj(δi(t))z̃j+1,i(t)

}
.

(92)
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Note that for j = m this equation coincides with the single-step observer equation
of Theorem 5, so that, under the given conditions for σ̃m (i.e., σ̃m < Δm given in
(87)) and for the gains Km,i (i.e., satisfying (34)), we have that the mth observer of
the chain is a global ηm-exponential observer for xm(t) = x(t − σm−1), because by
construction δm,i(t) ∈ [0, σ̃m]. Thus, for any φ ∈ Cn

Δ there exists cm > 0 such that
‖ẑm(t)‖ ≤ e−ηm tcm. Recalling that by assumption ηm > ηm−1, we have also

(93) ‖ẑm(t)‖ ≤ e−ηm−1tcm.

Note that equations (92), for j = 1:m, are of the form

˙̃zj(t) = bj(t, z̃j,t) + μj

(
t, z̃j+1(t)

)
, t ≥ 0, z̃j,0 ∈ Cn

σ̃j
,(94)

where the term μj

(
t, z̃j+1(t)

)
= −Kj(t)Cs̄ñj(t, δ̄(t)) can be regarded as an external

input to the jth observer. Thus, (92) is a system of the type (83) of Lemma 8. If
z̃j+1(t) ≡ 0, the given assumptions on σ̃j and Kj,i ensure, thanks to Theorem 5, that
the equilibria z̃j,t = 0 are ηj-exponentially stable. Thus, thanks to Lemma 8, the
following implication holds true for any j = 1:m− 1:

(95) ‖z̃j+1(t)‖ ≤ e−ηjtcj+1, for some cj+1 > 0 ⇒ ∃cj : ‖z̃j(t)‖ ≤ e−ηj−1tcj .

Thus, by finite induction, we have that inequality (93) implies that ‖z̃1(t)‖ ≤ e−η0tc1.
Being η0 = η, the η-exponential observation error decay is proved.

Now we can give the main theorem that ensures the existence of a global
η-exponential chain observer for any value of the maximum measurement delay Δ.

Theorem 10. Under the same assumptions of Theorem 9 on system (1)–(2), for
any given desired error decay rate η > 0, and for any given maximum delay Δ, there
exist m ∈ N, a m-partition σ̄ of Δ and gains Kj,i ∈ Rsi , (i, j) ∈ (1 :q)× (1 :m), such
that (74)–(76) is a global η-exponential chain observer for system (1)–(2).

Proof. The proof is achieved by showing how to choose m ∈ N, an m-partition
σ̄, a sequence {ηj}m0 , and gains Kj,i, together with SPD matrices Pj,i, such to satisfy
the assumptions of Theorem 9. Choose arbitrary η′ > η and α > 0, and consider a
set of solution pairs (ki, Pi) ∈ Rsi × Σsi×si

+ for the q inequalities (34), for i = 1 : q,

with a = 2η′ + α+ 1. Set Kj,i = ki, Pj,i = Pi, for j = 1 :m. Let Δ
′
and β′ be given

by (37) with η replaced by η′ in the summation. Choose an arbitrary dη′ < Δ
′
, let

m = �Δ/dη′�, and let σj = j
mΔ, j = 1 :m. Note that if m = 1 the assumptions

of Theorem 5 are satisfied, so we get a single-step global η-exponential observer.
Thus, we consider the general case m > 1. Note that with the chosen σ̄ we have

σ̃j = Δ
m ≤ dη′ < Δ

′
, j = 1 :m. Now choose an arbitrary strictly increasing sequence

{ηj}m0 such that η0 = η and ηm = η′. Being ηj < η′, it can be easily seen that the
chosen (Kj,i, Pj,i) are solution pairs of the m·q inequalities (34) with a = 2ηj +α+1.

Let Δj be computed as in (87). Being ηj < η′, we have βj < β′ and Δj > Δ
′
and,

as a consequence, σ̃j < Δj , so that all the assumptions of Theorem 9 are satisfied.
This proves that with the given gains Kj,i and m-partition σ̄, the system (74)–(76) is
a global η-exponential chain observer for (1)–(2).

5. Guidelines for the tuning of a chain observer. Given a nonlinear system
of the type (1)–(2) and a multi-index s̄ = {si}q1, with |s̄| = n, that defines an invertible
observability map z = Φs̄(x), and given a maximum measurement delay Δ, the chain
observer of order m defined in (74) is characterized by the time-varying gains Kj(t),
defined in (75), and by a delay partition σ̄ = {σj}m0 (see Definition 7). When choosing
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the time-dependent gainsKj(t) of the jth observer of the chain, the design parameters
are the constant gains Kj,i ∈ Rsi , for (j, i) ∈ {1:m} × {1:q}, and a set of m positive
reals η̄ = {ηj}m1 , a total of m(n+ 1) parameters. In practical applications the use of
the convergence conditions of Theorem 9 or of Theorem 10 may be inconvenient for
two main reasons: the Lipschitz constant γp in the inequalities is difficult to compute,
and the convergence conditions are likely to be too conservative and restrictive. Thus,
a trial and error tuning procedure, based on computer simulations, is preferred.

In order to simplify the process of tuning the observer gains, these can be chosen
with the structure suggested in Theorem 6 for the single-step observer, Kj,i = k̄i(ρj),
where k̄i(·) is defined as in (71), by choosing once for all the m vectors vi ∈ R

si− , and
only tuning the scalar parameter ρj ∈ R+. In this way, each observer of the chain
is characterized by the pair of scalar parameters (ρj , ηj), and the chain observer of
order m is characterized by the two sets of parameters ρ̄ = {ρj}m1 and η̄ = {ηj}m1 , a
total of 2m parameters.

A tuning procedure can roughly proceed as follows. The preliminary step consists
in choosing the q vectors vi ∈ R

si− , i = 1 :q. (These are the eigenvalues of the matrix
Ab − k̄i(1)Cn.) Then, chain observers of increasing orders are tuned to achieve a
satisfactory observer error convergence in the presence of increasing measurement
delays, until the given maximum delay Δ is reached. The set of parameters ρ̄ and η̄
and the delay partitions σ̄ tuned for a chain observer of a given order m can be used
as a starting point for the tuning of the observer of order m + 1. The next section
provides an exemplification of this tuning procedure.

6. Example: Hyperchaos synchronization with buffered measurements.
As an example, the chain observer is applied to a problem of hyperchaos synchroniza-
tion when the measurements are stored in data packets before to be sent to the
processing unit (buffered measurements). Hyperchaotic systems find application in
the field of secure communications [30, 23]. In [8, 14] the following hyperchaotic
modification of the classical (chaotic) Lorenz system has been proposed:

(96)

ẋ1(t) = α
(
x2(t)− x1(t)

)
,

ẋ2(t) = βx1(t) + x2(t)− x1(t)x3(t)− x4(t),

ẋ3(t) = x1(t)x2(t)− γx3(t),

ẋ4(t) = θx2(t)x3(t),

where for α = 10, β = 28, γ = 8/3, and θ = 0.1 exhibits a hyperchaotic behavior.
The following measurements on system (96) are assumed available:

(97) ȳ(t) =

[
h1
(
x(t− δ1(t))

)
h2
(
x(t− δ2(t))

)] , where

{
h1(x) = x1,

h2(x) = x2 + x3.

We assume that the measurements are taken over regular time intervals of the type
[(k− 1)Tc, kTc) for k = 0, 1, . . ., and are supplied to the processing unit at a high rate
during the time interval [kTc, kTc + Ta), where Ta < Tc. The first packet, available
to the observer at time t = 0, is made of the measurements over the interval [−Tc, 0]
(thus, the maximum delay Δ is Tc). The resulting delay functions are as follows:

(98) δi(t) =

{
Tc − Tc−Ta

Ta
(t− kTc) if t ∈ [kTc, kTc + Ta),

t− kTc if t ∈ [kTc + Ta, (k + 1)Tc),
k = 0, 1, . . . .
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Fig. 2. Decomposition of the buffer delay function δi(t) for m = 2. (a) Plot of t − δi(t).
(b) Plot of δi(t), δ1,i(t), δ2,i(t) (nonuniform 2-partition σ̄ = {σ1, σ2}: Δ = σ1 + σ̃2).

Figure 2 graphically represents the delay in the process of buffering and transmitting
measured data. In Figure 2(a) we see that, within a period Tc, the delivery data rate
is high for a short duration Ta, and is 0 for a duration Tb = Tc − Ta Figure 2(b)
shows the delay function δi(t) and its decomposition δ1,i(t) + δ2,i(t) associated to a
2-partition.

For simplicity, in the following the same delay has been assumed for both mea-
surements (97) (i.e., δ1(t) = δ2(t) = δ(t)). For the observer construction we consider
the multi-index s̄ = {2, 2}. The computation of the observability map z = Φs̄(x) gives

(99) Φs̄(x) =

⎡⎢⎢⎣
h1(x)
Lfh1(x)
h2(x)
Lfh2(x)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1

α(x2 − x1)
x2 + x3

βx1 + x2 − x1 x3 − x4 + x1x2 − γx3

⎤⎥⎥⎦ ,
which is invertible in all R4.

Note that the Lorenz system (96) and the observability map (99) are locally
Lipschitz but not uniformly Lipschitz in all Rn. However, it is known that there
exists an invariant compact set for the system trajectories, and in this set the Lipschitz
assumptions H1 and H2 are satisfied (see Remark 3).

Chain observers for m = 1, 2, 3 have been designed for system (96)–(97) for differ-
ent values of the maximum delay Δ (recall that Δ = Tc). In the buffered measurement
model we consider the time Ta negligible with respect to Tc. The guidelines given in
section 5 have been followed for tuning of the observers. The choice Kj,i = k̄i(ρj),
i = 1, 2, where k̄i(·) is defined as in (71), and v1 = v2 = [−1.00 −1.05]T , has been done.
We tuned the single-step observer first (m = 1), and with (ρ1, η1) = (18, 36) we had
convergence for any Δ ≤ 0.140. Then we considered a chain observer with m = 2,
where we set (ρ2, η2) = (18, 36) and then tuned the two parameters (ρ1, η1) only,
achieving satisfactory convergence with (ρ1, η1) = (16, 16) and Δ = 0.240. The chain
observer with m = 3 was designed by setting (ρ3, η3) = (18, 36), (ρ2, η2) = (16, 16)
and then tuning the parameters (ρ1, η1). The results are summarized in Table 1 and
clearly show that larger measurement delays can be handled increasing the order m
of the chain observer.

The true variable x4(t) and the observed one x̂1,4(t) (the fourth component of
the output x̂1(t) of the first observer in a chain with m = 3) are plotted in Figure 3,
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Table 1

Parameters used in the chain observers and maximum delays achieved.

m = 1 m = 2 m = 3

max Δ 0.140 0.240 0.340
m-partition σ̄ = {0, 0.140} σ̄ = {0, 0.05, 0.240} σ̄ = {0, 0.05, 0.120, 0.340}
(ρj , ηj) (18, 36)1 (16, 16)1 (18, 36)2 (13, 12)1 (16, 16)2 (18, 36)3
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Fig. 3. True and observed variable x4 using the chain observer with m = 3 and output buffering
interval Tc = 0.3 (left), and the logarithm of the observation error (right).
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time

y(t) undelayed output
y-3,1(t)
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y(t) undelayed output
y-2,1(t)
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y(t) undelayed output
y-1,1(t)

Fig. 4. True undelayed output y1(t) of system (96)–(97) and transformed outputs ȳ1,1(t),
ȳ2,1(t), ȳ3,1(t) for the chain observer of order m = 3 under buffered measurements with Tc = 0.3.

together with the logarithm of the absolute observation error in the case Tc = 0.300.
The delay partition used in this simulation is σ̄ = {0, 0.5, 0.12, 0.3}, and the observer
gain parameters are ρ̄ = {16, 18, 20}, η̄ = {20, 21, 22}. The initial conditions
are x(0) = [4.0, 2.4, 24.6, 27.2]T for the system and x̂(τ) = [4.0, 2.0, 25.0, 28.0]T ,
τ ∈ [−Δ, 0] for the observer. In the log-plot of the error the exponential decay of the
observation error is evident. In Figure 4 the true undelayed output y1(t) is plotted,
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together with the transformed outputs ȳi,1(t), j = 1, 2, 3. Recall that ȳi,1(t) is the
input to the ith observer in the chain. Note that ȳ3,1(t) coincides with the measured
output ȳ1(t) = y1

(
t − δ(t)

)
when δ(t) ∈ [σ2, Tc], while for δ(t) ∈ [0, σ2) ȳ3,1(t) is the

artificially delayed output y1(t−σ2). ȳ1,1(t), the input to the first observer, coincides
with ȳ1(t) when δ(t) ∈ [0, σ1]. When δ(t) ∈ (σ1, Tc] ȳ1,1(t) is the estimate of the
output y1 at time t− σ1 provided by the second observer, i.e., ȳ1,1(t) = h1

(
x̂2(t)

)
.

7. Conclusions. An approach for the chain-observer design in the case of non-
linear systems with vector output and time-varying measurement delays has been
presented in this paper. When the maximum delay is sufficiently small, then a single-
step observer can achieve a prescribed exponential observation error decay. A cascade
of observers is needed to deal with larger delays. With respect to previous proposals of
cascades of observers we have introduced a more flexible design that allows nonuniform
delay intervals for each observer in the chain. Although no continuity assumption for
the time-varying delay is needed for the implementation of the single-step observer,
the continuity is required for the chain-observer implementation. The case of buffered
measurements has been considered as an example. Future research will be aimed at
investigating alternative chain structures that do not need the continuity hypothesis
on the delay function.

Appendix. A.

A.1. Some facts on the Vandermonde matrix. Let (Ap, Bp, Cp) denote a
Brunowsky triple of order p, defined as [Ap]i,j = 1 if i = j − 1 and [Ap]i,j = 0
elsewhere, [Bp]p = 1 and [Bp]i = 0 for i < p, and [Cp]1 = 1 and [Cp]i = 0 for i > 1.
Let �p ∈ Rp denote a vector of ones of dimension p. For a given v ∈ Cp, let v1, . . . , vp
denote its components, and let v(k) denote the componentwise kth power of v and let
V (v) denote the Vandermonde matrix associated to v, defined as

v(k) =

⎡⎢⎣v
k
1
...
vkp

⎤⎥⎦ , V (v) =
[
v(p−1) · · · v �p

]
=

⎡⎢⎣v
p−1
1 · · · v1 1
...

...
...
...

...
...

vp−1
p · · · vp 1

⎤⎥⎦ .(100)

It is known that V (v) is nonsingular if and only if the components of v are all distinct
and nonzero. Let

(101) Λ(v) =
p

diag
i=1

{vi} and k(v) = −V −1(v) v(p).

It is easily seen that Λ(v)V (v) = V (v)Ap + v(p)Cp, and therefore

(102) V (v)
(
Ap − k(v)Cp

)
= Λ(v)V (v) and V (v)

(
Ap − k(v)Cp

)
V −1(v) = Λ(v),

which means that k(v) assigns the eigenvalues v1, . . . , vp to the matrix Ap−k(v)Cp. It
follows that for any given ρ ∈ R, we have V (ρ v)

(
Ap − k(ρ, v)Cp

)
V −1(ρ v) = Λ(ρ v) =

ρΛ(v). It is not difficult to see that

(103) k(ρ v) =
p

diag
j=1

{ρj}k(v),
V (ρ v) = V (v)

p

diag
j=1

{ρ−j}ρp,

V −1(ρ v) =
p

diag
j=1

{ρj}V −1(v)ρ−p.
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Lemma 11. For any pair a > 0 and b > 0, there always exists a solution pair
(k, P ) ∈ Rp × Σp×p

+ to the inequality

(104) (Ap − k Cp)
TP + P (Ap − k Cp) + aP + b Isi(B

T
p PBp) ≤ 0.

Moreover, for any given v ∈ Rp, with distinct and negative components, the pairs(
k̄(ρ), P (ρ)

)
defined as

(105) k̄(ρ) = k(ρ v), P (ρ) = V T (ρ v)V (ρ v)

are solution pairs if

(106) ρ > max

{
1,
a+ b p ‖V −1( v)‖2

2w

}
,

where w = −maxpi=1(vi).
Proof. Note first that, by assumption, v has all distinct components, and therefore

V (ρ v) is nonsingular, and therefore P (ρ) ∈ Σp×p
+ . From (102) we have

(107) P (ρ)
(
Ap − k̄(ρ)Cp

)
=
(
Ap − k̄(ρ)Cp

)T
P (ρ) = V T (ρ v)Λ(ρ v)V (ρ v).

Thus, inequality (104) becomes

(108) 2V T (ρ v)Λ(ρ v)V (ρ v) + a V T (ρ v)V (ρ v) + b Isi(B
T
p V

T (ρ v)V (ρ v)Bp) ≤ 0.

Note that V (ρ v)Bp = �p, so that BT
p V

T (ρ v)V (ρ v)Bp = �
T
p �p = p. Premultiplying

by
(
V (ρ v)

)−T
and postmultiplying by V −1(ρ v) the inequality (108), we get

(109) 2 Λ(ρ v) + a Ip + b p
(
V (ρ v)

)−T
V −1(ρ v) ≤ 0.

Since Λ(ρ v) ≤ −ρw Ip, and V −TV −1 ≤ ‖V −1‖2Ip and, for ρ > 1, since ‖V −1(ρ v)‖2 <
‖V −1(v)‖2, we have

(110) 2Λ(ρ v) + a Ip + b p V −T (ρ v)V −1(ρ v) ≤ −2ρw Ip + a Ip + b p ‖V −1(v)‖2Ip.
Thus, the inequality (109) holds for any ρ > 1 such that

(111) −2ρw + a+ b p ‖V −1(v)‖2 ≤ 0.

It is clear that condition (106) implies (111), and this in turn implies (109), and the
lemma is proved.

A.2. Proof of Lemma 4.
Proof. Note first that the matrices k̄i(ρ) and P i(ρ) defined in (35) can be written

as

(112) k̄i(ρ) = k(ρ vi), P i(ρ) = V T (ρ vi)V (ρ vi), i = 1:q,

where k(·) is defined in (101). Thus, with the choice (35) we have V (ρ vi)Bsi = �si and
(BT

siP i(ρ)Bsi) = �
T
si�si = si. Being |s̄| = ∑q

i=1 = n by assumption, the summation
in (34) is n. Thus, the q inequalities (34) can be rewritten as

(113)
(
Asi − k̄i(ρ)Csi

)T
P i(ρ) + P i(ρ)

(
Asi − k̄i(ρ)Csi

)
+ aP i(ρ) + b n Isi ≤ 0.

The condition (36) on ρ is easily obtained following the steps of Lemma 11 for each
of the q inequalities (113).
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A.3. Proof of Lemma 8.
Proof. For the given η ∈ (0, η̄), let ε(t) = eη tξ(t), and let η̃ = η̄ − η. From this

definition, εt is the state of a delay system whose trivial solution εt = 0 is globally
η̃-exponentially stable. In order to derive the system equations for εt, let us consider
the operator Lη : R+ × Cn

Δ �→ Cn
Δ, defined as Lη(t, φ)(τ) = e−η(t+τ)φ(τ), τ ∈ [−Δ, 0].

Thus, by definition, ξt = Lη(t, εt). The computation of the time-derivative of ε(t)
gives ε̇(t) = η ε(t) + eη tb(t, ξt) + eη tμ(t), and from this we get the system

(114)
ε̇(t) = bη(t, εt) + eη tμ(t), t ≥ 0,

ε0(τ) = eη tφ(τ), τ ∈ [−Δ, 0],

where bη(t, εt) = ηε(t) + eη tg
(
t, Lη(t, εt)

)
, and is such that

(115)
‖bη(t, φ1)− bη(t, φ2)‖ ≤ η‖φ1 − φ2‖+ eη t‖b(t, Lη(φ1)

)− b
(
t, Lη(φ2)

)‖
≤ η‖φ1 − φ2‖+ eη tγb‖Lη(φ1)− Lη(φ2)‖

thanks to assumption (84). Since ‖Lη(t, φ1) − ‖Lη(t, φ2)‖ ≤ e−η(t+Δ)‖φ1 − φ2‖, the
following holds true:

(116) ‖bη(t, φ1)− bη(t, φ2)‖ ≤ (η + γbe
ηΔ
)‖φ1 − φ2‖ ∀φ1, φ2 ∈ Cn

Δ, ∀t ≥ 0.

It follows that system (114) satisfies the assumptions of Theorem 3.2 in [31] and
therefore is input-state-stable i.e.,

(117) ‖eη tμ(t)‖ ≤ p̄ ∀t ≥ 0 ⇒ ∀ε0 ∈ Cn
Δ, ∃c > 0 : ‖ε(t)‖ ≤ c ∀t ≥ 0.

From this, being ‖eη tμ(t)‖ ≤ ‖eη̄ tμ(t)‖, the thesis (86) easily follows.
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