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1. SUMMARY

In this paper we try to extract the core of the argument used by Y. L. Tong [15]
for probabilities in multivariate equicorrelated normal distributions, and to generalize
it as far as possible. The proof of the general inequalities is very simple, but these
inequalities embrace a large number of interesting special cases. We give here nine
illustrations: for multivariate equicorrelated normal, ¢, y%, Poisson, exponential
distributions, for normal and rank statistics in comparing many treatments with one
control, for order statistics used in estimating quantiles, and for characteristic roots
of covariance matrices in certain multiple sampling.

2. GENERAL INEQUALITIES

Y. L. Tong in [15], Theorem 1, proved the following assertion: If a random
variable X is non-negative with probability 1, then

(1) EX* = (EX*y = (EX)* + [EX"* — (EX)**]" for kzs=1.
An immediate consequence is the following chain of inequalities.

Lemma. If a random variable X is non-negative with probability 1, then

(2) EXk g [Exk—l]k/(k—l) z [Exk—Z]k/(k—Z) g % [Exm]k/m g [Ex2]k/2 g
= [EXT + [EX* — (EX)*]"* 2 [EX]* for kzmz2.

Namely, on putting s = k/(k — 1) in (1), we get the first inequality in (2); on
changing k into k — 1 in this first inequality, we get the second inequality in (2),
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etc. The last but one inequality in (2) follows from (1) on putting s = k/2, and the
last inequality is clear because EX* > (EX)%.

Now we can prove the main result of this paper.

Theorem. Let X; = (X,,....,X;,), i =1,...,k, be a sample of k independent
p-dimensional random vectors with the same distribution (but where the p com-
ponents of each vector may be dependent), and let U = (Uy,...,U,) be another
g-dimensional random vector (with possibly dependent components) which is
independent of all X;;’s. Further, let [ = f(xy, ..., X,; uy, ..., u,) be any measurable
r-dimensional vector function, and A any measurable r-dimensional set. Denoting

(3) Blk) = P{f(Xi, ... Xips Uy, o, Uedsi=1,..,k},
we have the following chain of inequalities

@) k) 2 [k — D]FED = [plk — 2T = L = [p(m)]" 2
z [p2)]2 z (1) + [A(2) = (D] = B(1)
for kzmz=2.

The proof follows easily from the Lemma stated above on putting there X =
=P{f(Xit ... Xip; Uy, ..., U) € A| Uy, .., U}, and its idea is extracted from
the proof of Theorem 2 in Tong [15]. Namely, we have
B(k)y = P{f(X;U)ed;i=1,..,k} = EP{f(X;U)ed;i=1,..,k|U} =

= EPYf(X;; U)e 4| U} 2 [EPF"H{f(X; U)e A | UTVED =
=[EP{f(XsU)ed;i=1,.., k- 1|U/ ! =
=[P{f(X;U)ed;i=1,..,k—1}]J* =[pk — )],

and further inequalities in (4) can be proved similarly.

The inequalities (4) are analogues of those given in Theorem 2 in Tong [15];
however, additional inequalities can be clearly obtained by our method from the
second inequality in (1).

Remark. C. G. Khatri in [7], Corollary 1 (ii), proved that EX* 2 (EX™) (EX*™™)
provided X = 0, k = m = 0. These inequalities can also be used in our method
of proof in place of the above Lemma, and the resulting inequalities are clearly

() Blk) = Bk — 1) A1),
B(k) = Bk — 2) B(2), ...,
B(k) = B(m) B(k — m) for k>mz=1.
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A question now arises naturally which of the inequalities (5) or (4) yield closer
bounds for (k). Clerly, in view of symmetry, we may restrict ourselves in (5) only
to cases with m = k — m, i.e. with m = 1k. However, for these cases (4) implies
B(m) = [B(k — m)]* ™, which immediately gives

(6) [B(m)]*™ = B(m) plk — m).

Therefore, if we know the probabilities (1), f(2), ..., f(m) up to dimension m,
[B(m)]/™ in (4) gives the closest bound for B(k) which can be obtained from (4)
and (5).

3. SPECIAL CASES

The inequalities (4) contain a large number of interesting special cases. Nine of them
will be mentioned here for illustration, but many more can be found. This flexibility
is mainly due to the possibility of choosing arbitrarily the function f.

In each of the following cases we shall display the forms of the respective function f
and of the probability f(k), but we shall not repeat the inequalities (4) for these
specific probabilities.

1. Equicorrelated normal distributions. Let Z,..., Z, have a k-variate normal
distribution with mean values 0, variances 1, and with all correlations equal to ¢ = 0.
It is then a well known and often used fact that such a distribution may be represented
by the distribution of Z; = (1 — ¢)'""* X; — ¢'?U, i = 1,..., k, where U, X, ..., X,
are mutually independent N(0, 1) variables. Therefore, putting in our Theorem
p=qg=r=1, f(XsU)=(1-0)"?* X, — ¢"?U, and either 4 = (—o0,d) or
A = {—d, d), we get the probabilities either

Blk) = P{Z,<d;i=1,...k} or Bk)=P{z|<d;i=1,.. k},

respectively. Thus, by this specialization, we get again the inequalities proved by
Tong [15], Theorem 2. In this special case of equicorrelated variables, the inequalities
(4) improve the general inequality f(k) = (1) obtained by Slepian [12], and by
Sidak [10] and Khatri [7], respectively.

2. Equicorrelated Student distributions. One type of a multivariate Student

distribution is the distribution of ZI/S, e Zk/S, where Z,, ..., Z, is as before in
Case 1, and

5= ('Y, wa
R j=1
where Wi, ..., W, are independent N(0, 1) variables, also independent of Z,, ..., Z,.
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We use again the same representation of Z;’s as before, and put p=r = 1,9 = 2,
(Ula Uz) = (U, S),

f(XsU,8) =[(1 —o)'* X, — ¢"?U]/S,
and either 4 = (— 0, d) or A = (—d, d). Then we have either
Blk) = P{Z,[S < d;i=1,..,k} or P(k)=P{Z|[S<d;i=1,..,k},

respectively. The relevant inequalities (4) are also due to Tong [15], Theorem 2.
Another type of a multivariate Student distribution is the distribution of Zl/Sl,
-ves Zy[Sy, wWhere Zy, ..., Z, is again as before, and

v

Si=( T YWY, =1k,

Jj=1

where W; = (W,;,...,W,;), j=1,...,v, is a random sample of vectors, which
are mutually independent and independent of Z,, ..., Z,, and each of which has
the same k-variate normal distribution with mean values 0 and variances 1; we shall
also suppose that all correlations between W;; and W,; (i,h =1,..., k;i = h)

iy
are equal to t = 0. Clearly again as before, we can use a similar representation

Z,=(1 -0 Xy —0"Uy, i=1,..,k,

and .
Wy=(0-0"X,;-a70;, i=1.,kj=1..,v,

where all X;o, X;;, Uy, U; are mutually independent N(0, 1) variables. If we put now
p=q=v+1,r=1,

_ 1/2 a2
f(XiOa Xila rees Xiv; UO’ Ul’ e Uv) = (1 Q) Xto e UO s

O R0 = 9V X - U

. and either A = (-0, d) or 4 = (—d, d), we get the probability either
Blk) = P{Z,/S; < d;i=1,...k} or B(k)=P{Z|[S;<d;i=1,..,k},

respectively. Concerning the latter probability, the inequalities (4) improve, in this
special case of equicorrelated variables, the inequality f(k) = (1) which was proved
by Sidak [11] and Khatri [7] for more general covariance structures.

3. Equicorrelated > distributions. Let Z; = (Z,;, ..., Z,,) be a random vector
having a k-variate normal distribution with mean values 0, variances 1, and with
all correlations equal to ¢; = 0; let j run through 1,2, ..., v, and let the vectors Z;
for different j's be independent. Similarly as in Case 1, we can use a representation
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Z;=(1—0)"*X,; —0;?U;, i=1,...k j=1,...,v, where all X;;, U; are
mutually independent N(0, 1) variables. Putting now in our Theorem p = g = v,
r=1,

f(Xil’ sees Xiv; Ula s Uv) zjgl[(l - Q,")II’Z Xi.f - Q}/zUi}z >
and A = (d, d,), we get the probability
) v
B(k)y =P{d, <> Z;; <dpii=1,...,k}.
=1

It may be observed that the inequality f(k) = B*(1) for such a probability was proved
under different assumptions than ours by the following authors: Jensen [5] proved
it for the case where the assumption of independence of the vectors Z; was relaxed,
but only for k = 2; Khatri [7] proved it under more general conditions on the
correlation structure, but only for one-sided intervals (d,,‘dz), i.e. where either
d, = 0ord, = oo. All of these inequalities can be clearly used for finding conserv-
ative confidence intervals for k variances simultaneously; for details cf. Jensen-
Jones [6], p. 328, or Khatri [7], p. 1855.

4. Poissen distributions. A special case of multivariate Poisson variables Z, ..., Z,
may be given by the model Z, = X, + U, ..., Z, = X, + U, where X, ..., X,,
U are independent Poisson variables. Note that this model includes, in particular,
the bivariate Poisson distribution (cf. Haight [3], Section 3.12, or Holgate [4]).
If we put p=g =r=1 and f(X;U) = X, + U, the probability f(k) in the
Theorem will become (k) = P{Z,e 4;i = 1,...,k}.

5. Exponential distributions. Similarly, a special case of multivariate exponential
variables Z,,...,Z, may be defined by the model Z, = min (X, U),. .., Z; =
= min (X,, U), where X, ..., X}, U are independent exponential variables. In parti-
cular, this model for k = 2 gives the bivariate exponential distribution (cf. Marshall-
Olkin [8], Theorem 3.2). Thus, putting p =g = r = 1, f(X;; U) = min (X,, U),
we obtain the probability f(k) = P{Z;e A;i = 1,..., k}.

6. Comparisen of k groups with one control — normal variables. Let us have
a sample Y4, ..., ¥y, in a control group, and the samples (of the same size) Yii, o Y
i=1,...,k, in k experimental groups. Let each Y;; have the normal distribution
N(p;, %) with the same known variance ¢ and let all of them be mutually inde-
pendent. The question is to find which p;, i = 1, ..., k, differ significantly from .
For this purpose, Dunnett [2] (or, cf. also Miller [9], Section 2.5) proposed the test

statistics
Y. - Y, mn
zZ, =1 _°° —), i=1,..,k,
o m+n
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where

Jj=1
and
Yo=m""'YY,,.
i=1
fpu=u=..=wy, wemayput p=n,g=mr=1,X,;=Y,... X;, =Y,

for i=1,..,k U =Yy,...,U, =Yy, (X .o Xy Up....U,) =2, and
either 4 = (—~o0,d) or A = (—d, d). Then

Blk)=P{Z, <d;i=1,..,k} or Pk)=P{iZ]|<d;i=1,...k},

respectively. The inequalities (4) in our Theorem can be used e.g. for approximating
the critical values for the relevant test based on the variables Z,, ..., Z,; in fact,
the inequality (k) = [B(2)]¥/* was used for this purpose for the twosided test already
by Dunnett [2] himself.

If the variance ¢ in this problem is unknown (this problem was also considered
by Dunnett [2]), everything is only slightly modified. Namely, in the definition
of Z, we need to replace o by its estimate

m k n
s ={(m+kn —k—-1)"" [ZI(YOJ. - Y,)? le Zl(Yij -1,
' j= =1 j=
and the remaining discussion is completely analogous.

7. Comparison of k groups with one control — mnonparametric tests. Let us
consider the same situation and the same question as in Case 6, except that the ¥;;’s
may have any continuous distribution. For this problem, Steel [13] (or, cf. also
Miller [9], Section 4.3) recommended the rank statistics

Z; =Y Ry, i=1..,k,
i=1

where R;; is the rank of the observation Y;; in the pooled sample Y}y, ..., Y;,, Yo,, ...
wews Yo (Le. Z; is the common Wilcoxon statistic for the i-th group and the control
group.) If all observations Y;; in all k experimental groups have the same distribution,
we may again identify p = n,g = m,r = 1,X;y =Y, ... X; = Y, fori =1, .,k
U, =Yy, ... U, =Y, and put

SXis o Xy Uy, ., U) = Y Ry,

A = (dy, d,). Then
Blk) = P{d, < Z, < dy;i=1,...k},
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and the inequalities (4) can be again used for approximating the critical values of the
corresponding test. (Note that the inequality (k) = p*(1) leads to approximating
the critical values in question by those of the common Wilcoxon test.)

Further, if the problem is modified so that the observations are arranged in blocks,
we can use the so-called many-one sign statistics (cf. Steel [14], or Miller [9],
Section 4.1); the developments for this case are similar as before.

8. Estimation of quantiles in equicorrelated normal distributions. Let us have
a sample of n independent vectors Y, = (YU, ij), j=1,...,n, where each ¥,
has a k-variate normal distribution with an unknown mean vector (g, ..., ),
an unknown vector of standard deviations (a4, ..., o), and with all correlations
equal to ¢ = 0. Let y;, denote the a-quantile of the normal distribution N(y;, 67),
and let YV £ Y < ... £ Y™ denote the ordered observations Yy, Yi, ..., ¥;.
We are interested in finding a lower bound for the confidence coefficient of simul-
taneous confidence statements

YO <y, <Y, i=1,...k,

for some fixed s, t, 1 < s <t < n. To this end, define first the vectors Z; =
=(Zyj.osZyy) by Zij=(Y; —p)on, i=1,..,k; j=1,...,n Similarly as
before, let Z{V < Z{¥ < ... < Z!™ be the ordered observations Z;;, Z, ..., Zi
Now, for these Z;;, we can use (cf. Case 1 or 3) a representation Z;; = (1 — ¢)'/?X;;—
— @'?U;, where all X;;, U; are mutually independent N(0, 1), variables. Further,
if z, is the a-quantile of the distribution N(0, 1), then clearly y;, = 0.z, + ;. Finally,
let p=q = n, r = 2, let the coordinates of the two-dimensional function f be

f](Xib---yXin; Ula'--’ Un) = Z(iS) ’
fZ(Xila“-inn; Uh"" Un) =Z(it)7
and let A = (— o0, z,) x (z,, o). Then we obtain the probability

B(k) = P{Z® <z, <ZP5i=1,.., k=
= P{(Y® — p)o; < z, < (Y — w)fosi=1,... k} =
=P{Y® <y, <Y"i=1,..,k,

i
and our Theorem may give us the desired lower bound for (k). If we specialize y,,
to be the medians, our result (k) = B*(1) may be compared with those presented
by O. J. Dunn [1]: she showed that (2) = p*(1) for any bivariate population with
continuous marginal distributions, but that f(k) = $*(1) need not hold for k = 3.
Our result shows that, for a very special type of distributions, f(k) = p*(1) does hold
for any k.
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9. Characteristic roots of covariance matrices in a case of multiple sampling.
Clearly, our Theorem and its proof may be also modified so that the function f takes
on for its values measurable r-dimensional sets, and that

Bk) = P{f( Xy, ... Xips Uy, ., U e Ay i =1, .., k).

The following case will illustrate this modification. Let us have k + 1 random
samples of s-dimensional vectors: the O-th sample consists of vectors Y,;
= (ijs Y\-o,')’j =1,...,m; for i =1,..., k, the i-th sample consists of vectors
Y, =Yy .. Yy) J =1, ..., n; let all of these vectors be independent and possess
the same distribution. Then, for each i = 1, ..., k, let us combine the 0-th sample
and the i-th sample into one sample Y,,, ..., Y, Y1, ..., Y, and let C; denote the
set of characteristic roots of the empirical covariance matrix of such a combined
sample. We are interested in the probability that C, = 4, i = 1,..., k. In our
Theorem, we put p = sn, g = sm, r = 2,

xi = (Ylilﬂ “'aYsila'-': Ylina "'aYs,-,,) for i= I,...,k,

U = (Y01 Y0150 Yiows oo Yeou) s [(Xits s X3 Uyy ., Up) = Gy

ip»

and we obtain
B(k) = P{Ci = A;i=1,...k}.
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Souhrn

RETEZ NEROVNOSTI PRO JISTE TYPY MNOHOROZMERNYCH
ROZLOZENI S DEVITI SPECIALNIMI PRIPADY

ZBYNEK SIDAK

Clanek se snaZi extrahovat jadro dakazu, pomoci ného? Y. L. Tong [15] dostal
jisté nerovnosti pro pravdépodobnosti v mnohorozmérném ekvikorelovaném nor-
maélnim rozloZeni, a pak toto jadro co moZno daleko zobecnit. Vysledkem je obecna
véta ukazujici, Ze pro pravd&podobnosti (3) plati fetéz nerovnosti (4). Dikaz je velmi
jednoduchy, ale tyto nerovnosti v sob& obsahuji mnoho zajimavych specidlnich
pfipadd, z nichz devét je dale v ¢lanku uvedeno pro ilustraci: pfipady mnobhoroz-
mérného ekvikorelovaného normélniho, t, 7> rozloZeni, mnohorozmérného Pois-
sonova a exponencidlniho rozloZeni, pfipady normalnich a pofadovych statistik
pfi srovnavani vice populaci s jednou kontrolni, odhadovani kvantili pomoci
poradkovych statistik v ekvikorelovaném normalnim rozloZeni a pfipad charak-
teristickych kofend kovarianénich matic pfi jistych mnohonasobnych vybérech.
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