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Abstract: This paper introduces a multistage planning method for active distribution networks

(ADNs) considering multiple alternatives. The uncertainties of load, wind and solar generation are

taken into account and a chance constrained programming (CCP) model is developed to handle

these uncertainties in the planning procedure. A method based on a k-means clustering technique

is employed for the modelling of renewable generation and load demand. The proposed solution

methodology, which is based on a genetic algorithm, considers multiple planning alternatives, such as

the reinforcement of substations and distribution lines, the addition of new lines, and the placement

of capacitors and it aims at minimizing the net present value of the total operation cost plus the

total investment cost of the reinforcement and expansion plan. The active network management is

incorporated into planning method in order to exploit the control capabilities of the output power of

the distributed generation units. To validate its effectiveness and performance, the proposed method

is applied to a 24-bus distribution system.

Keywords: active distribution network; chance constrained programming; distribution network

planning; metaheuristic optimization

1. Introduction

Distribution network planning (DNP) aims at determining the optimum location, capacity and

time of the investments in new network components and equipment in order to minimize the total

investment and operation cost and to ensure the safe operation of the network for a forecasted load

growth demand during a planning period. Over recent years, due to the increasing penetration

of renewable energy sources (RES), the installation of advanced metering infrastructure (AMI) to

distribution networks and the development of information and communication technologies (ICT),

distribution networks are being transformed from passive to active distribution networks (ADNs).

In ADNs, the control of the active and reactive power output of the available distributed generation

(DG) units is enabled to deal with technical challenges, such as line congestion and voltage rise

issues [1]. Hence, the planning of ADNs, in which the control capabilities of the DG units are exploited,

becomes a very challenging problem. Furthermore, the complexity of the DNP problem increases

significantly, since the uncertainties of load demand and RES generation should be considered and

appropriately modeled.

DNP problems can be formulated as a mixed integer nonlinear programming (MINLP) problem.

The solution methods of DNP problems can be divided into two categories: (1) static methods or (2)

multistage methods [2]. The static methods do not calculate the time of the network investments and

they assume that all investments are implemented at the start of the planning period. On the contrary,

the multistage methods determine the time the network investments are necessary, providing the
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capability to electric utilities to implement the network investment decisions gradually during the

planning period. A thorough literature review of the DNP methods and models is presented in [2–4].

DG penetration in distribution networks has a great impact on network planning, since the

network’s end users can be characterized as nodes with load demand as well as with potential

generation [5,6]. The effect of dispatchable DG (DDG) units on the solution of the multistage DNP

problem is examined in [7] and [8]. More specifically, in [7] and [8], the locations of DDG units are

considered as planning alternatives in order to deal with the increasing load demand apart from

the reinforcement of substations and distribution lines. The location of DDG units as a planning

alternative is also considered in [9], in which the DNP problem is formulated as a simplified mixed

integer linear programming problem. In [10] and [11], the allocation of renewable DG units along with

DDG units is co-optimized for the network reinforcement and expansion in order to minimize the total

investment and operational cost. The advantages of the active management of renewable DG units for

the solution of the DNP problem in distribution networks with high penetration of RES are examined

in the multistage planning method of [12]. The uncertainties of the output power of wind-based DG

units and demand response are considered in the static planning method of ADNs in [13]. In [14–16],

the uncertainties of load demand and wind generation are also considered to find the optimal solution

of the DNP problem. Furthermore, agent-based models are increasingly being used to model and

analyze the complex nature of multi-carrier energy networks [17]. In [18], an agent-based approach is

proposed for modelling a smart grid with microgrids. A multi-layer agent-based model is developed

in [19] in order to examine the impact of RES on distribution network planning.

In [7–9], only DDG units are considered and they are assumed as investments of the distribution

system operator (DSO) in order to decrease the peak load demand ignoring the technical challenges

rising by the high penetration of RES in distribution network. Renewable generation and its effect on

the solution of the DNP problem is examined in [10–16]. However, in [10–12], the DNP problem is

solved deterministically, ignoring the uncertainties of renewable generation and load demand, while

in [13–16] the uncertainties of the stochastic input data are taken into account. The static planning

method for ADNs in [13] considers only a few planning alternatives and incorporates only the control

of the active power output of DG units and demand response schemes. In the multistage methods

of [14–16], the planning alternatives that are considered are the reinforcement and addition of substation

and distribution lines, while the control capabilities of the DG units in ADNs are ignored.

Several aspects of the DNP problem have been examined by the aforementioned papers. However,

the effect of uncertainties of the stochastic behavior of the load and renewable DG in combination with

the active DG management on a DNP model that considers multiple planning alternatives have not

been thoroughly examined. Furthermore, when considering the uncertainties of load demand and

renewable generation and the constraints of the DNP are strictly formulated, the investment decisions

that are calculated may be overestimated in some cases.

This paper introduces a comprehensive multistage planning framework of ADNs, which considers

multiple planning alternatives. First, a method based on a k-means clustering technique is proposed

for the modelling of the uncertainties of renewable generation and load demand. Afterwards, a DNP

model based on chance constrained programming (CCP) [20] is developed to handle the probability

of technical constraint violations imposed by the uncertain renewable generation and load demand.

A problem specific genetic algorithm (GA) combined with a nonlinear programming (NLP) optimization

model is employed for the optimal solution of the DNP problem considering high penetration of

RES generation. The proposed DNP method considers multiple planning alternatives, such as the

reinforcement of existing substations and distribution lines, the addition of new distribution lines for

network expansion and the placement of capacitors. Furthermore, the active management of the active

and reactive power output of DG unit is incorporated into the planning method in order to exploit the

control capabilities of the DG units. The effectiveness of the proposed method is evaluated using a

24-bus distribution system. The main goals and contributions of this paper are:
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(1) To introduce a CCP methodology for the planning of ADN considering the uncertainties of load

demand, wind and solar generation.

(2) To develop a multistage planning framework that calculates the optimal location, capacity and

time of the investments on substation, distribution lines and capacitors, while examine the effect

of the active DG management on the optimal solution of the DNP problem.

This paper is organized as follows: Section 2 describes the modelling of the stochastic behavior of

load demand and renewable generation. The formulation of the proposed CCP DNP model is given

in Section 3. Section 4 provides the solution method. The method is applied to a 24-bus distribution

network and the results are analyzed in Section 5. In Section 6, conclusions are drawn.

2. Load and Renewable Generation Data Modeling

Distribution networks are, in general, planned in order to ensure the safe network operation

under any possible loading conditions over the planning period. In distribution networks with no

or low penetration of RES, in which power flows from the high voltage (HV) / medium voltage

(MV) substation to the MV/low voltage (LV) substations, the reinforcement and expansion plan of

a distribution network was determined based on a given forecast of the maximum load demand of

each year of the planning period without taking into account the variability of the output power of

RES. However, in distribution networks with high penetration of RES, the aforementioned approach is

not adequate, since reverse power flows occur quite often during every year of the planning period,

especially in periods of low demand and high RES generation, creating new technical challenges that

need to be solved at the planning stage, such as line congestion and voltage rise issues [1].

Thus, a planning method for ADNs with high penetration of DERs, especially RES, has to take

into account a proper dataset of load demand and RES generation during each stage of the planning

period in order to determine the optimal reinforcement and expansion plan. It is important that

the dataset of load demand and RES generation that will be incorporated into the planning process

contains the possible combinations of load demand and RES generation. Furthermore, each set of

this dataset should be different from the rest in order to avoid the unnecessary repetition of similar

load-generation sets.

The first feature of this dataset is the quality. A high quality dataset for the planning of a

distribution network needs to be created in a way that it adequately considers the uncertainties of load

demand and RES generation during each stage of the planning period. The dataset’s second feature is

its proper size. A large dataset will increase significantly the computation time of the solution of the

DNP problem, making it sometimes impractical to solve. However, a small dataset would deteriorate

the dataset’s quality.

This paper proposes a method that is based on a k-means clustering method [21] to generate

probabilistic load-generation sets for each stage of the planning period in order to model accurately the

load and renewable generation uncertainties. The k-means method is an established clustering method,

which has been widely employed for the classification of large volumes of data [22]. The probabilistic

load-generation sets are determined based on historical data of wind speed, solar irradiance and load

demand variability in order to be used as the input data of the proposed multistage planning method

of ADNs.

2.1. The k-Means Clustering Method

Data clustering is a process that allocates a set of individual data into smaller groups (clusters)

such that (a) the individual data with similar features are grouped into the same cluster and (b)

the dissimilarity of each created cluster compared to the rest is high enough making each cluster

distinct [23]. The k-means clustering method is a partitioning clustering technique that employs an

iterative process to optimize the quality, i.e., the dissimilarity, of a predetermined number of distinct

clusters [24–26].
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The k-means clustering method is initialized by specifying the number of clusters (k) and selecting

randomly individual data from the whole dataset as the cluster centroids. The optimal number of

clusters can be determined by the method presented in [27,28]. The k-means method allocates the

remaining individual data between clusters so that the Euclidean distance of an individual vector data

(mi) from its corresponding cluster centroid (ck) is minimized as shown in (1). The k-means clustering

method has been widely used for data management of power systems related problems [29–32]:

min

K
∑

k=1

N
∑

i=1

‖mi − ck‖
2 (1)

Then, the average of all the individual data that are the members of a cluster is set as the new

centroid of that cluster. Overall, the k-means method determines the clusters’ centroids so that the sum

of squared distances of each individual vector data from its corresponding cluster centroid is minimized.

This iterative process is terminated when a convergence criterion is fulfilled. The convergence criterion

is that there is no change in the clusters’ centroids or after a certain number of iterations the change in

the clusters’ centroids is below a threshold. After the data clustering is terminated, the occurrence

probability of each cluster’s centroid can be calculated, as follows:

Pr{ck} =
Nck

N
(2)

2.2. Probabilistic Load-Generation Sets

The incorporation of variable DG, such as RES, combined with the variation of load demand

into the DNP problem, increases significantly the problem’s complexity. Considering all possible

scenarios of load and RES generation that can occur during every year of the planning period would

make the solution process of the DNP problem almost impractical due to the high computational

burden. To diminish the number the scenarios of load and RES generation that should be considered

at every year of the planning period, while preserving the stochastic behavior and interrelationship

between load demand and RES generation, a method based on k-means clustering method is proposed.

The output of the proposed method is a specific number of load-generation sets, where each set has its

own occurrence probability and is characterized by a load state (level), an output power state of wind

DG and an output power state of solar DG unit. The steps of the proposed method that determine

these probabilistic load-generation sets are as follows:

Step 1: The success of a clustering method, like the k-means method, depends on the development

of a wide range dataset that adequately represents the majority of the distribution network operating

states. Thus, the basis of the proposed method is the collection of historical data of load demand, wind

speed and solar irradiance of the area of the distribution network that will be studied. For example, in

Figure 1, the hourly data of load demand, wind speed and solar irradiance of one year for a distribution

network [29] are presented.

Step 2: After the collection of historical data of load demand, wind speed and solar irradiance,

these data are adapted in order to represent the yearly profile of load demand, the yearly generation

profile of wind DG units and the yearly generation profile of solar DG units. The yearly profile of load

demand is determined by dividing the hourly load demand with the maximum load of each year.

Based on the hourly wind speed data, the generation profile of a wind DG unit can be determined

using the wind turbine power curve as presented in Equation (3):

Pwdg(v) =



































0 , 0 ≤ v ≤ vci

Prated
WDG

(v−vci)
(vn−vci)

, vci ≤ v ≤ vn

Prated
WDG

, vn ≤ v ≤ vco

0 , vco < v

(3)
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Figure 1. Hourly data of: (a) load demand, (b) wind speed, and (c) solar irradiance of a year.

Similarly, based on the hourly solar irradiance data, the generation profile of a solar DG unit can

be determined using the PV power curve as given by Equation (4):

Psdg(s) =















Prated
SDG

s
sn

, 0 ≤ s ≤ sn

Prated
SDG

, sn ≤ s
(4)

Hence, the historical data of Figure 1 are transformed into the data presented in Figure 2.
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Figure 2. Hourly profile of: (a) load demand, (b) wind generation, and (c) solar generation of a year.

Step 3: After processing the historical data, as described in Step 2, the k-means clustering method

is applied and the input data are divided into K clusters. The centroids of the derived clusters represent

the average behavior of the data that are included in each cluster. Thus, the clusters’ centroids are

considered as the probabilistic load-generation sets. Each clusters’ centroid represents a load level,

an output power state of wind DG and an output power state of solar DG, as shown in (5) and its

occurrence probability is calculated according to Equation (2).

ck = [Pd,k, Pwdg,k, Psdg,k] (5)

3. Problem Formulation

The long-term DNP problem is a complicated optimization problem that requires the consideration

of many decision variables and many constraints related to distribution network operation as well as to

the investment decisions. Furthermore, in this paper, the DNP problem solved is not only to meet a load

growth rate, but what is also solved is considering how the distribution networks will accommodate

high capacities of renewable DG. The DG units are assumed to be private investments and their

type, installation location, installed capacity and installation time are pre-determined. Moreover, it is

assumed that all the necessary information and communication technology (ICT) infrastructures have

been already installed in the distribution network facilitating the coordinated control of the active and

reactive power output of the DG units for the safe operation of the network.
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3.1. Objective Function

The DNP problem is formulated as a MINLP problem that aims at minimizing the net present

value of the total operation cost plus the total investment cost of the reinforcement and expansion

plan of ADNs considering multiple planning alternatives, while ensuring its safe operation during the

whole planning period, as follows:

min TC = INV + OPC (6)

The objective function (6) consists of two terms. The first term (INV) denotes the investment cost

and it accounts for the net present value of the investment cost for: (i) HV/MV substation reinforcement,

(ii) line reinforcement, i.e., reconductoring of existing lines, (iii) installation of new lines for the

connection of future loads to the network and (iv) placement of capacitors, as follows:

INV =
T

∑

t=1

(

1 + In f

1 + Int

)t

(ICSR,t + ICLR,t +ICLA,t + ICCB,t) (7)

where:

ICSR,t =
∑

i∈ΦSS

∑

a∈ΨSS

CSS,a · id
SS
i,a,t (8)

ICLR,t =
∑

i j∈ΦLR

∑

b∈Ψcd

Ccd,b · li j · id
L
ij,b,t (9)

ICLA,t =
∑

i j∈ΦLA

∑

b∈Ψcd

Ccd,b · li j · id
L
ij,b,t (10)

ICCB,t =
∑

i∈ΦCB

∑

c∈ΨCB

CCB,c · id
CB
i,c,t (11)

The binary variables idSS
i,a,t

, idL
ij,b,t

and idCB
i,c,t

are the investment variables and they are equal to 1,

when an investment is decided at a part of the network at the period t of the planning period. For

example, the variable idL
ij,b,t

is equal to 1, when the installation of type b conductor at the line i–j is

decided at period t.

The second term (OPC) of the objective function denotes the distribution network’s operational

cost and it accounts for the total annual energy losses during the planning period, as follows:

OPC =
T

∑

t=1

(

1 + In f

1 + Int

)t

·CLoss ·

K
∑

k=1

Plossk,t · Pr{ck} · 8760 (12)

3.2. Constraints

For the solution of the DNP problem, several constraints should be considered to represent the

steady state operation of the distribution network. These constraints ensure that the distribution

network will operate within its limits during the whole planning period, while the investment

constraints are related to the investment decision variables.

To incorporate the investment decision variables (idSS
i,a,t

, idL
ij,b,t

and idCB
i,c,t

) into the operational

constraints, the auxiliary variables (uzSS
i,a,t

, uzL
ij,b,t

and uzCB
i,c,t

) are employed and their relation to the

corresponding investment variables is described by Equations (13)–(15):

uzSS
i,a,t =

t
∑

τ=1

idSS
i,a,τ ∀i ∈ ΦSS, ∀t ∈ T (13)
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uzL
ij,b,t =

t
∑

τ=1

idL
ij,b,τ ∀(i, j) ∈ ΦLR ∪ΦLA, ∀t ∈ T (14)

uzCB
i,c,t =

t
∑

τ=1

idCB
i,c,τ ∀i ∈ ΦCB, ∀t ∈ T (15)

Constraints (13)–(15) represent the operation status of an investment decision, which is made at a

certain stage of the planning period. For example, suppose that it is decided the reinforcement of line

i–j with type b conductor at year 10 of the planning period, i.e., idL
ij,b,10

= 1. According to (14), uzL
ij,b,t

will be equal to zero from year 1 to year 9, which means that the technical characteristics of line i–j for

that period will be the same with its initial ones, whereas, uzL
ij,b,t

will be equal to 1 from year 10 to the

end of the planning period, meaning that the technical characteristics of line i–j will change and they

will be the same with the technical characteristics of a type b conductor. The operational constraints

considering the investment decisions are the following:

Pss,i,k,t + Prated
WDG,i,t · Pwdg,k ·CFi,k,t + Prated

SDG,i,t · Psdg,k ·CFi,k,t − Pd,i,k,t =
∑

j: j∼i

Pi j,k,t (16)

Qss,i,k,t + Qwdg,i,k,t + Qsdg,i,k,t −
∑

c∈ΨCB

QCB,c · uzCB
i,c,t −Qd,i,k,t =

∑

j: j∼i

Qi j,k,t (17)

Pi j,k,t = gi j,t ·V
2
i,k,t − gi j,t ·Vi,k,t ·V j,k,t · cosθi j,k,t − bi j,t ·Vi,k,t ·V j,k,t · sinθi j,k,t (18)

Qi j,k,t = −bi j,t ·V
2
i,k,t + bi j,t ·Vi,k,t ·V j,k,t · cosθi j,k,t − gi j,t ·Vi,k,t ·V j,k,t · sinθi j,k,t (19)

gi j,t =
∑

b∈Ψcd

gb · li j · uzL
ij,b,t (20)

bi j,t =
∑

b∈Ψcd

bb · li j · uzL
ij,b,t (21)

Vmin ≤ Vi,k,t ≤ Vmax (22)

P2
i j,k,t + Q2

i j,k,t ≤
∑

b∈Ψcd

(

Smax
L,b

)2
· uzL

ij,b,t (23)

P2
ss,i,k,t + Q2

ss,i,k,t ≤
∑

a∈ΨSS

(

Smax
SS,a

)2
· uzSS

i,a,t (24)

The active and reactive power flow balance in every bus of the distribution network at the

load-generation set k during the planning stage t is given by Equations (16) and (17), respectively.

The active and reactive power flow of each line i–j at the load-generation set k during the planning

stage t is calculated by (18) and (19), respectively, while the conductance and the susceptance of line i–j

at the planning stage t is presented in (20) and (21), respectively. The voltage magnitude of bus i at

the load-generation set k during the planning stage t should vary within specific limits, as shown in

(22). The apparent power flow limit of line i–j at the planning stage t is given in (23). Furthermore,

the apparent power that flows through the HV/MV substation at bus i at the load-generation set k

during the planning stage t should be lower than the capacity of the type a HV/MV substation (24).

At every stage t of the planning period, the network configuration should be radial. To ensure the

radial operation of the network, the distribution network is represented as a spanning tree [33], which

can be expressed by the following constraints:

rdi j,t + rd ji,t = 1 ∀ (i, j) ∈ ΩL\ΦLA (25)
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rdi j,t + rd ji,t =
∑

b∈Ψcd

uzL
ij,b,t ∀ (i, j) ∈ ΦLA (26)

∑

j∈ΩN

rd ji,t = 1 ∀ i ∈ ΩN\ΩSS (27)

rd ji,t = 0 ∀ i ∈ ΩSS (28)

In a spanning tree, every node except the root (HV/MV substation bus) has exactly one parent.

If line i–j is part of the spanning tree, then bus i is the parent of bus j (rdi j,t = 1) or bus j is parent of bus

i (rd ji,t = 1), according to (25) and (26). Every bus can have only one parent bus (27), except for the

HV/MV substation bus, which is considered as the root of the spanning tree (28).

Line congestion and voltage rise are the most common issues of the distribution networks with

high penetration of RES [1,12]. To deal with these issues, in this paper the control capabilities of

the DG units in ADNs are exploited. More specifically, the control of the active and reactive power

output is incorporated into the formulation of the DNP problem and the effect of the active network

management on the solution of the DNP problem is examined.

Based on the P-Q capability curve [34], which is shown in Figure 3, the reactive output power that

a DG unit can absorb or inject to the distribution at the load-generation set k during the planning stage

t is, as follows:

• If 0 ≤ Pdg,i,k,t ≤ 0.05 · Prated
DG,i

, then:

Qdg,i,k,t = 0 (29)

• If 0.05 · Prated
DG,i
≤ Pdg,i,k,t ≤ 0.2 · Prated

DG,i
, then:

− 2.42 · Pdg,i,k,t ≤ Qdg,i,k,t ≤ 2.42 · Pdg,i,k,t (30)

• If 0.2 · Prated
DG,i
≤ Pdg,i,k,t ≤ Prated

DG,i
, then:

− 0.484 · Prated
DG,i ≤ Qdg,i,k,t ≤ 0.484 · Prated

DG,i (31)

 

 

 

 

 

 

 

 

 

 

 

 

1.10

Q+Q− 

1.00

0.20
0.05

1.00−1.00 0.480.12−0.48 −0.12

(p.u.)

Figure 3. P-Q capability curve of DG units.

Furthermore, the curtailment of the active power output of the DG units is enabled, in case the

output power of the DG unit is higher than 20% of its rated power. This can be described by the

following constraints:

• If 0 ≤ Pdg,i,k,t ≤ 0.2 · Prated
DG

, then:

CFi,k,t = 1 (32)

• If 0.2 · Prated
DG,i
≤ Pdg,i,k,t ≤ Prated

DG,i
, then:

CFi,k,t · Pdg,i,k,t ≥ 0.2 · Prated
DG,i (33)
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CFmin
i ≤ CFi,k,t ≤ 1 (34)

It should be noted that the curtailment of the active power output of the DG units is considered as

last resort and it should be limited, since it has financial implications on the owners of the DG units.

3.3. Chance Constrained DNP Formulation

When the uncertainties of load demand and renewable generation are considered in the solution

of the DNP problem, investments for the reinforcement and expansion of the network may be

overestimated in the occasions of maximum RES generation and minimum load. Taking into account

the low probability of occurrence of this occasion, it would be a reasonable choice to accept a minor

violation for short time periods of the voltage constraints (22) and the thermal capacity of the distribution

lines (23) [34–37]. Therefore, a chance constrained DNP formulation is proposed. The voltage limit

constraint (22) is transformed into the chance constraint (35):

Pr
{

Vmin ≤ Vi,k,t ≤ Vmax

}

≥ 1− βV ∀ i ∈ ΩN (35)

According to (35), if the probability of the voltage limits violation is lower than a specified

threshold (βV), then it is considered that the network operates within its limits.

Similarly, the line capacity limit (23) is transformed into the chance constraint (36). According to

(36), if the overload probability of the distribution line is lower than a specified threshold (βSL), then it

is considered that the network operates within its limits:

Pr



















P2
i j,k,t + Q2

i j,k,t ≤
∑

b∈Ψcd

(

Smax
L,b

)2
· uzL

ij,b,t



















≥ 1− βSL ∀ (i, j) ∈ ΩL (36)

4. Solution Method

In this paper, a solution methodology that is based on GA is proposed to solve the DNP problem.

GA is a meta-heuristic optimization algorithm involving iterative search procedures [38] and it has

been widely used for the solution of mixed integer optimization problems [39]. Moreover, the GA has

been proved very powerful in solving various DNP problems [13,40–42].

The DNP problem is a MINLP problem due to the binary investment decision variables and the

nonlinear power flow equations. The consideration of multiple planning alternatives, such as the

reinforcement of existing network components (e.g., distribution lines, HV/MV substations) and the

placement of new equipment (e.g., capacitors), results in a more cost-efficient planning solution, which

handles more efficiently both capacity limit and voltage limit constraints. The proposed method is

applied to distribution networks with high RES penetration and the control of the output power of the

DG units is incorporated into the solution method. Furthermore, the proposed solution method is

a multistage DNP method, which means that the time period of the installation of the new network

investments is determined.

The proposed planning framework aims at calculating the investment decision variables (idSS
i,a,t

,

idL
ij,b,t

and idCB
i,c,t

). Certain features of the GA, such as chromosome structure, initial population, selection,

crossover and mutation operators are discussed in the following.

4.1. Input Data

The solution of the DNP problem requires a significant amount of input data. Apart from the

techno-economic characteristics of the planning alternatives, in every reinforcement and expansion

plan of a distribution network, a load growth rate should be considered, and the available candidate

routes for the connection of future loads should be known in advance as well as the installed DG

capacity in every stage of the planning period. Furthermore, K probabilistic load-generation sets are
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considered, as described in Section 2, to represent the load demand variability and RES generation in

every stage of the planning period. Hence, the investment decision variables should be calculated in

such way that they guarantee the safe operation of the network in every year of the planning period.

4.2. Chromosome Structure

The coding of the potential solutions is essential for the effective implementation of the GA. Every

potential solution (chromosome) can be depicted as a four part vector, in which the first part represents

the decision for the reinforcement of the HV/MV substation, the second part represents the decision for

the reinforcement of an existing distribution line, the third part represents the decision of the candidate

routes for the connection of the future loads and the fourth part represents the installation bus of

the capacitors. Each part of the chromosome is represented by a binary string as in common GAs.

Figure 4 illustrates a simple example of the proposed encoding. Figure 4a presents the topology of a

6-bus distribution network in the reference year of the planning period. In Figure 4a, the dashed lines

represent the candidate routes for the connection of the future load of bus 5 and bus 6; all distribution

lines are assumed to be candidate for reinforcement; buses 2–4 are candidate for the installation of

capacitors. Figure 4b illustrates the binary-coded candidate solution. The first part of the candidate

solution of Figure 4b denotes the reinforcement of substation at bus 1, since the corresponding gene is

equal to 1. Similarly, the second part of the candidate solution of Figure 4b denotes that only line 2 is

reinforced with the immediately next higher type of conductor, i.e., type 2, since the corresponding

gene is equal to 1. The conductor type of lines 1 and 3 are the same with the initial network topology

(Figure 4a), since their corresponding genes are equal to zero. Moreover, the third part of Figure 4b

denotes the addition of lines 4 and 6, while the fourth part denotes the installation of a capacitor at bus

4. Figure 4c illustrates the topology of the decoded candidate solution of Figure 4b.

 

 





(a)

Capacitor bank

Type 2 conductor
Type 1 conductorEncoded candidate solution:

1 0 1 0 1 0 0 0 1

1 1 2 3 4 6 2 3 4

(b)

1 0

5 7

(c)

1

2
1 32

3 4

5

6

4 5

6 7 1

2
1 32

3 4

5

6

4

6

ΦLR ΦLA ΦCBΦSS

Figure 4. (a) Illustrative 6-bus distribution network, (b) Encoded candidate solution, (c) Decoded

candidate solution.

4.3. Chromosome Evaluation

Each chromosome is decoded using the procedure described in Section 4.2 and for their evaluation

the fitness function (37) is used:

min f f = INV + OPC +
T

∑

t=1

fpen,t (37)
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To handle the violation of the constraints in the GA at every stage of the planning period, while

searching for the optimal solution, a penalty function ( fpen,t) is incorporated into the fitness function

and it is calculated as follows:

fpen,t =
K

∑

k=1

Ncons
∑

m=1

Ccon,m ·Dconk,m (38)

The penalty function (38) calculates the Euclidean distance (Dconk,m) from the upper or lower

limit, in case constraint m is violated during load-generation set k [43]. To calculate (37) it is necessary

to determine the time (installation period) of the investments, which is given by the decoding of the

chromosome, using the following steps:

Step 1: The investment decisions given by the decoding of the chromosome are stored in set {I}

and it is assumed that the installation period of all elements of set {I} is t = 1.

Step 2: Select from set {I} an investment decision, which its installation period is equal to t.

Consider as network topology the network configuration without the selected investment decision,

and solve the NLP problem with objective function the fitness function (37) subject to constraints

(13)–(21) and (24)–(36). If the penalty function (38) is equal to zero, it means that the distribution

network operates within its specified limits and the selected investment decision is needed in a later

stage of the planning period. Hence, the installation period of the selected investment decision is set as

t = t + 1. This step is repeated until all available investment decisions of set {I} are examined for stage t.

Step 3: Set t = t + 1 and repeat Step 2 until t = T.

4.4. Initial Population

GA’s effectiveness depends significantly on the selection of the initial population. To create

diverse and high quality initial solutions for the GA, two procedures are followed. The first procedure

aims at creating radial distribution networks. More specifically, the type of the existing substations

and distribution lines is randomly selected. Furthermore, for the connection of a new load to the

distribution network, first an available candidate route is randomly chosen and then its conductor type

is randomly selected. The second procedure is based on the Prim’s algorithm, which is a minimum

spanning tree algorithm, to create radial distribution network. Then, the type of the substation capacity

and the conductor type of the distribution lines are randomly selected. The first procedure is used to

create the 70% of the initial population, while the second procedure is employed to yield the remaining

30% of the initial population.

4.5. Selection, Crossover, Mutation, and Next Generations

The initial population is evaluated and the genetic operators, i.e., selection, crossover and mutation,

are employed next to create a new population. A stochastic tournament selection operator is employed

for the choice of Npop population. Initially, two solutions pi and pj are randomly chosen from the

population and the solution with the better fitness function value, i.e., with the lower total cost,

is selected to be Parent 1. Parent 2 is selected with the same procedure. If Parent 1 and 2 are different,

the selection procedure is considered successful. In fact, with the selection operator, two network

topologies (Parent 1 and Parent 2) are selected from the initial population in order to be combined and

to create a new network topology, i.e., a new candidate solution.

The combination of the two parent candidate solutions is performed by the crossover operator.

In each parent chromosome a one-point crossover operator is employed and the cross-site is chosen

randomly. Thus, the combination of the parent solutions yields two new candidate solutions, which

contain features of both parent solutions. If the crossover operation is used in the pc% of the mating

pool population, the mutation operator will be used in the rest (100 − pc)%. During the mutation

operation, if the gene that is randomly chosen is equal to one, it will be set equal to zero and vice

versa. For example, if the last gene of the fourth part of the candidate solution of Figure 4b is selected

for mutation, it means that there will be no capacitors in the network topology of the newly derived
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candidate solution. After crossover and mutation, a set with the best candidate solutions is selected,

which forms the new population. The process is terminated after a maximum number of generations

is reached.

5. Results and Discussion

To validate the performance of the proposed methodology, a modified 24-bus distribution test

system [9] is used. The load data in the start of the planning period are presented in Table A1 of

Appendix A. The 24-bus distribution network is a 20 kV network and it consists of 2 substations,

20 load buses and 34 branches, illustrated in Figure 5, where the dashed lines stand for the candidate

routes for network expansion. The duration of the planning period is equal to 20 years. The future

loads that are planned to be connected to the network, as well as the DG units that are planned to be

installed are shown in Tables 1 and 2, respectively. The power factor of the future load is 0.90 lagging.

All buses of the initial topology are candidate for the placement of capacitors. The costs associated

with the planning procedure and techno-economic characteristics of the available planning alternatives

are presented in Table 3. Voltage limits are ±5% of the nominal voltage and the capacity of the existing

substations is 15 MVA. The hourly data of load demand, wind and solar generation of Figure 2, i.e., 3 ×

8760 values, are grouped into 50 clusters. Three cases are considered as follows:

• Case A: The DNP problem is solved considering that the DG units operate with unity power factor

(i.e., there is no control of the output power of the DG units). Furthermore, the violation of the

voltage and line capacity constraints is not allowed (i.e., βV = βSL = 0).

• Case B: The DNP problem is solved considering the active management of the DG, while the

violation of the voltage and line capacity constraints is not allowed (i.e., βV = βSL = 0).

• Case C: The DNP problem is solved using the proposed multistage CCP planning method.

The active management of DG is incorporated into the planning process and the minor violation

of the voltage and line capacity constraints is allowed (βV = 5%, βSL = 10%).

The network topologies at the end of the planning period for Cases A–C are presented in Figure 6.

Figure 7 presents the total cost (TC) of the reinforcement and expansion plan in Cases A–C, along with

the investment (INV) and operational costs (OPC) in each case.
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Figure 5. 24-bus distribution network.

Table 1. Future load points.

Bus Load (MVA) Year Bus Load (MVA) Year

10 1.56 1 16 0.87 3
11 1.91 2 17 2.16 2
12 0.93 2 18 1.50 3
13 1.15 2 19 1.29 3
15 3.05 2 20 2.71 3
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Table 2. Future DG units.

Bus Type Rated Power (MW) Year

3 Solar 4.00 2
7 Solar 2.00 1
15 Wind 5.00 3
23 Wind 5.00 1
24 Solar 2.00 2

Table 3. Techno-economic data.

Inflation rate 2%
Interest rate 8%

Losses cost ($/kWh) 0.01

A. Substations

Type Capacity (MVA) Cost (k$)

1 25 50

B. Conductors

Type R (Ohm/km) X (Ohm/km) Ampacity (A) Cost (k$/km)

1 1.27 0.42 150 25
2 0.58 0.39 280 50
3 0.22 0.33 400 75

C. Capacitors

Type Capacity (Mvar) Cost (k$)

1 1.2 30

 

(a)

21

1

14

18
24

20
13

56
9

4

2

1217
15

3

16

10

23

8

11

7

19

22

(b)

21

1

14

18
24

20
13

56
9

4

2

1217
15

3

16

10

23

8

11

7

19

22

(c)

21

1

14

18
24

20
13

56
9

4

2

1217
15

3

16

10

23

8

11

7

19

22

Figure 6. DNP solutions of the 24-bus distribution network in: (a) Case A, (b) Case B, and (c) Case C.



Energies 2019, 12, 4154 15 of 19

 

0

250

500

750

1000

1250

1500

Case A Case B Case C

C
o

st
 (

k
$)

TC INV OPC

Figure 7. Total cost (TC), investment cost (INV), operational cost (OPC) for the planning solutions in

Case A, Case B and Case C.

Case A: The net present value of the total cost of the reinforcement and expansion plan is 1440.17 k$

and the network topology at the end of the planning period is shown in Figure 6a. Due to the increase

of renewable generation in the first two years of the planning period, distribution lines 21–2 and

22–8 are reinforced with a type 3 conductor at year 1 and year 2, respectively, of the planning period.

To meet the load growth demand, distribution line 21–1 is reinforced with a type 3 conductor 390 at

year 3; distribution line 8–7 is reinforced with a type 3 conductor at year 6; and distribution line 21–1

is reinforced with a type 3 conductor at year 11. The capacity of the substations at bus 21 and bus

22 is increased to 25 MVA at year 13 in order to ensure that the substations will operate within their

capacity limits during the whole planning period. The network operation within their voltage limits is

guaranteed by the installation of two capacitors at bus 10 at year 18 and at bus 14 at year 19.

Case B: Figure 6b presents the network topology at the end of the planning period considering

the active management of the DG units. In this case, the net present value of the total cost is 1253.75

k$. The main differences between the network topology of Case A and Case B are the deferral of the

investments on the reinforcement of distribution lines 21–2 and 22–8 due to the active management of

the DG units. More specifically, the distribution line 22–8 is reinforced with type 3 conductor at year 4

and the distribution line 21–2 is reinforced with type 3 conductor at year 11 in order to meet the load

demand. Furthermore, the distribution line 7–23, which has smaller length than line 3–23, is added to

connect the wind DG unit at bus 23 to the network. Moreover, as shown in Figure 7, the incorporation

of the active management of the DG units into the planning process results in the decrease of the

operational cost of the planning solution compared with the operational cost of the planning solution

in Case A.

Case C: Considering the CCP planning framework, the network topology at the end of the planning

period is illustrated in Figure 6c. In this case, the net present value of the total cost is 1141.50 k$. Due

to the proposed CCP framework, the main differences between Cases B and C are the deferral of the

investments on the reinforcement of distribution lines and the placement of capacitors for later years

of the planning period. More specifically, distribution line 21–1 is reinforced with a type 3 conductor at

year 7; distribution lines 21–8 and 8–7 are reinforced with a type 3 conductor at year 8; distribution line

22–6 is reinforced with a type 3 conductor at year 14; distribution line 21–2 is reinforced with a type 3

conductor at year 15; no capacitors are installed in bus 10 and bus 14.

As is shown in Figure 7, the planning solution with the lowest total cost is obtained in case

the active management of the DG units and the CCP framework are incorporated into the planning

process (Case C). More specifically, the exploitation of the control capabilities of the DG units results

in the deferral of the network investments, which are necessary for the connection of the DG units
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to the network, while adopting the CCP planning framework results in the deferral of the network

investments, which are necessary due the increase of the load demand. Hence, the total cost of the

planning solution of Case C, which is the proposed one, is 21% lower than the cost of the planning

solution of Case A and 9% lower than the cost of the planning solution of Case B.

6. Conclusions

This paper proposes a multistage planning method of ADNs. The uncertainties of load, wind

and solar generation are modeled using a method based on the k-means clustering technique and

they are incorporated into the optimization procedure. A chance constrained DNP optimization

model is introduced to efficiently handle these uncertainties and the objective function of the proposed

methodology is to minimize the operational cost and the investment costs for the reinforcement of

substations and distribution lines, the addition of distribution lines and the placement of capacitors.

A problem specific GA is proposed for the solution of the DNP optimization problem. The effect

of the active network management on the optimal solution of the DNP problem is investigated.

To demonstrate the performance of the proposed planning methodology a 24-bus distribution test

system is used. Results clearly show that the consideration of active management of the active and

reactive power output of the DG units achieves a significant deferral of the investment cost compared

with the traditional planning approaches. Furthermore, the proposed CCP model provides valuable

information about the relationship between the investment cost, the risk of distribution lines’ overload

probability and the risk of voltage limit violation.
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Nomenclature

A. Sets

K Load-generation sets.

T Planning period.

ΩN Set of system buses.

ΩL Set of distribution lines.

ΦCB Set of candidate buses for capacitor.

ΦLA Set of candidate lines to be added.

ΦLR Set of candidate lines to be reinforced.

ΦSS Set of substation buses.

ΨCB Set of available capacitors.

Ψcd Set of available conductors.

ΨSS Set of available substations.

B. Parameters

CCB,c Cost of type c capacitor.

Ccd,b Cost of type b conductor.

C
SS,a Cost of type a substation.

CLoss Cost of losses.

In f Inflation rate.

Int Interest rate.

li j Length of line i–j.

P
d,i,k,t

/Q
d,i,k,t Active/reactive load demand of bus i at the load-generation set k during stage t.
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P
dg,i,k,t

Active power of the distributed generation (DG) unit at bus i at the load-generation set k

during stage t.

Prated
DG,i,t Rated active power of the DG unit at bus i during stage t.

Prated
SDG,i,t Rated active power of the solar DG unit at bus i during stage t.

P
sdg,k Solar DG at load-generation set k.

Prated
WDG,i,t Rated active power of the wind DG unit at bus i during stage t.

P
wdg,k Wind DG at load-generation set k.

QCB,i Nominal reactive power of the capacitor at bus i.

gb/bb Conductance/susceptance of type b conductor.

Srated
DG,i Maximum apparent power of the DG unit at bus i.

Smax
L,b Thermal limit of type b conductor.

Smax
SS,a Capacity of type a substation.

s, sn Solar irradiance, nominal solar irradiance.

Vmin/Vmax Minimum/maximum voltage magnitude limits.

v, vn, vci, vco Wind speed, nominal wind speed, cut-in wind speed, cut-out wind speed.

C. Variables

CF
i,k,t

Curtailment factor of the active power output of the DG unit at bus i at the load-generation

set k during stage t.

P
i j,k,t

/Q
i j,k,t Active/reactive power flow of line i–j at the load-generation set k during stage t.

P
loss,k,t Power losses at the load-generation set k during stage t.

P
SS,i,k,t

/Q
SS,i,k,t Active/reactive power flow of substation at bus i at the load-generation set k during stage t.

Q
dg,i,k,t Reactive power of the DG unit of bus i at the load-generation set k during stage t.

Q
sdg,i,k,t Reactive power of the solar DG unit of bus i at the load-generation set k during stage t.

Q
wdg,i,k,t Reactive power of the wind DG unit of bus i at the load-generation set k during stage t.

V
i,k,t Voltage magnitude of bus i at the load-generation set k during stage t.

θ
i j,k,t Voltage angle difference between bus i and j at the load-generation set k during stage t.

D. Binary Variables

idSS
i,a,t

Investment decision variable for the reinforcement of substation at bus i using type a

substation at period t.

idL
ij,b,t

Investment decision variable for the installation of line i–j using type b conductor at period t.

idCB
i,c,t

Investment decision variable for the installation of type c capacitor at bus i at period t.

rdi j,t
Spanning tree variable. It is equal to 1 if bus i is the parent of bus j at period t; otherwise it is

equal to 0.

uzSS
i,a,t

,

uzL
ij,b,t

,uzCB
i,c,t

Auxiliary variables associated with the investment decision variable for the reinforcement of

substation at bus i, the installation of line i–j using type b conductor, and the installation of

type c capacitor at bus i, respectively, at period t.

Appendix A

Table A1 presents the load of the 24-bus distribution network at the reference year.

Table A1. Load data of the 24-bus distribution network at the reference year.

Bus P (MW) Q (Mvar) Bus P (MW) Q (Mvar)

1 3.33 1.61 6 0.77 0.37
2 0.52 0.25 7 2.95 1.43
3 2.43 1.18 8 0.47 0.23
4 0.30 0.14 9 0.82 0.40
5 0.19 0.09
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