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Abstract—A change detection algorithm has been developed
in order to obtain high-resolution soil moisture estimates from
future Soil Moisture Active and Passive (SMAP) L-band radar and
radiometer observations. The approach combines the relatively
noisy 3-km radar backscatter coefficients and the more accurate
36-km radiometer brightness temperature into an optimal 10-km
product. In preparation for the SMAP mission, an observation
system simulation experiment (OSSE) and field experimental cam-
paigns using the Passive and Active L- and S-band Airborne
Sensor (PALS) have been conducted. We use the PALS airborne
observations and OSSE data to test the algorithm and develop
an error budget table. When applied to four-month OSSE data,
the change detection method is shown to perform better than
direct inversion of the radiometer brightness temperatures alone,
improving the root mean square error by 2% volumetric soil
moisture content. The main assumptions of the algorithm are
verified using PALS data from the soil moisture experiments held
during June–July 2002 (Soil Moisture Experiment 2002) in Iowa.
The algorithm error budget is estimated and shown to meet SMAP
science requirements.

Index Terms—Change detection, microwave remote sensing,
observation system simulation experiment (OSSE), radar,
radiometer, Soil Moisture Active and Passive (SMAP) mission.

I. INTRODUCTION

SOIL moisture is a critical hydrological variable that links
the terrestrial water, energy, and carbon cycles. Global and

regional observations of soil moisture are needed to estimate
the water and energy fluxes at the land surface, to quantify the
net carbon flux in boreal landscapes, to enhance weather and
climate forecast skill, and to develop improved flood prediction
and drought monitoring capability. Active and passive L-band
microwave remote sensing provide a unique ability to monitor
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global soil moisture over land surfaces with an acceptable
spatial resolution and temporal frequency [1], [2].

Mapping radars are capable of a very high spatial resolution
[∼3 km in case of Soil Moisture Active and Passive (SMAP)]
but, since radar backscatter is highly influenced by surface
roughness, vegetation canopy structure and water content, they
have a low sensitivity to soil moisture under vegetated con-
ditions. Various algorithms for retrieval of soil moisture from
radar backscattering have been developed, but they are only
valid in low-vegetation water content conditions [3], [4]. In
contrast, the spatial resolution of radiometers is typically low
(∼40 km), the retrieval of soil moisture from radiometers is
well established, and radiometers have a high sensitivity to soil
moisture under vegetated conditions [5].

To overcome the individual limitations of the passive and
active approaches, the SMAP mission is combining the two
technologies. The SMAP mission has been recommended by
the NRC Earth Science Decadal Survey Panel for launch in
the 2010–2013 time frame [6]. SMAP is based on the NASA
Hydros (Hydrosphere State) mission [7] that progressed
through Phase A development until it was canceled in 2005
due to NASA budgetary constraints. The SMAP mission pay-
load consists on an approximately 40-km L-band microwave
radiometer measuring H , V , and U brightness temperatures
and a 3-km L-band synthetic aperture radar sensing backscat-
tering coefficients at hh, vv, and hv polarizations. It will
provide global scale land surface soil moisture observations
with a three-day revisit time, and its key derived products are
the following: soil moisture at 40 km for hydroclimatology,
obtained principally from the radiometer measurements; soil
moisture at 10-km resolution for hydrometeorology obtained by
combining the radar and radiometer measurements in a joint re-
trieval algorithm; and freeze/thaw state at 3-km resolution from
the radar measurements. This paper describes a downscaling
algorithm for combining the high radar resolution and the high
radiometer accuracy into an optimal blend for the SMAP 10-km
soil moisture product.

Change detection techniques have been demonstrated to be
able to potentially monitor temporal evolution of soil moisture
by taking advantage of the approximately linear dependence
of radar backscatter and brightness temperature change on
soil moisture change. The feasibility of a change detection
approach using the passive and active L- and S-band airborne
sensor (PALS) radar and radiometer data obtained during the
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1999 Southern Great Plains Experiment (SGP99) campaign is
presented in [8]; a similar approach is used in [9] to downscale
PALS data using airborne synthetic aperture radar data from
the Soil Moisture Experiment 2002 (SMEX02) campaign. A
totally different approach is presented in [10], where a Bayesian
method is used to downscale radiometer observations using
radar measurements in an Hydros-like simulated environment.

The novel approach presented on this paper is based on
change detection and focuses on the idea of considering the sur-
face soil moisture over a sample 10-km region to be composed
of weighted averages of the available radar retrievals within
that region and the radiometer retrieval within the radiometer
footprint containing the 10-km region. The advantage of this
approach is that as more radar retrievals are available within
the 10-km region, more spatial structure within a radiometer
footprint will become evident and, since the collection of 10-km
pixels within the larger scale radiometer footprint is constrained
to sum to the value indicated by the radiometer retrieval, the
high-resolution estimation gracefully keeps the accuracy of the
radiometer retrieval.

The theoretical basis and the assumptions behind the change
detection algorithm used in this paper are presented in
Section II. In Section III, field experiment data from the
SMEX02 field campaign is used to validate the algorithm main
assumptions. The results of applying the algorithm to a four-
month observation system simulation experiment (OSSE) data
set are shown in Section IV. The performance of the method is
shown in terms of comparison with ground-truth soil moisture
data and with the radiometer data resampled to 10 km. An error
budget analysis of the algorithm is presented in Section V and,
in the final section, the most significant results of the paper are
summarized, and the applicability and usefulness of the scheme
to future SMAP data on an operational basis are discussed.

II. CHANGE DETECTION METHOD

The algorithm presented in this paper is based on the change
detection concept. The 40-km radiometer brightness tempera-
tures are combined with the 3-km radar backscatter observa-
tions to obtain 10-km soil moisture observations. It assumes in
the first place that soil moisture and the log of radar backscatter
are linearly related at a 10-km scale (Assumption I)

θ(a, t) = α(a) + β(a) · log
[
σ0(a, t)

]
(1)

where a represents the 10-km scale, σ0(a, t) is the radar
backscatter aggregated to 10 km at time t and θ(a, t) is the
soil moisture at 10 km at time t. The aggregation could be
made in decibels but using this approach the algorithm does not
converge for most pixels. Aggregating radar data from fine to
medium resolution reduces the noise level in the backscattering
coefficient data. The algorithm performance with application at
different levels of aggregation needs to be performed with more
extensive field experiment data.

We can form time differences to remove the bias term of (1)
and space average the result to the radiometer pixel area A of
40 km, which leads to

〈Δθ(a, t)〉 =
〈
β(a) · Δlog

[
σ0(a, t)

]〉
(2)

where 〈·〉 stands for the spatial average of the a scale pixels
contained into the A scale pixels.

At this point, it is assumed (Assumption II) that slope β and
backscatter changes are uncorrelated. Hence, the definition of
covariance cov{x, y} = 〈xy〉 − 〈x〉 · 〈y〉 can be used to write
(2) as

〈Δθ(a, t)〉 = 〈β(a)〉 ·
〈
Δlog

[
σ0(a, t)

]〉
. (3)

Finally, it is assumed that variation on vegetation type occur
principally at scales larger than A (Assumption III), β(a) =
〈β(a)〉, so time differences can be used to write (3) as

θ(a, t) = θ(A, t − tR) + 〈β(a)〉 · Δlog
[
σ0(a, t)

]
(4)

where tR is the revisit time of the observations, three days for
the SMAP case.

The radar-radiometer change-detection algorithm can be
written as either the radiometer-scale soil moisture retrieval
θ(A, t − tR) updated with moisture change evident in the
higher resolution radar back-scatter change as in (4) or, alter-
natively, the 10-km soil moisture retrieval from the previous
algorithm application (orbit pass) θ(a, t − tR) can be used
as the first term. However, this latter approach has the risk
of accumulating errors from the relatively more noisy radar
measurements.

Equation (4) constitutes the core of the change detection
algorithm. It indicates that a soil moisture estimate at scale a
and at a given time can be obtained as the previous soil
moisture estimate plus a change in soil moisture, which is
given by the actual radar estimates and the value of the slope
〈β(a)〉. From (3), the slope can be estimated using regression of
radiometer and spatially averaged radar data at scale A. Better
slope estimations are obtained with time, since more radar
and radiometer observations are available. The first estimates
are likely to be noisy due to the high uncertainty on the
first calculated slopes. However, when a reasonable number of
estimates (on the order of a month) is available, the uncertainty
on calculating the slope becomes much lower, leading to robust
soil moisture estimations (see Section IV).

III. TEST OF ASSUMPTIONS USING SMEX02 DATA

A. SMEX02 Description

Experimental data from the soil moisture experiments
SMEX02 will be used in this paper to validate the three as-
sumptions of the algorithm. The SMEX02 field campaign was
conducted in Walnut Creek, a small watershed in Iowa, between
June 25 and July 12, 2002. The PALS sensor was mounted on
an aircraft and flown over the SMEX02 region on June 25,
27, and July 1, 2, 5, 6, 7, and 8, 2002, and an extensive
data set of in situ measurements of volumetric soil moisture,
surface and subsurface soil temperature, soil bulk density, and
vegetation water content was collected during all the cam-
paign [11]. The PALS coverage during July 1 was partial, and
in situ sampling was not done on July 2, so data from these two
days were not used in this paper. Since the algorithm proposed
in this paper is based on the change of soil moisture over
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Fig. 1. Change in log of PALS observed L-band radar backscatter at (a) hh and (b) vv polarizations plotted versus change in in situ volumetric soil moisture in
the 0- to 6-cm soil layer for the period June 25 to June 27 and July 5 to July 7. The change in radar backscatter has been stratified by 0.05% change in volumetric
soil moisture.

time, it is not feasible to fully test it with data from aircraft-
mounted instruments due to cost limitations. However, L-band
PALS data and volumetric soil moisture have been properly
used to validate the algorithm assumptions on Section III-B. In
addition, SMEX02 experimental data has been used to estimate
the algorithm error budget on Section V.

B. Validation of the Assumptions

It was shown in a previous study that for the SMEX02 field
experiment PALS L-band brightness temperatures and radar
backscatter coefficients were well correlated to soil moisture
[12]. To specifically illustrate the correlation between soil
moisture and radar backscatter assumed in the algorithm de-
velopment (Assumption I), in Fig. 1, the change in log of
radar backscatter for hh and vv polarizations is compared
to the corresponding change in volumetric soil moisture at a
resolution of 400 m for the time periods June 25 to June 27
and July 5 to July 7. R2 values of 0.67 and 0.88 are obtained
for hh and vv polarizations, respectively, indicating that radar
sensitivity to soil moisture is significant even under the dense
vegetation conditions encountered in the SMEX02 experiments
with the vegetation water content of corn fields being around
4–5 kg/m2 [12]. The higher correlation obtained with the radar
vertical polarization is consistent with the literature on radar
remote sensing of soil moisture.

In order to demonstrate with real data that the algorithm’s
calculated slope and backscatter changes are uncorrelated
(Assumption II), for each day of measurement the slope is
calculated using linear regression from (3) and the change
in log of radar backscatter is computed. Daily correlations
between the slope and the change in radar backscatter indicate
values of the order of 10−3, which evidences the validity of the
assumption made.

Assumption III in the algorithm formulation states that the
slope at 10-km resolution equals the mean of the slope over a
40-km pixel (β(a) = 〈β(a)〉 = β(A)). The spatial resolutions
of 400 and 1600 m will be used in this part of the study

Fig. 2. Error difference between static map of β at 400 m aggregated to
1600 m and directly computed static map of β at 1600-m spatial resolution
using radar (a) hh and (b) vv polarizations.

representing a and A, for compatibility with PALS data. As an
initial evaluation of this point, for each pixel and for all days
of measurement, static maps of β were calculated using linear
regressions with brightness temperatures and radar backscatters
at 400-m resolution and at 1600 m [(3)]. The 400-m static map
of β was then aggregated to 1600 m and compared to the maps
of β using aggregated radar and radiometer measurements at
1600 m. Thus, the error difference between the two maps is es-
sentially the error of assuming homogeneity of β. Even though
the scale ratios with the PALS data are the same as SMAP
radar and radiometer pixels, the absolute scales are clearly
different. This mismatch may represent an underestimation of
the error due to this assumption. Nevertheless, this represents
a preliminary test and more detailed testing using other data
sets is needed. The results of the tests on Assumption III are
shown in Fig. 2. Results show an acceptable error, greater for
horizontal than for vertical polarization. Still, for quantifying
the error that this assumption is adding to the retrievals, another
experiment has been conducted: From the static map of β at
400 m, the soil moisture estimates for each day are calculated,
and the same procedure is followed to retrieve soil moisture
estimates from the static map of β at 1600 m. Subsequently,
histograms of the difference between the soil moisture retrievals
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Fig. 3. Histogram of the difference between soil moisture retrieved using
static map of β at 400 m and using static map of β at 1600 m for (a) hh and
(b) vv polarizations.

acquired using β(a) and 〈β(a)〉 are shown in Fig. 3. With
an error of ∼2%, this third assumption results to be the most
critical error source for the algorithm.

The airborne campaign duration is too short and the variabil-
ity in ground conditions are too limited to fully apply the change
detection algorithm. Longer duration data sets with wider range
of vegetation conditions are needed. Here, we augment the tests
of the algorithm assumptions using airborne field experiment
data with tests using synthetic observing system simulation
experiments.

IV. APPLICATION TO OSSE DATA

A. OSSE Data Set

The simulated data used in this paper was generated in
the Hydros OSSE [13]. The OSSE was designed to mimic as
closely as possible the specific Hydros sensor and orbital char-
acteristics and therefore is perfectly valid for SMAP purposes.
The experiment was driven by high-resolution land surface
geophysical variables generated from a distributed land surface
model within the Red-Arkansas river basin. They were used to
derive a set of Hydros-like simulated brightness temperatures
and radar backscatter cross sections over the area that were

then inverted back into soil moisture products using various
retrieval algorithms. The OSSE adopts an easily nested fine,
medium, and coarse resolution grid of 3, 9, and 39 km,
respectively. On this paper, the OSSE resolutions of 9 and
39 km will be used closest to SMAP 10- and 40-km products.
Complete OSSE fundamentals and details for radiometer-only
soil moisture retrievals are described in [13]. Details regarding
the radar and radiometer soil moisture retrievals are provided
in [10].

Two sets of OSSE data are used in this paper to reproduce
a realistic scenario just after SMAP calibration and validation
phase: One month data set is used as background data for the
algorithm, representing the data acquired during the commis-
sioning phase; and a four months data set is processed in near
real time, simulating the first four months of data obtained in the
operational phase, exactly after the commissioning phase. To
meet the expected SMAP accuracies, an error of 4% [root mean
square error (RMSE)] is added to the radiometer retrievals and
the normalized deviation Kp of radar backscatters [14] is set to
0.15. Independent noise is added in each measurement channel.
Since the three radar polarizations (hh, vv, and hv) can be
used independently in the algorithm with different outcomes,
the three possible solutions will be analyzed. The simulated
data will be used to evaluate the algorithm performance in
Section IV-B and to calculate the algorithm error budget in
Section V.

B. Results

Sample results of applying change detection to the simulated
data (with radar and radiometer noise added) are shown in
Fig. 4 for three consecutive days. Comparing with the original
soil moisture distributions and the estimates obtained from the
radiometer only technique, it can be seen that the active-passive
disaggregation algorithm reproduces much of the variability
seen in the in situ soil moisture images and that these details
are not captured by the radiometer only method.

Using the OSSE data sets as described previously, the per-
formance of the change detection method is evaluated by com-
paring the retrieved soil moisture values of the four months
data set with their corresponding original data and with results
from the radiometer only or minimum performance product.
Minimum performance is obtained by resampling the 40-km
radiometer data to 10 km. Fig. 5 shows the spatial distribution
of the soil moisture RMSE errors after applying the change
detection method and the radiometer only technique. Using
the change detection algorithm on the four-month OSSE the
RMSE is reduced to 2%, with better results obtained using
radar vv polarization. In addition, for a direct comparison with
the minimum performance algorithm, the ratio of the change
detection RMSE to the minimum performance RMSE is shown
in Fig. 6(a)–(c) for hh, vv, and hv polarizations, respectively.
In all the areas of the image with a value less than unity,
the active–passive approach outperforms the radiometer only
technique. Notice that most estimation errors (value = 1) occur
in high vegetated areas where the radar and radiometer soil
moisture sensitivity is decreased. In Fig. 7, the algorithm RMSE
linear dependence with vegetation water content is shown.
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Fig. 4. Sample results (three days) from the OSSE for the comparison of higher resolution (10 km) soil moisture estimates obtained using the active-passive
method with synthetic ground-truth soil moisture and with lower resolution (40 km) estimates obtained from a typical radiometer.

Fig. 5. Spatial distribution of the soil moisture error retrieved using the change
detection method with (a) σ0

hh, (b) σ0
vv , (c) σ0

hv , and (d) the radiometer only
technique.

A box plot of the slope for each day of the four-month data
set is shown in Fig. 8. It can be observed that the uncertainty
in the estimation of the slope diminishes with time and that
vertical polarization leads to more robust estimates than hor-
izontal and mixed polarizations. Hence, as an alternative to
real-time processing, the possibility of monthly reprocessing
the data was explored, resulting in marginal improvement.
Further studies with real data would be needed to assess the

Fig. 6. Ratio of change detection RMSE to radiometer only RMSE using
(a) σ0

hh, (b) σ0
vv , and (c) σ0

hv .

optimal reprocessing time and decide whether the reprocessing
is required.

V. ERROR BUDGET

An error budget analysis has been performed in order to
identify the error sources of the algorithm and fully quantify
its performance. The three assumptions made in the algorithm
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Fig. 7. Plots of change detection RMSE at 10 km stratified by 0.5-kg/m2

vegetation water content values.

Fig. 8. Plots of the mean slope (in black) and mean slope (in red) ± the daily
slope standard deviation for vv, hh, and hv polarizations, for each day of the
four-month OSSE data set.

TABLE I
RESULTS OF THE ERROR BUDGET ANALYSIS (% VOL)

formulation have been identified as the three algorithm error
sources. The total error has then been calculated as the square
root of the sum of the squares (RSS) of these three distinct
errors.

To account for Assumption I errors, the algorithm-predicted
soil moisture is calculated using linear regression of SMEX02
radar backscatter and soil moisture data [see (1)]. The RMSE
between the predicted soil moisture and the ground-truth soil
moisture for horizontal and vertical polarizations are presented
in Table I. It must be noted that field-sampling errors are
inevitably included in the calculations, and they considerably
worsen the results. Regarding the errors associated to the
Assumption II, the OSSE results in Section IV-B show that

the covariance does not affect the retrievals and the error
contribution from this source been set to zero. Assumption III-
related errors are exactly the values of the standard deviation
shown in Fig. 3. This figure shows the difference between the
soil moisture retrieved using the slope at scale a and the soil
moisture retrieved using the slope at a scale A. Note that Table I
represents the algorithm assumptions error and any radiometer
error has to be added to the total by RSS.

VI. CONCLUSION

This paper presents a simple and efficient technique to
downscale radiometer soil moisture estimates with the use of
simultaneous radar observations within an SMAP-like context.
The algorithm is based on a change detection scheme that
benefits from the synergy of the radar high spatial resolution
and the radiometer high accuracy, leading to a balanced product
with enough accuracy and spatial resolution to satisfy current
meteorology and hydrology needs.

The algorithm has been thoroughly formulated and the as-
sumptions made on the process have been verified using PALS
data from the SMEX02 field campaign. In addition, change
detection has been successfully applied to a four-month OSSE
data producing significantly better results than radiometer only
inversions, with a 2% RMSE improvement. Real-time process-
ing of the data has been shown to be feasible having a month
of previous observations and, since the algorithm performance
improves over time, a monthly reprocessing of the data to
improve the estimations’ accuracy has been outlined. An error
budget analysis of the algorithm estimates a total RSS of
2.68 (% vol) for horizontal polarization and 2.25 (% vol) for
vertical polarization, which meet SMAP science requirements
for the 10-km product. These results imply that the change
detection method presented on this paper is a promising ap-
proach to achieving higher resolution and more accurate soil
moisture retrievals from future SMAP radar and radiometer
observations.
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