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Treating reference frames fundamentally
as quantum systems is inevitable in quan-
tum gravity and also in quantum foun-
dations once considering laboratories as
physical systems. Both fields thereby face
the question of how to describe physics rel-
ative to quantum reference systems and
how the descriptions relative to different
such choices are related. Here, we ex-
ploit a fruitful interplay of ideas from both
fields to begin developing a unifying ap-
proach to transformations among quantum
reference systems that ultimately aims at
encompassing both quantum and gravita-
tional physics. In particular, using a grav-
ity inspired symmetry principle, which en-
forces physical observables to be relational
and leads to an inherent redundancy in
the description, we develop a perspective-
neutral structure, which contains all frame
perspectives at once and via which they
are changed. We show that taking the
perspective of a specific frame amounts to
a fixing of the symmetry related redun-
dancies in both the classical and quan-
tum theory and that changing perspec-
tive corresponds to a symmetry transfor-
mation. We implement this using the lan-
guage of constrained systems, which natu-
rally encodes symmetries. Within a simple
one-dimensional model, we recover some
of the quantum frame transformations of
[1], embedding them in a perspective-
neutral framework. Using them, we il-
lustrate how entanglement and classical-
ity of an observed system depend on the
quantum frame perspective. Our opera-
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tional language also inspires a new inter-
pretation of Dirac and reduced quantized
theories within our model as perspective-
neutral and perspectival quantum theo-
ries, respectively, and reveals the explicit
link between them. In this light, we sug-
gest a new take on the relation between a
‘quantum general covariance’ and the dif-
feomorphism symmetry in quantum grav-
ity.

1 Introduction

Reference frames are essential in our description
of physical phenomena. Every time we measure a
physical quantity or describe a physical event, we
do so with respect to a reference frame. In prac-
tice, reference frames are physical objects that are
sufficiently decoupled from the system we want
to describe. When the reference frame does not
influence the system of interest for all practical
purposes, we treat it like an external entity in
our theoretical analysis. For example, in our cur-
rent most successful theories, general relativity
and quantum theory (incl. quantum field theory),
such reference frames are taken as idealized clas-
sical systems that are non-dynamical and neither
back-react on spacetime itself, nor on other fields
contained in it.

However, a more fundamental approach to
physics should dispose of such an idealization and
take seriously the fact that reference frames are
always physical systems themselves and thereby
subject to interactions and the laws of physics. In
particular, if we accept the universality of quan-
tum theory, we have to face the question of how to
describe physics with respect to a quantum frame
of reference and, subsequently, how the descrip-
tions relative to different such quantum frames
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are related to one another. Classical frame trans-
formations will not suffice to switch from the per-
spective of one quantum frame to that of another,
as already epitomized, in its most extreme, by the
Wigner’s friend scenario. So what will take their
place in a fully quantum formulation?

The answer to this question will, of course, de-
pend on the concrete physics at hand. But our
aim here and in [2–5] will be to initiate the devel-
opment of a novel and systematic method for an-
swering this question, that ultimately can encom-
pass quantum reference frames in both quantum
and gravitational physics. That is, this method
shall be applicable in both fields to produce
the sought-after transformations among quantum
frame perspectives.

Reference frames (or, more generally, reference
systems) indeed provide a natural arena for an in-
terplay of quantum and gravitational physics, ap-
pearing ubiquitously in both fields. Their recog-
nition as quantum systems themselves dates back
to at least 1967 when, in a historical coincidence,
two seminal papers, by Aharonov and Susskind
[6] and DeWitt [7], separately brought this recog-
nition to center stage in the foundations of quan-
tum theory and quantum gravity, respectively.
The ensuing study and usage of quantum refer-
ence systems took, however, rather different di-
rections in the two fields and our goal will be to
unify some of these developments.

In (quantum) gravity, there is even a necessity
to employ physical systems as references with re-
spect to which to describe the remaining physics.
On account of the diffeomorphism symmetry of
general relativity, which is a consequence of gen-
eral covariance, physical systems are not local-
ized and oriented relative to some absolute spa-
tiotemporal structure, but with respect to one
another [8]. This is spacetime relationalism and,
for later purpose, we note that this is closely re-
lated to Mach’s principle, which roughly states
that what is an inertial frame is not determined
with respect to an absolute space (as in Newto-
nian physics), but by the other dynamical con-
tent of the universe [8–10]. Physics is purely rela-
tional: intuitively, if one moves around the entire
dynamical content of the universe while keeping
the relations among its constituents intact, it will
not change the physics. Mach’s principle thereby
implies a symmetry principle and a correspond-
ing redundancy in the description (in general rel-

ativity this is the diffeomorphism symmetry); we
shall see a toy version of this below.

This entails the paradigm of relational local-
ization: some dynamical matter or gravitational
degrees of freedom (in the full theory these will
be fields) serve as temporal or spatial reference
systems for others and these relations are invari-
ant under diffeomorphisms. That is, these rela-
tions are invariant under the gauge symmetry of
general relativity and thereby physically mean-
ingful. Such gauge invariant relations are usu-
ally referred to as relational observables. This
applies not only to classical general relativity, but
also to (background independent) quantum grav-
ity approaches where one aims at quantizing all
dynamical degrees of freedom, while retaining (a
quantum version of) diffeomorphism invariance.
As such, quantum reference systems and rela-
tional observables appear ubiquitously in quan-
tum gravity and, given their indispensability,
they have been studied extensively [7, 8, 11–21].

However, owing to the challenges in a field the-
ory context, what has not been studied exten-
sively is how to switch among different choices
of such relational quantum reference systems in
quantum gravity. For systems with finitely many
phase space degrees of freedom (such as quantum
cosmological models), the first systematic frame-
work for changes of quantum reference systems
was developed in [22–24] and applied to tem-
poral references called relational clocks, but re-
stricted to sufficiently semiclassical states. The
crucial feature of this framework is a ‘perspective-
neutral’ quantum theory which contains all clock
choices at once and each clock choice corresponds
to a gauge fixing.

In quantum information, on the other hand,
quantum reference frames have been extensively
discussed mainly with the purpose of devising
communication tasks with physical systems serv-
ing as detectors. In the seminal papers [6, 25] it
was shown that it is possible to overcome super-
selection rules (such as the charge superselection
rule in Ref. [6]) via the introduction of a quan-
tum reference frame. In Ref. [26] it was shown
that quantum mechanics can be consistently for-
mulated without appealing to abstract reference
frames of infinite mass. The subsequent liter-
ature [27–34] has then focused on different as-
pects of the introduction of quantum systems as
reference frames, and mainly on a) the lack of
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a shared reference frame, b) bounded-size refer-
ence frames, and c) the possibility of overcoming
general superselction rules by employing quan-
tum reference frames (e.g., see [27] for a review).
These approaches resort to an encoding of quan-
tum information into relational degrees of free-
dom. The latter are invariant under an averaging
over the external symmetry group, defining deco-
herence free subsystems. A relational approach
to quantum reference frames has been consid-
ered also in [35–37]. The transformation between
two quantum reference frames is in general not
considered in this applied quantum information
context, with the important exception of [30].
More foundationaly, quantum reference frames
have also been used to derive the Lorentz group
from operational conditions on quantum commu-
nication without presupposing a specific space-
time structure [38]; this exemplifies how quantum
information protocols can constrain the space-
time structures in which they are feasible.

A suitable starting point for establishing a con-
nection between these efforts in quantum infor-
mation and in quantum gravity is the approach to
quantum reference frames developed in [1], which
we shall further exploit in the present paper. The
main idea of Ref. [1] is to formulate changes be-
tween quantum reference frames in an operational
and fully relational way, without referring to any
external or absolute entity. Within this formu-
lation, Ref. [1] investigates the extension of the
covariance of physical laws under such reference
frame transformations, paving the way for a for-
mulation of a notion of “quantum general covari-
ance”. Such developments give concrete meaning
to the idea of describing physics from the point
of view of a quantum frame of reference. This
approach might be particularly relevant in the
context of quantum gravity, where a fixed no-
tion of spacetime (spacetime metric) is not avail-
able. As an indication of the concrete possibility
of formulating physics on a non-fixed spacetime
metric, Ref. [1] develops an extension of Galileo’s
weak equivalence principle for quantum reference
frames, which holds when the reference frame is
a system falling in a superposition of accelera-
tions. This approach is in resonance with works
aiming at formulating physics on indefinite causal
structures from an observer-dependent perspec-
tive [39–41]. In particular, it is closely related
to Hardy’s proposal for a quantum equivalence

principle [41], stating that it is always possible to
find a quantum reference frame having a definite
causal structure in the local vicinity of any point.

Our main ambition will be to synthesize these
developments in quantum gravity and quantum
information into a unifying method for switch-
ing perspectives in the quantum theory that in-
cludes both spatial and temporal quantum refer-
ence systems and applies in both fields. Indeed,
in the course of this work, here and in [2–5], we
shall show how (some of) the quantum reference
frame transformations of [1] and the method of
relational clock changes [22–24] can be accom-
modated and reproduced within one framework.
This will be achieved by adopting key ingredients
from both sides.

In particular, we shall adopt a gravity inspired
symmetry principle to develop, as proposed in
[42], a perspective-neutral super structure that
encodes, so to speak, all perspectives at once
and requires additional choices to ‘jump’ into the
perspective of a specific frame. Technically, we
will achieve this by availing ourselves of the tools
and concepts of constrained Hamiltonian systems
[43, 44] that also play a key role in the canoni-
cal formulation of general relativity and quantum
gravity [8, 19] and that were also used for the re-
lational clock changes in [22–24].

The symmetry principle will, as mentioned
above, entail two related key features: (i) an
inevitable redundancy in the description of the
physics (gauge freedom and constraints), and (ii)
that the physically meaningful (i.e. gauge invari-
ant) information is purely relational. The inher-
ent redundancy will permit us to treat all pos-
sible reference frames as part of a larger phys-
ical system at once and on an equal footing;
a priori no choice of frame is preferred and no
frame is described externally. However, in order
to make operational sense out of physical phe-
nomena, we must make additional choices to fix
these redundancies. We will show that choosing
a system from the perspective-neutral picture to
serve as our reference frame is equivalent to fix-
ing these redundancies and that classically this is
a choice of gauge. Accordingly, (at least classi-
cally) switching from the internal perspective of
one frame to another will amount to a symme-
try transformation as in [22–24]. Our approach
thereby connects with, but also extends the dis-
cussion in [45], where it is argued that the redun-
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dancy in gauge theories is not just a mathemat-
ical artifact, but expresses the fact that physics
is relational and provides the ‘handles’ through
which systems can couple (and relate to one an-
other) in different ways.1

Conversely, the operational language of quan-
tum foundations and, specifically, the approach
to quantum reference frames in [1] will supply
our operational interpretation of the formalism.
In particular, it will inspire compelling new in-
sights into the quantization of constrained sys-
tems. These insights will thereby be of relevance
for quantum gravity. Indeed, there exist two main
strategies in the literature for canonically quan-
tizing constrained systems:

Reduced quantization: One solves the con-
straints first at the classical level and only
quantizes non-redundant gauge invariant de-
grees of freedom.

Dirac quantization: One quantizes first all
(incl. redundant and gauge) degrees of free-
dom and solves the constraints in the quan-
tum theory.

There has been an ample discussion in the lit-
erature as to how these two quantization strate-
gies are related – with the general conclusion that
‘constraint imposition and quantization do not
commute’ – and about when one or the other
should be applied [20, 21, 47–59]. Adopting the
operational language of [1], we will shed some
new light on this discussion, both technically and
conceptually.

In this article, we will begin with a techni-
cally rather simple model, subject to a linear
constraint, on a finite dimensional phase space.
Within this model both quantization methods
are necessary for a complete relational interpre-
tation. As we shall see, Dirac quantization will
yield a perspective-neutral quantum theory, con-
taining all quantum reference frame perspectives
at once, while reduced quantization produces the
quantum physics as seen by a specific frame. We
will also provide the transformations that take
us from one to the other and will exploit this to
establish switches between different quantum ref-
erence frames. In particular, the transformation

1A complementary extension of these ideas, which does
not rely on gauge fixings to define frames, has also recently
been put forward for the field theory context in [46].

linking Dirac with a given reduced quantization
constitutes a quantum symmetry reduction pro-
cedure, i.e. the quantum analog of phase space
reduction. This reduction is always formulated
relative to a choice of quantum reference frame.
In this simple model, all these transformations
will be valid globally on phase and Hilbert space,
so that no technical subtleties cloud our main ar-
guments and interpretation.

However, in generic systems, it will not al-
ways be true that the quantum theory obtained
by applying the quantum symmetry reduction to
Dirac quantization coincides with a specific re-
duced phase space quantization, in line with the
observations in [20, 21, 51–59]. This will not be a
problem for our approach, as we explain in more
detail later: in general, we will interpret the result
of applying the quantum symmetry reduction to
Dirac quantization, which removes redundancy in
that description, as the perspective of the associ-
ated frame.

Furthermore, in generic systems, globally valid
perspectives of quantum reference frames will be-
come impossible (this is analogous to the Gribov
problem in gauge theories) and, accordingly, the
transformations between them will likewise not
be of global validity. This is illustrated in the
companion paper [2], where we extend our discus-
sion to the three-dimensional N -body problem,
and in [3,4], where it will be shown how to change
relational quantum clocks, using our new method.
In particular, in contrast to [22–24], these clock
changes will also be valid beyond a semiclassical
regime.

In connection with discussions of relative and
global states in the literature, we emphasize that
our perspective-neutral structure itself will not
admit an immediate operational interpretation,
only the description relative to a given perspec-
tive. Concretely, this means that there will be
global quantum states for the entire physics at
once, namely those of the perspective-neutral
Dirac quantized theory. However, there will be no
global operational states and only states relative
to a frame (which will not include its own degrees
of freedom) will admit an operational interpreta-
tion. This will be exploited in [4] to develop a
novel take on the ‘wave function of the universe’
in quantum cosmology, as proposed in [42, 60],
and suggests a new conception of the relative
states of relational quantum mechanics [61, 62]
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and their interrelations.
Quantum foundations and (quantum) gravity

are usually considered independently. However,
our results are a clear testimony to how a fruitful
interplay of their tools and perspectives can lead
to new conceptual and technical insights in both
fields.

The rest of this article is organized as follows.
In sec. 2, we explain the interplay of perspective-
neutral structures and internal perspectives in
physics more carefully; a quick reader can skip
it on a first reading. Subsequently, in sec. 3,
we introduce a toy model of N particles in one-
dimensional Newtonian space in which we impose
a symmetry principle, namely global translation
invariance, which will serve as a toy version of
Mach’s principle. Here we show how frame per-
spectives are related to gauge choices. In sec. 4 we
quantize the classical model and explicitly reveal
the conceptual and technical relation between the
Dirac and reduced quantization of our toy model,
which here give equivalent expectation values. Fi-
nally, in sec. 5 we analyze some of the operational
consequences of describing physics from the point
of view of a quantum system. In particular, a con-
crete example will illustrate the quantum frame
dependence of the degree of entanglement of an
observed system. Finally, we conclude in sec. 6
with an outlook on further applications of our
approach. Details have been moved into appen-
dices.

2 A meta-perspective on perspectives

The quick reader can skip this section and proceed
directly to sec. 3.

The purpose of this section is to motivate
and specify more clearly what we mean by a
perspective-neutral theory, as proposed in [42].
To this end, we shall adapt the abstract lan-
guage introduced in [38] to explain from a very
general standpoint how different perspectives can
fit into one framework and how one can switch
between them. We shall thus revisit some
fairly basic questions, illustrating along the way
how perspective-neutral structures already ap-
pear ubiquitously in all of physics. This discus-
sion will also highlight some peculiarities, such as
an absence of global perspectives in most systems
of interest, and explain within a broad context the
structure of the sought-after perspective changes

which we will encounter in the course of our work.
The aim of physics is to describe the phys-

ical world, or at least a subset thereof. Usu-
ally, this is done by choosing a perspective from
which to describe the physical situation at hand.
Abstractly, choosing a perspective is thus tanta-
mount to choosing a map from the physics of in-
terest to some suitable mathematical description
thereof. More precisely, denote by Sphys the set
of possible physical situations one wishes to de-
scribe (and could, in principle, measure) and by
Sdes the set of mathematical objects used for the
description of these situations. Then choosing a
perspective defines a map

ϕ : Sphys → Sdes

from the actual physics to its description.
The important point to notice is that the actual

physics, encoded in Sphys, is, in fact, perspective-
neutral. For instance, suppose the physical situ-
ation is that a billiard ball flies through space so
that Sphys denotes the set of all its possible spa-
tial velocities. The statement of such a physical
situation per se does not require the perspective
of some reference frame, but it can be described
from many different perspectives. Indeed, sup-
pose there is an observer Alice who measures the
(components of the) velocity of the ball in three
spatial directions and reads it off the scales of
her measurement device. Then Alice would usu-
ally take Sdes to be R

3 and ϕA associates to each
physical velocity a three-dimensional vector, cor-
responding to the three real numbers she reads off
her measurement device, thereby specifying the
velocity relative to her frame of reference. This
is a second point to notice: the choice of a map,
i.e. a perspective, ϕA is (usually) associated with
a choice of reference frame, which is why we have
now attached a frame label to it. Note that only
a concrete perspective has an immediate opera-
tional interpretation.

Of course, this structure is completely general.
For example, Sphys could also represent the quan-
tum states associated with (possibly an ensemble
of) a physical system that one can try to estimate,
using tomography, in a laboratory. A physically
distinguished choice for Sdes would be the appro-
priate set of density matrices. Clearly, a concrete
description ϕA of the quantum states depends on
a choice of reference frame as it involves the choice
of a Hilbert space basis that Alice associates with
certain measurement outcomes, say, of spin in her
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z-direction on which another observer Bob may
not agree.

In the previous two examples, while the ac-
tual physics is perspective-neutral, the theories
describing it are arguably not. For example, if
one wrote down a standard Lagrangian for the
billiard ball, it would fail to be invariant under
general time-dependent changes of coordinates in
configuration space; it does not abide by a full
symmetry principle and thereby presupposes a
special class of (e.g., inertial) frames with respect
to which it is formulated. Similarly, at least the
standard textbook formulation of quantum me-
chanics implicitly assumes the frame of the ob-
server and her measurement and preparation de-
vices at the outset.

By contrast, a prime example of a perspective-
neutral theory is general relativity. The Einstein-
Hilbert action is completely independent of coor-
dinates and choices of reference frame (it is dif-
feomorphism invariant) and so the theory does
not dictate the choice of perspective from which
to interpret and describe the physics in space-
time; it contains all frame perspectives at once
and on equal footing and it is up to the physi-
cist to pick one. For example, when considering
the dynamics in a given spacetime in general rel-
ativity, Sphys may represent the possible physical
situations happening in that spacetime.2 Given a
reference frame associated to some observer Alice
(usually an orthonormal tetrad), Sdes is then nor-
mally taken to be R

4. Her perspective ϕA defines
a (usually only locally valid) coordinate descrip-
tion of the physics in that given spacetime, e.g.,
encoding the tangent vector corresponding to the
motion of a massive object in a four-vector whose
components describe the velocity relative to Al-
ice.

In the course of our work, we shall show how
to embed the discussion of quantum reference
frames into such a meta-framework. In partic-
ular, in analogy to general relativity, we will use
a symmetry principle, in the form of invariant
Lagrangians and (first class) constraints, to for-
mulate perspective-neutral theories of reference
frames. We shall use these theories to argue for
a novel, more general interpretation of key struc-

2By contrast, when considering the dynamics of space-
time in general relativity, Sphys may represent the space of
solutions or, in the canonical formulation, the constraint
surface (see also comments below).

tures of constrained systems, incl. canonical grav-
ity.

Indeed, for a system with first class constraints,
we shall propose to interpret the classical con-
straint surface and the gauge invariant physi-
cal Hilbert space Hphys of its Dirac quantiza-
tion as the perspective-neutral physics Sphys of
the classical and quantum theory, respectively.
Correspondingly, we shall argue that the re-
duced (gauge fixed) phase spaces and their re-
duced quantizations, the reduced Hilbert spaces
Hred, assume the role of the descriptions Sdes of
the classical and quantized physics, respectively.
Hence, a perspective ϕA will define a mapping
from the constraint surface/Hphys to the reduced
phase space/Hred and we shall only assign an
operational interpretation to the latter reduced
structures; these are the physics described with
respect to a given classical or quantum reference
frame.3

For any of the above examples and theories, it
is now also clear how to switch from the perspec-
tive of, say Alice’s frame, to another, say Bob’s,
namely through the following transformation:

TA→B = ϕB ◦ ϕ−1
A . (1)

Note that, while TA→B : Sdes → Sdes is a map
from description to description,4 it always pro-
ceeds via the perspective-neutral structure Sphys

in-between, thanks to its compositional form.
This is the general form of our sought-after trans-
formations and we shall encounter it repeatedly
throughout our work, i.e. below and in [2–5].
Hence, we will always switch perspectives via
the perspective-neutral meta-structure in both the
classical and the quantum theory. Notice also the
structural resemblance to coordinate changes on
a manifold. However, here it is more than just a
coordinate transformation: it is a change of per-
spective.

3There is an interesting analogy to the relation between
shape dynamics and general relativity [10, 63]. The two
theories are related via a ‘linking theory’ [64] that can
be regarded as the perspective-neutral theory. When re-
stricted to solutions admitting constant-mean-curvature
slicings, shape dynamics and general relativity (as reduc-
tions of the linking theory) can be regarded as two differ-
ent descriptions of the same physics.

4Similarly, one can construct transformations T phys
A→B :=

ϕ−1
B ◦ϕA : Sphys → Sphys that are actual operations on the

physics [38]. Since we are only interested in perspectives
and their relations, such operations are not relevant here.
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The transformation (1) clearly assumes the
perspective map ϕA to be invertible somewhere.
The example of general relativity above makes it
clear, however, that this will in general not be
possible globally; ϕA need not be defined every-
where on the perspective-neutral physics Sphys.
In other words, in general we will find that global
perspectives on the physics (with operational in-
terpretation) do not exist in most interesting sys-
tems. This will also be illustrated in the compan-
ion articles [2–4].

In consequence, the perspective changes (1)
will generally constitute non-global transforma-
tions and it will become a non-trivial question
whether (and where) Bob’s perspective ϕB can
be concatenated with the inverse ϕ−1

A of Alice’s
perspective. Hence, in general it will be a non-
trivial question too whether perspective changes
(1) can be concatenated and constitute a group
or more general structures such as a groupoid.
Such questions are crucial as a lot of information
about the physics resides in perspectives and their
relations. For instance, the information about a
spacetime’s geometry is encoded in the relations
among its reference frames and this is also where
symmetries reside.

In the following, we shall now transition from
a perspective-neutral structure to internal per-
spectives and study operational consequences of
the ensuing transformations (1). By contrast, the
constructions in [38, 65] can be regarded as pur-
suing in the opposite direction: they start with
operational conditions on relations among inter-
nal perspectives and attempt to reconstruct a
perspective-neutral structure.

3 Classical reference frame perspec-

tives as gauge-fixings

We now construct a simple model, which incorpo-
rates a toy version of Mach’s principle for N in-
teracting particles in one-dimensional Newtonian
space through a global translational invariance.
We will argue that it constitutes a perspective-
neutral theory in which no reference frame has
been chosen yet, and in which physical quanti-
ties are relational. We will then show that going
to the perspective of a particular reference frame
amounts to a gauge fixing, and, correspondingly,
that switches from one frame perspective to an-
other are gauge transformations.

For intuition: ‘jumping’ into the perspective
of a given reference frame defines, e.g., what it
means to be ‘at the origin’ in position space,
fixing the translational symmetry. Conversely,
starting from the assumption that one can always
‘jump’ into a frame that is ‘at the origin’, one is
led to a symmetry, because our ability to ‘fix’ any
system at the origin means its ‘absolute position’
is not physical.

The technical simplicity of the model will per-
mit us to illustrate in sec. 4 the general method
for changing perspectives via a perspective-
neutral structure in the quantum theory and, in
particular, to derive the quantum reference frame
transformations constructed in [1] for the one-
dimensional case from first principles. In this
manuscript we will thus not need to worry about
technical subtleties that cloud the main argu-
ments and which will be studied in more com-
plicated models in [2–5].

3.1 A toy model for Mach’s principle in 1D

space

For simplicity, we shall take the N particles to
be of unit mass5 and the configuration space
as Q = R

N so that the phase space is simply
R

2N . We use canonical pairs (qi, pi)
N
i=1 as coordi-

nates. It turns out (see Appendix A) that a La-
grangian with global translation invariance nec-
essarily leads to a (primary) constraint, namely
that the center of mass momentum vanishes

P =
N∑

i=1

pi ≈ 0 , (2)

so that the momenta of the individual particles
are not all independent. Note that this equation
defines a (2N −1)-dimensional constraint surface
in phase space. The symbol ≈ denotes a weak
equality, i.e. an equality that only holds on this
constraint surface. (See [43, 44] for an introduc-
tion to constrained Hamiltonian systems.)

On the constraint surface defined by (2), the
Hamiltonian (following from the Lagrangian of
Appendix A) will be of the form

H =
1

2

∑

i

p2
i + V ({qi − qj}i,j). (3)

5It is straightforward to generalize the model to arbi-
trary individual particle masses and we come back to this.
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Clearly, the constraint is preserved by the dynam-
ics {P,H} = 0 (where {., .} denotes the Pois-
son bracket) and so, in the terminology of Dirac,
no secondary constraints arise to enforce the con-
servation of P and it is automatically first-class.
It is therefore a generator of gauge transforma-
tions [43, 44]. Indeed, in line with the symmetry
of the Lagrangian of Appendix A, it generates
global translations, infinitesimally given by

{

qi → qi + {qi, P} ε = qi + ε

pi → pi + {pi, P} ε = pi

. (4)

The physical interpretation is here (see Appendix
A for a discussion): the localizations qi(t) and
motions q̇i(t) of the N particles with respect to
the Newtonian background space have no physi-
cal meaning, but are gauge dependent. Only the
relative localization and motion of the particles
are physically relevant, thereby providing a toy
model for Mach’s principle. Thanks to the sym-
metry, physics is here relational.6

Given the gauge symmetry, we need to find
physical quantities that are gauge invariant and
thus do not depend on the localization and mo-
tion relative to the Newtonian background space.
Technically, these are phase space functions O,
which Poisson-commute with the gauge genera-
tor on the constraint surface {O,P} ≈ 0 (i.e.,
are invariant under the gauge flow generated by
P ) and are called Dirac observables. In this sim-
ple model, there are obvious examples: For in-
stance, all N momenta pi and all

(N
2

)
relative

distances qi − qj , i, j = 1, . . . , N are Dirac ob-
servables. Clearly, H is also a Dirac observable
and the total Hamiltonian (sum of a gauge in-
variant Hamiltonian plus a linear combination of
gauge generators [43, 44]) thereby reads

Htot =
1

2

∑

i

p2
i + V ({qi − qj}) + λP , (5)

where λ is a Lagrange multiplier, namely an ar-
bitrary function of time which encodes the gauge
freedom (eq. (58) in the Lagrangian formulation
in Appendix A) in the canonical equations of mo-
tion. Intuitively, it is clear that an arbitrary func-
tion of time will have to appear in the evolution

6In this simple model, only the spatial physics is rela-
tional, while we have kept the absolute Newtonian time as
physical. One can also make the temporal physics of such
N particle models relational, see e.g. [9, 10,66,67].

generator, for otherwise the evolution of all vari-
ables would be unambiguously determined, given
initial data, leaving no room for gauge freedom.
Note that λ will get fixed below when fixing the
gauge. It is evident that the equations of motion
of Dirac observables (generated by Htot) will not
depend on λ on the constraint surface; their dy-
namics thus features no arbitrariness, given suit-
able initial data.

However, there is redundancy among the Dirac
observables mentioned. Thanks to (2), only N−1
of the pi are independent on the constraint sur-
face. Similarly, only N − 1 of the relative dis-
tances are independent, as qi − qk is just the sum
of qi − qj and qj − qk. Altogether, we therefore
have 2(N −1) independent gauge invariant phase
space functions. Indeed, given that P generates
one-dimensional gauge orbits in its (2N − 1)-
dimensional constraint surface, the reduced (i.e.
gauge invariant) phase space [44] is 2(N − 1)-
dimensional for this model.

We propose to interpret what we have de-
scribed thus far as a perspective-neutral super
theory. Using this structure, we derived the gauge
invariant degrees of freedom, but we have not de-
scribed them from the perspective of, e.g., any
of the N particles, each of which could serve as a
physical reference system. That is to say, we have
not chosen any reference frame from which to de-
scribe the physics. The perspective-neutral super
structure contains, so to speak, all perspectives at
once and thereby does not by itself admit an im-
mediate operational interpretation. Instead, we
shall now argue that choosing the internal per-
spective of a reference system on the physics is
tantamount to choosing a particular gauge fix-
ing. In particular, the perspective-neutral struc-
ture tells us there is a redundancy among the ba-
sic Dirac observables, but it does not by itself
choose which of the Dirac observables to consider
as the redundant ones. Gauge fixing will take
care of this.

3.2 Choosing an internal perspective = choos-

ing a gauge

We shall now reduce the phase space, getting rid
of gauge freedom altogether and working only
with the physical quantities written in a partic-
ular gauge. Suppose we want to describe the
physics from the internal perspective of particle
A. We are free to define A as the origin from
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which to measure distances in coordinates, im-
posing (emphasized through the symbol !)

χ = qA
!

= 0 , (6)

which is a global gauge fixing, as {χ, P} = 17

and technically this implies that the constraints
become second class.

This gauge choice indeed corresponds to ‘tak-
ing the point of view of A’, since now all relative
distances between A and the other N−1 particles
(these are a complete set of independent configu-
ration Dirac observables) simply become

qi − qA 7→ qi , i 6= A . (7)

Accordingly, we can consistently interpret the qi

as position measurements of the remaining parti-
cles relative to particle A. (The relative distances
among the remaining particles are clearly redun-
dant information.)

It is clear that we should also solve the redun-
dancy among the basic momenta for pA,

pA ≈ −
∑

i6=A

pi , (8)

so that all the N − 1 pi6=A become the indepen-
dent momentum variables. Note that pA is not
proportional to q̇A alone (see (61) in Appendix
A) so that the fact that generally now pA 6= 0
does not mean the motion of A is not fixed.

In fact, we have to ensure that defining A as
the origin is consistent at all times. This fixes the
Lagrange multiplier λ. Indeed, the equations of
motion are

q̇i =
∂Htot

∂pi
≈ pi + λ , (9a)

ṗi = −∂Htot

∂qi
≈ −∂V

∂qi
, (9b)

so that the conservation of (6), namely q̇A
!

= 0,
imposes

λ = −pA , (10)

thereby fixing any arbitrariness in the equations
of motion. Inserting (10) in (9) gives us the dy-
namics of all particles in the chosen gauge, i.e. ‘as
seen by A’.

We noted above that the reduced phase space
is 2(N−1)-dimensional and it is clear that it is co-
ordinatized by the (qi, pi) where i 6= A. However,

7This implies that χ = 0 intersects every P -generated
gauge orbit once and only once.

being a new gauge-fixed phase space, we have to
specify the bracket structure on it that is inher-
ited from the original phase space R

2N . For con-
strained systems, this amounts to replacing the
Poisson bracket with the Dirac bracket [43, 44].
In the present model it simply reads:

{F,G}D = {F,G}−{F, P}{χ,G}+{F, χ}{P,G} ,
(11)

for any phase space functions F,G, where {., .}
denotes the usual Poisson bracket. The Dirac
brackets of our basic phase-space variables are
then:

{qA, pA}D = 0 , {qi, pj}D = δij , ∀ i, j 6= A .
(12)

Hence, this reduction simply discards parti-
cle A’s position and momentum from among the
physical degrees of freedom and we pick the re-
maining ones as coordinates of the reduced phase
space. We thus end up with a theory for N − 1
particles – as seen by A. The corresponding re-
duced Hamiltonian can be computed from (5) and
(2, 6):

Hred
A =

∑

i6=A

p2
i +

∑

i6=j
i,j 6=A

pipj + V ({qi}i6=A) . (13)

This Hamiltonian is of a somewhat non-
standard form: the usual 1/2 factor in the kinetic
energy is not present and there are couplings be-
tween the pi’s. However, it encodes the relational
physics correctly. Indeed, restricting ourselves to
the N = 3 case for clarity, the equations of mo-
tion give the accelerations (writing ∂i := ∂/∂qi):

q̈B = −2∂BV − ∂CV , (14a)

q̈C = −2∂CV − ∂BV . (14b)

Recall that the variables qB and qC encode the
relative positions of B and C with respect to A
in the reduced phase space. Thus, if we take for
example (14a), the factor 2 in ∂BV stems from
the fact that the effect of, for instance, an attrac-
tive force between A and B has to be counted
twice, as it both pulls B towards A and A to-
wards B. As for the presence of a ∂CV , it is due
to the fact that, even in the absence of an interac-
tion between A and B, an interaction between A
and C will affect the position of A, and thus the
position of B relative to it. These considerations
generalize to arbitrary N .
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As an aside, it is interesting to also look at what
Hamiltonian (13) becomes had we permitted the
particles to have differing masses mi in (57):

Hred
A =

1

2

∑

i6=A

(
1

mi
+

1

mA

)

p2
i

+
∑

i6=j
i,j 6=A

pipj

mA
+ V ({qi}i6=A) (15)

In the limit mA → ∞, (15) becomes the usual
Hamiltonian, in agreement with the fact that a
reference system with infinite mass can be used
as an inertial frame. This limit also recovers the
standard situation in quantum mechanics, where
the description is given with respect to a classical
reference frame.

In summary, we interpret the reduced phase in
a particular gauge as the physics described rel-
ative to a reference frame, which corresponds to
that gauge.

3.3 Switching internal perspectives

It is clear that going from one reference frame to
another amounts to a finite gauge transformation
on the constraint surface (and a corresponding
swap of which Dirac observables to treat as re-
dundant, achieved simply through an exchange
of A,C labels). That is, in order to switch per-
spective, we have to go back to the perspective-
neutral structure of the original phase space, into
which the reduced phase space embeds. We shall
only be schematic here as the situation is geo-
metrically evident (see fig. 1); the details of the
following discussion can be found in Appendix B.

The quick reader may skip the following para-
graphs and proceed directly to sec. 4.

Denote the reduced phase space in A perspec-
tive by PBC|A. As discussed above its canonical
coordinates are (qi, pi)i6=A. Next, denote the con-
straint surface in the original phase space R

2N ,

defined through P , by C. PBC|A canonically em-
beds into C as the intersection C ∩ GBC|A where
GBC|A is the gauge fixing surface defined by the
gauge χ = 0. This defines an embedding map

ιBC|A : PBC|A →֒ C . (16)

whose image is C ∩ GBC|A. It is important here
that PBC|A is equipped with the interpretation as
the physics seen by A to avoid ambiguities in the
embedding map. Indeed, abstractly, the reduced
phase space is the space of gauge orbits (i.e., ev-
ery gauge orbit corresponds to one physical state)
and thus simply the quotient Pred = C/ ∼, where
∼ is the equivalence relation that identifies points
in the same orbit. This abstract Pred can be inter-
preted as the perspective-neutral phase space: it
is gauge invariant and coordinatized by Dirac ob-
servables (which really are functions on the set of
orbits). It is also isomorphic to every (globally)
gauge fixed reduced phase space. Without fur-
ther information, the embedding of the abstract
reduced phase space Pred into C would be highly
ambiguous. However, here it is the physical in-
terpretation of the gauge fixed PBC|A that singles
out its embedding. Note that C ∩ GBC|A indeed
defines a 2(N − 1)-dimensional hypersurface in
the original phase space R

2N .
Similarly, one can define a ‘projection’

πBC|A : C ∩ GBC|A → PBC|A , (17)

so that πBC|A ◦ ιBC|A = IdPBC|A
. This projection

essentially drops all redundant embedding infor-
mation. The same construction can, of course,
also be carried out for the reduced phase space
PAB|C in C perspective, by simply exchanging A
and C labels. In particular, GAB|C is now defined
by qC = 0.

In order to switch from A to C perspective, we
now need the gauge transformation αA→C , gen-
erated by the constraint P , that takes us from
one embedding C ∩ GBC|A to the other C ∩ GAB|C .
In Appendix B, we show that this defines a map
SA→C : PBC|A → PAB|C that produces the ex-
pected result

(qB, pB, qC , pC) 7→
(
q′

A = −qC , p
′
A = −pB − pC , q

′
B = qB − qC , p

′
B = pB

)
(18)

and satisfies the following commutative diagram, where ζC denotes the invertible map that associates
to each orbit in C its intersection point with GAB|C (and similarly for ζA):

Accepted in Quantum 2019-12-26, click title to verify. Published under CC-BY 4.0. 10



GBC|A

qA = 0

GAB|C

qC = 0

C

P = 0

gauge orbits

perspective-neutral
constraint surfaceA-perspective

(gauge fixing surface)

C-perspective
(gauge fixing surface)

Figure 1: Phase space geometry of classical frame perspective switches.

Pred = C/ ∼

C ∩ GBC|A C ∩ GAB|C

PBC|A PAB|C

ζCζ−1
A

αA→C

πAB|CιBC|A

SA→C

Taking Sphys := C/ ∼, ϕA := πBC|A ◦ ζA and
ϕC := πAB|C ◦ ζC , this perspective change is in-
deed of the form (1), SA→C := ϕC ◦ ϕ−1

A , pro-
ceeding via the perspective-neutral phase space.
Equivalently, we could also take Sphys := C,
ϕ̃A := πBC|A and ϕ̃C := πAB|C to write SA→C :=

ϕ̃C ◦αA→C ◦ ϕ̃−1
A , exploiting the shortcut via the

intermediate gauge transformation αA→C . (Such
a shortcut will be absent in the quantum theory.)
This yields a similar compositional structure as
in (1) via the perspective-neutral constraint sur-
face.

3.4 Remark on the preferred role of the posi-

tion basis

Note that in our present construction of frame
transformations the position basis plays a special
role, in contrast to [1]. This is a consequence
of our symmetry principle which is formulated
at the level of the Lagrangian (in Appendix A)

in position and velocity space. Upon transition
to phase space, it is clear that such symmetries
are generated by (primary) constraints that nec-
essarily involve momenta. As such, the gauge fix-
ing must include position information and relative
positions are here indispensable relational observ-
ables, as opposed to, for example, relative mo-
menta. This is also reflected in the interpretation
of the frames and their relations. By contrast, if,
as in [1], one also wanted to switch the roles of
the configuration and momentum basis, one ide-
ally would like to have a constraint Q =

∑

i qi

as a symmetry generator in the one-dimensional
N -body problem. However, this is a so-called
holonomic constraint (involving only configura-
tion data) and such constraints can only arise
through equations of motion as secondary ones,
and are usually second class (thus not symmetry
generators). Hence, one would have to proceed
differently than in our construction here.
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4 Quantum reference frames in 1D

space

Our task is now to translate the perspective-
neutral super structure and the inside perspec-
tives into the quantum theory. This will permit
us to switch between different quantum reference
frame perspectives and suggests a new interpreta-
tion of two quantization methods for constrained
systems.

The two most commonly used strategies for
canonically quantizing constrained systems are:

Reduced quantization: Solve the constraints
(and possibly gauge fix) first at the classi-
cal level, then quantize the reduced theory.

Dirac quantization: Quantize the system first
(incl. unphysical degrees of freedom), then
solve the constraints in the quantum theory.

There is a general debate in the literature about
the relation between these two methods and, in
particular, about when one or the other is the
correct method to be employed.

In the context of the Guillemin-Sternberg con-
jecture, the two methods have been shown to be
equivalent for the case of compact phase spaces
and compact symmetry groups acting on them
[47, 48] (see also [49] for an attempt at a gen-
eralization). It follows from [50, 52, 55] that for
the more interesting case of non-compact phase
spaces, such as the cotangent bundle R

2N used
in the present model, an equivalence of the two
methods can also be sometimes established. This
happens provided certain factor ordering choices
are made, the gauge transformations take the
form of point transformations, as in (4), and
there are no global obstructions to either sepa-
rating gauge from gauge-invariant degrees of free-
dom or fixing a gauge. We note that constraints
which are linear in the momenta, as in our model,
always generate point transformations. How-
ever, the two methods are known to yield uni-
tarily inequivalent results in more general set-
tings [20,21, 51–59].

Usually the Dirac method is invoked because
classically solving constraints and fixing a gauge
can become arbitrarily complicated. For in-
stance, in general relativity constructing the re-
duced phase space is tantamount to also solving
the dynamics of the theory, which for the full
theory seems a hopeless endeavor. Furthermore,

globally valid gauge choices are generically ab-
sent, e.g., not only in Yang-Mills theories or gen-
eral relativity (the Gribov problem), but also in
much simpler systems [20–24,68]. There even ex-
ist extreme cases where a reduced quantization
is outright impossible (without changing other
structure in the model), while the Dirac method
can be applied [20,21].

Nevertheless, in our simple model both meth-
ods are necessary for a complete relational in-
terpretation. In particular, we will establish
a new systematic quantum symmetry reduction
procedure of the Dirac quantized theory which
is the quantum analog of the classical phase
space reduction through gauge-fixing discussed in
Sec. 3.2. In particular, this quantum symmetry
reduction procedure removes the redundancy in
the description and is always relative to a choice
of quantum reference frame: it picks out the ref-
erence frame degrees of freedom as the redundant
ones because we do not want to describe the ref-
erence frame relative to itself.

In our simple model, this procedure can, in
fact, be interpreted as the ‘quantization’ of the
phase space symmetry reduction in the sense that
symmetry reduction and quantization ‘commute’.
That is, first quantizing according to the Dirac
method, then performing the new quantum sym-
metry reduction procedure yields a quantum the-
ory, which coincides with the quantization of the
classical symmetry reduced phase space. In our
model, this quantum symmetry reduction pro-
cedure will thus map the Dirac quantized the-
ory bijectively into the reduced quantized theory.
This permits us to interpret the reduced quan-
tum theory (in a specific gauge) as the descrip-
tion of the quantum physics relative to a (quan-
tum) reference frame, while the Dirac quantum
theory will assume the role of the perspective-
neutral quantum theory via which internal per-
spectives will be changed. The new quantum
symmetry reduction maps will thereby be the key
to the quantum reference frame switches. Given
that the Dirac quantized theory constitutes the
perspective-neutral super structure, it does not
by itself admit an immediate operational inter-
pretation (recall the discussion in sec. 2).

Of course, our model is essentially as simple a
constrained system as it gets: it features a single
linear constraint, global gauge fixing conditions
and accordingly, we have globally valid inside per-
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spectives in both the classical and quantum the-
ory. In generic models, not only do global chal-
lenges (such as the Gribov problem) arise, which
may inhibit the existence of globally valid inside
perspectives [2], nor will it always be true that
symmetry reduction and quantization commute.
The quantum theory obtained by applying the
new quantum symmetry reduction procedure to
the Dirac quantized theory will not always coin-
cide with the quantization of a classical reduced
phase space, due to the well-known inequivalence
of Dirac and reduced quantization in more gen-
eral situations [20, 21, 51–59]. However, this will
not be a problem for our interpretation and we
shall comment on this further in the conclusions,
Sec. 6.

Since we will be dealing with a number of dis-
tinct Hilbert spaces through the two methods, we
have organized the various steps of the construc-
tion and their relation in fig. 2 for visualization.

4.1 Reduced quantization – quantum theory

from an internal perspective

We begin with the reduced quantization of the
model from the previous section, as we aim to
recover it subsequently from the Dirac quantiza-
tion. That is, we return to the gauge correspond-
ing to, say, A’s internal perspective and simply
quantize the reduced phase space of sec. 3.2. This
is standard and amounts to promoting the qi, pi,
i 6= A, to operators and the Dirac brackets (12)
to commutators9

[q̂i, p̂j ] = i δij , [q̂i, q̂j ] = [p̂i, p̂j ] = 0 , i, j 6= A,
(19)

on an L2(RN−1) Hilbert space.
In order to simplify the equations, we restrict

to N = 3 in the sequel. For instance, the quan-
tized Hamiltonian (13) for 3 particles reads:

ĤBC|A := Ĥred
A = p̂2

B + p̂2
C + p̂B p̂C + V (q̂B, q̂C) ,

(20)

8The entire diagram may also be considered commuta-
tive in the sense that one obtains the same quantum the-
ory in the bottom right corner, although clearly individual
elements of T ∗Q cannot be associated with individual el-
ements of HBC|A. By contrast, in the red diagram every
element of Hkin will be mapped to a unique element of
Hphys

A,BC .

9Henceforth, we shall work in units where h̄ = 1.

and arbitrary reduced states can be represented
as follows:

|ψ〉BC|A =

∫

dpB dpC ψBC|A(pB, pC) |pB, pC〉 .

(21)

The corresponding reduced Hilbert space will be
denoted by HBC|A, see fig. 2. It is clear that
generalizing to arbitrary N (or differing masses)
poses no efforts.

In line with the classical case, we interpret this
reduced quantum theory as the description of the
quantum dynamics of the remaining particles as
seen from the quantum reference frame of parti-
cle A. Yet, as we moved to the reference frame
of A (that is, fixed the gauge accordingly) before
quantizing, we have washed out the perspective-
neutral information and the reduced quantum de-
scription alone lacks structure to tell us how to
switch from this frame to the perspective of an-
other one (for instance, B), while staying in the
quantum theory. To switch perspectives within
quantum theory, we need to relate the reduced
descriptions to the Dirac method, which quan-
tizes the classical perspective-neutral structure.

4.2 Dirac quantization – the perspective-

neutral quantum theory

We now quantize first, then solve the constraints.
This requires two distinct Hilbert spaces, see fig.
2.

First we promote all canonical pairs (qi, pi)
N
i=1

(i.e., incl. physically redundant and gauge degrees
of freedom), coordinatizing the original phase
space T ∗Q ≃ R

2N of sec. 3.1, to operators and the
Poisson brackets to commutators on a kinemati-
cal (or auxiliary) Hilbert space Hkin = L2(RN ).
Next, we employ this Hilbert space to quantize
the total momentum constraint (2) and solve the
latter in the quantum theory by requiring that
physical states |ψ〉phys of our system are annihi-
lated by it. Returning in the sequel to the N = 3
case for simplicity, we thus impose

P̂ |ψ〉phys = (p̂A + p̂B + p̂C) |ψ〉phys !
= 0 . (22)

Physical states are zero-eigenstates of the con-
straint.

One subtlety arises: P̂ has a continuous spec-
trum around zero and so physical states are not
normalized with respect to the standard inner
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original phase space T ∗Q ≃ R
6 PBC|A

Hkin Hkin
A,BC

Hphys Hphys
A,BC HBC|A

P =qA=0

Dirac quantization

reduced quantization

δ(P̂ )

T̂A,BC

δ(p̂A)

T̂A,BC

√
2π A〈qA=0|

Figure 2: Diagram of the two quantization methods and their relation for three particles. The horizontal arrows
between Hilbert spaces are all isometries. The red diagram is commutative.a The quantum symmetry reduction
procedure from the perspective-neutral physical Hilbert space Hphys of the Dirac quantization to the reduced Hilbert
space, say, in A-perspective HBC|A involves two steps: 1. a constraint trivialization TA,BC which transforms the
constraint in such a way that it only acts on the reference frame variables; 2. the reference frame variables, having
become redundant, are discarded by projecting onto the classical gauge fixing conditions.

product on Hkin; they are thus not actually con-
tained in the kinematical Hilbert space. Instead,
we have to construct a new inner product for
physical states, to turn the space of solutions to
(22) into a proper physical Hilbert space Hphys.
(But see also [69] for an alternative method using
a modification of the Hilbert space topology.)

To this end, we employ group averaging (or re-
fined algebraic quantization) [19,70,71] and define

an (improper) projector onto solutions of (22):

δ(P̂ ) : Hkin → Hphys

|φ〉kin 7→ |φ〉phys :=
( 1

2π

∫ +∞

−∞
ds eisP̂

)

|φ〉kin .

(23)

Projecting an arbitrary state of Hkin in momen-
tum representation,

|φ〉kin =

∫

dpA dpB dpC φ
kin(pA, pB, pC) |pA〉 |pB〉 |pC〉 ,

a general solution becomes, depending on which particle’s momentum is solved for,

|φ〉phys =

∫

dpB dpC φBC|A(pB, pC) |−pB − pC〉A |pB〉B |pC〉C

=

∫

dpA dpC φAC|B(pA, pC) |pA〉A |−pA − pC〉B |pC〉C (24)

=

∫

dpA dpB φAB|C(pA, pB) |pA〉A |pB〉B |−pA − pB〉C .

where for later use we have defined

φBC|A(pB, pC) := φkin(−pB − pC , pB, pC) ,

φAC|B(pA, pC) := φkin(pA,−pA − pC , pC) , (25)

φAB|C(pA, pB) := φkin(pA, pB,−pA − pB) .

All three lines in (24) give different descriptions
of the same physical state |φ〉phys and we shall
exploit this below. Note that δ(P̂ ) is an improper
projector since δ(P̂ )2 is clearly singular.

It turns out (see Appendix C) that the sought-
after inner product between physical states is

(ψphys, φphys)phys := kin 〈ψ| δ(P̂ ) |φ〉kin , (26)

where 〈·|·〉 is the original inner product of Hkin.
Through Cauchy completion (and other technical
subtleties which we shall here ignore), the space
of solutions to (22) can thereby be turned into a
proper Hilbert space Hphys.

Clearly, in analogy to the classical case, ob-
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servables Ô on Hphys must satisfy [Ô, P̂ ] = 0, for
otherwise they would map out of the space of so-
lutions. Any such Ô is thus gauge invariant and a
quantum Dirac observable. For instance, in this
simple model, the quantization of the elementary
classical Dirac observables, relative distances and
momenta, are obviously quantum Dirac observ-
ables,

q̂B − q̂A , q̂C − q̂A , q̂B − q̂C , p̂A , p̂B , p̂C ,

(27)

as is the total Hamiltonian, which on Hphys reads

Ĥtot =
1

2
(p̂2

A + p̂2
B + p̂2

C) (28)

+ V (q̂B − q̂A, q̂C − q̂A, q̂B − q̂C) .

Just as in the classical case, the observables
(27) are redundant and only define four indepen-
dent Dirac observables on Hphys. Related to this,
(24) shows that we also have a redundancy in the
description of a fixed physical state. Dirac quan-
tization by itself does not tell us which of the
Dirac observables to treat as the redundant ones.
We thus interpret the gauge invariant physics in
Hphys as the perspective-neutral quantum theory.
Here, we have not chosen a quantum reference
frame from which to describe the non-redundant
physics and precisely the redundancy (originating
in gauge symmetry) permits us to choose from
among a multitude of perspectives.

4.3 From Dirac to reduced quantum theory:

recovering relative states

Classically, solving constraints means restricting
to the constraint surface in phase space and this
by itself does not lead to gauge invariance because
first class constraints still generate gauge flows on
the constraint surface. We have exploited this in
our classical construction: choosing an internal
perspective corresponded to imposing an addi-
tional gauge fixing condition to break the flow
of the constraint (see sec. 3.2).

In Dirac quantization, the situation is differ-
ent: solving the constraint in the quantum the-
ory already implies gauge invariance. Indeed,
Hphys (‘the quantum constraint surface’) is invari-
ant under the flow of the constraint since, owing
to (22), exp(i s P̂ ) |φ〉phys = |φ〉phys. Intuitively,
this difference to the classical case can be under-
stood through the Heisenberg uncertainty rela-
tions: gauge dependent quantities do not com-

mute with the constraint. For example, the cen-
ter of mass position q̂cm = 1/3 (q̂A + q̂B + q̂C) is
conjugate to the constraint, [q̂cm, P̂ ] = i. Hence,
physical states as zero-eigenstates of P̂ must be
maximally spread out over qcm. But this is gauge
invariance: to smear/average over the gauge or-
bit. Indeed, this is precisely what the improper
projector (23) does.

We thus have to proceed differently in the
quantum theory, in order to map from the
perspective-neutral structure to the perspective
of a specific reference frame, i.e. to map from the
Dirac to a reduced quantum theory. In particu-
lar, we can not fix a gauge.10 Instead, quantum
symmetry reduction proceeds as follows:

1. Pick a reference system.

2. Transform the quantum constraint(s) in such
a way that the result only acts on the refer-
ence system variables, which thereby become
fixed. This step is called constraint trivial-
ization.

3. Discard the now redundant reference system
degrees of freedom through a projection onto
the classical gauge fixing conditions.

This quantum symmetry reduction procedure
is the quantum analog of phase space reduction
through gauge fixing. In particular, the entire
procedure will define a map from the gauge-
invariant states and observables on the phys-
ical Hilbert space Hphys to the corresponding
states and observables on the appropriate reduced
Hilbert space. This map can be interpreted as
the ‘quantum coordinate map’ taking us from the
perspective-neutral description to the perspective
of a reference frame. It maps from the gauge-
invariant description on Hphys to what can be

10While gauge-fixing is thus not feasible in the opera-
torial Dirac quantization after imposing the constraints,
in the path integral formulation the gauge-fixing happens
inside the path integral, for example using the Faddeev-
Popov trick for canonical gauges [72], or the Batalin-
Fradkin-Vilkovisky framework for arbitrary relativistic
gauge systems [73–75]. In light of our work, some of the
different gauge choices inside the path integral may thus
encode different quantum reference frame perspectives. In
particular, expressing the gauge-invariant path integral in
a suitably gauge-fixed fashion would then correspond to
describing the dynamics relative to a choice of quantum
reference frame.
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understood as the quantum analog of a ‘gauge-
fixed’ description of this gauge-invariant formu-
lation. In particular, this map will preserve inner
products, algebraic properties of observables and
their expectation values, despite transforming ob-
servables and states. Accordingly, when reducing
later relative to different reference frame choices,
we will still always describe the same physical
situation, however, from different frame perspec-

tives.
We illustrate the procedure by moving to the

perspective of particle A and recovering the cor-
responding reduced quantum theory of sec. 4.1
(see fig. 2 for illustration of the following steps).
Hence, the degrees of freedom corresponding to
A are the redundant ones and we need to remove
them. To this end, use (25) and write an arbi-
trary physical state (24) as

|ψ〉phys =

∫

dpB dpC ψBC|A(pB, pC) |−pB − pC〉A |pB〉B |pC〉C . (29)

Next, on Hkin we define the unitary transforma-
tion:

T̂A,BC = exp
(

i q̂A(p̂B + p̂C)
)

. (30)

Understanding physical states as distributions on
Hkin, we can apply this transformation also to
physical states. However, given that T̂A,BC does
not commute with P̂ , this transformation will

actually map out of Hphys. Yet, it will define
an isometry to a transformed set of distribu-
tions on Hkin without losing physically relevant
information. That is, the end product can be
considered just a new representation Hphys

A,BC :=

T̂A,BC(Hphys) of the physical Hilbert space. In-
deed, we obtain

|ψ〉A,BC := T̂A,BC |ψ〉phys = |p = 0〉A ⊗
( ∫

dpB dpC ψBC|A(pB, pC) |pB〉B |pC〉C

)

, (31)

so that we can write:

|ψ〉A,BC = |p = 0〉A ⊗ |ψ〉BC|A . (32)

It is important to note that this step does not
correspond to ‘gauge fixing’ to pA = 0 (there is no
gauge symmetry left and pA is in any case a Dirac
observable). Instead, this is really a rewriting –
a trivialization11 – of the constraint to system A,
since

P̂A,BC := T̂A,BC P̂ (T̂A,BC)† = p̂A , (33)

11Classically, it is also often useful to implement canon-
ical transformations that trivialize constraints in the sense
that they become new momentum variables. If the con-
straints are first class then the gauge degrees of freedom
can be made directly conjugate to them, while the other
new canonical pairs would be directly Dirac observables.
For examples of this method, see, e.g., [16, 17, 44, 76–80].
In the present model, this would amount to the linear
canonical transformation

(qi, pi)i=A,B,C 7→ (qA, P ) , (qB − qA, pB) , (qC − qA, pC) .

Upon gauge fixing qA = 0, implementing the Dirac bracket
and dropping the redundant A-variables, this is equivalent
to what we constructed in sec. 3.2. Here, we are imple-
menting the quantum analog of that procedure – except
that it does (and can) not employ gauge fixing.

where † is defined with respect to Hkin, so that

P̂A,BC |ψ〉A,BC = p̂A |ψ〉A,BC = 0 (34)

and |ψ〉A,BC is actually a physical state, but in a
different representation. It is clear that, in con-
trast to the classical case, there is no sense in
which we can talk about additionally gauge fix-
ing A’s position.

Crucially, observe that the information in the
A-slot of |ψ〉A,BC contains no relevant informa-
tion about the original state (29). We may thus
consider A as redundant and, consequently, inter-
pret the remainder of the state |ψ〉BC|A prelimi-
narily as the quantum state of B and C relative to
A, corresponding to the perspective-neutral state
|ψ〉phys. This is subject to further justification,
but notice already that |ψ〉BC|A is now precisely
of the form of the reduced states (21).

Given the redundancy of |p = 0〉A, it is nat-
ural to discard it altogether and consider only
|ψ〉BC|A, which contains all the physical (that

is, relational) information about |ψ〉phys. We
can achieve this – in some analogy to the Page-
Wootters construction [81] – by projecting the
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factor of the reference system onto the classical
gauge fixing condition (6):

|ψ〉BC|A =
√

2π A 〈q = 0|ψ〉A,BC

=

∫

dp′
A 〈p′|ψ〉A,BC (35)

=

∫

dpB dpC ψBC|A(pB, pC) |pB〉B |pC〉C .

As shown in Appendix C, T̂A,BC , followed by the
projection (35), defines an isometry from Hphys to
the reduced Hilbert space HBC|A of sec. 4.1. That
is, the procedure preserves the inner product.

Before claiming that (30) defines a cor-
rect transformation from the perspective-neutral
quantum theory to the one described from A’s
perspective, we have to check that the relevant
Dirac observables from (27) transform correctly
to those of the reduced theory. Indeed, we find

T̂A,BC (q̂B − q̂A) (T̂A,BC)† = q̂B ,

T̂A,BC p̂B (T̂A,BC)† = p̂B ,

T̂A,BC (q̂C − q̂A) (T̂A,BC)† = q̂C ,

T̂A,BC p̂C (T̂A,BC)† = p̂C .

(36)

Hence, the operator q̂B − q̂A on |ψ〉phys corre-
sponds to the operator q̂B on |ψ〉A,BC , and there-
fore also on |ψ〉BC|A. In other words, the position
information stored in the B-slot of |ψ〉BC|A is in-
deed the relative position of B with respect to A,
and the same goes for C.

Let us also check that the total Hamiltonian
(28) transforms as desired. The Hamiltonian
ĤA,BC for |ψ〉A,BC becomes (assuming V can be
Taylor expanded)

ĤA,BC = T̂A,BC Ĥtot (T̂A,BC)†

=
1

2
p̂2

A + p̂2
B + p̂2

C

+ p̂B p̂C − p̂Ap̂B − p̂Ap̂C + V (q̂B, q̂C) .

Yet, p̂A annihilates |ψ〉A,BC ; it is thus equivalent
to eliminate the terms containing it from ĤA,BC ,
which has then no component acting on the A-
factor of |ψ〉A,BC , and which can therefore also
be considered as a Hamiltonian for the relative
state |ψ〉BC|A:

ĤBC|A = p̂2
B + p̂2

C + p̂B p̂C + V (q̂B, q̂C) . (37)

This is precisely the Hamiltonian (20) of the re-
duced quantum theory in A-perspective. Hence,

the Schrödinger equation on Hphys implies the
Schrödinger equation on HBC|A:

i ∂t |ψ〉phys = Ĥtot |ψ〉phys

⇒ i ∂t |ψ〉BC|A = ĤBC|A |ψ〉BC|A . (38)

In conjunction, it follows (see Appendix C for
more detail) that expectation values of relevant
Dirac observables on Hphys are identical to those
of the transformed observables on the reduced
Hilbert space HBC|A and we do not lose any phys-
ically relevant information through our transfor-
mation T̂A,BC , despite mapping out of Hphys. In-
deed, our procedure illustrated in fig. 2 exploits
that T̂A,BC(Hphys) is just a new, but equivalent
representation of the physical Hilbert space. We
thus conclude that the constraint trivialization
map (30), followed by the projection (35), indeed
constitutes the desired transformation12 from the
perspective-neutral to the quantum theory ‘seen
from A’s perspective’. Regardless of our model’s
simplicity, this sheds new light on both the con-
ceptual and technical relation between the Dirac
and reduced quantization methods. Indeed, in
the companion articles [2–4], we shall corroborate
this with more complicated models.

4.4 Switching internal perspectives in the

quantum theory

In the previous section, we could equally well
have chosen C as the reference system, starting
with the respective expressions in the last lines
of each of (24, 25, 70) and repeating the same
steps by switching A and C labels. It is thus
clear how to change from the internal perspec-
tive of quantum reference frame A to that of C
via the perspective-neutral Dirac quantum the-
ory: invert the transformations to A-perspective
and apply the transformations to C-perspective.
This is the quantum analog of the classical pro-
cedure in sec. 3.3. Concretely, this defines a map

ŜA→C : HBC|A → HAB|C , (39)

12In fact, as discussed in Appendix D, this constraint
trivialization map is mathematically not unique. However,
this non-uniqueness only affects the irrelevant information
in the redundant A slot and thus has no physical conse-
quences.
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of the form

ŜA→C :=

∫

dp′
C 〈p′| T̂C,AB

× (T̂A,BC)† |p = 0〉A ⊗ [·]

=

∫

dp′
C 〈p′| exp

(

i q̂C(p̂A + p̂B)
)

× exp
(

− i q̂A(p̂B + p̂C)
)

|p = 0〉A ⊗ [·],
(40)

where the reduced state |ψ〉BC|A of interested has
to be inserted into the empty slot [·] of the tensor
factor associated to particles B and C.

A few comments are in place which bring us
back to the classical discussion of Sec. 3.3. There
we emphasized that it is the physical interpreta-
tion of the reduced description as the perspective
of reference frame A that singles out the other-
wise highly ambiguous embedding of the gauge-
fixed reduced phase space into the perspective-
neutral constraint surface. This interpretation is,
of course, added information compared to the re-
duced description alone, but it is crucial. Note
that this is also qualitatively analogous to what
happens in coordinate changes on a manifold.
Suppose one picks the coordinate map associated
to some observer in general relativity to map a
spacetime neighbourhood into some coordinate
description thereof. If one only kept the coor-
dinate description of the neighbourhood but dis-
carded all information about the coordinate map
itself (and thus the interpretation of this coordi-
nate description), it would be impossible to map
back into the spacetime manifold and thus to con-
sistently change from one frame perspective to
another. One has to keep track of which coordi-
nates are associated to which spacetime point in
order to compare descriptions of it.

From the previous section it follows that the
‘quantum coordinate map’ from the perspective-
neutral physical Hilbert space Hphys to the per-
spective of A is ϕA :=

√
2πA 〈q = 0| T̂A,BC . Just

like in the case of classical coordinate changes,
we cannot discard the information about ϕA (and
thereby the interpretation of the reduced theory)
and must invert it to return to Hphys. Append-
ing, e.g., the A tensor factor |p = 0〉A (rather than
another state of A) to the reduced state in (40)
in order to map back into the perspective-neutral
Hphys has to be understood in this sense.13

13Appendix D entails that the ‘quantum coordinate

In Appendix E, we show that (i) in-
deed ŜA→C |ψ〉BC|A = |ψ〉AB|C , where
|ψ〉BC|A , |ψ〉AB|C correspond via (24, 25) to

the same state |ψ〉phys, and that (ii) this
transformation is equivalent to

ŜA→C = P̂CAe
i q̂C p̂B , (41)

where P̂CA is the parity-swap operator defined
in [1], which, acting on momentum eigenstates of
A yields:

P̂CA |p〉C = |−p〉A . (42)

Crucially, (41) is precisely the transformation be-
tween quantum reference frame perspectives con-
structed in a different approach in [1] for parti-
cle systems in one-dimensional Newtonian space.
In Ref. [1], this transformation arises as a spe-
cific instance of a more general class of quan-
tum reference frames transformations, including
also a generalization of extended Galilean trans-
formations. The present construction permits us
to derive the specific transformation (41) from
first (symmetry) principles and via an associated
perspective-neutral quantum structure into which
all perspectives can be embedded. It also is clear
that the reduced observables transform correctly
from HBC|A to HAB|C

SA→C q̂B S†
A→C = q̂′

B − q̂′
A,

SA→C q̂C S†
A→C = −q̂′

A,

SA→C p̂B S†
A→C = p̂′

B,

SA→C p̂C S†
A→C = −p̂′

B − p̂′
A,

(43)

where the primed operators represent the position
and momentum operators in the reference frame
of C. Note that the way the operators transform
coincides with the results found in Ref. [1] and
matches the classical case of Eq. (18).

For clarity, we summarize this internal per-
spective change in the following commutative di-
agram:

map’ ϕA is mathematically non-unique up to the number
to which we fix A’s momentum. The same thus holds true
for the inverse map ϕ−1

A . However, this non-uniqueness
is physically irrelevant as discussed in appendix D and as
long as one sticks to a convention one will always relate
the same reduced state |ψ〉BC|A with the same original

physical state |ψ〉phys.
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Hphys

Hphys
A,BC Hphys

C,AB

HBC|A HAB|C

T̂C,AB
T̂ †

A,BC

√
2π C〈q=0||p=0〉A⊗(·)

ŜA→C

Notice that setting Sphys := Hphys as
the perspective-neutral structure, ϕA :=√

2π A 〈q = 0| T̂A,BC as A’s perspective map and
ϕC :=

√
2π C 〈q = 0| T̂C,AB as C’s perspective

map, we find that ŜA→C = ϕB ◦ ϕ−1
A is indeed of

the general form (1).

5 Some operational consequences of

switching perspectives in the classical

and quantum theory

The operational consequences of the transforma-
tion between two quantum reference frames have
been thoroughly analyzed in Ref. [1]. There, it
was shown that entanglement and superposition
depend on the quantum reference frame, and this
is operational in that it can in principle be tested
experimentally. In other words, a state which ap-
pears as “classical” (for instance, in a coherent
state) from the point of view of a certain quan-
tum reference frame, might appear entangled, or
in a superposition state from the point of view of
a different quantum reference frame. Addition-
ally, the notion of quantum reference frame can
turn out to be extremely useful in concrete ap-
plications. For instance, the approach in Ref. [1]
allows one to identify the transformation to jump
into the rest frame of a quantum system, intended
as a system moving in a superposition of veloci-
ties. This operation would be impossible with a
standard reference frame transformation.

In the following, we analyse a simple model of
two harmonic oscillators (as illustrated in fig. 3),
both in the classical and in the quantum case.
Our goal is to show how the behaviour of the
different systems is described in two different ref-
erence frames. In particular, in the quantum case
we will recover the dependence of entanglement

B

C

A
k

A

k
B

Figure 3: In the perspective-neutral description, the
three systems A, B, and C behave like two harmonic
oscillators, with springs being attached to system C and
A (with spring constanst kA), and to systems C and B
(with spring constant kB). From this perspective, the
Hamiltonian (both in the classical and quantum case) is

H =
p2

A

2mA
+

p2

B

2mB
+

p2

C

2mC
+ 1

2
kA(qC − qA)2 + 1

2
kB(qC −

qB)2.

on the quantum reference frame, compatibly with
what has been found in [1]. Here, we additionally
provide a study of the entanglement in different
frames in a dynamical setting, i.e., by studying
the solutions of the equations of motion. Let us
consider a system of two harmonic oscillators, as
seen from the perspective of C. In the reduced
theory, the Hamiltonian is

HAB|C =
ξ2

A

2mA
+

ξ2
B

2mB
+

(ξA + ξB)2

2mC

+
1

2
kAx

2
A +

1

2
kBx

2
B,

(44)

where mA,mB,mC are respectively the mass of
system A, B, and C, and kA, kB are the spring
constants of systems A and B respectively. Note
that in this section we have renamed the relative
coordinates in C’s reference frame as xA and xB

and the momenta in C’s reference frame as ξA and
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ξB. Under the assumption that mC ≫ mA,mB,
the systems B and C behave as two decoupled
oscillators, moving along the trajectories

xA(t) = A0 cos (ωAt+ φA) ,

xB(t) = B0 cos (ωBt+ φB) ,
(45)

where A0, B0, φA, φB are fixed by the initial con-
ditions and ω2

i ≈ ki

mi
, i = A,B.

If we now change to the reference frame of A
by changing to the coordinates qC = −xA and
qB = xB − xA using Eq. (18), the Hamiltonian
becomes

HBC|A =
π2

B

2mB
+

π2
C

2mC
+

(πB + πC)2

2mA

+
1

2
kAq

2
C +

1

2
kB(qB − qC)2,

(46)

where qB and qC are the new coordinates and πB,
πC the new momenta in A’s reference frame. The
solutions of the equations of motion, matched
with the transformed initial conditions, read

qB(t) = B0 cos (ωBt+ φB) −A0 cos (ωAt+ φA) ,

qC(t) = −A0 cos (ωAt+ φA) .

(47)

Note that these solutions coincide with qB(t) =
xB(t) −xA(t) and qC(t) = −xA(t). The solutions
of the equations of motion in the initial and final
reference frames are illustrated, for different val-
ues of the parameters, in fig. 4 and in fig. 5. In
particular, we notice that, while in the reference
frame C the two solutions are independent, in the
new reference frame correlations arise.

In the particular case when ωA = ωB and when
the oscillators are in phase, one finds the solution
qB(t) = 0. Physically, this means that if the two
oscillators are perfectly in phase and oscillate at
the same amplitude and frequency, from the point
of view of A the system B doesn’t move.

After quantization, as we have shown in sec. 4,
the Hamiltonian acting on the reduced phase
space is quantized as

ĤAB|C =
ξ̂2

A

2mA
+

ξ̂2
B

2mB
+

(ξ̂A + ξ̂B)2

2mC

+
1

2
kAx̂

2
A +

1

2
kBx̂

2
B,

(48)

where the parameters and the operators have the
same meaning as in the classical case. For sim-
plicity, we assume that the system is initially pre-
pared in an eigenstate of this Hamiltonian (so

2 4 6 8 10
t

-2

-1

1

2

q(t)

xA(t)

xB(t)

2 4 6 8 10
t

-2

-1

1

2

q(t)

qC (t)

qB(t)

Figure 4: Up: xA(t) and xB(t) when A0 = B0 = 1,
ωA = 1, ωB = 10, φA = 0 and φB = π/2. Down: the
solutions of the equations of motion qB(t) and qC(t) in
A’s reference frame.

2 4 6 8 10
t

-1.0

-0.5

0.5

1.0

q(t)

xA(t)

xB(t)

2 4 6 8 10
t

-1.0

-0.5

0.5

1.0

q(t)

qC (t)

qB(t)

Figure 5: Up: xA(t) and xB(t) when A0 = 0.3 B0 = 1,
ωA = 10, ωB = 1, φA = 0 and φB = π/2. Down: the
solutions of the equations of motion qB(t) and qC(t) in
A’s reference frame.
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that the time evolution of the state only amounts
to a global phase, which we can then discard.
Notice that this method is general, because any
other state of the Hibert space L2(R2) can be ob-
tained by linear combinations of the eigenstates
of the harmonic oscillator).

Under the assumptions that the derivatives of
the total eigenstates of A and B Ψn(xA, xB),
n ∈ N, are of the same order, and that mC ≫
mA,mB, we can consider a perturbative expan-
sion in

mA(B)

mC
. To the lowest order in pertur-

bation theory, we have two decoupled harmonic
oscillators with frequency ωA =

√

kA/mA and
ωB =

√

kB/mB. The eigenstate can then be split
into the two eigenstates of A and B, which are
easily expressed in terms of the Hermite polyno-
mials. For concreteness, we shall focus on the
first two eigenstates

ψ0
i (xi) =

(
αi

π

)1/4

e− αix2
i

2 ,

ψ1
i (xi) =

√
2

(

α3
i

π

)1/4

xie
− αix2

i
2 ,

(49)

where αi = miωi

h̄ and i = A,B. Since
the quantum reference frame transformation
is unitary, the transformed state is also an
eigenstate of the new Hamiltonian with the
same eigenvalue. Therefore, if in the ini-
tial reference frame we have |Ψ(t)〉AB|C =

e− i
h̄

(En
A

+Em
B

)t |ψn〉A|C |ψm〉B|C , where n = 0, 1, in
A’s reference frame this state is transformed to
|Ψ(t)〉BC|A = ŜC→A |Ψ(t)〉AB|C . Explicitly,

|Ψ(t)〉BC|A = e− i
h̄

(En
A

+Em
B

)t
∫

dqB dqC ψ
n(−qC)

× ψm(qB − qC) |qB〉B|A |qC〉C|A .

(50)

We can see that the state of B and C from the

point of view of A is an entangled state. Thus,
we have mapped, via a quantum reference frame
transformation, a product state into an entangled
state, showing the dependence of entanglement
on the quantum reference frame. The Hamilto-
nian from the viewpoint of A can easily be calcu-
lated as

ĤBC|A = ŜC→AĤAB|C Ŝ†
C→A

=
π̂2

B

2mB
+

π̂2
C

2mC
+

(π̂B + π̂C)2

2mA

+
1

2
kAq̂

2
C +

1

2
kB(q̂B − q̂C)2,

(51)

where q̂i and π̂i, i = B,C are the position and
momentum operator in the reduced phase space
from the point of view of A.

In order to analyse the dependence of quan-
tum features on the reference frame, it is conve-
nient, in this particular example, to look at the
Wigner function of the relative states in the two
reference frames. In the initial reference frame
C, the Wigner function of the state of A and
B is the product of the two Wigner functions
fW,i|C(xi, ξi), with i = A,B. In particular, the
Wigner function of the ground state ψ0(xi) of the
harmonic oscillator is

f0
W,i|C(xi, ξi) =

1

πh̄
e−αix

2
i e

− ξ2
i

h̄2αi , (52)

and the Wigner function of the first excited state
ψ1(xi) is

f1
W,i|C(xi, ξi) =

1

πh̄

(

2αix
2
i +

2ξ2
i

αih̄
2 − 1

)

× e−αix
2
i e

− ξ2
i

h̄2αi .

(53)

When we change to the reference frame A, we
get

fW,BC|A(qB, qC , πB, πC) = f j
W,A|C(−qC ,−πB − πC)fk

W,B|C(qB − qC , πB), (54)

where j, k = 0, 1 and A,B label the initial Wigner functions of systems A and B respectively. In order
to find the Wigner function of B or C, it is enough to take the marginals

fW,B|A(qB, πB) =

∫

dqC dπC fW,BC|A(qB, qC , πB, πC), (55)

fW,C|A(qC , πC) =

∫

dqB dπB fW,BC|A(qB, qC , πB, πC). (56)

Different combinations of these Wigner functions are plotted in the figures 6–10. In particular, in
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Figure 6: On the left, the Wigner function of the ground state of the Hamiltonian, f0
W,A|C(xA, ξA), with α = 1.

On the right, the Wigner function of the first excited eigenstate of the Hamiltonian, f1
W,A|C(xA, ξA), with α = 1.

The Wigner functions for system B are analogous to those of system A, and are calculated by taking the marginals
on either system A or B in the initial reference frame C.
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Figure 7: In the final quantum reference frame A, the marginals of the total Wigner function representing the reduced
state of system B (on the left) and C (on the right) when both A and B were initially in the ground state. In both
cases, αA

αB
= 0.1.
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Figure 8: In the final quantum reference frame A, the marginals of the total Wigner function representing the
reduced state of system B (on the left) and C (on the right) when A was initially in the ground state and B in the
first excited state. In both cases, αA

αB
= 1.
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Figure 9: In the final quantum reference frame A, the marginals of the total Wigner function representing the
reduced state of system B (on the left) and C (on the right) when A was initially in the first excited state and B in
the ground state. In both cases, αA

αB
= 1.

fig. 6 the Wigner functions of the ground and ex-
cited state of the harmonic oscillator are illus-
trated. These functions can refer to both system
A and B from the viewpoint of the initial refer-
ence frame C. On the right in fig. 6, the negativity
of the Wigner function indicates the nonclassical-
ity of the excited state. In the figures 7, 8, 9, and
10 the Wigner functions of the reduced state of
B (on the left) and of C (on the right) are shown
in the new reference frame A for different combi-
nations of states. In particular, fig. 7 shows the
Wigner functions of B and C from the point of
view of A when the state of A and B from the
point of view of C was the product of the ground
state eigenstates in the initial reference frame.
Figures 8 and 9 show the Wigner functions of
B and C relative to A when the state of A and B
from the point of view of C was the product of the
ground state and the excited state. Finally, fig. 10
shows the Wigner functions of B and C when in
C’s reference frame the total state was the prod-
uct of the two excited states. Compared to the
states in fig. 6, the states in the reference frame
A appear more spread out, and the characteristic
quantumness (i.e., the negativity of the Wigner
function, an indicator of quantum behaviour) is
sharply reduced. This happens because in the
new reference frame the total state of B and C
is entangled, as can easily be seen in Eq. (50), in
such a way that the marginals describe a mixed
state.

This concludes our quantum discussion of us-
ing a perspective-neutral structure in order to
switch from one particle reference frame in one-
dimensional space to another.

6 Conclusions and outlook

In this work, we have exploited a fruitful inter-
play of ideas from quantum gravity and quantum
foundations to begin developing a unifying ap-
proach to transformations among quantum ref-
erence systems – of both temporal and spatial
character – that ultimately should be applicable
in both fields. Methodologically, we have com-
bined tools and concepts from constrained sys-
tems, also inherently used in the relational clock
changes of [22–24], with the operational approach
to quantum reference frames recently put for-
ward in [1]. In particular, as proposed in [42],
we took recourse to a gravity inspired symmetry
principle to formulate a perspective-neutral super
structure that, so to speak, contains all perspec-
tives at once and via which one can switch among
the individual perspectives of the different classi-
cal or quantum reference systems. This extends
the method of [22–24], equips it with a novel
operational interpretation thanks to [1] and em-
beds the approach of [1] in a perspective-neutral
framework. Our construction offers a systematic
method for transforming quantum reference sys-
tems, with possible applications in both quantum
foundations and gravity.

Using this novel perspective-neutral frame-
work, we have been able to recover one of
the transformations between quantum reference
frames in one-dimensional space constructed,
among other things, in [1] through a different ap-
proach. Finally, we have also studied some strik-
ing operational consequences of these quantum
frame switches. Specifically, we have illustrated
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Figure 10: In the final quantum reference frame A, the marginals of the total Wigner function representing the
reduced state of system B (on the left) and C (on the right) when both A and B were initially in the first excited
state. In both cases, αA

αB
= 1.

how entanglement and classicality of a system in-
teracting with two quantum reference frames de-
pends on whether the perspective of one or the
other is chosen.

As we showed, in our new approach classi-
cally choosing the perspective of a specific frame
amounts to a choice of gauge and perspective
changes require a gauge transformation within
the perspective-neutral constraint surface. In the
quantum theory, on the other hand, it was the re-
duced quantum theories which assumed the role
of the quantum physics as seen from a partic-
ular quantum reference frame, while the Dirac
quantized theory constitutes the perspective-
neutral quantum theory, without immediate op-
erational interpretation, via which quantum ref-
erence frame perspectives have to be switched.
In particular, for our model we have clarified
the quantum symmetry reduction procedure that
maps Dirac to reduced quantization.

Our quantum symmetry reduction procedure
relative to a choice of quantum reference frame
can be adapted to more complicated models, as
shown in the companion articles [2–4]. We sus-
pect that the general steps of the procedure –
1. choose a quantum reference frame, 2. suit-
ably trivialize the constraint with respect to this
choice of quantum reference frame, and 3. project
onto the classical gauge-fixing conditions – may
be adaptable to an even much more general class
of models. Of course, due to the well-known
inequivalence of Dirac and reduced quantization
in more general situations [20, 21, 51–59], the re-
sult of applying the quantum symmetry reduc-
tion procedure to the Dirac quantized theory will

usually not coincide with the quantization of a
reduced phase space, in contrast to the simple
model discussed here. However, this is not a prob-
lem for our perspective-neutral approach.

We propose to always interpret the quantum
symmetry reduced theory as the description of
the quantum physics of the remaining degrees of
freedom relative to the associated quantum ref-
erence frame. The reason is that Dirac quanti-
zation is more general than reduced quantization
in the sense that it also encodes quantum fluctu-
ations of the reference frame degrees of freedom.
By contrast, there are no such quantum fluctua-
tions of the reference frame in reduced quantiza-
tion since the reference frame degrees of freedom
have been removed altogether prior to quantiza-
tion. Nonetheless, the classical symmetry reduc-
tion procedure, such as in Sec. 3.2, leading to
reduced quantization is conceptually important
because it clarifies that we can think of our new
quantum symmetry reduction procedure as being
its proper quantum analog. This supports the in-
terpretation of the quantum symmetry reduced
theory as the ‘perspective’ of an associated quan-
tum reference frame, which is why we have also
discussed reduced quantization in this article.

We emphasize that in more general systems
another property will feature: unlike in our toy
model, globally valid gauge-fixing conditions will
be absent (globally valid means that every gauge
orbit is intersected once and only once by the
gauge-fixing surface). This has the consequence
that internal frame perspectives, which are asso-
ciated to a choice of gauge, will not be globally
valid, neither classically nor in the quantum the-

Accepted in Quantum 2019-12-26, click title to verify. Published under CC-BY 4.0. 24



ory. More precisely, both the classical and quan-
tum symmetry reduction procedures will not be
defined on the entire perspective-neutral struc-
ture, i.e. classically the constraint surface and in
the quantum theory the physical Hilbert space.

This too is not a fundamental problem, but
rather has to be expected from the general dis-
cussion in Sec. 2: globally valid internal perspec-
tives are special. We have seen that changing
from one quantum reference frame perspective to
another has a compositional structure analogous
to coordinate changes on a manifold. The quan-
tum symmetry reduction maps assume the role
of ‘quantum coordinate maps’ and in analogy to
classical coordinate maps they will generically not
be globally defined. We propose to nevertheless
use such reduction maps to describe the physics
from the internal perspective of a dynamical ref-
erence frame wherever defined. In [2] it will be
shown through the relational N -body problem in
3D that our new approach indeed remains valid
also in more complicated systems where global
internal perspectives will be absent. As long as
one can locally (in a phase space sense) fix a
gauge, one can, in principle, construct local re-
duced quantum descriptions (see also [22–24]).

Furthermore, in [3, 4] it will be demonstrated
how our method can be employed to switch tem-
poral reference systems, i.e. relational quantum
clocks (such as in quantum gravity and cosmol-
ogy) where subtleties due to the quadratic nature
of the constraints arise. Finally, in [5], it will be
established that our new method is indeed equiv-
alent to that developed in [22–24] when restricted
to a semiclassical regime within which the latter
was formulated.

None of these systems include internal degrees
of freedom. In forthcoming work [82], relativis-
tic particles with spin will be incorporated into
the original quantum reference frame approach
of [1] and the operational consequences of quan-
tum frame transformations will be explored in
this setting.

We conclude with an outlook on some prob-
lems where our approach may inspire new per-
spectives:

Wigner’s friend. A paradigmatic example for the
challenges of fitting different perspectives
in quantum theory into one picture is the
Wigner friend scenario on which much has
been written (e.g., see [61,83–86]). Including

a perspective-neutral meta-structure, similar
to here, may open up a new approach to the
problem. Of course, this would require the
inclusion of measurement interactions into
the perspective-neutral structure that lead
to ‘collapses’ in the respective internal per-
spectives.

Quantum general covariance and diffeomorphism
symmetry. Classical general covariance and
diffeomorphism symmetry, while intimately
related, are not the same concept [8]. In-
deed, within the language of sec. 2, general
covariance refers to the operational level
of frame perspectives onto the physics and
their relations (all the laws of physics are
the same in every reference frame). Diffeo-
morphism symmetry, on the other hand,
refers to the perspective-neutral structure
(the diffeomorphism equivalence class of a
spacetime) that contains and connects all
these different individual frame perspectives.

Our approach suggests to extend this inter-
play to the quantum case and we now see
how the ‘quantum general covariance’, as
advocated in [1], in principle fits, through
the language of sec. 2, into a bigger pic-
ture together with the diffeomorphism sym-
metry in quantum gravity [8, 19, 53]. The
‘quantum general covariance’ of [1], again,
refers to the operational level of quan-
tum reference frames and their relations,
which, in our new approach, is encoded in
the perspectives and their corresponding re-
duced quantum theories. The diffeomor-
phism symmetry in canonical quantum grav-
ity [8,19,53], on the other hand, refers to the
Dirac quantized theory where one attempts
to implement the Hamiltonian and diffeo-
morphism constraints, which constitute the
(first class) Dirac hypersurface deformation
algebra that generates the diffeomorphism
symmetry. The corresponding diffeomor-
phism invariant physical Hilbert space, solv-
ing these constraints, in the language of
sec. 2, defines the perspective-neutral meta-
structure. In line with our new approach,
and the simplicity of the present model
notwithstanding, we propose to view this lat-
ter perspective-neutral quantum gravity the-
ory as the structure containing and connect-
ing all the different quantum reference sys-
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tem perspectives that one refers to when one
speaks about ‘quantum general covariance’
as in [1]. This will be further elaborated on
in [3,4], where it will also inspire a new per-
spective on the ‘wave function of the uni-
verse’.

Relational quantum mechanics and perspectives.
In his seminal paper [61] on relational quan-
tum mechanics, Rovelli suggested “... to
investigate the extent to which the noticed
consistency between different observers’
descriptions, which I believe characterizes
quantum mechanics so marvellously, could
be taken as the missing input for recon-
structing the full formalism." Whether or
not a consistency among different observers’
descriptions can be used in a reconstruc-
tion of quantum theory remains an open
question. In fact, meanwhile, the formal-
ism has been reconstructed without it,
while still being compatible with relational
quantum mechanics [60, 87] (see [88] for
a summary).14 However, in line with our
perspective-neutral approach of sec. 2, this
consistency among different observer per-
spectives seems to be rather a characterizing
feature of physics in general.15
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A Lagrangian with translational invariance

For simplicity, we shall take the N particles to be of unit mass and the configuration manifold as
Q = R

N . The Lagrangian on the tangent bundle TQ ≃ R
2N reads

L =
1

2

N∑

i=1

q̇2
i − 1

2N

(
N∑

i=1

q̇i

)2

︸ ︷︷ ︸

Ecm
kin

− V
(

{qi − qj}N
i,j=1

)

. (57)

We have subtracted the kinetic energy of the center of mass so that only the motion relative to the
latter contributes to the energy. The potential is translation invariant. In consequence, this Lagrangian
is singular and features a gauge symmetry: it is invariant under global translations

(qi, q̇i) 7→ (qi + f(t), q̇i + ḟ(t)), (58)

where f(t) is an arbitrary function of time that does not depend on particle i. In particular, the
equations of motion are underdetermined and read

−∂V

∂qi
= q̈i − 1

N

N∑

j=1

q̈j , (59)

so that there are only N − 1 independent equations as their sum implies

N∑

i=1

∂V

∂qi
= 0 , (60)

which is automatically satisfied for a translation invariant potential.
The physical interpretation is clear: the localizations qi(t) and motions q̇i(t) of the N particles with

respect to the Newtonian background space have no physical meaning, but are gauge dependent. Only
the relative localization and motion of the particles is physically relevant, thereby providing a toy
model for Mach’s principle. Thanks to the symmetry, physics is here relational.

This becomes especially explicit in the canonical formulation on which we shall henceforth focus.
The Legendre transformation to the phase space T ∗Q ≃ R

2N , in coordinates (qi, q̇i) 7→ (qi, pi), where

pi =
∂L

∂q̇i
= q̇i − 1

N

N∑

j=1

q̇j , (61)

fails to be surjective and evidently maps onto the (2N − 1)-dimensional (primary) constraint surface
defined by (2), in line with the symmetry of the Lagrangian.

B Switching internal perspectives as a gauge transformation

The embedding map of the reduced phase space in A perspective into the constraint surface reads

ιBC|A : PBC|A →֒ C

(qi6=A, pi6=A) 7→


qi6=A, pi6=A, qA = 0, pA = −
∑

i6=A

pi



 (62)

and its image is precisely C ∩ GBC|A. Conversely, we can also define a projection

πBC|A : C ∩ GBC|A → PBC|A


qi6=A, pi6=A, qA = 0, pA = −
∑

i6=A

pi



 7→ (qi6=A, pi6=A) , (63)
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that drops all redundant information so that πBC|A ◦ ιBC|A = IdPBC|A
. Clearly, the same structures

can be constructed for C perspective.
Now what is the gauge transformation that takes us from C ∩ GBC|A to C ∩ GAB|C , where GAB|C is

defined by qC = 0? Denote the flow on the constraint surface generated by (2) by αs
P , where s is the

flow parameter. The gauge transformation of a phase space function F corresponds to transporting
the argument along the flow αs

P ·F (x) = F (αs
P (x)) with x a point on the constraint surface. Explicitly,

it reads

αs
P · F (x) =

∞∑

k=0

sk

k!
{F, P}k(x) , (64)

where {F, P}k = {. . . {{F, P}, P}, . . . , P} is the k-nested Poisson bracket of F with P .
Using (4), these gauge transformations are easy to evaluate for the canonical variables

αs
P · qi(x) = qi(x) + s , αs

P · pi(x) = pi(x) . (65)

Hence, jumping from the reference frame of A to the reference frame of, say, C corresponds to the
gauge transformation

αA→C := α
−qC(x)
P , (66)

i.e. to flowing with ‘parameter distance’ s = −qC(x) (where qC(x) is the actual value of the relative
distance of A and C prior to the transformation), as it verifies αA→C · qC(x) = 0 and αA→C · qA(x) =
−qC(x).

It is clear that altogether this defines a map, depicted in the diagram of sec. 3.3,

SA→C := πAB|C ◦ αA→C ◦ ιBC|A : PBC|A → PAB|C . (67)

Taking into account the swap of non-redundant Dirac observable from qB − qA to qB − qC (and the
inverse switch of redundant Dirac observable) through the A,C label exchange, it reads in coordinates:

(qB, pB, qC , pC) 7→
(
q′

A = −qC , p
′
A = −pB − pC , q

′
B = qB − qC , p

′
B = pB

)
. (68)

C Physical inner product for Dirac quantization

The improper projector (23) δ(P̂ ) defines equivalence classes of states in Hkin that are mapped to
the same solution |φ〉phys. One can define an inner product between |ψ〉phys and |φ〉phys by using any
member |ψ〉kin, |φ〉kin of their respective equivalence classes:

(ψphys, φphys)phys := kin 〈ψ| δ(P̂ ) |φ〉kin , (69)

where 〈·|·〉 is the original inner product of Hkin. Since δ(P̂ ) is symmetric in Hkin, this construction is
independent on which representative is chosen from each equivalence class. Through Cauchy completion
(and other technical subtleties which we shall here ignore), the space of solutions to (22) can thereby
be turned in a proper Hilbert space Hphys.

Using (25), the physical inner product in momentum representation takes either of the following
equivalent forms:

(ψphys, φphys)phys =

∫

dpB dpC [ψBC|A(pB, pC)]∗φBC|A(pB, pC)

=

∫

dpA dpC [ψAC|B(pA, pC)]∗φAC|B(pA, pC) (70)

=

∫

dpA dpB [ψAB|C(pA, pB)]∗φAB|C(pA, pB) ,

i.e., essentially just drops a redundant (and singular) momentum integration.
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Next, we show that the ‘Page-Wootters like’ projection (35) is consistent with the inner products.
More precisely, if the inner product on the transformed set Hphys

A,BC := T̂A,BC(Hphys) is defined, in
analogy to (69), as

(ψA,BC |φA,BC)A,BC := kin 〈T̂A,BC ψ |φ〉A,BC

= kin 〈ψ| T̂ †
A,BC |φ〉A,BC (71)

=

∫

dpB dpC [ψBC|A(pB, pC)]∗φBC|A(pB, pC) ,

then T̂A,BC indeed defines an isometry from Hphys to Hphys
A,BC . The last line also coincides with the

inner product on the reduced Hilbert space HBC|A of sec. 4.1 and so T̂A,BC , followed by the projection
(35), also defines an isometry from Hphys to HBC|A.

Given the transformations (36–37), it is also clear that

(ψphys, Ô ψphys)phys ≡ (ψA,BC |T̂A,BC Ô (T̂A,BC)† |ψA,BC)A,BC

= 〈ψ|BC|A ÔBC|A |ψ〉BC|A , (72)

where Ô is a relevant Dirac observable containing B and C information and ÔBC|A is the corresponding
reduced observable on the reduced Hilbert space HBC|A. Hence, expectation values of relevant Dirac
observables on Hphys coincide with those of the correctly transformed observables in HBC|A.

D Mathematical non-uniqueness of constraint trivialization

The trivialization amounts to transforming the constraint such that it acts only on the reference frame
degrees of freedom and the latter become completely fixed and redundant. In the present model, given
the linear structure of the constraint P̂ , this means fixing the momentum of the chosen reference frame,
e.g. of A. Hence, the trivialization (30) is unique only up to the number to which we fix A’s momentum.
For example, if instead we chose

T̂ ′
A,BC = exp

(

i q̂A(p̂B + p̂C + k)
)

, (73)

where k ∈ R, we would have

T̂ ′
A,BC P̂

(

T̂ ′
A,BC

)†
= p̂A − k (74)

and
|ψ〉A,BC = |p = k〉A ⊗ |ψ〉BC|A . (75)

Yet, also in this case, does one find

T̂ ′
A,BC Ĥtot (T̂ ′

A,BC)† |ψ〉A,BC = |p = k〉A ⊗ ĤBC|A |ψ〉BC|A , (76)

and, in fact, all of the relevant structures (71, 36, 38, 72) are actually independent of the choice of k.
The non-uniqueness of the transformation thereby has no physical consequences and only affects the
irrelevant information in the A-slot. Up to the irrelevant number k the trivialization is unique.

E Transformation between two quantum reference frames

Here we shall prove the claim of sec. 4.4. Writing an arbitrary state in HBC|A as in (21, 35),

|ψ〉BC|A =

∫

dpB dpC ψBC|A(pB, pC) |pB〉B |pC〉C , (77)
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one finds

ŜA→C |ψ〉BC|A =

∫

dp′
C dpB dpC ψBC|A(pB, pC)

C 〈p′
C | exp

(

i q̂C(p̂A + p̂B)
)

exp
(

− i q̂A(p̂B + p̂C)
)

|p = 0〉A |pB〉B |pC〉C

=

∫

dpB dpC ψBC|A(pB, pC) |−pB − pC〉A |pB〉B . (78)

Recalling from (25) that
ψAB|C(pA, pB) = ψBC|A(pB,−pA − pB) (79)

and using the change of variables pA = −pB − pC , we obtain from (78)

ŜA→C |ψ〉BC|A =

∫

dpA dpB ψAB|C(pA, pB) |pA〉A |pB〉B

= |ψ〉AB|C . (80)

This transformation is equivalent to

ŜA→C = P̂CA e
i q̂C p̂B , (81)

where P̂CA is the parity-swap operator defined in [1] on position eigenstates as

P̂CA |x〉C = |−x〉A . (82)

Note the similarity to the action of the gauge transformation αA→C in Appendix B.
Indeed, it can be checked that on momentum eigenstates this yields

|−pB − pC〉A |pB〉B = P̂CA |pB + pC〉C |pB〉B

= P̂CA e
i q̂C p̂B |pC〉C |pB〉B ,

(83)

so that, upon using again (79) and the variable redefinition,

|ψ〉AB|C = P̂CA e
i q̂C p̂B

∫

dpB dpC ψBC|A(pB, pC) |pC〉C |pB〉B

= P̂CA e
i q̂C p̂B |ψ〉BC|A .

(84)
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