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Everybody wants to maintain solitariness to some extent or entirely in his dealings with other people during diferent modes of
communication. To retain privacy, researchers materialized distinct image encryption algorithms using chaotic maps. Due to their
extraordinary features, most researchers employed multidimensional chaotic maps to barricade clandestine information or digital
images from potential invaders. Still, multidimensional chaotic maps have many impediments conferred in the literature review.
In this paper, we developed a cryptosystem utilizing multiple chaotic maps to mitigate the shortcoming of multidimensional
chaotic maps. A distinctive approach is adopted to sire a key stream using a combination of chaotic maps and create a sequence of
random integers linked with the pixels of the plain image to shatter the association between neighboring pixels of a plain image.
Finally, difusion is accomplished using the previously difused pixels at a decimal level. Security and statistical analysis
demonstrate that the presented encryption algorithm is robust against well-known attacks. An ample key space indicates that it is
best suited for secure communication.

1. Introduction

Te importance of image encryption is increased to transmit
confdential data (images, videos, audios, and agreements)
via the internet because digital images are frequently used to
communicate and share sensitive information, whether in
the military, banking, or personal moments. Many image
encryption techniques [1] have been constructed based on
a variety of chaotic [2, 3] to protect the plain images from
prying eyes or unlawful access. Traditional security en-
cryption schemes like AES [4], DES [5], and IDEA [6] are
inadequate to maintain acceptable standards for the safety of
digital images because of the strong association among
neighboring pixels, enormous storage capacities, and sig-
nifcant redundancy.

Chaotic systems are deemed to be appropriate for image
encryption schemes due to their features like ergodicity,
pseudorandomness, ambiguity, high sensitivity to initial
conditions, and controlled parameters. Most researchers
designed cryptosystems [7, 8] either by modifying existing

chaotic systems [9, 10] or developing new chaotic systems
[11, 12], keeping in mind the usefulness of chaotic systems
due to their characteristics, as mentioned earlier. Te au-
thors of [13] proposed a 2D-LSM chaotic system and
ascertained that it is more chaotic than some lately de-
veloped two-dimensional chaotic maps using a bifurcation
diagram, LE, phase plane trajectory, and sample entropy.
Furthermore, it materializes a color image encryption al-
gorithm (CIEA) using orthogonal Latin square and 2D-
LSM. Hua et al. [14] conferred a new 2D-PPCS (two-
dimensional parametric polynomial chaotic system) to
mitigate the faws of existing chaotic systems, and theoretical
analysis exhibits the chaotic behavior of the 2D PPCS. Te
study of [15] modifes the chaotic behavior of a 1-
dimensional chaotic map, further analyzed the chaotic be-
havior through phase diagram and Lyapunov exponent
spectrum, and constructs a novel image encryption scheme.
Tere are two types of chaotic systems: (i) one or 2− di-
mensional chaotic maps and (ii) multidimensional chaotic
maps. Most recent image encryption techniques are based
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on multidimensional chaotic maps [16, 17], which are more
sensitive than 1-dimensional chaotic maps. It contains many
initial values and controlled parameters that help enlarge the
length of key space to resist brute force attacks. In [18], Malik
et al. developed a cryptosystem for a color image using two
multidimensional chaotic maps and used the idea of his-
togram equalization to equalize histogram of chaotic se-
quences of Lorenz system. Hua et al. [19] suggested an image
encryption scheme using S-box, yielded using a complete
Latin square. Experimental consequences divulge that the
presented cryptosystem can defy all well-known security and
statistical seizures from potential invaders. Te authors of
[20] designed an image encryption scheme utilizing parallel
compressing sensing with adaptive thresholding sparsif-
cation. In [21], to get the random sequences of a 5-
dimensional hyperchaotic map, frst generate the initial
values that depend on pixels of a plain image. A unique key is
generated after rearranging the random sequences and
constructed an image encryption algorithm. Multidimen-
sional chaotic maps take more time during the execution
process due to their intricate structure and method to fnd
the solutions of a multidimensional chaotic map. Alterna-
tively, one or 2 − dimensional chaotic maps are simple in
structure and execute efciently in the available MATLAB
versions, not taking more time during the computational
process. Terefore, we use a combination of chaotic maps
rather than the multidimensional chaotic system in this
paper. Te logistic map, piecewise linear chaotic map, tent
map, and Henon map are used to propose an encryption
algorithm. Two unique keys are generated using the
aforementioned chaotic maps to difuse the pixels of the
plain image at the decimal level. To break the connection
among nearby pixels in a plain image, generate a random
sequence of integers using any chaotic map, relate it with the
difused pixels, and further use it to scramble the difused
pixels. Finally, the presented encryption algorithm is eval-
uated on various images, including Lena, Baboon, Pepper,
Cameraman, and House. Te experimental results dem-
onstrate the efectiveness of our presented image encryption
algorithm.

Te remaining sections of the paper are organized as
follows. Te basic features of distinct chaotic maps are
described in Section 2. Each step of the proposed encryption
method is discussed in detail in Section 3. Various security
and statistical tests are performed in Section 4 to assess the
performance of the constructed cryptosystem. Conclusions
are discussed in Section 5.

2. Chaotic Map

In this section, we will discuss some chaotic maps which are
further utilized in an image encryption scheme.

2.1. Logistic Map. Logistic map is a 1-dimensional chaotic
map with excellent chaotic features and its numerical ex-
pression is described as follows:

x(i) � u1 × x(i− 1) × 1 − x(i− 1)􏼐 􏼑, (1)

where u1 is a controlled parameter and its range is [0, 4], but
the bifurcation diagram of a logistic map shows chaotic
behavior only when u1 ∈ [3.567, 4] can be seen in
Figure 1(a).Tis map highly sensitive to initial condition x(i)

and the range of initial condition is (0, 1).

2.2. Piecewise Linear Chaotic Map. Piecewise linear chaotic
map [22] is a one dimensional map that generates the
random sequence necessary for image encryption scheme
during the process of confusion and difusion. Mathematical
formula of piecewise linear chaotic map is given as follows:

y(i) �

y(i− 1)

u2
, if  0≤y(i− 1) < u2,

y(i− 1) − u2

0.5 − u2
, if  u2 ≤y(i− 1) < 0.5,

1 − y(i− 1), if  0.5≤y(i− 1) < 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where u2 ∈ (0, 0.5) is a parameter and its initial value range
is (0, 1). Te bifurcation diagram of piecewise linear chaotic
is in Figure 1(b) that shows the chaotic behavior of piecewise
linear chaotic map.

2.3. Tent Map. Numerical formula of tent map is described
as follows:

z(i) �

u3 × z(i− 1), if  0≤ z(i− 1) <
1
2

,

u3 × 1 − z(i− 1)􏼐 􏼑, if  1
2
≤ z(i− 1) ≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where u3 ∈ (0.5, 2) is a parameter and its initial value range
is (0, 1). Chaotic behavior of tent map can be seen in
Figure 1(c).

2.4.HénonMap. Hénonmap [23] is a 2-dimensional chaotic
map and its mathematical equation is described as follows:

w1(i) � 1 + w2(i− 1) − u4 × w1(i− 1)􏼐 􏼑
2
, (4)

w2(i) � u5 × w1(i− 1). (5)

Te Hénon map depends on two control parameters u4
and u5, and highly sensitive to initial conditions which
belongs (0, 1). Te chaotic behavior of the Hénon map can
be seen in bifurcation diagram against the parameter
u4 ∈ [0.8, 1.4] in Figure 1(d).

3. Proposed Image Encryption Scheme

Tis section will discuss all the necessary things of an en-
cryption process in detail, like key generation, block
scrambling, and pixels scrambling process, and decimal level
difusion process.

Step 1. Transformation
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Let I be a grayscale image of size M × N, where M

and N indicate rows and columns, respectively.
Now, we transform image I into a 1 − dimensional
array P1 of size L � M × N.
Step 2. Key Stream Generation

(i) Let x0, y0, z0, w10, w20, u1, u2, u3, u4, and u5 be the
initial conditions and control parameters that are
used to iterate the equations from (1) to (5).

(ii) After iteration the pseudorandom generated se-

quences xn0+L􏽮 􏽯, yn0+L􏽮 􏽯, zn0+L􏽮 􏽯, w1n0+L
􏼚 􏼛, and

w2n0+L
􏼚 􏼛.

(iii) To remove the transient efect, discard the frst n0
iterations from each sequence w2L

􏽮 􏽯, yL􏼈 􏼉, zL􏼈 􏼉,
w1L

􏽮 􏽯, and xL􏼈 􏼉 and obtained new sequences x1,
x2, x3, x4, and x5, respectively, of length L.

(iv) Choose the one sequence from the sequences x1,
x2, x3, x4, and x5 and after selecting the sequence,
store them in A , in ascending order.

(v) Now generate sequence T of random integers by
storing the position of each member of A in the
selected sequence.

(vi) Divide the sequence T into four subsequences T1,
T2, T3, and T4, the length of each subsequence is
L/4;
Ti ∩Tj � ∅ such  that  i≠ j  and 1≤ i, j≤ 4. (6)

(vii) Now, select the state of variables from the
remaining four sequence named as Y1, Y2, Y3, and
Y4 and get the subsequences S1, S2, S3, and S4,
respectively of length L/4 using the expression
described as follows:

Sn+j(k) � Yn+j Ti(k)( 􏼁  such  that k  from 1  to 
L

4
, (7)

where n means number of encryption rounds and
for each n, i � 1, 2, 3, 4 and j � 0, 1, 2, 3. if (n +

j)> 4 then (n + j) � (n + j)mod  4.
(viii) Te subsequences S1, S2, S3, and S4 are used to form

a sequence of length L.
(ix) We have 4! ways to form a sequence of length L by

using the subsequences S1, S2, S3, and S4.
(x) Now obtained two sequences B1 and B2 of length L

using two diferent arrangements of S1, S2, S3,
and S4.
B1 � arrangement of sequences S2, S1, S3, S4􏼈 􏼉.

B2 � arrangement of sequences S3, S2, S4, S1􏼈 􏼉.

(xi) Compute the key streams D1 and D2 using the
mathematical formula described as follows:

D1(i) �
B1(i) × w1(i) × y(i)

x(i) × 2555

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 1016􏼤 􏼥mod  256,

D2(i) �
B2(i) × w2(i) × z(i)

x(i) × 2555

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 1016􏼤 􏼥mod  256,

(8)

where i � 1 to L.
Step 3. Decimal Difusion Level 1
Te following analytical equation is used to difuse
the pixels of P1 using D1 and previously difused
pixels;

I1(i) �
P1(i) + d1( 􏼁mod  256, if   i � 1,

P1(i) + D1(i) + I1(i − 1)( 􏼁mod  256, if  1< i≤L,
􏼨

(9)

where d1 is a seed value used to difuse the frst
pixel of P1.
Step 4. Block Scrambling Process
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Figure 1: Bifurcation diagrams of logistic map, piecewise linear chaotic map, tent map, and Henon map.
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(i) First, divide I1 into blocks, and the size of each
block is M1 × N1; then, the number of blocks is h,
where h � M × N/M1 × N1.

(ii) Now, obtain a subsequence Q1 of length h from the
sequence, which is selected from the sequences
w1,y, z, w2x and generate the sequence Q2 of
random integers using the same procedure on Q1,
described in Step 2 (iv, v).

(iii) Q2 is used to scramble the blocks of I1 for n1 times
where n1 indicates the number of scrambling
rounds; after block scrambling of I1, transform the
I1 into a 1-dimensional array I2.
Step 5. Decimal Difusion Level 2
Te pixels of I2 is difused using the sum of pre-
viously difused pixels and D2, with mathematical
expression described as follows:

I3(i) �
I2(i) + d2( 􏼁mod  256, if   i � L,

I2(i) + D2(i) + sum I3(L − i: L)( 􏼁( 􏼁mod  256, if  1≤ i<L,
􏼨 (10)

where d2 is the seed value used to difuse the frst
pixel of I2.
Step 6. Pixels Scrambling Process

(i) Let T be a random integers sequence of length L,
described in Step 2. (v).

(ii) T is used to scramble the pixels of I3 for n2 times
where n2 indicates the number of pixels scrambling
rounds.
Step 7. Cipher Image
Transform the I3 into matrix C of size M × N.
Figure 2 illustrates the encryption process.
Decryption is performed in the opposite direction
as encryption.

4. Performance Evaluation

Te performance of a presented cryptosystem is tested
utilizing statistical and security analysis on distinct images
such as Lena, Baboon, Pepper, Cameraman, and House. Te
parameters of the secret key are x0 � 0.23, y0 � 0.25,
z0 � 0.25, w10 � 0.2, w20 � 0.01, u1 � 3.8956,
u2 � 0.25678900, u3 � 1.5, u4 � 1.4, u5 � 0.3, d1 � 234,
d2 � 234, n0 � 700, n � 1, n1 � 1, and n2 � 1, and all ex-
perimental results are computed in MATLAB 2018b on
a compatible computer with Windows 10, 8.00GB RAM,
and an Intel(R) Core(TM) i5-6300U CPU @ 2.5GHz.
Figure 3 demonstrates the encryption efect of our presented
cryptosystem, and all experimental data are documented in
tables, demonstrating that our cryptosystem’s performance
is outstanding against any security and statistical threats.

4.1. Key Space Analysis. Te key space analysis helps us to
decide whether or not our cryptosystem can withstand brute
force attacks.Te length of a key space is crucial to withstand
a brute force assault because a prospective intruder would
try every possible combination of key space to crack the
cryptosystem. It is believed that if a cryptosystem’s key space
is larger than 2100, it is robust. Let x0, y0, z0, w10, w20, u1, u2,
u3, u4, and u5 be the secret key parameters, and each has
a computational accuracy of 10− 15, and d1, d2, and d3 are the
positive integers used at difusion level, and n0 is the number

of discarding iterations where 100≤ n0 ≤ 1000. Conse-
quently, the length of the key size 9 × 10159 which is higher
than 2100, demonstrating that our presented encryption
technique is resistant to brute force attacks. Table 1 shows
the key space comparison to some existing encryption
cryptosystems.

4.2. Histogram Analysis. Histogram analysis is the simplest
and pictorial way to see the frequency distribution in plain
and encrypted images. If the frequency distribution is
uniform, then it is considered that the proposed encryption
scheme is suitable for the secure transmission of data
through the internet in daily use applications. In 8− bit
grayscale image, the range of pixels value is 0 to 255. His-
togram of plain and encrypted images (Lena, Baboon,
Pepper, Cameraman, and House) can be seen in column (b,
d) of Figure 3, and column (b) shows that the frequency
distribution of pixels is not uniform. Still, on the other side,
column (d) shows that the frequency distribution of pixels is
uniform. Te uniform distribution of pixels demonstrates
that our proposed image encryption scheme can resist any
statistical attack. A potential invader does not get any re-
liable information from the histogram of encrypted images.

4.3. Entropy. It is deemed that entropy is used to compute
the uncertainty present in the source of information (digital
image); ifm is a source of information, the entropy ofm can
be computed described as follows:

Entropy: E(m) � 􏽘
255

i�0
p mi( 􏼁log2

1
p mi( 􏼁

, (11)

where p(mi) is a frequency of the symbol mi, the entropy of
a source of information m is 8 according to entropy formula,
if the frequency of symbol mi is uniformly distributed. Te
entropy of diferent encrypted images (Lena, Baboon,
Pepper, Cameraman, and House) is nearly equal to 8, as
shown in Table 2.

Sometimes global Shannon entropy does not measure
the true randomness in the encrypted image; we estimate the
local Shannon entropy [30] to overcome this drawback. In
local Shannon entropy, the encrypted image divided into
randomly selected K nonoverlapping blocks with TB pixels
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in each block. Compute the entropy of each block using (11).
Finally, compute the mean of all the block’s entropy. Te
mathematical formula to calculate the local Shannon en-
tropy is described as follows:

HK,TB
(I) � 􏽘

K

i�1

E(i)

K
. (12)

Te benchmark of local Shannon entropy is 7.90. It is
evident from the Table 2 that our proposed encryption
scheme can produce adequate randomness in an encrypted
image that a potential invader cannot get any reliable in-
formation about the plain image.

4.4. Chi-Square Analysis. Chi-square is a quantitative
method of assessing pixel uniformity. Chi-square is a sta-
tistical technique that is describedmathematically as follows:

χ2 � 􏽘
28

i�1

Ci − 256( 􏼁
2

256
, (13)

where Ci indicates the actual frequency of ith pixel, the range
of pixels value is 0 to 255 because we are working on the 8-bit
grayscale image. Te numerical value χ2(255,0.05) � 293.2478
for the level of signifcance 0.05. Te distribution of pixels in
encrypted images is highly uniform if the Chi-square score
of the encrypted image is lower than 293.2478 as much as
possible. Te Chi-square score of distinct encrypted images
(Lena, Baboon, Pepper, Cameraman, and House) is listed in
Table 2, which proved that our proposed encryption scheme
uniformly distribute the pixels value 0 to 255 in diferent
rounds of encryption.

4.5. Majority Logic Criteria (Texture Analysis of the Image).
To evaluate the presented encryption scheme’s efciency on
digital images, the MLC [31, 32] tool is utilized, which is
a collection of fve statistical tests such as correlation,
contrast, entropy, energy, and homogeneity.

4.5.1. Contrast. Te brightness deterioration of plain images
throughout the encryption process is calculated using
contrast analysis. Te better the encryption technology, the
higher the contrast value. Te numerical equation is as
follows:

Contrast: C � 􏽘|i − j|
2
p(i, j), (14)

where p(i, j) indicates the grayscale co-occurrences matrix.

4.5.2. Correlation. Te range of correlation values is [1, − 1].
In plain images, the correlation value of a pixel to its
neighboring pixels is one or nearly equal to 1. Te corre-
lation value one or almost equal to 1 shows that the cor-
relation of a pixel to its neighboring pixels is very strong. On
the other hand, the correlation value 0 or negative shows that
the correlation of a pixel to its neighboring pixels is weak.
Te purpose of any encryption scheme is to break the
correlation of a pixel to its adjacent pixels. Mathematical
equation which is used to measure correlation is described as
follows:

Pixels Correlation: K � 􏽘
i,j

(i − μi)(j − μj)

σiσj

p(i, j), (15)

where p(i, j) indicates the grayscale co-occurrences ma-
trix, we also fnd the correlation of a pixel to its adjacent
pixels in the horizontal, vertical, and diagonal direction.
Te correlation of a pixel to its adjacent pixels is listed in
Table 3 and the correlation of a pixel to its neighboring
pixel in a horizontal, vertical, and diagonal direction of
plain and encrypted images (Lena, Baboon, Pepper,
Cameraman, and House) listed in Table 4. Figure 4 shows
the correlation of plain and encrypted images of Lena in
a horizontal, vertical, and diagonal direction. Te
experimented results of correlation demonstrate that the
performance of the proposed encryption scheme is ex-
cellent and able to resist any attack.

Encryption Rounds

Block Scrambling Rounds Pixels Scrambling Rounds

1-Dimensional
Array

Diffusion 1 Scrambling 1 Diffusion 2 Scrambling 2

Key stream 1 Key stream 2 Cipher image

System states of x,y,z,w1,w2

Secret key parameters

Figure 2: Visualization of the proposed cryptosystem.
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Figure 3: Histograms of plain and encrypted images. (a) the plain images; (b) the histograms of plain images; (c) the encrypted images; (d)
the histograms of encrypted images.

Table 1: Key space comparison.

Schemes Key space
Proposed 9 × 10159
Reference [24] 1088
Reference [25] 1060
Reference [26] 2.4 × 10112
Reference [27] 2.9645 × 10149
Reference [28] 1.6777 × 1064
Reference [29] 1070

Table 2: Entropy, local entropy and Chi-square score of encrypted
image of Lena, Baboon, Pepper, Cameraman, and House.

Images Size Entropy Local
entropy Chi-square score

Lena 256 × 256 7.9969 7.9091 286.4766
Baboon 256 × 256 7.9976 7.9065 219.5625
Pepper 256 × 256 7.9976 7.9066 214.7813
Cameraman 256 × 256 7.9968 7.9069 291.6484
House 256 × 256 7.9972 7.9076 253.4357
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4.5.3. Energy. To execute the energy analysis, we use a gray-
level co-occurrence matrix. Te numerical expression of
energy is given as follows:

Energy � 􏽘
i

􏽘
j

p(i, j)
2
, (16)

where p(i, j) indicates the grayscale co-occurrences
matrices.

4.5.4. Homogeneity. Homogeneity analysis is used to
compute the closeness of the grayscale level of co-occurrence
matrices in (GLCM). Te encryption method is deemed to
be excellent if the homogeneity value is lower as much as
possible. Te mathematical expression of homogeneity is
described as follows:

Homogeneity � 􏽘
i

􏽘
j

p(i, j)

1 +|i − j|
, (17)

where p(i, j) indicates the grayscale co-occurrences
matrices.

Te experimental MLC score of plain and encrypted
images is listed in Table 3. MLC scores indicate that the
encryption technique is excellent for digital images for se-
cure transmission through the internet.

4.6. MSE/MAD/PSNR/SSIM Analysis. A cryptosystem’s
encryption quality may be assessed using mean square error
(MSE) and mean absolute diference (MAD) tests. MSE and
MAD are mathematically expressed as follows:

MSE �
1

M × N
􏽘

M

i�1
􏽘

M

j�1
(P(i, j) − C(i, j))

2
,

MAD �
1

M × N
􏽘

M

i�1
􏽘

M

j�1
|P(i, j) − C(i, j)|,

(18)

Table 3: MLC score of the proposed cryptosystem for standard images.

Images P/E Contrast Correlation Energy Homogeneity

Lena Plain 0.5047 0.8918 0.1094 0.8525
Encrypted 10.4180 0.0036 0.0156 0.3893

Baboon Plain 0.4318 0.8495 0.1120 0.8193
Encrypted 10.4939 − 0.0004 0.0156 0.3906

Pepper Plain 0.4868 0.9614 0.1061 0.8802
Encrypted 10.4459 0.0036 0.0156 0.3915

Cameraman Plain 0.5872 0.9227 0.1805 0.8953
Encrypted 10.4980 0.0002 0.0156 0.3893

House Plain 0.1863 0.9497 0.2029 0.9251
Encrypted 10.5117 − 0.0004 0.0156 0.3887

Average Plain 0.4394 0.9150 0.1422 0.8745
Encrypted 10.4735 0.0013 0.0156 0.3899

Table 4: Correlation coefcient results of plain and encrypted images of Lena, Baboon, Pepper, Cameraman, and House in the horizontal,
vertical, and diagonal direction, respectively.

Images Direction
Correlation

Plain image Encrypted image

Lena
Horizontal 0.9907 0.0222
Vertical 0.9380 0.0354
Diagonal 0.9377 0.0006

Baboon
Horizontal 0.8341 0.0346
Vertical 0.8989 0.0205
Diagonal 0.8270 − 0.0049

Pepper
Horizontal 0.9830 0.0017
Vertical 0.9667 0.0222
Diagonal 0.9511 0.0076

Cameraman
Horizontal 0.8842 0.0149
Vertical 0.9201 0.0162
Diagonal 0.8425 − 0.0168

House
Horizontal 0.9218 − 0.0312
Vertical 0.9959 − 0.0031
Diagonal 0.9134 − 0.0294
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where M and N indicate the dimensions of plain image P

and encrypted image C, the cryptosystem is deemed efcient
and secure if MSE and MAD values are higher.

Te peak signal to noise ratio (PSNR) is inversely
proportional to the square root of MSE, as seen in equation
(19). Te PSNR value should be as low as feasible for the best
encryption quality. Te PSNR is calculated using the fol-
lowing mathematical formula:

PSNR � 20 log10(255/
����
MSE

√
)dB. (19)

Te structural similarity index measurement (SSIM)
evaluates how much an encrypted image deteriorates
throughout the encryption process. Te SSIM mathematical
equation is as follows:

SSIM �
2μPμE + α( 􏼁 2σPE + β( 􏼁

μ2P + μ2E + α􏼐 􏼑 σ2P + σ2E + β􏼐 􏼑
, (20)

where μP and μE are the average pixel values and σP, and σE are
the variance of corresponding images P and E. Also, σPE

represents the covariance between P and E, and α and β are
two predetermined constants used to ensure stability.TeMSE,
MAD, PSNR, and SSIM experimental fndings are presented in
Table 5, and the experimental results show that the proposed
cryptosystem can withstand any statistical attack.

4.7. Data Loss Attack Analysis. A data loss attack means
a potential invader artifcially dethrones the pixels of
a particular area of an encrypted image or loses some portion
of the image during transmission through the internet. A
cryptosystem is immaculate if it convalesces the critical
information from the encrypted image, which loses the data.
It is clear from Figure 5 that our proposed cryptosystem can
retrieve helpful information from the encrypted images
which lose data during communication. In Figure 5, a1 to a5

the fgures which lose a block of data size 32 × 32 to
demonstrate the data loss attack and a6 lose data from all
sides, and b1 to b6 represent the fgures after performing the
decryption process on the fgures which lose data
respectively.

4.8. Noise Attack Analysis. Normally, images possess in-
formation, but during the transmission, the image is pol-
luted with some noise. Te appearance of noise will
annihilate the original information from the image. Te
pepper and salt noise efect on our encryption algorithm is
examined in this paper on Lena’s image, and diferent salt
and pepper noise ratios represent the attack intensity. In
Figure 6, we use the pepper and salt noise ratios 0.01, 0.03,
0.05 on the fgure a1, a2, and a3, respectively. Te decryption
process are employed on the a1, a2, and a3 and as a result get
fgures b1, b2, and b3, respectively. Figure 6 demonstrates
that our proposed system is fawless for dealing with polluted
images and retrieving important information as much as
possible.

4.9.DiferentialAttacks. Te twomain criteria for evaluating
the robustness [33] of a cryptosystem against a slight change
in any pixel or secret key parameter are NPCR (number of
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Figure 4: First and second row (left or right) represent the pictorial view of correlation coefcient in the direction of horizontal, vertical, and
diagonal of plain and encrypted images of lena respectively.

Table 5: MAD, MSE, SSIM, and PSNR scores of the proposed
encryption algorithm.

Images MAD MSE SSIM PSNR
Lena 73.0485 7782 − 0.0012 9.2198
Baboon 73.2823 7833 − 0.0015 9.1916
Pepper 73.1300 7780 0.0013 9.2210
Cameraman 73.1966 7796 0.000828 9.2118
House 73.0063 7792 − 0.0015 9.2145
Average 73.1327 7797 0.0011 9.2117
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b1 b2 b3

b4 b5 b6

a1 a2 a3

a4 a5 a6

Figure 5: Analysis of data loss attack.
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pixel changing rate) and UACI (unifed averaged changed
intensity). Temathematical equations for NPCR and UACI
are as follows:

NPCR E1, E2( 􏼁 �

􏽐
M
i�1􏽐

N
j�1D(i, j) �

1 if  E1(i, j)≠E2(i, j)

0 if  E1(i, j) � E2(i, j)

⎧⎪⎨

⎪⎩

M × N
× 100%,

(21)

UACI E1, E2( 􏼁 �
1

M × N
􏽘

M

i�1
􏽘

N

j�1

E1(i, j) − E2(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100%, (22)

where M and N are the dimensions of an image, also E1 and
E2 are two encrypted images corresponding to plain images
difer by single pixel. Benchmark values of the NPCR and
UACI for diferent sizes of images are listed in Table 6.

4.10. Plaintext Sensitivity Analysis. A cryptosystem is
plaintext sensitive if a slight change in randomly selected
pixel of plain image will produce a diferent encrypted
image; that encrypted image does not provide any important
clue about plain image. Method to test the plaintext sen-
sitivity, let P1 and P2 be two plain images; all the pixels of P1
and P2 are the same except one randomly selected pixel. Te
original key is used to encrypt the plain images P1 and P2, get
two encrypted images E1 and E2, respectively. NPCR and
UACI between two encrypted images E1 and E2, are
computed using equations (21) and (22). A cryptosystem is
sensitive to plaintext if the value of NPCR> 99% and UACI

is greater or closer to 33%. Te procedure, as mentioned
earlier of plaintext sensitivity employed on the image (Lena,
Baboon, Pepper, Cameraman, and House) and compute the
NPCR and UACI score, is listed in Table 7. Te plaintext
sensitivity score of diferent images demonstrates that our
cryptosystem can resist any diferential attack.

4.11. Key Sensitivity Analysis. Te cryptosystem is regarded
as extremely key sensitive; if the encrypted image acquired
after a subtle change in any of the secret key parameters
provided in Table 8 is distinctive from the encrypted image
generated without any change in secret key parameters. To
test the key sensitivity, frst, encrypt plain image P using the
original secret key parameters listed in Table 8, then encrypt
the same plain image using a minor modifcation of 10− 15 in
any secret key parameter, yielding two encrypted images E1
and E2. NPCR and UACI are computed between to

b1 b2 b3

a1 a2 a3

Figure 6: Analysis of noise attack.
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encrypted images E1 and E2 using the equations (21) and
(22). We performed a key sensitivity analysis on the Lena
image by making minor changes to each secret key pa-
rameter one at a time. Te resulting NPCR and UACI scores
are shown in Table 8, indicating that our proposed cryp-
tosystem is extremely key sensitive and resistant to difer-
ential attacks.

4.12. Randomness Test for Cipher. Our proposed crypto-
system creates enough randomness in the pixel of encrypted
images; a potential invader can never acquire reliable in-
formation about the plain image.Te Nist test in [34] is used
to check the randomness present in the pixels of encrypted
images. Te Table 9 exhibits the two Nist test results, which
confrm that the security of our proposed cryptosystem is
excellent to resist any attack.

4.13. SpeedAnalysis. Te speed and security of any encryption
scheme are the key characteristics in the application of real life.
Te analysis, as mentioned earlier, exhibits that the security of
our proposed encryption scheme is immaculate. We test the
speed of our encryption scheme in MATLAB 2018b on
a compatible computer with Windows 10, 8.00GB RAM, and
an Intel(R) Core(TM) i5-6300U CPU @ 2.5GHz. Table 10
shows the speed analysis of our proposed scheme with other
encryption schemes developed using multidimensional chaotic
maps. Te speed analysis confrmed that our encryption

scheme is unassailable and efcient. Also, the statistical test
results of the baboon image are compared in Table 11 with the
existing encryption scheme.

5. Conclusion

Te novelty of this paper is to generate a unique key stream
and scrambling process (blocks of plain image and pixels of
plain images) using diferent chaotic maps, which is further
utilized to propose a cryptosystem for the security of digital
images during transmission from a potential invader. Te
aforementioned cryptosystem is employed on the standard
grayscale images to see its efectiveness. Te simulations and
results of the experimental analysis demonstrate that the
presented cryptosystem is exceptional in preserving high
security and privacy requirements.We can confdently assert
that the presented scheme is ideally suited to multimedia
communications and online systems.

Table 6: Benchmark values of NPCR and UACI.

Test/size of images 256 × 256 512 × 512 1024 × 1024
NPCR 99.5954 99.5893 99.5954
UACI [33.2824, 33.6447] [33.3730, 33.5541] [33.4183, 33.5088]

Table 7: Results of and after a slight change in randomly selected pixel P(x, y) of Lena, Baboon, Pepper, Cameraman, and House.

Images Size NPCR(%) UACI(%) Randomly selected pixel
Lena 256 × 256 99.6460 33.4271 P(1,1)

Baboon 256 × 256 99.6426 33.4309 P(256,256)

Pepper 256 × 256 99.6475 33.4078 P(167,233)

Cameraman 256 × 256 99.6521 33.4538 P(217,17)

House 256 × 256 99.6353 33.3731 P(128,128)

Table 8: Results of NPCR and UACI after a minor change in any
parameter of secret key.

Parameters Change in parameter NPCR(%) UACI(%)

x0 x0 + 10− 15 99.6048 33.4169
y0 y0 + 10− 15 99.6124 33.3899
z0 zo + 10− 15 99.6613 33.3942
w10 w10 + 10− 15 99.5941 33.3327
w20 w20 + 10− 15 99.5911 33.5274
u1 u1 + 10− 15 99.5834 33.2567
u2 u2 + 10− 15 99.5728 33.3396
u3 u3 + 10− 15 99.6155 33.6749
u4 u4 + 10− 15 99.6094 33.6089
u5 u5 + 10− 15 99.5911 33.5005
n0 100≤ n0 ≤ 1000 99.5956 33.3028

Table 9: Nist test analysis for distinct encrypted images.

Images/tests Frequency Runs Rank
P_value for Lena 0.8265 0.3085 0.0852
P_value for Baboon 0.9761 0.4672 0.0852
P_value for Pepper 0.8420 0.1909 0.0852
P_value for Cameraman 0.2991 0.2048 0.0852
P_value for House 0.6390 0.4285 0.0852

Table 10: Speed of distinct encryption schemes in seconds.

Images Size Proposed [3]
Lena 256 × 256 3.222 3.350
Baboon 256 × 256 3.259 3.504
Pepper 256 × 256 3.316 3.079
Cameraman 256 × 256 3.319 3.371
House 256 × 256 3.284 3.624

Table 11: Comparison of statistical test of baboon image.

Comparison Entropy Chi-square NPCR UACI
Proposed 7.9976 219.5625 99.6426 33.4309
[16] 7.9969 229.73 99.6048 33.5547
[29] 7.9974 247.98 − −
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