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ABSTRACT As the distributed generation (DG) in a power supply and the user load demand constantly
change in an actual distribution network, multiobjective optimal network reconfiguration considering varia-
tions in load and DG has become a major concern, which is important and required to make system operations
safe and economical. The aim is to minimize the sum of the active power loss, the sum of the load balancing
index and the sum of the maximum node voltage deviation index simultaneously during the reconfiguration
period. Here, this article proposes a new Chaos Disturbed Beetle Antennae Search (CDBAS) algorithm to
reduce the computational time and solve the multiobjective optimal problem of network reconfiguration.
To adopt the Chaos Disturbed Beetle Antennae Search algorithm for solving this multiobjective problem,
grey target decision-making technology is used to rank the beetles. Additionally, to the enhance the system
static voltage stability and voltage quality, a grey target decision-making model is established to achieve a
layer relationship between each index and the switching operation index. The plausibility and effectiveness
of the presented methodology is verified on the modified IEEE 33, 69 and 118-Bus Test Radial Distribution
Network. Finally, compared with other research methods in the literature, the CDBAS algorithm outperforms
other algorithms and produces a quality decision solution.

INDEX TERMS Distribution system, load and distributed generation variation, multiobjective optimization,

grey target decision-making, CDBAS algorithm.

I. INTRODUCTION

The combination of residential, commercial and indus-
trial loads creates differences and time variabilities on the
feeders of a distribution network, which make the opera-
tional control of the distribution network very complicated
and pose challenges for system safety and economy as
well as user comfort. Wind power and photovoltaics are
increasingly developed sustainable clean energy sources that
have attracted increasing interest in the last decade due
to increasing power demands and the increasing consump-
tion of fossil fuels. Thus, distributed generation (DG) into
distribution networks has become popular considering the
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technical advantages of DG units in reducing network losses,
balancing demand overloads, improving the node voltage
level and absorbing renewable energy [1]. With the active
management of advanced metering facilities and information
communication technology in the network topology structure
and distributed power supply, a network reconstruction with
different factors, which can deal with the time variabilities of
load and DG more flexibly, is viable.

Distribution network reconfiguration can also be defined as
the status of changing switches to improve system operation.
For example, a dispatcher obtains the optimal network topol-
ogy by opening a closed section switch and then closing an
open tie switch under the condition of satisfying constraints
such as voltage and current limits, radial structures and power
flows. To date, many researchers have investigated network
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reconfiguration with classic techniques and heuristics for
single and multiple objectives with the aim of achieving a safe
and reliable operation point of the distribution system [2]—[4].

Many studies have exploited hybrid algorithms based on
previously cited researchers who proposed methods for mul-
tiobjective distribution system reconfiguration in a structure,
as in [5], [6], and other studies have considered the corre-
lation among objectives by the grey correlation method in
evolutionary programming and its role in optimizing parti-
cles by integrating the objectives. Additionally, some studies
have focused on providing the multiobjective problem of
network reconfiguration with different techniques, such as
fuzzy evaluation theory [8]-[10] and cloud theory [11], and
all of these approaches can obtain ideal solutions with better
objectives [12], [13]. These methods, which are subject to
uncertainty theory, can improve the quality of the solutions,
especially for traditional distribution systems, but they cannot
achieve the optimal variability of load and DG for a distribu-
tion network.

In the literature, studies have examined the concept of
optimal multiobjective reconfiguration with the variability of
load and DG in the distribution system. The authors of [14]
used a multiobjective reconfiguration evolutionary technique
of a distribution feeder system with wind turbines and fuel
cells to consider the variability of wind power output and load
demand for the benefit of minimum losses and better eco-
nomic costs. Additionally, [15], [16] had the same objective
and considered the same distributed generation with different
techniques but did not address the calculation time, and other
authors have studied multiobjective reconfiguration from the
aspect of the convergence rate based on the security index
to achieve the best result where the number of iterations is
an obstacle [17], [18]. Some of these studies did not con-
sider load time variation [19], [20]. Then, the author of [21]
established a bi-objective dynamic reconfiguration model
that considers the optimal equilibrium relationship between
loss reduction and switching action reduction to obtain the
best solution, but the load balance and voltage quality were
not considered.

All of the abovementioned papers demonstrate the mul-
tiobjective reconfiguration of distribution networks based
on specific types of metaheuristic and some new tech-
niques to achieve different objectives, which are converted
to a single objective aiming to find a trade-off solution
by the most common methods, such as the compromise
model [22]-[25], the entropy method [26], and the analytic
hierarchy process [21], [27], without considering the mutual
constraints among the objectives. However, the simple mul-
tiobjective traditional methods are no longer applicable for
an automated distribution system with multiple conflicting
objectives for scheduling known optimized solutions simul-
taneously. To solve the trade-off solution problem, we use
the grey target decision-making technique to establish a layer
relationship between active power loss, the load balanc-
ing index and the maximum node voltage deviation index
with the number of switching operation indices for optimal
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multiobjective network reconfiguration. Here, this paper uses
a Beetle Antennae Search algorithm based on Chaotic Distur-
bance (CDBAS) to solve the problem of multiobjective opti-
mal network reconfiguration to reduce the calculation time
through the individual advantage of the beetle. The Beetle
Antennae Search, first designed and developed by Jiang X Y,
is a bioinspired intelligent optimization algorithm, which was
inspired by the foraging principle of beetles [28], [29]. The
original Beetle Antennae Search (BAS) algorithm often con-
verges slowly, has low accuracy and searches for local optima
easily. To avoid the above shortcomings, the original BAS
combined with the chaotic disturbance mechanism (CDBAS)
approach is proposed. A grey target decision-making tech-
nique [30] is adapted to the CDBAS algorithm for deter-
mining the order of the beetles with the solution problem of
multiobjective optimization network reconstruction. Finally,
we simulate the proposed methodology in the modified IEEE
33-bus Distribution Network System and subsequently anal-
yse the optimization results, which verify the feasibility and
validity of the method. In addition, compared with other
methods in the literature, the proposed methodology can
achieve better for solution quality.
The main contributions of this paper are as follows:

+ We propose a new CDBAS method for a multiobjec-
tive optimization network reconstruction model, which
enhances a reduction in calculation time.

o We propose a grey target decision-making technique
for the order of beetles, which can achieve the actual
solution required by personnel.

« To enhance the system voltage quality and stable sys-
tem operation, we use the grey target decision-making
method to achieve the layer relationship between each
index and the number of switching operation indexes.

o To ensure safe and economical system operation,
we carry out 5 reconfigurations according to the load
curve over 24 hours.

The logical framework of this work is as follows.
Section I provides the load and DG curves. Section III
introduces the objective functions and the constraint.
Section IV describes the calculation process of the grey tar-
get decision-making method. Section V explains the CDBAS
algorithm. Section VI demonstrates the simplification and
encoding of topology based on a basic loop. Section VII
shows the test results of 8 benchmark functions from the
CDBAS algorithm, the results from the modified 33, 69
and 118-bus system and a comparison with other methods.
Finally, Section VIII presents the paper’s conclusions.

Il. LOAD AND DG PATTERN

The variation in the DG power supply and user load demand
during a typical day has a significant effect on the safe and
economical operation of a power system.

A. LOAD DEMAND PATTERN
Since users have relatively fixed demand proportion curves
during a typical day in the same region and season, the loads
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FIGURE 1. Load duration curves of each type for 24 hours.
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FIGURE 2. Wind and photovoltaic output curves.

can be described by demand proportion curves per day [31].
In general, the load obtained by daily loads in summer in a
certain region involves three categories: residential, industrial
and commercial, as shown in Fig. 1. The load curves of each
node are different, and the daily load curve Pr; of node ‘i’ can
be described as

Pri=) Pyiflids ey

ses

where S = {s|1,2,3} is the set of load types; s = 1 is
residential, s = 2 is industrial, and s = 3 is commercial; Py;
is the rated power of load node ‘i’; and 6y; represents the ratio
of load type ‘s’ in the total load of node ‘i’. §; represents the
demand curves of load type ‘s’

B. TYPICAL DG OUTPUT

The duration curves of wind power and photovoltaic power
generation are shown by curves for a day in summer in a
certain region in Fig. 2. The load data of each node and the
DG output can be obtained by prediction techniques in the
actual operation of the system.

Ill. PROBLEM FORMULATION

A. OBJECTIVE FUNCTION

Considering the optimization objective of network reconfig-
uration from the aspects of economy, voltage quality and load
balance is practical. Here, the sum of the active power loss,
the sum of the load balancing index and the sum of maximum
node voltage deviation are used to test the performance for
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the distribution system during hourly or every few hours of
reconfiguration.

1) POWER LOSS INDEX
The calculation formula of active power loss for a distribution
system is described as

L. M

fl_manZDR P2+Q2 (2)

T=1m=1

where P, represents the active power of the mth branch,
Oy, represents the reactive power of the mth branch, R,
represents the resistance of the mth branch, V,, represents the
initial voltage of the mth branch, D,, is the binary value, D),
represents the closed switch status in the mth branch when
D,, = 1, D,, is the opening switch status for the ith branch
when D,, = 0, M represents the number of branches, and TL
represents the time length.

2) LOAD BALANCING INDEX

Load balancing requires the transfer of the negative load on
the heavy line to the light line for network reconstruction, the
load-balancing index is calculated as

L. M
P2+ 2
fr=minyD Yo DA En @)
T=1m=1

where S)'“* represents the maximum complex power of
branch ‘m’.

3) VOLTAGE DEVIATION INDEX

TL
. Vi—-Vir Vi—Vi VN —Vnr
f3=mmZmax N s
Vlr VNr

“

where V; represents the virtual voltage of the ith node, V;.
represents the rated voltage of the ith node, and N represents
the total number of nodes.

B. OPERATIONAL CONSTRAINTS
1) NETWORK POWER FLOW CONSTRAINT

N
P; + Ppgi — Pi = V; »_ Uj(Gjjcos 0 + By;sin ;)
=1
N ®)
Qi+ Opci — Qi = Vi ), Ui(Gjjsin 6 — By cos 0;)
j=1

where Ppg; represents the active power of the DG connected
to the ith node.

2) NETWORK NODES VOLTAGE LIMITS
Vimin S Vi S Vimax (6)

where Vi’"i" and V"* are the allowable minimum and maxi-
mum values of the voltage at node i, respectively.
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3) NETWORK LINE CAPACITY LIMITS
Sk < S N

where §;"** represents the allowable maximum capacity of
branch ‘k’.

4) RADIAL NETWORK CONSTRAINT
The network structure should meet radial topological con-
straints.

IV. GREY TARGET DECISION-MAKING MODEL
Because of the conflicting indexes, in this study, we use a grey
target decision-making technique to solve the multiobjective
problem to find the best reconfiguration solution. The opti-
mization solution decision model is established by the grey
target decision-making technique [30] considering the rela-
tionship between each index and the number of switching
operation indexes.

Here, we define decision scheme set S = {S{, Sp,---, S,
-+, 8y}, which is obtained by the CDBAS method, so switch-
ing operation index fp is modeled as follows:

TL N
fo= Z ZO'S (Dj,i+1 ® Dji + Dji @ Dji-1),
T=1 j=1
i=0,1,2,3 (8)

where Dj; is the status of switch ‘j” of reconfiguration scheme
S, Dj i+1 and Dj ;1 are the statuses of switch ‘j” for the other
two reconfiguration schemes S;, and fp is the switch operation
index of reconfiguration scheme ‘i’.

Additionally, the grey target decision-making technique
can be defined as finding the shortest distance between the
solution of the candidate scheme set and the ideal solu-
tion, which is calculated as the decision value determined
by the objective function. First, the effect sample matrix
T = [t;] is formed, and the defined factor Z; is calculated

nxm
by the effect value determined for each index.
tj = w1fij + wafp ©)
where 7;;(i=1,2,--- ,n;j=1,2,---, m)is the effect value

of decision scheme S; with respect to objective j. fj; is the
evaluation index of scheme S; with respect to objective ‘).
wj(where i = 1, 2) is calculated by the entropy method [26].

1 n
z,-=;Zt,-j, ji=1,2,,m (10)
i=1

Then, the decision matrix R = [r],,, ,, is formed according
to decision values (11), (12), and (13) with the benefit objec-
tive function, cost objective function, and interval objective
function.

(tj — 7))

(11)

r,-j =
o |, () =55~ i, )

VOLUME 8, 2020

where r;; represents the decision value when the objective
function is defined as the benefit type index.

(zj — tij)

ry = (12)
max { max {#;j} — zj, z; — min {ZU}}

1<i<n 1<i<n

where r;; represents the decision value when the objective
function is defined as the cost type index.

2t —a — min {t;
. s ij<a
a— min {t;
min {r;}
rij =131, a<t;j<bh (13)
2t;i — b — min {t;
i min {1}
min {t} b j > b
1<i<n Y

where r;; € [—1, 1] represents the decision value when the
objective function is defined as the interval [a,b] index.
However, we define the decision vector to be r0 =
0 0

{r, 19, -, r0}, that is, the centre of the grey Barget,

corresponding to the ideal solution S°, where roo=
max{rij|1 <i<n},j= 1,2,--- ,m.

According to the grey target decision-making definition,
the closer the target centre moment of solution S; is to ideal
solution Sy, the better the solution S; is, and the distance

between solution S; and ideal solution Sy is expressed as

diz)ri—r

D vt — D) (14)
j=1

where y;,G = 1,2,---,m) is the weight of each
decision-making objective obtained by combining the
entropy method with the analytic hierarchy process [32].

V. THE BASIC CONCEPT OF BEETLE ANTENNAE SEARCH
(BAS)
A. BAS
The Beetle Antennae Search is a bioinspired intelligent opti-
mization algorithm inspired by the foraging principle of bee-
tles, which is based on the smell of food using two antennae.
If the left antennae receives a stronger odour than the right
antenna, then the next step is to fly to the left and not the
right. The beetle can determine the position of the food
effectively according to this principle. The smell is regarded
as a function, and the optical value of the function can be
found by collecting the odour value of two points near the
beetle.

The beetle produces a random vector method to determine
the direction of food, and the random direction is generated

as follows:
J_ rands(n, 1) (15)
" |rands(n, 1))

where rand(n,1) represents a random function and n repre-
sents the dimension of space. Then, according to the direction
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vector, the left and right antennae of the beetle are defined as

t t >
x;=x"+do-d

e 16
xt=x"—dy-d (16)

where xl’ and x! respectively represent the location of the

search area on the left and right of the beetle at time 7, x’
represents the position of the beetle at time ¢, and dj is the
length between the left and right antennae at time ¢. The odour
intensity of the left and right antennae can be defined as f (x])
and f (x!) function, and then we can calculate the position of
the beetle at the next moment as follows:

X =Xt =8 d - sign(f(x]) — f(x1)) (17)

where f (-) is the fitness function, 8’ represents the step size
at time ¢, and sign(-) is a sign function. To search the optimal
solution, the step size decrease with the number of iterations
increases as follows:

§t=x.8"1 (18)

where A is the attenuation coefficient of the step length 6. The
length d between the right and left antennae, for practical cal-
culation, is variable with step size, and this can be generated
by the following formula

dop=38"/c (19)
where c is a constant, generally from 2 to 10.

B. CHAOTIC DISTURBANCE BAS

In the BAS algorithm, because a beetle population is dif-
ficult to maintain in the optimization process, the antennae
must be an individual search, and it often converges to local
optima. To address this shortcoming, a BAS with chaotic
disturbance (CDBAS) that combines BAS with a chaotic
local search is proposed in this study. First, a beetle that
needs chaotic disturbance is found according to the similarity,
which is calculated by the similar function (20). Chaotic
sequences are generated by the logistic map in this paper (22),
which is described as follows:

1’ d(l,]) < dmax - dmm
¢ = 24 (20)
0’ d(l’ J) 2 max min
2
where d(i,j) is the Euclidean distance from individual i to j, i is
the beetle with the best fitness, d,,;, is the Euclidean distance
of the nearest individual to i, and d,,, is the Euclidean
distance of the beetle farthest from i.
The similarity is described as follows:

N
C=) G @1)

i=1
Logistic map is described as follows:

C > 0.2N
if not

Xi = pXg(1l = X)

Co (22)
No chaotic disturbance
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TABLE 1. Algorithm 1 CDBAS algorithm.

Algorithm 1 CDBAS algorithm

Input: System parameters, loads and DG, index constraints, and

CDBAS algorithm.

Output: the optimal switch combination.

: Generate ‘pbest’ beetles to be the initial population number

randomly.

tic

:for i=1: Ndo

: Evaluate the indexes for these initial beetles.

: Sort the beetles by using grey target decision-making technique, the

best solution ‘gbest’ is retained by (14).

for k=1: pbest do

7: Each beetle generates the position coordinates of the left and right
antennae depending on its decision value. The beetle’s antennae
length d is reduced according to the given formula: df = r = d*~1,

8: Chaotic disturbance mechanism is carried out for the beetles by
using similarity theory, according to the given formula: C =
Di=0Ci-

9: Rank the beetles by using grey target decision-making technique,
and the best beetle ‘gbest’ is retained as a basic solution for
chaotic disturbance mechanism.

10: end

11: end

12: Return ‘gbest’ and corresponding results of each index.

a

where Xj is the k-dimensional variable of chaotic sequence
X, thatis, X € [0, 1], u € (3.569, 4), and N is the number

of populations.
The chaos initial population is scaled into [0,1], and the
chaotic sequence G = {Xl, ...... XS } can be obtained in

accordance with iteration (23),

newXy = bmin + (bmax — bmin) Xk (23)
where by, and by, are the upper and lower boundary
values of k-dimensional variable newXy,
respectively.

C. MULTIOBJECTIVE CDBAS BASED ON GREY TARGET
DECISION-MAKING METHOD

With the aim of adopting the CDBAS algorithm for solv-
ing multiobjective optimization problems, a grey target
decision-making theory is applied to achieve the power of the
beetles, that is for sorting the beetles.

Here, the proposed method randomly generates the initial
population of ‘pbest’ beetles in the specified search range.
The corresponding indexes of these initial beetles are calcu-
lated and then sorted by using the grey target decision-making
technique. Furthermore, each beetle generates the left and
right antennae spatial position coordinates depends upon its
decision value. The chaotic disturbance mechanism is carried
out for better beetles depending on the best beetle and each
beetle generates a new position according to the left and right
antennae spatial position coordinates. The population is again
ranked, and this computation continues until the specified
target condition is reached. Moreover, Table 1 and Fig. 3
show the procedure process and the flowchart of the CDBAS
method.
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FIGURE 3. Flowchart of the proposed CDBAS algorithm.
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FIGURE 4. Simplified diagram of the IEEE 33-bus distribution network.

VI. SIMPLIFICATION AND ENCODING OF TOPOLOGY

BASED ON BASIC LOOP

A. OPTIMAL NETWORK RECONFIGURATION

In general, the optimal network reconfiguration is achieved
by changing the status of the switches including normally
closed switches and normally open switches, while satisfy-
ing the constraint in any distributed system. Only tie-line
switches are allowed to be open, and the other switches are
closed to generate a solution vector to reduce the computa-
tional speed of the system. With the aim of generating fewer
infeasible solutions, all switches are initially closed, and then
only one switch is selected to be open for each loop under the
condition of satisfying the constraints, which are the radiation
and connectivity of the network structure. In addition, the
number of open switches (i.e., tie switches) is defined as the
size of the problem decision variable.

VOLUME 8, 2020

TABLE 2. Loop vectors of the 33 bus radial distribution system.

Loop All switches

Loopl 8,7,6,5,4,3,2,18,19,20,21,33

Loop2 9,10,11,12,13,14,34

Loop3 11,10,9, 8,7,6,5,4,3,2,18,19,20,21,35

Loop4 32,31,30,29,28,27,26,25,6,7,8,9,10,11,12,12,14,15,16,17,26
Loop5 24,23,22,3,4,5,25,26,27,28,37

For example, the modified IEEE 33-bus radial network
which is represented in Fig. 4 below is considered to eval-
uate the performance of the proposed methodology. In this
network, the number of normally open switches is 5, and the
CDBAS algorithm generates a 5-dimensional vector as the
size of the problem decision variable based on the condition
of satisfying the constraints. However, the indexes are calcu-
lated according to the generated feasible solution which is to
maintain the radial and connected network structure, and the
generated unfeasible solution can be replaced by generating
a new solution immediately. To detect the radial network
structure, an incidence matrix is generated according to the
distribution network topology in Fig. 4.

We adopt the encoding method of particles based on the
loop topology by which only one switch can be selected
in each loop. Table 2 shows loop vectors formed according
to the distribution network topology in Fig. 4. The binary
numbers 0 and 1 are used to encode the open and closed
states of the contact switch. In (24), (1 or 0) means take ‘1’
or ‘0’, and D;; represents the opening and closing state of the
Jj section switch in loop ‘i’. When (lor0) is taken to 1, the
contact switch of loop ‘i’ is closed, and Dj; indicates that
the segment switch ‘j° of loop ‘1’ is disconnected. When
(1 or 0) is taken to O, the segment switch ‘j° in Dj; takes a
random number, in other words, the contact switch in loop ‘7’
is disconnected, and the segment switch is closed.

{Lor O)|(D1)] --- (Lor O)(Dy)] --- |(1 or O)(Dyp} (24)

B. CDBAS METHODOLOGY FOR OPTIMAL
MULTIOBJECTIVE RECONFIGURATION

With the CDBAS methodology used for solving the multiob-
jective network reconfiguration problem for the distribution
system, each beetle is defined as a solution vector consisting
of open switches. The randomly generated dimension of the
initial population is the number of switches to be opened in
the system, and it moves to the optimal reconfiguration solu-
tion step by step through the iteration update of the orientation
position. The position of the beetle is used to simulate the
switching state of each one-dimensional switch. The fitness
value in the CDBAS approach for optimal network reconfig-
uration is the distance d; of the grey target decision-making
design for the three indexes in the system including active
power loss, load balancing and maximum node voltage devi-
ation, as described in Section III. The solution corresponding
to the minimum value of distance d; is obtained in accordance
with the ranking of the distance d;. Next, the population is
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ranked by using grey target decision-making theory, and the
population is updated by using the CDBAS method. Further-
more, the generated feasible solution obtained for optimal
network reconfiguration by the proposed method must satisfy
the radial constraint and be feasible to provide services for all
the loads with the level values of voltage and current. If the
generated solution violates one of the constraints set in this
study, the solution is discarded.

VII. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS

A. EXPERIMENTAL DESIGN

1) BENCHMARK FUNCTIONS

To verify the performance of the proposed CDBAS
algorithm, 8 benchmark functions are tested in the simu-
lation. Table 3 shows the expressions, dimensions, search
ranges and theoretical optimal values of 8 benchmark func-
tions. The functions gl-g3 are typical unimodal functions,
which are mainly used to test the accuracy, convergence
rate and global search ability of the algorithm. The g4-g8
functions are continuous multimodal functions and have an
infinite number of local minimum points centered on the
global minimum and the radial ring region. Therefore, these
functions are often used to test the global optimization ability,
the convergence rate and the local optimal avoidance ability
of the algorithm.

Here, to set the parameters of the CDBAS and BAS algo-
rithms, the initial population size of the beetles is 100, the
maximum number of iterations is 200, the descending coef-
ficient of longicorn step size is A = 0.95, the degradation
factor of step size to beetle antennae is ¢ = 5, and the initial
maximum step size is § = 1.

The two algorithms run independently 30 times, and the
search dimension of each function is 5, 10 and 30. Then, the
performance of the algorithm is compared and analysed by
comparing the accuracy of the results and the evolution curve.

2) ALGORITHM ACCURACY COMPARISON

The precision and robustness of the algorithm are evaluated
by the optimal value, the worst value, the average value
and square difference tested benchmark functions with 5, 10
and 30 dimensions, which are shown in Table 4, Table 5 and
Table 6, respectively.

Taking the functions g1-g3 in Table 4, Table 5 and Table 6
as an example, the precision of the CDBAS algorithm is
higher than that of the BAS algorithm and the robustness is
better. From the comparison results for the functions g4-g8,
the CDBAS also enhanced the global search ability; it was
very easy to avoid the local optimal pole since the temporal
perturbation decreased continuously with the increase of the
supernumerary number.

VIIl. TEST AND ANALYSIS OF CDBAS ALGORITHM FOR
DISTRIBUTION NETWORK RECONSTRUCTION

To validate the presented method and compare it with other
methods, the optimal network reconfiguration is solved for
the following cases:
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FIGURE 5. The output distribution of DG in 24 hours.

Case-1. Minimization of active power loss with reconfigu-
ration one time over 24 hours

Case-2. Minimization of the load balancing index with
reconfiguration one time over 24 hours

Case-3. Minimization of maximum node voltage deviation
with reconfiguration one time over 24 hours

Case-4. Simultaneous minimization of active power loss,
load balancing index and maximum node voltage deviation
with reconfiguration one time over 24 hours

Case-5. Simultaneous minimization of active power loss,
load balancing index and maximum node voltage deviation
with reconfiguration five times over 24 hours

Case-6. Simultaneous minimization of active power loss,
load balancing index and maximum node voltage deviation
with reconfiguration twenty-four times over 24 hours

A. 33-BUS TEST SYSTEM

The performance and effectiveness of the presented method-
ology is verified on the modified IEEE 33-Bus system and
compared with other methods. Fig. 4 shows single diagram
of this network with 4 DG networks. The specific parame-
ters and the locations of DG access are shown in Table 7.
Table 8 and Table 9 show the proportion load and distribution
in hours for three types of load in each bus and for that
considered in the study case on the modified IEEE 33 bus
network [33]. Fig. 5 shows the output distribution of DGs
in 24 hours.
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TABLE 3. Benchmark functions.

Name Function Dim Range gmin
d
Sphere g()=>x 5 [-10,10] 0
i=1
d-1 5
Rosenbrock g,(x)= Zl:l OO(xM ) + (xl. - 1) ] 5 [-10, 10] 0
i=1
D 2
Step 25 (%) =Z[x,. +0.5] 5 [-10,10] 0
Ackley 2,(x)=—20exp[-0.2 FZx 1- exp{ Zcos 27X, )} 5 [-10, 10] 0
i=1 i=1
Rastrigin g.(x)=10d + Z[xf ~10cos (27x,) | 5 [10,10]  ©
i=l1
—1
g,(x) =sin’ (7z,) Z (z,-1)'[1+10sin’ (zz, +1)]
Levy = 5 [-10,10] 0
(z 71) I: +sin’ (27[Zi):|
d 2
Dixon-Price g0 =(x 1)+ (257 —x.,) 5 [-10,10] 0
i=2
ix?
Michalewicz g, (x) = Zsm )sin® (J 5 [0, 7] 4.68766
Va
1, | 1 1
£ T * ;;osx * é"‘”‘ *
go% ’;ifﬂ% E 096 § 096
40 3 40 40 , 40 o 40 “
2 — 30 30 3

. 2 20
10

Time(h)
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(a) Original system (b) CDBAS algorithm

FIGURE 6. Voltage profile of the 33 bus networks with DG for 24 hours.

Power loss(kW)

Power loss(kW)
Power loss(kW)

IS
£y

20

Nodes Time(h) Nodes Nodes 00

Time(h)

(a) Original system (b) CDBAS algorithm

FIGURE 7. Power loss profile of the 33 bus networks with DG over 24 hours.

1) VALIDATION OF CDBAS ALGORITHM

The simulation results of IEEE 33-node systems with DG
for Cases 1, 2, 3 and 4 are given in Table 10. From the
results shown for Cases 1, 2 and 3 in Table 10, the opti-
mal solution obtained by the proposed algorithm is better
than the results obtained in reference [16] and [34]. We can
see that the indexes conflict with each other to minimize
each index simultaneously to achieve the optimal solution.
A comprehensive solution with three objectives considering
the numbers of the switching operations index for the optimal
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operation of the distribution system is studied and obtained
in Case 4. In addition, the total running time for optimal
reconfiguration proposed algorithm in Case 4 is 90.99 s which
has been reduced 132.73 s and 95.23 s in comparison with
algorithm used in [16] and [34], respectively.

2) VERIFICATION OF ALGORITHM SUPERIORITY

Fig. 6, Fig. 7, and Fig. 8 show the node voltage distribution
(standard unitary value), power loss and load balance of the
network before and after reconfiguration with DG based on
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TABLE 4. Performance comparison of eight functions when the search

dimension is 5 - D.
Function Algorithm Min Max Mean Std
gl BAS 2.87E-09  21.0864 0.8590 3.1465
CDBAD  2.74E-10  28.1357 0.2108 2.0629
g2 BAS 3.631832  23286.5 491.01 2182.58
CDBAD  0.002134  25526.6 132.14 1800.57
23 BAS 0.199188 60.7465 3.8084 10.2879
CDBAD  1.46E-10 8.00586 0.0838 0.6327
g4 BAS 4.662396  6.23432 4.8207 0.3519
CDBAD  2.01E-05 8.37930 0.2187 0.7369
g5 BAS 19.89912 83.9379 23.039 7.5595
CDBAD 1989918  44.2729 2.8613 3.4673
26 BAS 2.661713 11.1671 2.8905 0.7524
CDBAD  1.16E-10 5.90420 0.0405 0.4287
g7 BAS 0.791491 1061.37 21.2476 108.17
CDBAD  2.52E-06 642.682 3.5580 45.3830
28 BAS -3.95807 -1.9696 -3.6619 0.3614
CDBAD -4.6459 -1.7953 -4.3530 0.5022

TABLE 5. Performance comparison of eight functions when the search

dimension is 10 - D.
Function  Algorithm Min Max Mean Std
gl BAS 4451857  131.385  51.8854 16.0775
CDBAS  2.61E-09 1319895 09192 9.4616
22 BAS 27054.55 282696.1 44903.5 42854.4
CDBAS 1.543409 311573.1 1589.84 21974.7
3 BAS 36.76735 131.2202  44.3479  16.5185
CDBAS 1.51E-09 170.4503  1.2885  12.2049
g4 BAS 9.473361  11.57903  9.7775 0.5471
CDBAS  0.005384 10.72807  0.5785 1.2065
g5 BAS 132.4149  260.2307  146.61 249110
CDBAS  4.976304 2347365 12.4445 20.5692
g6 BAS 6.818 38.99361  7.9337 3.7729
CDBAS  0.049731 24.1843 0.3081 1.7691
g7 BAS 7251.713 560309  11444.8 9946.48
CDBAS  0.666823 44601.79 24329  3149.69
g8 BAS -6.89082  -3.81419  -5.9854  1.0940
CDBAS -8.45474  -3.1251 -7.3901 1.4311

TABLE 6. Performance comparison of eight functions when the search

dimension is 30 - D.

Function _ Algorithm  Min Max Mean Std

gl BAS 504.1234  614.7341  516.126  23.7369
CDBAS 4.114349 6252035 10.4461  44.5750

g2 BAS 1279450 2142033 1362497 167864
CDBAS 392.8495 1458568  8584.62 102859

g3 BAS 493.6879  645.1843  508.02 29.8937
CDBAS 8.634809 5784035 16.5156  41.9549

g4 BAS 11.86322  12.99106 12.0645  0.3007
CDBAS 2983314 13.42507 3.3847 0.9806

g5 BAS 804.7249  1011.373  829.59 39.9880
CDBAS 55.80578  971.2369 94.7385  82.4684

26 BAS 85.53 172.75 95.2692  19.0005
CDBAS 2.837398  164.4318  4.3520 11.5809

g7 BAS 0.791491 1061.367 21.2476  108.17
CDBAS 2.52E-06 642.6815 3.5580 45.3830

g8 BAS -12.3822  -6.16081  -10.876 1.5648
CDBAS -16.086 -6.64302  -13.901 2.3632

Case 4 using CDBAS, Particle Swarm Optimization (PSO)
in [16], Genetic Algorithm (GA) in [34] and BAS for the
distribution network. The results show that the three indexes
of the proposed methodology are better than those of the
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TABLE 7. The specific parameters and the locations of DG access to IEEE
33-Bus system.

Location _ Type Capacity Power factor
DGl 8 Wind turbine 600kW 0.95
DG2 18 Photovoltaic panels 300kW 0.95
DG3 24 Micro gas turbine 700kW 0.95
DG4 30 Wind turbine 600kW 0.95

TABLE 8. The proportion of three types of load in each bus.

Residential/Industrial/

Residential/Industrial/

Nodes Commercial load Nodes Commercial load
2 0.5 0.3 0.2 18 0.5 0.1 04
3 0.3 0.2 0.5 19 0.2 0.3 0.5
4 0.2 0.3 0.5 20 0.3 0 0.7
5 0.1 0.3 0.6 21 0.3 0.2 0.5
6 0.4 0.2 0.4 22 0 0.7 0.3
7 0 0.4 0.6 23 0.4 0.1 0.5
8 0.3 0.4 0.3 24 0.5 0.1 04
9 0.6 0 0.4 25 0.4 0 0.6
10 0 0.7 0.3 26 0.3 0 0.7
11 0.2 0.2 0.6 27 0 0.9 0.1
12 0.5 0 0.5 28 0.3 0.1 0.6
13 04 0 0.6 29 0.1 0.5 04
14 0.4 0.2 0.4 30 0.2 0.1 0.7
15 0.1 0.4 0.5 31 04 0.2 04
16 0.7 0.1 0.2 32 0.1 0.7 0.2
17 0.3 0.4 0.3 33 0.7 0 0.3

TABLE 9. The load distribution in hours of three types of load.

Residential/Industrial/

Residential/Industrial/

Hours Commercial load Hours Commercial load
1 0.1 0.3 0.1 13 0.7 0.5 0.6
2 0.1 0.3 0.1 14 0.6 0.6 0.7
3 0.1 0.4 0 15 0.5 0.8 0.8
4 0.1 0.2 0 16 0.6 0.8 1
5 0.4 0.2 0 17 0.7 0.7 1
6 0.3 0.3 0 18 0.8 0.7 0.8
7 0.4 0.3 0.1 19 0.9 0.8 0.6
8 0.4 0.4 0.2 20 1 0.9 0.7
9 0.3 0.8 0.7 21 1 1 0.6
10 0.3 1 0.8 22 0.6 0.8 0.2
11 0.5 0.9 0.8 23 0.5 0.5 0.1
12 0.6 0.9 0.7 24 0.2 0.4 0.1
—+Result of PSO
Result of GA
.g 0.15 —£—Result of BSA
g
N
R=
Q
g
= 0.1
°
kel
g
2
—o—Result of original system
0.05 Result of CDBSA
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Time(hour)

FIGURE 8. Load balance profile of 33 bus networks with DG over 24

hours.

other three methods for distribution network reconfiguration
considering variations in load and DG over 24 hours.
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TABLE 10. Simulative results of the IEEE 33-bus system with DG.

Active power

Load balancing

Maximum node voltage Running time No. of switching

Cases Methods Open switches loss (kWh) index (p.u) deviation (p.u) (s) operations
Original system 3334353637 857.54 2.7733 0.8660 - -
CDBAS 714111728 574.30 2.2571 0.4995 94.33 10
C 1 PSO in [16] 714103228 574.69 2.2745 0.5282 232.72 10
ase- GA in [34] 71310 16 28 588.01 2.2753 0.5492 199.72 10
BAS 71391628 588.52 2.2634 0.5449 99.53 10
CDBAS 713101627 596.41 2.2246 0.5635 97.33 10
Case-2 PSO in [16] 713101727 590.45 2.2264 0.5226 235.72 10
GA in [34] 713101727 590.45 2.2264 0.5226 187.94 10
BAS 614111528 616.49 2.3195 0.5925 94.50 10
CDBAS 714111728 574.30 2.2571 0.4995 93.91 10
Casc-3 PSO in [16] 71291728 589.22 2.2779 0.51406 221.72 10
GA in [34] 71391628 588.52 2.2634 0.5449 179.02 10
BAS 71291728 589.22 2.2779 0.51406 91.11 10
CDBAS 714111728 574.30 2.2551 0.4995 90.99 10
Casc-4 PSO in [16] 714101728 574.77 2.2572 0.5004 223.72 10
GA in [34] 714103227 580.86 2.2600 0.5066 186.22 10
BAS 714111727 581.08 2.2437 0.5037 93.65 10
200 1 i ; T i i 1 3500
BAS algorithm
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2160 | : £ 2500f
[5) [}
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120 FIGURE 10. Total load demand curve over 24 hours.
BAS algorithm
100 — CDBAS algorithm
I —GA algorith I . :
o Psoaj;:rit:m It is clear that the maximum total power loss of each
=2 go! algorithm for the distribution network over 24 hours is
; 857.54 kWh, 574.77 kWh, 574.77 kWh, 580.86 kWh, and
2 601\ 581.08 at 12 a.m.
- From the results of Fig. 6 voltage and Fig. 7 active power
40 loss, we can see that the voltage and active power loss results
of CDBAS algorithm are slightly better to compare the PSO
20

0 10 20 30 40 50 60
Iteration
(b) Distribution system with DG

FIGURE 9. Global convergence curves of the proposed algorithm and
algorithms in reference [16] and [34].

The voltage profiles of the 33 bus networks before and
after reconfiguration during for 24 hours are illustrated in
Fig. 6. It is clear that the minimum voltage amplitude of
each algorithm is 0.9450 p.u. at 11 a.m, 0.9650 p.u. at 9 p.m,
0.9635p.u. at 9 p.m, 0.9620 p.u. at 9 a.m, and 0.9631 p.u.
at9 am.

Fig. 7 shows the power loss profile of the 33 bus net-
work before and after reconfiguration with DG for 24 hours.
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algorithm [16], the GA algorithm [34] and the BAS algo-
rithm. In other words, the CDBAS algorithm is better in
global optimization ability.

Fig. 8 shows the load balance before and after reconfigura-
tion for 24 hours. The results show that the total load balance
value for each algorithm over 24 hours is 2.7733, 2.2551,
2.2572,2.2600 and 2.2437

3) EFFICIENCY VERIFICATION OF ALGORITHMS

From the results shown for the population evolution of the
four algorithms in Fig. 9, the number of iterations and
global optimization capability of the CDBAS algorithm are
better than those of the other three algorithms. The min-
imum number of iterations of the CDBAS algorithm is
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TABLE 11. Real-time results of Cases 5 and 6 of the 33-bus system over 24 hours.

. . L Maximum node voltage Nurpber_s of
Open switches Active power loss (kW) Load balancing index (p.u) deviation i switching
eviation index (p.u) .
Hour operations
Original system /Case5/ Original system/Case-5/ Original system/Case-5/ Case-5/
Case-5 Case-6 Case-6 Case-6 Case-6 Case-6

1 614111627 1275 9.53 991 0.0823  0.0659  0.0648  0.0225 0.0125  0.0143
2 61410 614111737 9.56 7.52 7.74 0.0731  0.0624 0.0562 0.0161  0.0092  0.0091
3 3237 613101626  8.42 6.54 6.54 0.0676  0.0521  0.0521  0.0147  0.0074  0.0074
4 614111737 7.77 5.99 6.19 0.0654  0.0543  0.0494 0.0136  0.0069  0.0064
5 613101737  8.47 5.97 7.50 0.0676  0.0542  0.0581  0.0199  0.0099  0.0126
6 714111728 18.48 11.41 12.05 0.0952  0.0716  0.0747  0.0305 0.0153  0.0194
7 331493628  39.13 23.68 24.19 0.1280  0.1001  0.1008  0.0427  0.0232  0.0285
8 714932 71493628 61.43 36.65 36.85 0.1561  0.1222  0.1233  0.0518  0.0285  0.0333
9 28 714103228 71.64 43.35 43.17 0.1648  0.1320  0.1327  0.0532  0.0313  0.0307
10 71493228 75.61 44.81 44.81 0.1673  0.1347  0.1347  0.0539  0.0317  0.0317
11 714103228 77.11 47.51 47.54 0.1652  0.1343  0.1351  0.0550  0.0337  0.0337
12 714103228 73.22 45.82 45.94 0.1615  0.1320  0.1327  0.0537  0.0332  0.0332
13 714932 71491728 67.48 44.47 44.86 0.1523  0.1283  0.1338  0.0518  0.0310  0.0344

14 23 71493128 46.17 28.36 28.74 0.1270  0.1057  0.1060  0.0441  0.0247  0.0228 28 88
15 71493128 39.70 24.81 24.96 0.1198  0.1024  0.1023  0.0407  0.0256  0.0227
16 714113128 25.99 18.35 19.65 0.1005  0.0887 0.0864 0.0314  0.0208  0.0218
17 33107 714113228 25.70 19.00 19.14 0.1020  0.0851  0.0852  0.0293  0.0197  0.0197
18 3228 713103228  20.73 15.85 15.92 0.0942  0.0780  0.0788  0.0254  0.0164  0.0164
19 714113228 29.40 20.82 21.22 0.1147  0.0940  0.0950  0.0349  0.0203  0.0235
20 714103228  37.09 26.00 26.75 0.1276 ~ 0.1037  0.1062  0.0407  0.0235  0.0287
21 714113228  33.68 24.36 24.42 0.1261  0.1025  0.1008  0.0405  0.0238  0.0222
22 71411 714113627  29.59 19.81 19.75 0.1188  0.0930  0.0937 0.0384  0.0192  0.0192
23 3628 714113627 1943 14.04 14.07 0.0989  0.078  0.0793  0.0316  0.0149  0.0147
24 331473627 18.99 12.94 12.95 0.0974  0.0763  0.0766  0.0298  0.0153  0.0142
857.54 557.59  564.87 27733  2.2520  2.2587  0.8660  0.4981  0.5207

Total energy loss (kWh), load balancing index, maximum node voltage deviation, and numbers of switching operations during 24 hours

TABLE 12. The specific parameters and the locations of DG access to IEEE
69-Bus system.

Location  Type Capacity Power factor
DG1 26 Micro gas turbine 100kW 0.95
DG2 39 Photovoltaic panels 150kW 0.95
DG3 54 Wind turbine 200kW 0.95
DG4 68 Wind turbine 200kW 0.95

19 times and 17 times for the IEEE 33-bus distribution sys-
tem without DG in Fig. 9 (a) and with DG in Fig. 9 (b),
respectively.

4) OPTIMAL RECONFIGURATION IN TIME SEGMENTS

The number of network reconfigurations is set to five for
one day over 24 hours considering the limit of switching
action based on the load demand curve. In Fig. 10 shows
the total demand profile over 24 hours. The five network
reconfiguration periods in a day are 1-4, 5-12, 13-15, 16-20,
and 21-24. The reconfiguration results of Cases 5 and 6 are
given in Table 11 to compare the two cases for different
switching times during 24 hours. It is clear that the total power
loss of 557.59 kWh, the total load balancing index of 2.2520
and the total maximum node voltage deviation of 0.4981 in
Case 5 are both better than total power loss of 564.87 kWh,
the total load balancing index of 2.2587 and the total max-
imum node voltage deviation of 0.5207 in Case 6 over
24 hours.
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B. 69-BUS TEST SYSTEM

In this section, multi-objective reconfiguration of the distribu-
tion network is done, with the objectives of active power loss,
load balancing index and Maximum node voltage deviation.
The CDBAS algorithm is used for optimization and recon-
figuration are implemented on the modified IEEE 69-bus
system. In 69 bus standard system there are five loops so it
should have five tie switches to remain network radial in [35].
The specific parameters and the locations of DG access are
shown in Table 12.

The proportion load and distribution in hours for three
types of load in each bus are presented in [35] and
for that considered in the study case on the modified
IEEE 69 bus network. In Fig. 10 shows the total demand pro-
file over 24 hours. The optimization results of the improved
algorithm for Case 4 are given and compared with results
of [16] in Table 13.

From Table 13 for Case 4, the best solution given by
proposed method is better than the results obtained in refer-
ence [16]. The total active power loss is reduced by 39.62%,
minimum node voltage is improved from 0.9278 to 0.9536 in
Fig. 11 and the number of switching operations is 14.

The reconfiguration results of Cases 5 and 6 are given in
Table 14 to compare the two cases for different switching
times during 24 hours. It is clear that the total power loss of
781.77 kWh, load balancing of 2.6710 and the total maximum
node voltage deviation of 0.7580 in Case 5 are both slightly
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TABLE 13. Results of Cases 4 for the IEEE 69-bus system with DG.

Active power

Load balancing

Maximum node voltage Running time No. of switching

Cases Methods Open switches loss (kWh) index (p.u) deviation (p.u) (s) operations
Original system  69,70,71,72,73 1296.1 2.6888 1.1049 - 0
CDBAS 69 70 14 50 44 782.59 2.6621 0.7570 102.73 6
Case-4 PSO in [16] 6970 12 50 47 782.93 2.6787 0.75802 255.06 6
BAS 10 70 14 50 46 815.65 2.8508 0.7589 101.95 8
TABLE 14. Real-time results of Cases 5 and 6 of the 69-bus system over 24 hours.
. . L Maximum node voltage Nu.m b§rs of
Open switches Active power loss (kW) Load balancing index (p.u) deviation i switching
eviation index (p.u) .
Hour operations
Original system /Case5/ Original system/Case-5/ Original system/Case-5/ Case-5/
Case-5 Case-6 Case-6 Case-6 Case-6 Case-6
1 6970 69 70 14 50 47 32.71 19.06 19.53 0.0877  0.0833  0.0857  0.0371 0.0251  0.0251
2 1250 1070 13 25 46 23.83 15.63 15.73 0.0805  0.0741  0.0745  0.0324  0.0232  0.0238
3 45 10701324 44 19.23 13.55 13.89 0.0750  0.0685  0.0683  0.0302  0.0222  0.0223
4 69 70 14 50 47 16.93 12.26 12.39 0.0723  0.0614  0.0665 0.0288  0.0205  0.0208
5 6970 12 50 45 23.09 14.89 14.94 0.0950  0.0704  0.0699  0.0333  0.0228  0.0228
6 69 70 13 50 44 39.15 21.36 21.37 0.1872  0.0889  0.0886  0.0416  0.0269  0.0269
7 6970 69 70 14 50 46 69.34 34.20 34.20 0.1043  0.1101  0.1101  0.0545 0.0346  0.0346
8 14 50 69 70 14 50 45 84.31 49.80 49.80 0.1235  0.1289  0.1289  0.0557  0.0424  0.0424
9 26 69 70 14 50 46 92.40 54.34 54.34 0.1306  0.1369  0.1369  0.0571  0.0442  0.0442
10 69 70 14 50 45 106.02  59.63 59.63 0.1360  0.1423  0.1423  0.0610  0.0464  0.0464
11 69 70 14 50 46 106.97  58.89 58.89 0.1391  0.1488  0.1488  0.0612  0.0450  0.0450
12 69 70 14 50 45 111.54  60.79 60.79 0.1407  0.1501  0.1501  0.0622  0.0458  0.0458
13 69 70 69 70 14 50 46 88.87 49.96 49.96 0.1323  0.1460  0.1460  0.0566  0.0397  0.0397
14 14 50 69 70 14 50 44 61.26 37.61 37.61 0.1148  0.1267  0.1267  0.0485  0.0341  0.0341 14 80
15 46 69 70 14 50 46 53.20 34.18 34.18 0.1111  0.1236  0.1236  0.0452  0.0318  0.0318
16 6913125044 41.24 29.59 29.48 0.1047  0.1158  0.1151  0.0497  0.0293  0.0293
17 69 70 6970 12 50 45 35.65 24.29 24.29 0.1005  0.1090  0.1090 0.0424  0.0261  0.0261
18 1350 69 13 125045 30.43 22.24 22.20 0.0973  0.1035  0.1030  0.0400  0.0251  0.0251
19 46 69 13 12 50 45 40.02 27.01 26.96 0.1086  0.1157  0.1151  0.0431  0.0274  0.0274
20 69 70 13 50 47 45.63 29.77 29.77 0.1138  0.1224  0.1224  0.0449  0.0287  0.0287
21 6970 69 70 12 50 45 52.68 33.03 33.17 0.1204  0.1239  0.1245  0.0468  0.0312  0.0312
22 12 50 69 70 12 50 45 44.72 28.75 28.90 0.1114  0.1166  0.1173  0.0450  0.0288  0.0288
23 46 69 70 12 50 45 39.66 26.20 26.32 0.1041  0.1047  0.1053  0.0436  0.0286  0.0286
24 69 13 12 50 44 37.26 24.75 24.82 0.0978  0.0994  0.0998  0.0438  0.0282  0.0282
1296.1  781.77  783.16  2.6888  2.6710 2.6784 1.1049  0.7580  0.7591

Total energy loss (kWh), load balancing index, maximum node voltage deviation, and numbers of switching operations during 24 hours

TABLE 15. The specific parameters and the locations of DG access to IEEE
118-Bus system.

Location Type Capacity  Power factor
DGI1 25 Photovoltaic panels 1.5SMW 0.95
DG2 35 Photovoltaic panels 1.5SMW 0.95
DG3 46 Wind turbine 1.5 MW 0.95
DG4 54 Wind turbine 1.5 MW 0.95
DG5 72 Wind turbine 3IMW 0.95
DG6 85 Wind turbine 1.5 MW 0.95
DG7 99 Wind turbine 1.5SMW 0.95
DG8 111 Wind turbine 2.25MW 0.95

better than total power loss of 783.16 kWh load balancing
of 2.6784 and the total maximum node voltage deviation of
0.7591 in Case 6 over 24 hours.

C. 118-BUS TEST SYSTEM

The IEEE 118-bus system consists of 118 buses, 11 kV, and
radial distribution system [36]. In 118 bus standard system
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there are fifteen loops so it should have 117 sectional switches
and 15 tie switches to remain network radial. The CDBAS
algorithm is used for optimization and reconfiguration are
implemented on the modified IEEE 118-bus system. In this
section, the reconfiguration results of Cases 4, 5 and 6 by
the CDBAS algorithm are presented and compared with the
results of [16]. The specific parameters and the locations of
DG access are shown in Table 15 [37]. In Fig. 12 shows the
total demand profile over 24 hours.

From Table 16 for Case 4, the best solution given by
proposed method is better than the results obtained in refer-
ence [16]. The total active power loss is reduced by 10.99%,
minimum node voltage is improved from 0.8847 to 0.9335 in
Fig. 13 and the number of switching operations is 104.

The reconfiguration results of Cases 5 and 6 are given
in Table 17 and 18 to compare the two cases for different
switching times during 24 hours. It is clear that the total power
loss of 6454.10 kWh, the load balancing of 1.8900 and the
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TABLE 16. Results of Cases 4 for the IEEE 118-bus system with DG.

Active Load Maximum node Running No. of
Methods Open switches power loss balancing voltage deviation time switching
Cases (kWh) index (p.u) (p.w) (s) operations
.. 119120 121 122 123 124 125 126 _ _
Original system 127 128 129 130 131 132 133 8947.80 2.2894 1.8041
3711235047598 1257112776
CDBAS 30 130 117 33 7964.37 1.9271 0.9242 339.41 22
. 4424205248 58495126 70 96
Case-4 PSO in [16] 105 85 109 10 8150.65 2.0508 1.3589 592.71 28
BAS 3919104748 568 55908598 81 g7¢4 62 24977 12814 371.88 28

851179

TABLE 17. Real-time results of Cases 5 of the 118-bus system over 24 hours.

Open switches Active power loss (kW) Load balancing index Maxi_ml_lm 1_10de voltage _ Ngmbers of )
Hour : '(p.u) deviation index (p.u) switching operations
Case-5 Original system /Case5 Orlg/lgzlses_ysstem Original system /Case-5 Case-5
1 349.19 303.48 0.0874 0.0856 0.0807 0.0374
2 382522504759 12495 294.25 249.51 0.0805 0.0779 0.0742 0.0324
3 6573968085 11531 241.95 192.15 0.0736 0.0723 0.0684 0.0261
4 197.08 137.92 0.0714 0.0694 0.0614 0.0182
5 234.33 119.85 0.0794 0.0703 0.0603 0.0190
6 270.47 135.94 0.0840 0.0761 0.0707 0.0123
7 314.95 172.64 0.0902 0.0843 0.0777 0.0174
8 4014 19494758555 383.35 260.08 0.0990 0.0991 0.0848 0.0241
9 67747582101 117 34 403.74 309.82 0.1034 0.1057 0.0815 0.0276
10 431.84 425.58 0.1061 0.1063 0.0772 0.0464
11 405.04 407.18 0.1059 0.1039 0.0668 0.0455
12 409.97 442.22 0.1072 0.1066 0.0607 0.0507 lo4
13 301.42 264.54 0.0966 0.0995 0.0468 0.0323
14 gg ;5) %2 41‘861?20551;33183925 226.45 184.13 0.0856 0.0860 0.0364 0.0207
15 239.11 184.70 0.0869 0.0864 0.0442 0.0192
16 259.80 206.02 0.0882 0.0928 0.0553 0.0170
17 287.53 221.52 0.0902 0.0937 0.0652 0.0237
18 gg 3(5) 3(5) 41‘361 %§5§33183925 324.80 242.35 0.0926 0.0947 0.0765 0.0316
19 455.18 346.19 0.1040 0.1045 0.0976 0.0457
20 525.53 423.69 0.1087 0.1055 0.1058 0.0506
21 670.46 676.39 0.1199 0.1108 0.1152 0.0635
22 3824103147586390 722.50 863.33 0.1228 0.1200 0.1092 0.0688
23 7095101 62 105 19 556.12 626.61 0.1085 0.1024 0.0983 0.0568
24 442.76 472.04 0.0975 0.0940 0.0894 0.0474
8947.80 7867.86 2.2894 2.2529 1.8041 0.8341

Total energy loss (kWh), load balancing index, maximum node voltage deviation, and numbers of switching operations during 24 hours

Voltage(p.u.)
=4
3
Voltage(p.u.)

e
o
3

Nodes 00 Time(h) Nodes

Time(h)

(a) Original system (b) CDBAS algorithm

FIGURE 11. Voltage profile of the 69 bus networks with DG for 24 hours.

total maximum node voltage deviation of 1.1049 in Case 6 are
both slightly better than the total power loss of 7867.86 kWh,
the load balancing of 2.2529 and the total maximum node
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voltage deviation of 0.8341 in Case 5 over 24 hours. Due
to the limitation of installation location and capacity of the
DG, the reconstruction results of Case 6 can only ensure that
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TABLE 18. Real-time results of Cases 6 of the 118-bus system over 24 hours.

. Active power  Load balancing Maximum node voltage Nurpber_s of
Hour Open switches . L switching
loss (kW) index (p.u) deviation index (p.u) .
operations

1 232534947293890 66 859681101 11427 173.17 0.0576 0.0063

2 282520534757463887273102130114 132 163.07 0.0520 0.0223

3 3252250465756289 77978199 101 34 157.38 0.0480 0.0228

4 4125194730613812566737578851169 169.48 0.0711 0.0219

5 45196503259 37125678696 788511510 201.03 0.0692 0.0234

6 25122212148 6139897087 7312978 116 32 228.54 0.0798 0.0384

7 25201204956 1233995707476 78 85 1159 272.93 0.0900 0.0374

8 241417 121315837549072 758285116132 402.87 0.1036 0.0721 _

9 4125221214758 65667 73957985105 34 423.16 0.1105 0.0656

10 43176404757 863 126 74 96 81 99 116 28 203.24 0.0592 0.0248

11 3911923 524829286469 77 76 82 99 106 24 401.85 0.0929 0.0246

12 25119 64248 548 63 90 70 128 82 99 109 29 233.97 0.0692 0.0207

13 25132149475839956686 74818511431 300.30 0.0969 0.0322

14 26132041475839956773967985116 132 244.06 0.0843 0.0182

15 43252312147607 1257087957978 113 31 271.29 0.0908 0.0249

16 441245048 60379566 127 73 80 85 106 21 274.98 0.0879 0.0302

17 26 111841476038 1251267098 82103 117 32 314.15 0.0917 0.0259

18 9261205047557 646778 74 105 101 109 29 232.67 0.0721 0.0211

19 251521 1214656695 12673 7582103 108 31 372.71 0.0970 0.0441

20 325225047 352863887876 10085107 32 417.74 0.0900 0.0357

21 42242047 563638626678 748099 103 10 429.03 0.1043 0.0264

22 4424 174148352763657398821031173 114.91 0.0392 0.0679

23 422534948 573989 67787612999 103 33 275.87 0.0756 0.0696

24 231196524657124 6272787479 104 113 29 175.68 0.0564 0.0059

Total energy loss (kWh), load balancing index, maximum node voltage 6454 10 1.8900 1.1049

deviation, and numbers of switching operations during 24 hours

Load demand(kW)

0 5 10 15 20 25
Time(hour)

FIGURE 12. Load demand curve of different load types over 24 hours.

0.98

Voltage(p.u.)

—6—original system
0.9 |+ CDBAS

PSO in [16]
—4-BAS

0.88

0 5 10 15 20 25
Time(hour)

FIGURE 13. Voltage profile of the 118 bus networks with DG for 24 hours.

the voltage at a certain time meets the constraint condition.
However, the reconfiguration results of Case 5 can satisfy the
voltage constraint in the whole reconstruction period, so that
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the total active power loss increase slightly, the load balancing
decreases slightly, and the voltage deviation increases slightly
with the variation of load and DG.

IX. CONCLUSION

Considering multiobjective network reconfiguration based
on variations in load and distributed generation (DG) for
distribution systems has a strong effect on ensuring the safe
and economical operation of a power system. In this study,
minimizing the sum of active power loss, the load balancing
index and the maximum node voltage deviation are consid-
ered as the objectives, and then the optimization problem of
the layering relationship between each index and the number
of switching operations is solved using grey target decision-
making technology. Beetle Antennae Search (BAS) has the
advantages of efficient optimization and small computation;
however, it often converges to local optima. The improved
Chaotic Disturbed Beetle Antennae Search (CDBAS) algo-
rithm, which guarantees efficient calculation, is used to opti-
mize multiobjective network reconfiguration in distribution
systems.

Here, the proposed method can achieve the optimization
of each objective in other words, it is valid and feasible
through simulation in the modified IEEE 33, 69 and 118-bus
system with variation of load and DG over 24 hours. Finally,
compared with other methods in terms of speed and accuracy,
the CDBAS method is accurate and converges very rapidly,
so it can be used to solve optimization problems in multiple
fields, such as the distribution network-planning schemes
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considering load change, multi-source system schedules,
and optimal storage allocations. Additionally, the proposed
methodology can be applied to problems in which the objec-
tive functions are differentiable, non-differentiable, convex
and non-convex with continuous and discrete variables.
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