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Then 

K’= E ~‘(n)x’~(.) 
Ill 

(21) 
n=O 

PI 
x’(0) = 0 (22) 

x’(n) = (I- C)-lEA”-‘b, for n > 0 (23) L3] 

and 
141 

K’= [(z-C)-lb][(Z-C)-lb]r 
PI 

+(Z-C)-‘EKET(Z-C)-= (24) 

where the superscript - T indicates inverse transpose. The matrix 
K’ can thus be calculated from K. 

The calculation of W’ for the extended filter is not as straight- 
forward. To begin, define 

S(i)= ; {i} . 

II 

0 

0 {m> 

The (i, j)th element of the matrix W’ is defined by 

(25) 

{w'}i.j=~~oY'i'(n)Y"'(n) (26) 

where y(‘)(n) is the output at time n from an initial condition 

It follows that 

x,‘(O) =6(i). (27) 

x’(n)= [(I-C)-‘ED]“G(i) (28) 

y’i’(n)=g[(Z-C)-‘ED]“G(i) (29) 

and 

where 

w= F [g(Z. 
n-o 

- 

W’=g’g+ DTWD (30) 

C)-‘E( D(Z- C)-‘E)“] ’ 

.g(z-C)-‘E(D(Z-C)-‘E)n. (31) 

The matrix W can be calculated from the same algorithm as K, 
but starting with the matrices [ D(Z - C)-‘EIT and [g(Z - 
C)- ‘EIT instead of A and b, respectively. 
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A Chaotic Attractor from Chua’s Circuit 

T. MATSUMOTO 

Abstracr -A chaotic attractor has been observed with an extremely 
simple autonomous circuit. It is third order, reciprocal and has only one 
nonlinear element; a 3-segment piecewise-linear resistor. The attractor 
appears to have interesting structures that are different from Lore&s and 
Riissler’s. 

Our purpose here is to report that a chaotic attractor has been 
observed with an extremely simple autonomous circuit. It is 
third-order, reciprocal, and has only one nonlinear element; a 
J-segment piecewise-linear resistor. It is a simplified version of a 
circuit suggested by Leon Chua of the University of California, 
Berkeley, who was visiting Waseda University, Japan, during 
October 1983-January 1984. 

Consider the circuit of Fig. l(a) where the constitutive relation 
of the nonlinear resistor is given by Fig. l(b). The dynamics is 
described by 

SUMMARY 

A method for calculating the matrices K’ and W’ correspond- 
ing to an extended digital filter has been demonstrated. The 
algorithm can be used to calculate the quantization noise gener- 
ated at nodes other than the storage nodes of the filter. 

where ucl, uc2, and i, denote voltage across. C,, voltage across 
C,, and current through L, respectively. Fig. 2 shows the chaotic 
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Fig. 2 

attractor observed by solving (1) with zL, v )-plane, (iL, vc )-plane and ( vc , v )-plane, respectively. 
&he %urth-order Rugge-Kutta was uskd%th step size 0.02). It 

l/C, = 10, l/C, = 0.5, :1/L = 7, G = 0.7. (2) is interesting to observe that a saddle-type hyperbolic periodic 
orbit (not a stable limit cycle) is present outside the attractor. 

Fig. 2(a)-(c) are the projections Iof the attractor onto the (Newton iteration was used). 
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Fig. 4. 

If the reader feels uncomfortable with the function g of Fig. 
l(b) in that it is not- eventually passive and there are initial 
conditions with which (1) diverges, he can simply replace Fig. 
l(b) with Fig. 3. If BP =14, it has no effect on the attractor and 
on the hyperbolic periodic orbit, because Ivc,( t) I< 14 for all 
t > 0 on the attractor and on the hyperbolic periodic orbit. The 
only difference is the appearance of a large stable limit cycle, as 
shown in Fig. 4, where (1) does not diverge with any initial 
condition (BP =14, m, = 5). There are three initial conditions in 
Fig. 4; 

(9 
vc, (0) = 1.45305 

V&(O) = -4.36956 

iL(0) = 0.15034 

for the chaotic attractor, 
(3 

V&(O) = 9.13959 

V&(O) = - 1.35164 

iL(0) = - 59.2869 
for the large stable limit cycle, and 

(iii) 

V&(O) =10.00717 

V&(O) =1.80100 

iL(0) = -23.90375 

for the hyperbolic periodic orbit with period T = 3.93165. 
It has been observed that the attractor persists for at least the 
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following parameter ranges: 

(i) 7.2 < l/C, < 11.5, when 1,/C, = 0.5, l/L = 7 and G = 0.7 
are fixed, 

(ii) 0.3 <l/C, < 0.8, when l;/C, = 10, l/L = 7 and G = 0.7 
are fixed, 

(iii) 5.8 G l/L d 11, when l/C; = 10, l/C, = 0.5 and G = 0.7 
are fixed, and 

(iv) re2f;e: < 0.8, when l/CL = 10, l/C, = 0.5 and l/L = 7 

The attractor appears to have interesting structures different 
from Lorenz’s [l] and Rbssler’s [2]. Let us briefly describe some 
of the differences. Equation (1) has three equilibria; one at the 
origin, one in the half space V& > 0 and another in the half space 
I$, < 0. The equilibrium at the origin has one positive real 
eigenvalue and a pair of complex-conjugate eigenvalues with 
negative real part. Other equilibria have one negative real eigen- 
value and a pair of complex-conjugate eigenvalues with positive 
real part. Now a detailed analysis which will be reported shortly 
shows that the origin belongs to the attractor as an invariant set. 
Recall that for the Lorenz equation, this is also the case. The 
origin for the Lorenz equation, however, is a saddle, i.e., all 
eigenvalues are real. Another difference is that (1) is symmetric 
with respect to the origin while the Lorenz equation is symmetric 
with respect to the z-axis. It is known that the Rijssler attractor 
[2] does not contain any equilibrium. Hence, it is different from 
ours. 

One of the reviewers pointed out that chaotic attractors have 
been observed in feedback systems with piecewiseJinear feedback 
characteristic [3], [4]. The attractor in [3] does not appear to 
contain any equilibrium as long as the pictures show. Note also 
that the equilibrium in the middle has one negative real eigen- 
value and a pair of complex conjugate eigenvalues with positive 
real part. Hence it is different from ours. The dynamics consid- 
ered in [4] appears to have the same singularity types as that of 
(1). It is not clear yet, however, how the attractor in [4] is related 
to ours since detailed analyses are not reported in [4]. Circuit 
theoretically, however, there is one definite distinction between 
(1) and equations in [l]-[4]; the circuit of Fig. 1 has no coupling 
elements and hence reciprocal [5], while the systems in [l]-[4] are 
nonreciprocal and, therefore, they cannot be realized by recipro- 
cal circuits. 

Many more interesting structures have been observed with 
parameter values different from (2). Details including geometric 
structure, Lyapunov exponents, bifurcations and circuit realiza- 
tions will be reported in later papers. 

ACKNOWLEDGMENT 

During the course of this work, the author has had exciting 
discussions with his friends; L. 0. Chua of University of Cali- 
fornia, Berkeley, M. Komuro of Tokyo Metropolitan University, 
G. Ikegami of Nagoya University, !j. Ichiraku of Yokohama City 
University, M. Ochiai of Shohoku Institute of Technology, Y. 
Togawa of Science University of Tokyo, K. Sawata of Toyohashi 
University of Technology and Science, S. Tanaka, T. Ando, and 
R. Tokunaga of Waseda University. The author also thanks one 
of the reviewers for bringing [3] and [4] to his attention. 

REFERENCES 

[l] E. Lorenz, “Deterministic non-periodic flows,” J. Atmos. Ser., vol. 20, pp. 
130-141, 1963. 

[2] 0. Riissler, “An equation for continuous chaos,” Phys. Left., vol. 57A, pp. 
397-198. 1916. 

[3] C. T. Sparrow, “Chaos in three-dimensional single loop feedback system 
with a piecewise linear feedback function,” J. Math. Anal. Appt., vol. 83, 
pp. 215-291,1981. 

[4] R. W. Brockett, “On conditions leading to chaos in feedback systems,” in 
IEEE Proc. 1982 CDC, 1982. 

[5] L. 0. Chua, “Dynamic nonlinear networks: state of the art,” IEEE Trans. 
Circuits Sysr., vol. CAS-27, pp. 1059-1087, 1980. 

A Stability Inequality for Nonlinear Discrete-Time 
Systems with Slope-Restricted Nonlinearity 

VIMAL SINGH 

Abstract -A novel frequency domain criterion is presented for the 
absolute stability of Lure type single-input single-output discrete-time 
systems with slope-restricted nonlinearity. 

I. INTRODUCTION 

The purpose of this paper is to present a frequency-domain 
criterion for the asymptotic stability in the large (ASIL) of a 
discrete-time system characterized by a stable linear part G(z): 

G(z) = 
h,z”-l + h,-lz”-2 + . . . + h, 

2” + u,zn-’ + . . . + a, (14 

having output y(r) and input - ,f(y( r)), with the restrictions 

k, > k, k, >o, k2’0. (lb) 

The result is derived by artificially increasing the system order by 
one and applying a Lyapunov function to the resulting equivalent 
system. The manner in which the sector and slope informations 
of the nonlinearity are accounted for is very much distinct from 
that in the existing approaches. 

II. h&N RESULT 

Theorem: For the null solution of (1) to be ASIL, it is suffi- 
cient that there exists a real number q 2 0 such that the following 
is satisfied: 

+eq [i+ReG(r)]>O, forall]z]=l: (2) 

Proof: The state-space representation of the system is 

xl(r+1)=x2(r) 

x2(r+1)=x3(r) 

x,-l(r+l)=x,(r) 

x,(r+l)=-u,x,(r)-u,x,(r)... -u,x,(r) 

-f(hIxl(r)+h2x2(r)+ ... +h,x,(r)). (3) 
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