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Abstract Chaotic encryption schemes are believed to pro-

vide greater level of security than conventional ciphers. In

this paper, a chaotic stream cipher is first constructed and

then its hardware implementation details over Xilinx Virtex-

6 FPGA are provided. Logistic map is the simplest chaotic

system and has high potential to be used to design a stream

cipher for real-time embedded systems. Its simple construct

and non-linear dynamics makes it a common choice for such

applications. In this paper, we present a Modified Logistic

Map (MLM) which improves the performance of Logistic

Map in terms of higher Lyapunov exponent and uniformity

of bifurcation map. It also avoids the stable orbits of lo-

gistic map giving a more chaotic behavior to the system.

A stream cipher is built using MLM and random feedback

scheme. The proposed cipher gives 16 bits of encrypted data

per clock cycle. The hardware implementation results over

Xilinx Virtex-6 FPGA give a synthesis clock frequency of

93 MHz and a throughput of 1.5 Gbps while using 16 hard-

ware multipliers. This makes the cipher suitable for embed-

ded devices which have tight constraints on power consump-

tion, hardware resources and real-time parameters.
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1 Introduction

Chaos theory plays an active role in modern cryptography.

As the basis for developing a crypto-system, the advantage

of using chaos lies in its random behavior and sensitivity to

initial conditions and parameter settings to fulfill the clas-

sic Shannon requirements of confusion and diffusion [24].

To meet a great demand for real-time secure image trans-

mission over the Internet, a variety of encryption schemes

have been proposed. Of them, chaos-based algorithms have

shown some exceptionally good properties in many con-

cerned aspects regarding security, complexity, speed, com-

puting power and computational overhead, etc.

Chaotic systems are characterized by sensitive depen-

dence on initial conditions, similarity to random behavior,

and continuous broad-band power spectrum. The possibil-

ity for self-synchronization of chaotic oscillations [21] has

sparked an avalanche of works on application of chaos in

cryptography. The random behavior and sensitivity to initial

conditions and parameter settings allows chaotic systems to

fulfill the classic Shannon requirements of confusion and

diffusion [24]. A tiny difference in the starting state and pa-

rameter setting of these systems can lead to enormous dif-

ferences in the final state of the system over a few iterations.

Thus, sensitivity to initial conditions manifests itself as an

exponential growth of error and the behavior of system ap-

pears chaotic.

Several schemes have been developed which allow trans-

forming the information signal into a chaotic waveform on

the transmitter side and to extract the information signal

from the transmitted waveform on the receiver side. The

most important among them are: chaotic masking, chaos

shift keying, and chaotic modulation.

A lot of research in mathematics and communications

has been devoted to study of continuous-time chaotic sys-

tems such as the oscillator circuits [5, 6, 29]. However, these
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schemes need a synchronization procedure. In this work, we

focus on discrete-time chaotic systems which behave like

private-key encryption algorithms [23] and are amenable to

implementation in fixed point hardware.

Many chaotic block ciphers [2, 9, 13, 22, 31] have been

proposed in research literature. They can be broadly divided

into two types: chaotic block ciphers and chaotic stream ci-

phers. The work by Baptista [2] was one of the earliest at-

tempts to build a block cipher based on chaotic encryption.

The basic idea is to encrypt each character of the message

as the integer number of iterations performed in the logis-

tic equation, in order to transfer the trajectory from an ini-

tial condition towards a pre-defined interval inside the logis-

tic chaotic attractor. However, there are some limitations of

block ciphers proposed using chaotic maps.

Firstly, the distribution of the ciphertext is not flat enough

to ensure high security since the occurrence probability of

cipher blocks decays exponentially as the number of iter-

ations increases. Secondly, the encryption speed of these

cryptographic schemes is very slow since at least 250 iter-

ations of the chaotic map are required for encrypting an 8-

bit symbol. The number may vary upto 65532. Thirdly, the

length of ciphertext is at least twice that of plaintext, a byte

of message may result in several tens of thousands of iter-

ations that need two bytes to carry. Although papers show-

ing some improvements in encryption speed, and cipher text

size have been proposed, block ciphers remain slow to suf-

fice the encryption needs of real-time data (and multimedia)

encryption systems.

Chaotic encryption has also been used to design im-

age encryption schemes. [10] present a four dimensional

chaotic cipher for secure image transmission using Arnold

2-D chaotic maps. [4] present a compression and encryp-

tion scheme that uses a variable and unpredictable statistical

model for arithmetic coding generated using pseudo-random

bitstream generated by a couple of chaotic systems. How-

ever, many schemes have proven to be weak against crypt-

analysis using known-plaintext attacks and others [1, 3].

Other implementations of chaos for secure data commu-

nication are found in [29] (security enhancement via delta

modulation; [28] (integrating chaotic encryption with arith-

metic coding); [5] (Differential delayed feedback) etc.

A stream cipher based on chaotic map was presented

in early 1991 by [25] and its cryptanalysis was presented

by [3]. Chen et al. [9, 31] constructed a block cipher based

on three-dimensional maps while [22] proposed a cipher by

direct discretization of two dimensional Baker map. A good

survey and introductory tutorial on these schemes is found in

[11, 30]. [16] present a crypto-system based on a discretiza-

tion of the skew tent map. [17] presents chaotic Feistel and

chaotic uniform operations for block ciphers. Although vari-

ous schemes/maps have been proposed in research literature,

the logistic map remains one of the most simplest map and

used in many schemes.

In this paper we present the design and implementation of

a chaotic stream cipher that uses less hardware, has promis-

ing security and has high throughput to serve the require-

ments of real-time embedded systems. The main contribu-

tions of this paper can be summarized as under:

1. We present a Modified Logistic Map which has better

properties than the Logistic Map—in terms of higher

confusion (larger Lyapunov exponent) and a flatter dis-

tribution for various parameter values in the bifurcation

diagram.

2. This paper gives a overview of existing chaotic ciphers,

and presents a new stream cipher which can resist the

known attacks by simple modifications in the encryption

algorithm.

3. To the best knowledge of the authors, this is the first hard-

ware implementation of a chaotic stream cipher in hard-

ware.

4. We present an optimized implementation of 64 bits mul-

tiplication in FPGA leading to savings in hardware re-

source requirements.

5. A throughput of 1.5 Gbps was obtained for Virtex-6

XCVLX75TL FPGA. The design was synthesized and

implemented using Xilinx ISE 11.0 tool.

The paper is organized as follows. Section 2 gives a brief

overview of existing research and the desired properties of

a good stream cipher. Section 3 gives details of the stream

cipher algorithm. In Sect. 4, we discuss the properties of

MLM and resistance of proposed cipher against cryptanaly-

sis. Section 5 gives the details of hardware implementation

over Xilinx Virtex-6 FPGA while Sect. 6 concludes the pa-

per with directions of future work.

2 Stream cipher

Many different chaotic systems have been employed to gen-

erate pseudo-random keystream, 2-D Henon attractor in [7],

logistic map in [15], generalized logistic map in [12, 14, 18,

20], quasi-chaotic nonlinear filter in [8], and piecewise lin-

ear chaotic map in [32]. Several chaotic stream ciphers [8,

18] have been known to be insecure [1, 26] and known plain-

text attacks have been proposed.

Besides, cryptographic security some of the factors influ-

encing the design of a good chaotic stream cipher for real-

time applications are as follows:

1. Finite range of control parameter: Logistic map has

been widely investigated in chaos theory and is very sim-

ple to be realized, hence it has been used by many digital

chaotic ciphers [15, 18]. However, only when the con-

trol parameter λLM (defined formally in a later section)

is 4.0, logistic map is a surjective function and has per-

fect chaotic properties. λLM must be selected near 4.0
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in these ciphers, which makes the key space very small.

Moreover, some unsuitable λLM values are also found in

vicinity of λLM = 4 making the range and choice of key-

space narrow and constrained. Piecewise linear chaotic

maps, such as tent map [32] and others [8] can be used

but their piecewise linearity may lead to overall weakness

of cryptosystem [3].

2. Encryption Speed and hardware implementation:

Some digital chaotic ciphers are too slow to be feasible

for real-time encryption [25]. While the chaotic systems

are running in finite precision, the fixed-point arithmetic

is preferable over floating point mathematics which re-

quire more hardware resources and computation time.

However, several chaotic systems are defined by some

complicated functions [18] and must run under floating-

point arithmetic. They should be avoided in chaotic ci-

phers. Adding multiple chaotic maps increases the se-

curity of cryptosystem but also increases the hardware

resources (and power consumption) required in imple-

mentation which may not be feasible for low power em-

bedded systems scenario. Some ciphers [2] have time-

variant speed, so they cannot encrypt plaintext with con-

stant bit-rate, such as MPEG video stream.

3. The dynamics of discrete chaotic systems is different

than those for the continuous-time chaotic systems. Dis-

cretization leads to severe degradations such as short

cycle-length, non-ideal distribution and correlation, etc.

These issues need to be properly addressed in the design

of a cryptosystem.

3 Algorithmic description

In this subsection, we give a brief description of the pro-

posed algorithm. The proposed scheme is robust to the

choice of initial conditions (due to lack of any unsuitable

λ values) achieves real-time encryption speed and has desir-

able properties of a chaotic cryptosystem.

3.1 The pseudo-random number generator based on a

Modified Logistic Map

3.1.1 The Logistic Map

The Logistic Map is a polynomial mapping of degree 2. It

demonstrates chaotic behavior although using a simple non-

linear dynamical equation. Mathematically, the logistic map

is written as

xn+1 = λLM × xn(1 − xn)

where λLM is a positive number.

The behavior of logistic map is dependent on the value

of λLM . At λLM ≈ 3.57 is the onset of chaos, at the end

of the period-doubling cascade. We can no longer see any

oscillations. Slight variations in the initial population yield

dramatically different results over time, a prime character-

istic of chaos. Most values beyond 3.57 exhibit a chaotic

behavior, but certain isolated values of λLM appear to show

non-chaotic behavior and are called as islands of stability.

Beyond λLM = 4, the values eventually leave the interval

[0,1] and diverge for almost all initial values.

A rough description of chaos is that chaotic systems ex-

hibit a great sensitivity to initial conditions—a property of

the logistic map for most values of λ between about 3.57

and 4. This stretching-and-folding does not just produce a

gradual divergence of the sequences of iterates, but an ex-

ponential divergence, evidenced also by the complexity and

unpredictability of the chaotic logistic map.

3.1.2 The Modified Logistic Map (MLM)

Our initial experimentation involved generation of pseudo-

random number sequences by varying the parameter λLM in

the range [3.57,4]. It led to several observations:

1. The histogram obtained for different λLM values (with

50000 samples) is skewed and not uniform or flat. This

is illustrated for λLM = 3.61 and λLM = 3.91 values in

Fig. 1(a, b). The distribution for λLM = 4 is most flat and

symmetric (see Fig. 1(c)). It is desirable to have a flatter

distribution of samples drawn from the logistic map in

order to increase its randomness.

2. For λLM = 4, the logistic map equation xn+1 = λLM ×
xn(1 − xn) has the same domain and range intervals

(0,1). For λLM < 4 and input xn in range (0,1), the range

of xn+1 in the expression is (0, λLM/4] and the distribu-

tion of random numbers is biased towards 0 or 1 (as seen

in distributions in Fig. 1(a, b)). It is desirable to have a

distribution of random numbers symmetric around 0.5.

3. There are certain isolated values of λLM that appear to

show non-chaotic behavior and are called as islands of

stability. For example: λLM = 1 +
√

(8) ≈ 3.83 show os-

cillation between three values.

4. λLM = 4.0 has most flat, uniform and symmetric his-

togram than other λLM values.

We address these issues by developing a MLM, defined

by the following equation:

xn+1 = λ × xn(1 − xn) + μ

where the xn values are restricted to the interval [α,1 − α],
α < 0.5. The maxima of this function occurs at xn = 0.5

and the maximum value is λ/4 + μ while the minimum (in

specified domain) occurs at xn = α or xn = 1 − α and the

minimum value is λ×α(1−α)+μ. Equating the maximum
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Fig. 1 Histogram for 50000 samples obtained using Logistic map with initial seed 0.100010 and (a) λLM = 3.61 and (b) λLM = 3.91 (c) λLM = 4

and (d) λLM = 3.83

and minimum values to the range [α, (1 − α)] leads to the

following equations:

α = λα(1 − α) + μ

1 − α =
λ

4
+ μ

On solving these equations, we get λ = 4
1−2α

and μ =
α(2α−3)

1−2α
. Substituting these values, we get a flatter histogram

for the new logistic map as evident in Fig. 2. This modi-

fied logistic map addresses the requirements of flatter and

symmetric distribution and also avoids islands of stability

by generating a flat distribution for all values of α.

3.2 Quantization

The output of the modified logistic map (xn) is quantized to

get a 16 bit value yn. xn,0 < xn < 1 is represented in fixed

point as follows:

xn =
N−1
∑

j=0

{aj } × 2j−N

where aj are individual bit values.

We target the logistic map implementation on N bits

hardware architectures but restrict yn to the least significant

16 bits only. Thus, yn is given by:

yn =
15
∑

j=0

{aj } × 2j−N

The quantization step or truncation of more significant

bits is non-linear in nature (it is a many-one mathematical

function) thereby increasing the complexity of any attacks

that try to recover the logistic map information from the ci-

pher text using any cryptanalysis. We extract another single

bit from the logistic map output which is used later for the

random feedback scheme. For example, the single bit output

sequence bn can be obtained from the bits of xn as follows:

bn = {aN−1}

i.e. the MSB of xn is used to get bn.
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Fig. 2 Histogram for 50000 samples obtained using Modified Logistic Map with α values corresponding to (a) λLM = 3.61 and (b) λLM = 3.91

3.3 Pseudo-random sequence-2

We generate another pseudo-random sequence zn from the

given sequence yn by the following operation:

zn = yn ⊕ yn−1 ⊕ yn−2

There is no linear correlation between the two sequences yn

and zn. Statistical de-correlation makes it difficult to back-

track yn from zn.

3.4 Masking operation and random feedback

The ciphertext Cn is obtained from the plaintext Pn by the

following operation:

Cn = Pn ⊕ zn ⊕ Fbn

where zn is the pseudorandom sequence and Fbn is the ran-

dom feedback input from the past ciphertext output. The

value Fbn is obtained as follows:

Fbn =

{

Cn−1 when bn = 0

Cn−2 when bn = 1

}

4 Resistance against cryptanalysis

The performance and accuracy of discrete chaotic ciphers

is a translation of properties of the underlying dynamical

system (or chaotic map). The chaotic properties of logis-

tic maps and hence MLM have been established in the past

decades by several researchers [19].

Shannon [24] explains that a good crypto-system must

show diffusion and confusion properties. Confusion refers to

making the relationship between the key and the ciphertext

as complex and involved as possible while diffusion means

that the output bits should depend on the input bits in a very

complex way i.e. a change in a bit in input plain text should

imply a change in output bit with a probability of 1
2

. Chaotic

systems show random behavior and inherently exhibit con-

fusion with respect to the initial conditions (x0) and the pa-

rameter (α) that make the key. We perform some statistical

tests to test the pseudo-random nature of the key obtained.

4.1 Randomness tests

We perform the following randomness tests to study the

pseudo-random nature of sequence (bn) generated using the

proposed scheme.

4.1.1 Frequency test

In a randomly generated N -bit sequence we would expect

approximately half the bits in the sequence to be ones and

approximately half to be zeroes. The frequency test checks

that the number of ones in the sequence is not significantly

different from N/2.

Based on 1000 simulations on strings of length 10000

each generated using variable initial values and control pa-

rameter, the probability for zero and one were obtained to

be 0.4993 and 0.5007 respectively for the sequence bn. For

the non-binary sequence zn, frequency test was performed

by discretizing the sequence around its mean value. We ob-

served the probability of zeros and one in this sequence to

be 0.4981 for 1000 simulations of length 10000.

4.1.2 Serial test

The serial test checks that the frequencies of the different

transitions in a binary sequence (i.e., 11, 10, 01, and 00) are

approximately equal. This will then give us an indication as

to whether or not the bits in the sequence are independent of

their predecessors.
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Fig. 3 Correlation test of the

pseudo-random sequence. (a)

Generated using different initial

values x0 and (b) different

initial parameter α. The plots

are measured against initial

value α = 0.110000 and

x0 = 0.410021

For the sequence bn, 1000 simulations of 10000 samples

were run. The probabilities for getting 00, 01, 10 and 11

were found to be 0.2503, 0.2491, 0.2480, and 0.2526 respec-

tively (the ideal distribution would give 0.25 for all proba-

bilities).

4.1.3 Runs test

The binary sequence is divided into blocks (runs of ones)

and gaps (runs of zeroes). The runs test checks that the num-

ber of runs of various lengths in our sequence are similar to

what we would expect to find in a random sequence. This

test is only applied if the sequence has already passed the se-

rial test in which case it is known that the number of blocks

and gaps are in acceptable limits.

This is a test of the hypothesis that the values in a se-

quence come in a random order, against the alternative that

the ordering is not random. For non-binary sequences (such

as zn) the test is based on the number of runs of consecutive

values above or below the mean of input sequence. Too few

runs is an indication of tendency of high values to cluster

together, and low values to cluster together. Too many runs

is an indication of a tendency for high values and low val-

ues to alternate. Tests were performed using Matlab simula-

tions. The result is H = 0 if the null hypothesis (“sequence

is random”) cannot be rejected at the 5% significance level,

or H = 1 if the null hypothesis can be rejected at the 5%

level. We ran 10000 simulations with different initial values

and parameter settings, giving us 8916 successful simula-

tions with H = 0.

4.1.4 Statistical properties

Some of the necessary conditions for a secure stream ci-

pher are long period, large linear complexity, randomness

and proper order of correlation immunity [23]. A long pe-

riod is assured by taking a large value of N (say 64). Fig-

ure 3(a) and (b) show the low correlation between sequences

Table 1 Statistical performance of generated sequence bn (results

based on 1000 sequences of length 10000 each)

Probabilities of Zero 0.4993

Probabilities of One 0.5007

obtained using slightly different (a) initial value x0 and (b)

parameter λ. It can be seen (see Table 1) that a very poor

correlation is obtained amongst sequences generated using

slightly different initial condition or parameter.

4.2 Bifurcation map

If the dynamical system under consideration is a chaotic

map, then the orbit derived from any initial condition covers

the whole phase space. This is seen with the help of bifurca-

tion diagram of logistic maps. A bifurcation diagram is the

plot of sample set of xn obtained against the variations in

initial parameter λLM .

The bifurcation map of logistic map is shown in Fig. 4(a).

It is observed that for some value of λLM , the logistic map

reaches a few stable states and oscillate around them. These

regions must be removed carefully from the key space.

Hence, an exhaustive elimination of stable points (corre-

sponding to white spaces in bifurcation diagram) is neces-

sary to build a scheme based on Logistic Map.

Figure 4(b) shows the bifurcation map of MLM as a func-

tion of free parameter α. It can be seen that there are no free

white spaces in the bifurcation diagram, indicating no in-

between regions of stable oscillations in MLM. Thus, the

entire range of parameter α can be used to build the key

space.

4.3 Lyapunov exponent

Lyapunov exponent is a measure of stability of non-linear

systems. It characterizes the rate of separation of infinitesi-

mally close trajectories. The maximum Lyapunov exponent
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Fig. 4 Bifurcation Diagram for (a) Logistic Map showing the white spaces (islands of stability) and asymmetricity and (b) Modified Logistic

Map with symmetric and flatter distribution

is defined by the following expression:

� = lim
t→∞

1

t
ln

|δZ(t)|
|δZ0|

where δZ(t) is the separation at time t and δZ0 is the initial

divergence. In our cipher, if we choose two different initial

values x0a and x0b , which are very close to each other such

that x0a − x0b ≈ δZ0, a positive Lyapunov exponent will in-

dicate that the two trajectories will diverge from each other.

The discrete time equivalent expression to find Lyapunov

exponent of MLM will be:

� = lim
n→∞

1

n
ln

|δxn|
|δx0|

= lim
n→∞

1

n
ln

|δxn|
|δxn−1|

|δxn−1|
|δxn−2|

. . .
|δx1|
|δx0|

An analysis similar to logistic map [27] can be performed

to prove the positive Lyapunov exponent for logistic maps.

xn = λ × xn−1(1 − xn−1) + μ

Hence,

∣

∣

∣

∣

δxn

δxn−1

∣

∣

∣

∣

= |λ × (1 − 2xn−1)|

Therefore, we can express � as follows:

� = lim
n→∞

1

n

⎛

⎝

j=n
∑

j=1

ln

∣

∣

∣

∣

δxj

δxj−1

∣

∣

∣

∣

⎞

⎠

= lim
n→∞

1

n

⎛

⎝

j=n
∑

j=1

ln
∣

∣λ(1 − 2xj )
∣

∣

⎞

⎠

The value of � can be calculated by running a numer-

ical trial of large number of samples (say 10,000) starting

with any randomly picked initial value x0. The values of

Lyapunov exponent for Logistic Map and MLM are plot-

ted in Fig. 5(a) and (b). This value was found to be ln 2

for MLM which is the same as the value for Logistic Map

with λLM = 4. Thus, the divergence rate of MLM, measured

by Lyapunov coefficient is always greater than or equal to

the value for Logistic Map. This indicates better confusion

properties of MLM. Moreover, it is independent of α indi-

cating the invariance of confusion properties with the change

in parameter α.

4.4 General security of the scheme

A serious drawback of chaotic cryptosystems is that they are

weak against known-plaintext attacks. If the plain-text and

the cipher-text are known, it is easy to XOR both the val-

ues and obtain the key value that was XORed to the original

plaintext. Our proposed scheme lays many practical difficul-

ties against such reverse engineering:

– The random feedback scheme makes it difficult to predict

the key value XORed to the original plaintext.

– The sequences zn and yn are linearly uncorrelated from

each other making it difficult to reverse engineer the val-

ues of yn from zn.

– The sequence yn is obtained by sampling of xn which

is used to iterate the chaotic map. In the hardware im-

plementation (presented in next section), we sample the

Least Significant 16 bits (out of 64) of xn to get yn. Be-

cause, the chaotic map is more sensitive to the MSB than

to the LSB (and we have 48 unknown MSB bits), it is

practically impossible to trace back the xn value.
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Fig. 5 Plot of Lyapunov Coefficient (� solid line) for (a) Logistic Map as a function of parameter λLM indicating regions of non-chaotic behavior

and (b) Modified Logistic Map showing higher divergence than Logistic Map and independence of � from parameter α

– We allowed 100 iterations of MLM in the beginning to

allow the diffusion of initial key bits and parameter val-

ues. It was found that within approximately 20 iterations

of Logistic Map the initial parameter values are fully dif-

fused: the two logistic maps with a slight difference in

initial conditions will appear completely de-correlated in

their outputs after at most 20 iterations. Allowing 100 iter-

ations, help us to be on a safer side to allow full diffusion

of the initial key parameters.

Thus, the presented scheme is secure against known-

plaintext attacks. In the next section we present a hardware

implementation of the scheme that uses 128 bit encryption

key (64 bits each for initial condition and parameter λ set-

tings).

5 Hardware implementation

For hardware implementation, we chose a fixed point imple-

mentation over floating point implementation because fixed

point operations can be implemented more efficiently in

hardware. The bit width of the Plaintext and the Ciphertext

are 16 bits or 2 bytes. However, for the implementation of

MLM, we chose a bit width of 64 bits. Thus, the iterating

value of MLM (x(i) and the parameters λ and μ are both

implemented with 64 bits floating point precision).

The permissible range of parameter α was chosen to be

(0,0.375) which is represented in fixed point with 0 integer

bits and 64 fractional bits. This is represented shortly as 0.64

in I.F (Integer.Floating point) format. The range for param-

eter λ is then calculated to be (4,16) which is implemented

with 5.59 I.F format. The range for μ is (−3,−15.0975)

which is represented using 5.59 I.F format. Thus, the multi-

plication λ×x(i)× (1−x(i)) is truncated to 5.59 I.F format

and then added to μ to obtain the new value for x(i).

The parameter α can take 3 × 261 values while the pa-

rameter x0 can take approximately 263 values. Thus, we get

an effective keyspace with 3 × 2124 or approximately 2125

key values to choose from.

We synthesized the design over a Xilinx Virtex-6

XCVLX75TL FPGA using Xilinx ISE 11.0. The new

XtremeDSP DSP48E1 slice in Virtex-6 SXT series facili-

tates faster and optimized DSP functions (including multi-

plications). They can deliver over 1 TeraMACs at 550 MHz

with up to 2016 user-configurable XtremeDSP DSP48E1

slices and cuts the power consumption by 65% using inno-

vative, efficient power management. A direct implementa-

tion of the design gave a clock frequency of 35 MHz. By

adding two pipelining stages to the multiplier (DSP48E1

slices), we get a clock frequency of 70 MHz for the design.

A single DSP48E1 slice can perform a maximum of

25 × 18 bits multiplication and hence 12 slices are required

for a 64 × 64 bits multiplication. Two multiplication require

24 DSP48E1 slices. However, since we truncate the 128 bit

output of 64 × 64 bits multiplication to only 64 bits, some

optimization is possible. Xilinx XST (Synthesis tool) thus

reduces one DSP48E slice by optimization thus requiring

23 slices for implementation.

We present an optimization of usage of DSP multipliers

based on above observations for the multiplication of two 64

bit numbers X and Y . X is sign extended to 72 bits (XSE and

represented by XaXbXc where Xa ,Xb and Xc are each 24

bit long sequences.

{XSE}71
0 = {Xa}71

48{Xb}47
24{Xc}23

0
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Fig. 6 Block diagram showing

the implementational details of

the chaotic stream cipher

Similarly, we can represent Y as combination of four 16 bit

numbers YwYxYyYz.

{Y }63
0 = {Yw}63

48{Yx}47
32{Yy}31

17{Yz}15
0

Numerically,

X = XSE = Xa × 248 + Xb × 224 + Xc

and

Y = Yw × 248 + Yx × 232 + Yy × 216 + Yz

The product X × Y can then be represented as:

X × Y = (Xa × 248 + Xb × 224 + Xc) × (Yw × 248

+ Yx × 232 + Yy × 216 + Yz)

⇒ X × Y = 296 × XaYw + 272 × XbYw + 248 × XcYw

+ 280 × XaYx + 256 × XbYx + 232 × XcYx

+ 264 × XaYy + 240 × XbYy + 216 × XcYy

+ 248 × XaYz + 224 × XbYz + 20 × XcYz

Now, considering the product Xn(1 − Xn) in the logistic

map, we multiply two 0.64 I.F values to get an output which

is in 0.128 I.F format. We truncate the last 64 bits to get

the 64 bit approximate value of Xn+1. Because X is repre-

sented in 72 bits, we can discard lower 72 bits of the product.

Each of the product XαYβ , such that α ∈ {a, b, c} and β ∈
{w,x, y, z} is of size 40 bits and can be implemented in a

single DSP48E1 slice.

Thus,

X × Y = 296 × XaYw + 272 × XbYw + 248 × XcYw

+ 280 × XaYx + 256 × XbYx

+ 264 × XaYy + 240 × XbYy

+ 248 × XaYz

Table 2 Resource Utilization on Xilinx Virtex-6 FPGA

Orig. Design Opt. Design

Clock Frequency (MHz) 69 93

No. DSP48E1 slices 23 16

No. Slice Registers 228 160

No. Slice LUTs 354 643

The other multiplication operation can also be optimized in

a similar manner. Thus, we can reduce the hardware require-

ments and critical path for the implementation. A direct im-

plementation of our scheme using the above optimization

achieved a clock frequency of 44 MHz on the above men-

tioned FPGA. By adding two pipelining stages to the 64×64

bits multiplier, we obtained a clock frequency of 93 MHz

and required only 16 DSP48E1 slices in the design. The de-

sign summary are given in Table 2. Further pipelining may

lead to higher clock frequency but also increase slice regis-

ters usage.

Figure 6 gives the block diagram of the hardware imple-

mentation of the encryption scheme. MLM based PRNG

(Pseudo-Random Number Generator) is shown in dotted

thin lines. Blue thick lines indicate the pipelining stages. The

input xn−1 is first multiplied with (1 − xn−1) and the upper

half bits (most significant bits) are then multiplied with λ.

The output of this multiplication is then truncated and added

with μ to get the value of xn as shown in the figure. The out-

put xn is also used to extract the values yn and bn, both of

which serve to generate the output cipher text. As shown in

the figure, the multiplexer (mux) is used to provide the ran-

dom feedback based on bit bn.

6 Discussion

In this paper, a chaotic stream cipher is designed using lo-

gistic maps and its hardware implementation over a Virtex-

6 FPGA has been presented. Chaotic ciphers are simpler to

design, have excellent mathematical properties and are be-
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coming popular for data encryption, image encryption and

other schemes.

6.1 Comparison to stream ciphers

Classical stream ciphers are generally constructed using

Linear Feedback Shift Registers (LFSR). The main disad-

vantage of LFSR based structure is its vulnerability to attack

due to inherent linearity in the structure. Stream ciphers built

over LFSRs introduce non-linearity into the design either

using a suitable cryptographic Boolean function or irregular

clocking.

On the other hand,the chaotic stream cipher presented in

this paper has the advantages of random behavior and de-

pendence to initial conditions. To the best knowledge of the

authors, it is the first implementation of chaos-based PRNG

on FPGA. The proposed implementation (with hardware op-

timizations as proposed earlier) achieves a throughput of

1.5 Gbps over Virtex-6 FPGA. By pipelining the proposed

architecture, we obtain a clock frequency of 350 MHz cor-

responding to a throughput of 5.6 Gbps.

The existing stream ciphers such as A5/1, A5/2 have been

attacked in real-time. Attack has been mounted on RC4,

PANAMA, FISH etc (not in real-time) but they use a very

large internal state (and thus require large more hardware

resources). On the contrary, our scheme has an internal rep-

resentation of just 64 bits (against 2064 bits for RC4, 1216

bits for PANAMA) and is resistant to known cryptanalysis.

6.2 Comparison to existing chaotic ciphers

The implementation presented in this paper uses fixed point

arithmetic as against floating point arithmetic presented in

[18] which requires implementation of complicated func-

tions. Unlike the chaotic cipher presented by [2] which

needs arbitrary number of cycles for each encode and very

large number of iterations (upto 65532), the presented ci-

pher has constant (1) iteration of logistic map per encode

and gives a throughput as high as 5.6 Gbps.

[8, 32] use piecewise linear maps to build a chaotic cipher

which have been reported to be weak against cryptanalysis.

On the other hand, the ciphers based on logistic map are

non-linear in nature [12, 14, 18, 20] and have several weak-

nesses. There are islands of stability in bifurcation maps of

logistic maps. In this work, we use modified logistic map

which removes islands of stability and makes the distribu-

tion more uniform as discussed earlier. The weaknesses of

logistic maps against reverse engineering schemes are ad-

dressed in this paper as follows:

1. Using only 16 of the 64 bit output from iterations on lo-

gistic map.

2. XORing with time-delayed outputs

3. Non-linear random feedback

These three details have been explained in Sect. 3.

These considerations make our scheme a suitable candi-

date for end-end encryption in real time embedded systems

such as mobile phones, portable video and audio players,

and cameras.

7 Conclusion

This paper presents a novel chaotic stream cipher based on

modified logistic map suitable for embedded real-time ap-

plications. A hardware implementation of proposed scheme

was proposed and a clock frequency of 93 MHz was

achieved.

A possible direction for future work is the study of

more complex chaotic maps, study of behaviors of coupled-

chaotic maps and their implementation over hardware plat-

forms.
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