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Abstract: Aiming at the problems of small key space and weak resistance to differential attacks in
existing encryption algorithms, we proposed a chaotic digital image encryption scheme based on
an optimized artificial fish swarm algorithm and DNA coding. First, the key is associated with the
ordinary image pixel through the MD5 hash operation, and the hash value generated by the ordinary
image is used as the initial value of the hyper-chaotic system to increase the sensitivity of the key.
Next, the artificial fish school algorithm is used to scramble the positions of pixels in the block. In
addition, scrambling operation between blocks is proposed to increase the scrambling effect. In
the diffusion stage, operations are performed based on DNA encoding, obfuscation, and decoding
technologies to obtain encrypted images. The research results show that the optimized artificial fish
swarm algorithm has good convergence and can obtain the global optimal solution to the greatest
extent. In addition, simulation experiments and security analysis show that compared with other
encryption schemes, the scheme proposed in this paper has a larger key space and better resistance to
differential attacks, indicating that the proposed algorithm has better encryption performance and
higher security.

Keywords: artificial fish swarm algorithm; hyper-chaotic system; image encryption; DNA
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1. Introduction

The popularity of the network and the wide application of information technology
have made us more aware of the importance of safe data transmission. As an important
carrier of information transmission, digital images can be classified into two ways to ensure
their information security: information hiding [1–6] and encryption. Image encryption
originated from the early classical encryption theory [7–10], but because digital images
and texts have different storage methods and their inherent characteristics, such as high
correlation, high redundancy and a large amount of data between adjacent pixels [11],
classic encryption methods such as DES and RSA are no longer applicable [12,13]. Therefore,
many scholars have proposed many encryption schemes [14–17]. These technologies mainly
rely on DNA computing [18–20] cellular automata [21–23], chaotic systems [24–26], wavelet
compression [27,28], and other methods.

Chaos research has made great progress in many aspects [29–43]. Due to the character-
istics of chaos, such as high sensitivity to initial conditions and control parameters, and
inherent randomness, chaos meets the requirements of image encryption. Generally, this
kind of encryption scheme includes two important steps: scrambling and diffusion. Since
Matthews et al. [44] proposed that one-dimensional chaotic maps can be used as a time
pad for encrypting messages, they proposed various image encryption algorithms based
on chaotic systems. For example, Fuh GwoJeng et al. [45] and others proposed an image
encryption scheme based on a hype-chaos, aiming at the security loopholes in the scheme
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proposed by Gao He Chen [46] and Rhouma and Belghith [47]. Liu et al. [48] showed
image encryption based on one-time key and two powerful chaotic maps. Wang et al. [49]
proposed a high-dimensional chaotic image encryption system with a perceptron model.
Complex chaotic systems such as high-dimensional chaotic systems or hyper-chaotic sys-
tems can generate chaotic sequences with better randomness, which increases the security
of encryption schemes.

In recent years, due to its outstanding performance in parallelism, robustness, evolution,
and other aspects, the bionic swarm intelligence optimization algorithm has in-depth research
in human intelligence such as perception, recognition, and associative memory [50–52]. It has
also attracted the attention of many scholars in the field of image encryption. For example,
Wang et al. [53] proposed an optimization algorithm for an image encryption scheme
combined with DNA coding. They selected the key sequence through PSO and used DNA
mask and plaintext DNA coding of quick shuffle to operate, and formed an encryption
system. Enayatifar R et al. [54] proposed an image encryption algorithm based on a DNA
chaos map and genetic algorithm (GA). By improving the quality of the DNA mask, the
best mask compatible with pure images was obtained. Wang, J, et al. [55] proposed a new
framework using the population-based particle swarm optimization algorithm to improve
the speed of encryption. However, because the correlation between the scrambling phase
key and the plaintext image is not close, the encryption scheme can’t resist the differential
attack well, the scheme can’t well resist the differential attack. In the above algorithms, a
common problem is that the encryption scheme does not have enough key space, and the
generated data has low pseudo-randomness and ergodicity, leading to insufficient security
performance of the scheme. In addition, the traditional swarm intelligence algorithm is
trapped in local optimization due to premature convergence and parameter selection.

For the purpose of overcoming the above problems, we propose a digital chaotic
image encryption scheme based on an optimized artificial fish swarm algorithm and DNA
coding. First, the image is scrambled by the artificial fish school algorithm, and then
Chen’s hyper-chaos system is used to obtain the initial key sequence through iteration,
which is diffused by DNA XOR operation, and finally, the image encryption is completed
Therefore, the proposed scheme can not only change the histogram of the image, but also
break the high correlation between adjacent pixels. At the same time, associating the initial
parameters of Chen chaotic system with plaintext images helps to obtain the unique key
stream of each image, which ensures that the encryption scheme proposed in this paper is
sufficiently sensitive to plaintext, and have the advantages of effectively resisting plaintext
attacks and selecting plaintext attacks. The extensive experimental results of a histogram,
adjacent pixel correlation, entropy, sensitivity, key space, robustness, randomness, known
and selected plaintext attacks, etc. show that the scheme meets the security requirements
of the encryption algorithm, and the encryption effect is satisfactory.

The rest of the study is arranged as follows. In the Section 2, we introduce the Chen
hyper-chaos system, and evaluate its dynamic behavior through the Lyapunov exponent,
artificial fish swarm algorithm, and relevant knowledge of DNA coding technology. The
Section 3 introduces the recommended encryption scheme. Section 4 introduces the sim-
ulation results and security analysis of the image. Section 5 discusses the defects of the
algorithm. Finally, in the Section 6, the research content is summarized.

2. Relevant Knowledge
2.1. Chen’s Hyper-Chaotic System

Compared with a chaotic system, a hyper-chaotic system has multiple positive Lya-
punov exponents, so the motion behavior is more difficult to predict, has more abundant
dynamic behavior, and meets the requirements of digital image encryption. Therefore,
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Chen’s hyper-chaotic system is selected in our algorithm [56]. The dynamic equation of the
system is shown in Equation (1). 

.
x = a(x− y) + w,
.
y = bx + cy− xz,
.
z = xy− dz,
.

w = yz + rw,

(1)

where a = 35, b = 3, c = 10, d = 7, 0.1085 ≤ r ≤ 0.1798, the system is in hyper-chaotic
state. The initial condition is set as (0.3838, 0.9876, 32.1234, 0.6565), and the time step of
iteration is 0.001, Figure 1 shows the phase the diagram of the system.
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2.2. Artificial Fish Swarm Algorithm

The artificial fish swarm algorithm (AFSA) is a new swarm intelligence algorithm
proposed by Li Xiaolei in 2002. It mainly simulates the foraging, grouping, and rear-end
behavior of fish swarms by constructing artificial fish swarms, and adopts a bottom-up
optimization mode to start from the underlying behavior of constructing individuals, so as
to find the behavior of the maximum food density in space.

The external perception of artificial fish is achieved by relying on vision, and the
following methods are used in this model to achieve a virtual vision of artificial fish:

Xv = X + Visuanl × Rand(), (2)

Xnext = X + XV − X ‖ XV − X ‖ ×Step× Rand(). (3)

where Rand() is a random function used to generate random numbers between 0 and 1,
and Step is a step size. Figure 2 shows a hypothetical artificial fish with a continuous field
of view. The area it can see is a circular area with a certain distance as the radius and the
current position Xi as the center. The location Xj is the point of view it patrols at one time.
If there is more food in this place than in the previous place, it is decided that the random
number of advance steps to this place will reach the location Xnext. In addition, the AFSA
has five basic parameters: the moving step of artificial fish, the visual field of artificial fish
visual, the maximum number of attempts of artificial fish for each try-number, and the
crowding factor δ of artificial fish. The following briefly describes the four behaviors of
artificial fish.
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1. Foraging behavior: It is generally believed that fish sense food or food concentration
in water through vision or taste to choose the direction of action. Set the state of the
current artificial fish, and randomly select another state within its visual range. If the
objective function of the obtained state is larger than the current state, it will move
one step closer to the latter state; otherwise, it will reselect the new state. Algorithm
description: Equation (4) describes that the artificial fish Xi randomly selects a state
Xj in its field of view.

Xj = Xi + Visuanl × Rand(), (4)

Calculate the objective function values Yi and Yj of Xi and Xj respectively. If Yj is
found to be better than Yi, Xi moves one step in the direction of Xj:

Xt+1
i = Xt

i +
Xj − Xt

i

||Xj − Xt
i ||
× Step× Rand(), (5)

otherwise, Xi will continue to select the state Xj in its field of view, judge whether the
advance condition is met, and if the advance condition is still not met after repeated
attempts of try_number, execute a random behavior. Algorithm 1 shows the pseudo-
code snippets for the foraging behavior.

Algorithm 1 Foraging behavior Pseudo-code.

for i = 1:N
for j = 1:Try_number

Xj = x(i) + Visual × rand();
If f (X(j)) < f (x(i))
X_next = x(i) + rand()× step ×(Xj − x(i))/norm(Xj − x(i));
break;
else
X_next = x(i) + step × rand();
end

end
end

2. Group behavior: the artificial fish explores the number of partners in the current
neighborhood, calculates the central position of the partners, and then compares the
newly obtained objective function of the central position with the objective function
of the current position. If the objective function of the central position is better than
the objective function of the current position and is not very crowded, the current
position moves one step toward the central position, otherwise, the foraging behavior
is executed.
Three rules must be observed when fish flock together: first, try to move towards
the center of the neighboring partners; second, avoid overcrowding; and third, try
to be consistent with the average direction of the neighboring partners. Algorithm
description: the artificial fish Xi searches for the number of partners nf and the center
position Xc in the current field of view

(
dij < visual

)
, if YC

n f < δ×Yi (where YC and Yi

are the fitness values of Xc and Xi, respectively), it indicates that the partner’s central
location is better and less crowded, and Xi moves one step toward the partner’s
central location:

Xt+1
i = Xt

i +
Xj − Xt

i

||Xj − Xt
i ||
× Step× Rand(), (6)

Otherwise, the foraging behavior will be executed. Algorithm 2 shows the pseudo-
code snippets for the group behavior.
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Algorithm 2 Group behavior Pseudo-code.

nf = 0; X_inside = 0;
for i = 1:N

for j = 1:N
if norm(x(j) − x(i)) < Visual
nf = nf + 1;
X_inside = X_inside + x(j);
end
X_inside = X_inside − x(i);
nf = nf − 1;
Xc = X_inside/nf ;
if f (Xc)/nf < δ× f (x(i))
x_next = x(i) + rand * Step * (Xc − x(i))/norm(Xc − x(i));

else
Execute foraging behavior;

end
end

end

3. Rear-end behavior: It refers to the behavior of a fish moving in the optimal direction
within its field of view. The artificial fish Xi searches for the individual Xj with the
highest fitness in its field of view (dij < visual), and its fitness value is Yj, and explores

the number of partners nf in the field of view of the artificial fish Xi, if
Yj
n f < δ× Yi,

indicating that Xj is in a better state and is not too crowded, Xi moves one step toward
Xj, otherwise it executes foraging behavior. Algorithm 3 shows the pseudo-code
snippets for the Rear-end behavior.

Algorithm 3 Rear-end behavior Pseudo-code.

Y_max = inf; nf = 0;
for i = 1:N

for j = 1:N
if norm(x(j) − x(i)) < Visual && f (x(j)) < Y_max

X_max = x(j);
Y_max = f (x(j));

end
end
for j = 1:N

if(norm(x(j) − X_max) < Visual)
nf = nf + 1;
end

end
nf = nf − 1;
if Y_max/nf < delta × f (x(i))
x_next = x(I,:) + rand × Step. × (temp_maxX − x(i,:)) ./ norm(temp_maxX − x(i,:));
else

Execute foraging behavior;
end

end

4. Random behavior: it is the default behavior of foraging behavior, which refers to the
random movement of artificial fish in the field of vision. When food is found, it will
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move rapidly in the direction of gradually increasing food. This is to find food points
or partners in a wider range.

Xt+1
i = Xt

i + Visuanl × Rand(), (7)
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2.3. DNA Coding and Decoding Rules

A DNA sequence consists of four nucleic acid bases: A(adenine), C(cytosine), G(guanine),
and T(thymine). ‘A’ and ‘T’ as well as ‘G’ and ‘C’ are complementary. As ‘0’ and ‘1’ are
complementary in the binary system, ‘00’ and ‘11’ are complementary. In addition, ‘01’ and
‘10’ are also complementary. There are 24 types of encoding rules using the four nucleic
acid bases (A, C, G, and T) to encode ‘00’, ‘01’, ‘10’, and ‘11’. However, only 8 of them
satisfy the Watson-Crick complementary rule as shown in Table 1 [57]. Note that DNA
decoding rule is the reverse operation of the DNA encoding rule.

Table 1. DNA encoding and decoding rules.

Rules 1 2 3 4 5 6 7 8

A 00 00 01 01 10 10 11 11
T 11 11 10 10 01 01 00 00
C 01 10 00 11 00 11 01 10
G 10 01 11 00 11 00 10 01

For example, the greyscale value of a pixel is ‘126’, and the corresponding binary
number is ‘01111110’. The DNA sequence ‘GTTC’ is obtained using DNA encoding rule 2.
Inversely, if the DNA sequence is ‘TGCA’, the binary number can be obtained by rule 8 (the
decoding rule is 8), that is ‘00011011’, the decimal number is ‘78’, and this is the decoding
process of the DNA sequence.

DNA XOR Algebraic Operation

In this study, DNA XOR operation is used for image diffusion. DNA XOR operation
is the same as binary XOR operation. An example of a DNA XOR operation is provided.
Using Table 2, the XOR result of DNA sequences “AGCT” and “TGAC” is “TACG”.
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Table 2. DNA XOR operation rules.

XOR A G C T

A A G C T

G G A T C

C C T A G

T T C G A

3. Encryption and Decryption Process

We assume the size of the plain image A is (M×N), and divide it into (M×N)/(m× n)
blocks by (m× n). Figure 3 gives the flow chart of our proposed encryption scheme.
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3.1. The Generation of Initial Values of the Hyper-Chaotic System

No matter what the size of the input ordinary image is, a 128-bit summary will be
obtained after the MD5 hash. Even if there is only a one-bit difference, the generated
summary will be completely different. Therefore, this step is to associate the key of the
algorithm with the plaintext image, which can increase the security of the algorithm. Divide
the 128-bit summary into 8 blocks by Equation (8).

K = k1, k2 . . . k7, k8, (8)

According to the following calculation method, four initial values of Chen’s hyper-
chaotic system are obtained. Among them, x0, y0, z0, w0 are the given initial value, ⊕ is
for operation. 

x′0 = x0 +
k1⊕k2

256 ,

y′0 = y0 +
k3⊕k4

256 ,

z′0 = z0 +
k5⊕k60

256 ,

w′0 = w0 +
k7⊕k8

256 ,

(9)



Mathematics 2023, 11, 767 8 of 18

3.2. Artificial Fish Swarm Algorithm

The artificial fish swarm algorithm has good robustness and insensitivity to initial
parameters. Figure 4 shows the flow of the artificial fish swarm algorithm.

Step 1: Initialization settings, including the number of artificial fish, initial position,
artificial fish field of vision, step size, crowding factor, bulletin board, and iteration times,
where the initial position is generated by Chen chaotic system iteration.

Step 2: Evaluate each individual and choose the behaviors they want to perform,
including foraging Prey, gathering Swarm, tailgating Follow, and evaluation behavior
bullet; Refer to Section 2.2 for specific selection rules.

Step 3: Execute the behavior of artificial fish, update yourself, and generate a new
school of fish.

Step 4: Evaluate all individuals. If an individual is superior to the bulletin board, the
bulletin board will be updated to the individual.

Step 5: Determine whether the termination conditions are met. If it is satisfied, the
algorithm is over; otherwise, go to step 2.
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3.3. Substitution

Considering that in the digital image, the closer the pixel is, the greater the influence
is, and the image block processing can better process each pixel and obtain more details. In
this paper, the image is block processed. If the size of the plaintext image is (M× N), it
will be divided into (M× N)/(m× n) sub blocks. In principle, M should be an integral
multiple of m, N should be an integer multiple of n. Otherwise, the missing part will be
automatically filled in black, so the encryption algorithm proposed in this paper will not
have the limitation of picture size.

3.3.1. Intra Block Permutation

Based on the filling position of each sub block image pixel obtained in Section 3.2, the
specific operation of block built-in transformation is described in Algorithm 4.
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Algorithm 4 Pseudo code of built-in commutation in sub image block.

Input: TB matrix A, sub block image B
Output: displacement sub block B’
1. convert A and B into one-dimensional sequences
2. for i = 1: (M× N) / (m× n)
3. for j = 1:m × n
4. B′i ← B′i(j) = Bi(A(j))
5. end
6. end

3.3.2. Inter Block Permutation

After the block in the conversion of each sub block, the pixels of each image block
are replaced with the pixels of other image blocks. The specific operation of inter block
replacement is shown in Algorithm 5.

Algorithm 5 Pseudocode for permutation between sub image blocks.

Input: permutation image block B’, chaotic sequence w
Output: displacement image D
1. W← floor

(
w × 1013)

2. for i = 1:(M×N) / (m× n)
3. for j =1: m× n

4. k← (W mod
(

M × N
m× n − i

)
+ 1

5. exchange B′i′ (j) and B′i(j)
6. end
7. end
8. Reconstruct the (M×N) / (m× n) sub block int an D

3.4. Spread

The diffusion process can greatly enhance the ability of encryption schemes to resist
statistical attacks and differential attacks. In order to obtain a better diffusion effect,
we choose DNA coding technology with strong parallel computing ability, low energy
consumption, and high information density for diffusion operation. The specific operations
are as follows:

Step 1: Chen hyper-chaotic system iterates N0 + M × N times to obtain sequences
X1, Y1, Z1, W1, and then discards the first N0 value to eliminate the transient effect of the
chaotic system.

Step 2: Calculate each element of X1, Y1, Z1, and W1 according to Equations (10)–(13)
to obtain four vectors Ri, Ry, Rz, and R.

Rx(i) = mod
(

f loor
(

X1(i)× 1014
)

, 8
)
+ 1, (10)

Ry(i) = mod
(

f loor
(

Y1(i)× 1014
)

, 8
)
+ 1, (11)

Rz(i) = mod
(

f loor
(

Z1(i)× 1014
)

, 8
)
+ 1 (12)

R(i) = mod
(

f loor
(

W1(i)× 1014
)

, 256
)

, (13)

where X1(i), Y1(i), Z1(i), and W1(i) represent the ith element of X1, Y1, Z1, and W1,
i ∈ [1, M× N], floor(a) is the rounding down of a. The result of mod (a, b) is the remainder of a
divided by b.
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Step 3: Expand the scrambled matrix P1 into a vector E(i), i ∈ [1, M× N]. Define
variables temp and i, where the initial value of temp is shown in Equation (14), and the
initial value of i is 1.

temp = mod
(
∑M×N

i=1 P1, 256
)

, (14)

Step 4: According to the DNA coding rules corresponding to Rz(i), conduct DNA
coding on R(i) to obtain DNA_R(i), at the same time, according to the DNA coding rules
corresponding to Ry, DNA code E(i) to obtain DNA_E(i), Then calculate the XOR of
DNA_R(i) and DNA_E(i) to get New_E(i).

Step 5: Decode New_E(i) to get de_New_E(i) according to the DNA coding rules cor-
responding to Rx(i). Calculation the XOR of de_New_E(i) and temp to obtain C_New_E(i).
At the same time, change the value of the variable temp to C_New_E(i) and the value of
variable i is i + 1.

Step 6: Repeat steps 4 and 5. When i = M× N + 1, convert the resulting vector into a
matrix of M× N, that is, encrypt the resulting image.

3.5. Decryption Process

The decryption process is the reverse of the encryption process. In the process of
encryption, we first scramble the image and then spread it. Therefore, in the decryption
stage, it is necessary to perform diffusion decryption first, and then scrambling decryption.
It is worth noting that before decryption, we need to obtain the parameter value and initial
value of the hyper-chaotic system to generate a sequence before decryption.

4. Simulation Results and Security Analysis
4.1. Simulation Results

The digital images used for the test are lean (512× 512), butterfly (512× 768), terrace
(1200× 256), and color image bridge (color image 256× 256). Figure 5 shows the encryp-
tion and decryption results of this scheme. Obviously, it can be seen that the plaintext
image and the decrypted image are the same. In addition, since the size of the tested image
is different, this scheme is not limited by the image size.

In the following simulation experiments, the experimental environment is windows10
and MATLAB R2017a, and the test image is Lena (512× 512), with an 8-bit gray scale. The
security analysis is as follows.

4.2. Key Space Analysis

In image encryption, key space analysis refers to the problem of key quantity. The
size of the key space is usually described by the bit length occupied by the key. In this
scheme, the key consists of two parts: the initial values of the hyper-chaotic system and
the hash value of the plaintext image. For its initial value, because it is double precision,
its space is 10168 = 10128 ≈ 2384. The space of the 128-bit hash value of the image is 264.
Therefore, the key space of the whole scheme is 2384 × 264 = 2448. The research shows
that for the security scheme, the key space is larger than 2100. Obviously, Table 3 shows
that compared with other schemes, our scheme has a larger key space, and has stronger
resistance to exhaustive attacks.

Table 3. Key space comparison.

Schemes Ours Ref. [55] Ref. [58] Ref. [59] Ref. [60]

Key space 2448 1084 2448 10322 5.12 × 1066
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4.3. Key Sensitivity Analysis

Key sensitivity means that in the process of encryption and decryption, due to
the small change of the initial key, the key generated after a series of actions changes
greatly, so that the encrypted and decrypted image changes greatly. In this paper, setting
X0 = 0.3838, Y0 = 0.9876, Z0 = 32.1234, W0 = 0.6565 as the initial value of the key, and
setting X0 = 0.3838+ 10−10, Y0 = 0.9876, Z0 = 32.1234, W0 = 0.6565 as the modified initial
value. The Lena image is encrypted with the original key and the modified key respectively.
Figure 6b shows the cipher-text image encrypted with the original key. Figure 6c is to
encrypt the plaintext image with the modified key and obtains another cipher-text image.
Figure 6d shows the difference between the two cipher-texts. Obviously, the cipher-texts
between the two images are very different. In the decryption process, the plaintext image
can be recovered with the original key, but the plaintext image cannot be recovered with
the modified key, as shown in Figure 6e.
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4.4. Statistical Attack Analysis

The attack scheme against statistical law is called a statistical analysis attack, which
means that the attacker decodes the password by analyzing the statistical law between
cipher-text and plaintext and extracting the transformation relationship between the plain-
text image and cipher-text image. The ability of the scheme to resist statistical attacks can
be analyzed from the following aspects.

4.4.1. Histogram Analysis

Histogram can intuitively reflect the distribution of each gray value in the image. In
an ideal cipher-text image, each gray value should have an equal probability distribution.
Taking Lena (512 × 512) as an example, the gray histogram before and after encryption is
intuitively displayed in Figure 7.

4.4.2. Information Entropy Analysis

Information entropy can be used to measure whether the gray value distribution
is uniform. The greater the information entropy of the image, the more balanced the
gray value distribution, and the greater the possibility of resisting an entropy attack. Use
the following formula to calculate the information entropy of each image before and
after encryption.

H =
255

∑
i=0

PijlogPij (15)

Pij =
f (i, j) /

N2, (16)

where f (i, j) is the frequency of the characteristic binary (i, j), and N is the scale of the image.
Table 4 shows the comparison results of information entropy of encrypted images

between our scheme and other schemes. The experimental results show that the gray
value in the ciphertext image is close to the unimodal distribution, and the ciphertext
information entropy is close to the ideal value of 8, that is, our scheme can effectively resist
low-frequency analysis attacks.
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Table 4. Information entropy analysis result of encrypted image.

Image Ours Ref. [55] Ref. [58] Ref. [60]

Lena 7.9993 7.9978 7.9993 –

Butterfly 7.9996 7.994 – –

Terrace 7.9998 – – –

Bridge (color image) 7.9992 – – 7.9896

4.4.3. Correlation Coefficient Analysis

Due to the high correlation between adjacent pixels of an image, a pixel often divulges
the information of its surrounding pixels. The calculation formula of the correlation
coefficient in horizontal, vertical, and diagonal directions is as follows:

Rxy =
cov(x, y)√

D(x)×
√

D(y)
, (17)

E(x) =
1
N

N

∑
i=1

xi, (18)

D(x) =
1
N ∑N

i=1(xi − E(x)2, (19)

cov(x, y) =
1
N ∑N

i=1(xi − E(x))(yi − E(y)), (20)

where y is the sum of the adjacent pixels of x, and n is the selected pixels, Cov (x, y) is the
covariance at two pixels x and y,

√
D(x) is the standard deviation, D(x) is the variance, and

E(x) is the mean. Generally, the correlation of adjacent pixels in plaintext images is close to
1, while the correlation of adjacent pixels in ciphertext images should be close to 0.

The correlation distribution of ordinary images and encrypted images in three direc-
tions is shown in Figure 7.

By comparing the correlation coefficients between domain pixels of ordinary images
and encrypted images, as shown in Table 5, it can be concluded that the correlation between
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domain pixels of encrypted images is low, so our scheme has a good ability to resist
statistical analysis attacks.

Table 5. Correlation coefficient.

Level Vertical Diagonal

Image Plain Image CIPHER-TEXT Plain Image Cipher-Text Plain Image Cipher-Text

lean 0.9738 −0.0024 0.9547 −0.0054 0.9277 −0.0129
bridge 0.9717 0.0036 0.9650 0.0471 0.9589 0.0105
terrace 0.9783 −0.0248 0.9733 0.0016 0.9535 0.0057

butterfly 0.9456 −0.0135 0.9509 −0.0090 0.9164 −0.0089

4.5. Differential Attack Analysis

Differential attack is an important analysis method to test the sensitivity of algorithms
to plaintext. If the cipher-text image obtained by the slight change of plaintext is very
different from the cipher-text obtained by the original plaintext, the algorithm is sensitive
to plaintext. Two parameters (Pixel Rate of Change (NPCR) and Uniform Average Intensity
of Change (UACI)) are used to measure the resistance to differential attacks of cipher-text
images. NPCR and UACI respectively represent the number of changed pixels between two
encrypted images and the average change intensity between two encrypted images [25,26].
The corresponding ideal values are respectively NPCR = 99.6094% and UACI = 33.4635%.
NPCR value and UACI value of the scheme are obtained according to the following
calculation formula.

NPCR =
∑ij D(i, j)

M× N
× 100%, (21)

ACI =
1

M× N
× ∑(C1(i, j)− C2(i, j))

255
× 100%, (22)

D(i, j) = f(x) =
{

1, C1(i, j) 6= C2(i, j)
0, otherwise

, (23)

where M and N, respectively, represent the width and height of the two cipher-texts,
C1(i, j), C2(i, j), respectively, represent two images in (i, j) pixel value of the position.

Table 6 shows the comparison between our scheme and other schemes. The results
show that the NPCR and UACI of our scheme reach 99.62% and 33.69%, which is infinitely
close to the ideal value. Compared with other algorithms, the NPCR and UACI values of our
scheme are closer to the ideal value, and our scheme is more resistant to differential attacks.

Table 6. Performance of NPCR and UACI.

Algorithms NPCR (%) UACI (%)

Ours 99.62 33.69

Ref. [55] 99.59 33.41

Ref. [58] 99.61 33.47

Ref. [59] 99.46 33.10

Ref. [60] 99.62 31.83

4.6. Other Attack Analysis

Due to the particularity of pure black or white images, sometimes attackers will crack
the encryption algorithm in the presence of ordinary images. We select the special images of
all black (256× 256) and all white (256× 256) as the input images. The encryption results
are shown in Figure 8 and Table 7.
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Table 7. Information entropy of special image and correlation of each direction.

Information Entropy
Relevance

Level Vertical Diagonal

All black cipher-text image 7.9973 −0.0094 0.0098 −0.0016
All white cipher-text image 7.9974 −0.0169 −0.0094 0.0056

According to the results in Figure 8 and Table 7, after analysis, we can find that the at-
tacker cannot execute the encryption scheme according to the special image to obtain useful
information, and then attack the encryption scheme, so our scheme is safe and reliable.

5. Discussion

The chaotic image encryption scheme based on the artificial fish swarm algorithm
and DNA coding presented in this paper can resist various classical attacks in addition to
its excellent security. However, it also has certain limitations. As we need to repeat the
artificial fish swarm algorithm on the block image, the encryption speed is not fast enough,
but it is still within the acceptable range, which requires us to continue to optimize the
algorithm and improve the encryption implementation scheme in the future research, so as
to improve the execution speed of the encryption scheme.

6. Conclusions

In this study, the foraging behavior of the artificial fish school algorithm is improved,
and a chaotic image encryption scheme based on the artificial fish school and DNA coding is
proposed. By hashing the original image, the correlation between the key and the plaintext
is closer. Secondly, the foraging behavior of the artificial fish is improved to obtain the
optimal solution of the block image, and the image is scrambled to improve the complexity
and security of encryption. However, due to the need to carry out this artificial fish swarm
algorithm for each word block image, its time cost is high. In the diffusion stage, the
DNA method is used to obtain a better diffusion effect. The encryption method in this
paper can be applied to different image types, such as gray images and color images. It
also applies to images of any size. The experimental results show that the encryption
scheme has the advantages of large key space, high sensitivity to key and pure image,
security, and reliability. The proposed encryption scheme is easy to operate. All these
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satisfactory characteristics make the proposed scheme a potential candidate for multimedia
data encryption (such as images, audio, and even video).
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