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Abstract

Reasonable scheduling of flexible job shop is key to improve production efficiency and economic benefits; in order

to solve the problem in flexible job shop scheduling problem, a novel flexible job shop scheduling method based

on improved artificial immune algorithm is proposed. Firstly, a mathematical model of the flexible job shop

scheduling is established, and the total shortest processing time is taken as the objective function. Secondly,

artificial immune algorithm is used to solve the problem, and particle swarm optimization algorithm is taken

as the operator to embed into manual immune algorithm for maintaining the diversity of population and

prevent obtaining local optimal solution. Finally, the performance of the algorithm is tested by simulation

experiments on standard set. The results show that the proposed algorithm can obtain better flexible job

shop scheduling scheme and especially has more significant advantages in solving large-scale problems in

comparison with other algorithms.

Keywords: Flexible job shop scheduling, Artificial immune algorithm, Mutation operator, Particle swarm

optimization algorithm

1 Introduction
Job shop scheduling problem (JSP) refers to the ordering

of available shared resource allocation and production

tasks within a certain period of time, so that certain

performance indicators can be optimized. The typical

JSP model is more ideal. It is difficult to fully reflect the

actual application. With the intensification of the

marketization of manufacturing, the production

resources are not infinitely usable, and the processing

time of each process alone is not always the same. This

results in the flexibility of the production process. The

flexible job shop scheduling problem (FJSP) came into

being; it is more in line with the actual production

situation, but it also increases the complexity of the

problem [1]. FJSP is a typical combinatorial optimization

problem, which belongs to the NP problem and has al-

ways been a key and difficult point in the research of the

manufacturing industry [2].

For FJSP problems, a large number of scholars and

researchers have invested a lot of time and energy in in-

depth research, made some research progress, and pro-

posed many FJSP problem solving algorithms [3]. The

current FJSP problem solving algorithms can be roughly

divided into three categories: exact solution algorithms,

heuristic algorithms, and artificial intelligence algo-

rithms. The branch-and-bound method is the most clas-

sic and accurate solution algorithm. It is simple and easy

to implement. For small-scale FJSP problems, the solu-

tion efficiency is high; however, as the scale of the manu-

facturing industry continues to grow, the scale of

processing products is getting larger and larger. The

boundary method is difficult to meet the FJSP problem

solving requirements of modern production and

manufacturing [4]. The most representative heuristic

algorithm is the Lagrangian relaxation method. Others
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have high efficiency in solving small-scale FJSP prob-

lems, but they have the same flaws as the exact

solution algorithms, and their application scope is

limited [5]. Artificial intelligence algorithm is mainly

used to simulate the behavior of biological groups in

nature. It has the advantages of parallelism, fast

search speed, etc. It is the most widely used in FJSP

problem solving and has become the main research

direction [6]. Some scholars proposed the use of

genetic algorithm, simulated annealing, particle

swarm optimization algorithm, ant colony algorithm,

and firefly algorithm to solve the FJSP problem and

obtained better results [7–9]. However, in practical

applications, these artificial intelligence algorithms

all have their own deficiencies, such as the late con-

vergence speed is slow, easy to obtain local optimal

solution [10]. Artificial immune algorithm (AIA) is a

kind of evolutionary algorithm that simulates the

biological immune system. It is a multi-point ran-

dom search algorithm. It has self-learning, self-

organization, and memory under the premise of

maintaining the excellent characteristics of the gen-

etic algorithm. Such characteristics, so compared

with other evolutionary algorithms, have better glo-

bal search capabilities; have been successfully applied

in cloud computing resource scheduling, robot path

planning, and other fields; and provide a new re-

search tool for solving FJSP problems [11].

In order to obtain a more optimal FJSP problem

optimization program and reduce the production cost

of the manufacturing industry, an improved FJSP

problem solving method based on the modified artifi-

cial immune algorithm (MAIA) was proposed, and

some standard examples were used to test the per-

formance of the algorithm.

2 The mobile agent-based data fusion algorithm
2.1 Mathematical model of FJSP

The FJSP can be expressed as follows: n workpieces

are processed on m machines, the processing time

and production cost of each operation are known,

and the processing order of each workpiece on each

machine is constrained. The requirements are deter-

mined and the process constraints are required. The

processing start time, completion time, and process-

ing sequence of all the parts on the compatible

machines make the production cycle, production

cost, and equipment utilization process performance

index optimal or suboptimal. The objective function

of FJSP is

min f 1 ¼ min maxCið Þ ð1Þ

min f 2 ¼ minFp
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In the function, Ci is the completion time of the work

piece Ji; Fp is the total processing cost; Fijk is the pro-

cessing cost of the jth process of workpiece i on the k

machine tool; T sijk is the first processing time on the k

machine tool for the jth process of workpiece i; TEið j−1Þk

is the workpiece i in (j − 1)th process on the k machine

end time; t1k andt2k are the start and end points of the

idle time period of machine k, respectively; FSij is the

unit time storage cost between the (j − 1)th and jth

processes of the workpiece i; Pijk is the time required for

the jth machining operation of the workpiece i on the

kth machine; and Xijk indicates whether the jth proced-

ure of the workpiece i is selected to be machined on the

k machine [12].

2.2 Improved artificial immune algorithm

Artificial immune algorithm (AIA) is an intelligent algo-

rithm for simulating an artificial immune system, with

good robustness, parallel search ability, and so on; its

working principle is as follows: first, through the

combination of antibodies and antigens and then

through the antibody cloning, mutation, selection, and

other operations, to achieve the optimal purpose of the

antibody and antigen expression problem objective func-

tion. It is very suitable for solving a multi-objective

optimization problem; the FJSP problem is a multi-

objective optimization problem in essence, and the work

steps of artificial immune algorithm are as follows:
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1. Set the objective function and corresponding

constraints of the multi-objective optimization

problem.

2. Generate the initial antibody group of the

artificial immune algorithm, that is, the

candidate solution or feasible solution of the

multi-objective optimization problem.

3. Calculate the affinity of the antibody and the

antigen; the affinity can describe the degree of

matching between the solution and the objective

function.

4. Save the antibody with higher affinity and enter

the next-generation antibody group to generate

immune memory cells.

5. Selecting, promoting, and inhibiting antibodies to

ensure the diversity of individuals in the antibody

population.

6. Crossing and mutating individuals to create new

antibody populations.

7. For individuals with low antibody-adaptive fitness

values, individuals with high fitness values in memory

cells are replaced to produce next-generation

antibody populations.

8. If the algorithm satisfies the end condition, the

algorithm is terminated; otherwise, the process

jumps to step 3.

From the above, we can see that the workflow of the

standard artificial immune algorithm is shown in Fig. 1.

2.3 Correlation operator of artificial immune algorithm

Artificial immune algorithm requires some operator dur-

ing the work process, as follows:

1. Affinity evaluation operator between antibodies. Set

the antibody as a viable solution to optimization

problems. The affinity of the ith and jth antibodies

is aff(abi) and aff(abj), respectively. The affinity

evaluation operator is mainly used to describe

the similarity of i and j; the affinity evaluation

formula is

aff abi; ab j

� �

¼

1 ; aff abið Þ ¼ aff ab j

� �

1

1þ j aff abið Þ−aff ab j

� �

j
; else

8

<

:

ð6Þ

2. Antibody concentration evaluation operator. Set the

individual of the antibody group as N. The

calculation formula for the antibody concentration

evaluation operator is

den abið Þ ¼
1

N

X

N−1

j¼0

aff abi; ab j

� �

ð7Þ

3. Mutation operator. The mutation operator is used

for nascent antibodies to ensure multiple samples of

individuals in the antibody group. The calculation

formula is

G0
N ¼ GM þ γ � η 0; 1ð Þ

γ ¼
1

η
� e− f

8

<

:

ð8Þ

In the formula, G is genes of antibody; G′ is genes

of antigen; f is an affinity function; η is a control

parameter; and N(0,1) is a Gaussian variable.

2.4 chaotic simulated annealing particle swarm parallel

artificial immune optimization algorithm

Similar to other group intelligent algorithms, the stand-

ard artificial immune algorithm has the disadvantages of

being easy to fall into local optimality and premature-

ness. For this reason, the chaotic simulated annealing

particle swarm optimization algorithm is introduced into

the artificial immune algorithm. The chaos theory is

used to dynamically adjust the parameters of the particle

swarm optimization algorithm. At the same time, the dy-

namic inertia weight method is used to accelerate the

convergence of the algorithm. The simulated annealing

process based on the automatic attenuation coefficient is

used to improve the probability and speed of searching

for the optimal solution. The optimized artificial im-

mune algorithm solves the problem of slow convergence

in the late search period to ensure the diversity of the

population and improves the search speed and efficiency

of the algorithm, resulting in an improved artificial im-

mune algorithm.

The execution process of chaotic simulated annealing

particle swarm optimization algorithm consists of the

following three parts.
Fig. 1 The workflow of the standard artificial immune algorithm
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1. Using the chaos theory to dynamically adjust

parameters r1, r2 of the particle swarm optimization

algorithm, resulting in an excellent population;

2. Using the formulae (1) and (2) to search for the

optimal solution in evolution;

3. Simulate the annealing algorithm to locally optimize

the position of each particle in the particle swarm

optimization algorithm and repeatedly run the

iteration process until the termination condition

is satisfied. The improved algorithm is shown in

Fig. 2.

The steps of the chaotic simulated annealing particle

swarm optimization algorithm are as follows:

1. Randomly generate initial populations of m

particles, initialize each particle’s velocity, and

position, and give inertia weight ω, learning factors

c1 and c2, and initial acceptance probability Pr.

2. Calculate the fitness of each particle i and initialize

the annealing temperature T0 ¼
ð f 0min− f

0
maxÞ

lnPr
¼ −

jΔf j
lnPr

.

3. The fitness of each particle is taken as the particle

extremum pbest, and the individual extremum is

selected as the population extremum gbest.

4. If the algorithm reaches the termination condition,

the result is output; otherwise, the cycle of k from

1 to M is performed, where M is the maximum

number of iterations.

5. Calculate the fitness fi(k) and the average fitness

favgi(k) for each particle.

6. If the particle’s fitness is better than the original

individual’s extreme value pbest, then the current

fitness is set to pbest and the optimal individual

extreme value is chosen as the population extreme

value gbest.

7. Update the flying position and velocity of each

particle according to Eqs. (1) and (2).

8. Calculate the fitness of each new particle fi(k + 1)

and the average fitness favgi(k + 1).

9. Calculate the amount of change in fitness caused by

the two positions Δf = fi(k + 1) − fi(k). If Δf < 0 or

exp.(− Δf/T) > rand, accept the new position;

otherwise, keep the old position.

10. According to the individual fitness and average

fitness, calculate the temperature automatic

attenuation coefficient ζ.

11. Tk + 1 = ζTk, Tk + 1 = ζTk, k = k + 1, where ζ∈ (0, 1),

turn to (4).

2.4.1 Fitness parameter strategy

Using chaos to adjust the parameters related to particle

velocity updates [13], when generating chaotic se-

quences, a logistic model is used:

λtþ1
i ¼ uλti 1−λti

� �

; i ¼ 1; 2…; n ð9Þ

Fig. 2 chaotic simulated annealing particle swarm optimization algorithm
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In the formula, λti is the value of the chaotic evolution

of λi in step t, λi ∈ [0, 1], 1 ≤ u ≤ 4. When u = 4 and λi is

not equal to 0.25, 0.5, or 0.75, the system exhibits full

chaos. The chaotic sequence exhibits excellent random-

ness, and the trajectory of chaotic variable may not re-

peatedly traverse the entire search space. Perform chaos

optimization on r1 and r2 as follows:

ri t þ 1ð Þ ¼ 4ri tð Þ 1−ri tð Þð Þ
ri tð Þ∈ 0; 1ð Þ; i ¼ 1; 2

�

ð10Þ

The inertia weight value ω can be used to balance the

current velocity of the particle by controlling the histor-

ical velocity to balance the global and local search of the

particle swarm optimization algorithm; at the same time,

the appropriate ω can reduce the time to find the opti-

mal solution. The dynamic adjustment mechanism of in-

ertia weight is used to take a larger ω in the early stage

of search. When the particle is searched in a large space,

the algorithm has a good global search capability; as the

number of iterations increases, ω gradually decreases, in

the local area The speed of particles gradually slows

down to improve the search accuracy of the algorithm,

so that the optimal solution can be found quickly and

accurately. The inertia weight setting formula for each

particle is as follows:

ω tð Þ ¼
ωmax−t ωmax−ωminð Þ

tmax
ð11Þ

In the formula, ωmaxand ωmin are the maximum and

minimum inertia weights, respectively; t is the current

algebra; and tmax is the maximum number of iterations.

2.4.2 Simulated annealing algorithm parameter control

2.4.2.1 Initial temperature setting The temperature

initial value is an important influence parameter of the

global search performance of the simulated annealing al-

gorithm. The higher the initial temperature is, the stron-

ger the global search ability is; and the greater the

possibility of searching for the global optimal solution,

the longer the search time. Conversely, although the

search time is reduced, the global optimal solution may

not be searched. Using a temperature initialization

method based on fitness and acceptance probability, the

initial temperature T0 is determined by the following

equation:

T0 ¼
f 0min− f

0
max

� �

lnPr
¼ −

Δfj j

lnPr
ð12Þ

In the formula, f 0min , f 0max , and Δf are the maximum

and minimum target function fitness values and their

differences calculated according to the initial particle

group, respectively, and pr is the initial acceptance prob-

ability, and the general value is [0.7, 0.9].

2.4.2.2 Annealing velocity The global search ability of

the simulated annealing algorithm depends on the an-

nealing speed. In general, first set the initial temperature

and then follow the temperature decay function to im-

plement the cooling process. However, the fixed

temperature decay function cannot perceive the current

convergence condition and cannot dynamically adjust

the local search depth according to the convergence

condition. The dynamic temperature decay coefficient is

introduced to enable the algorithm to perceive the local

convergence according to the current fitness of the indi-

vidual particles and the average fitness of the population.

The temperature decay rate and the local search depth

are dynamically adjusted according to the current condi-

tions to ensure the diversity of the population in the

search process. The formula for the adaptive

temperature decay coefficient is:

ξ ¼
μþ N 0; 1ð Þ 1− exp f pi− f avg

� �h i

2T k
ð13Þ

In the formula, favg is the average fitness value of the

population; fpi is the current particle’s fitness; μ is the

initial temperature attenuation coefficient; N(0,1) is a

random number with a variance of 1 and a mean value

of 0 Gaussian distribution; and Tk is the temperature of

the particle in the previous iteration.

2.4.3 Design of artificial immune optimization algorithm

based on chaotic simulated annealing particle swarm

parallel algorithm

2.4.3.1 Cross-antibody acceptability of the algorithm

Set the antibodies ai = {φ0,⋯, φn − 1} and aj = {r0,⋯, rn − 1};

n represents the number of genes in an antibody. The

cross-knot between them is k, and the resulting new

antibodies are:

T c ai; a j

� �

¼
a0i ¼ φ0;⋯;φk∈ai; rkþ1;⋯; rn−1∈a j

� �

a0j ¼ r0;⋯; rk∈a j;φkþ1;⋯;φn−1∈ai;
� �

�

ð14Þ

The sub-antibody S ¼ fa0i; a
0
jg is accepted according to

the Metropolis guideline of the simulated annealing al-

gorithm. min{1, exp(1 − aff(S) − aff(F)/Tk)} > rc, where rc
is a random number, F = {ai, aj} is the parent antibody,

and Tk is the kth annealing temperature.

2.4.3.2 Variant antibody acceptability of the algorithm

Set the variant junction of antibody ai = {φ0,⋯, φn − 1} to

k and the new antibody generated is:
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Tm aið Þ ¼ a0i ¼ φ0;⋯;φk ;φkþ1;⋯;φn−1

� �

;φ0
k⊕φk−1

ð15Þ

The sub-antibody a0i is accepted according to the Me-

tropolis guideline of the simulated annealing algorithm.

minf1; expð1−aff ðaiÞ−aff ða
0
iÞ=T kÞg > rm, where rm is a

random number and Tk is the kth annealing

temperature.

2.4.3.3 Improvement in selecting factor calculation

method Set the annealing selection probability of anti-

body ai = {φ0,⋯, φn − 1} to P(αi), and its selection factor

δ(αi) is calculated as:

δ aið Þ ¼ p aið Þ� j A tð Þ j ð16Þ

In the formula, |A(t)| is the scale of the population

A(t); Str(αi) represents the enhancement degree. Its cal-

culation formula is

Str aið Þ ¼
X

n

j¼1

dij; dij ¼
1 aff aið Þ≥aff bið Þ
0 aff aið Þ < aff bið Þ
0 j ¼ j

8

<

:

ð17Þ

The sub-antibody a0i is accepted according to the Me-

tropolis guideline of the simulated annealing algorithm,

minf1; expð1−aff ðaiÞ−aff ða
0
iÞ=T kÞg > rm where rm is a

random number and Tk is the kth annealing

temperature.

In order to test the performance of the improved arti-

ficial immune algorithm (MAIA) and the standard artifi-

cial immune algorithm (AIA), a typical nonlinear

function is selected to analyze its performance. These

function tests are defined as follows:

f 1 xð Þ ¼ exp − x1−3ð Þ2− x2−5ð Þ2
� �

þ exp −x21−x
2
2

� �

; xj j≤10
ð18Þ

f 2 xð Þ ¼ exp − x1−4ð Þ2− x2−4ð Þ2
� �

þ expð− x1 þ 4ð Þ2

− x2−4ð Þ2Þ þ 2� exp −x21− x2 þ 4ð Þ2
� �

þ2� exp −x21−x2
2

� �

; xj j≤5

ð19Þ

f 3 xð Þ ¼
Xn

i−1
ðx2i −10 cos 2� π � xið Þ þ 10; xij j≤5:12

ð20Þ

f 4 xð Þ ¼ −e− x−4ð Þ2− y−4ð Þ2
−e− xþ4ð Þ2− y−4ð Þ2

−2e−x
2
− yþ4ð Þ2

−2e−x
2
−y2

ð21Þ

f 5 xð Þ ¼ −0:5þ
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

−0:5

1:0þ 0:001 x2 þ y2ð Þð Þ2
ð22Þ

f 6 xð Þ ¼
X

N

i¼1

100 xiþ1−xi
2

� �2
þ xi−1ð Þ2

h i

ð23Þ

f 7 xð Þ ¼
X

n

i¼1

xi
2
−10 cos 2πxið Þ þ 10

� �

ð24Þ

The above seven standard test functions have different

shapes and can test the performance of the algorithm in

an all-round way. f1~f3 are continuous unimodal func-

tions and are usually used to measure the convergence

speed of the algorithm. From the convergence perform-

ance of the f1~f3 functions, it can be concluded that

compared to the AIA, the MAIA avoids the difficulty of

the AIA being trapped in the local optimum, and the

global search capability is stronger, which proves the

feasibility of improving the AIA.

The functions f4~f7 are complex nonlinear multi-peak

functions, and there are a large number of local extrema,

which are usually used to measure the population diver-

sity and global search performance of the algorithm.

From the performance tests of f4~f7 functions, it can be

concluded that compared with AIA, MAIA has fewer

evolution iterations, better overcomes the disadvantages

of AIA (such as easy to fall into local optimum and pre-

mature), and has higher convergence accuracy and

speeds up convergence (Fig. 3).

3 Improved application of artificial immune

algorithm in FJSP

3.1 Simulation parameters

In order to test and improve the performance of the arti-

ficial immune algorithm in the FJSP application, select

four instances of FJSP:

(1) 4 workpieces are processed on 6 machines.

(2) 8 workpieces are processed on 10 machines.

(3) 12 workpieces are processed on 9 machines.

(4) 12 workpieces are processed on 10 machines

The application example adopts C++ and MATLAB

mixed programming. The author uses Matlab to call the

MEX program files written in the C programming lan-

guage and complete the simulation experiment.

3.2 Results and analysis

3.2.1 Improve the effectiveness of artificial immune

algorithm analysis

The experimental results of an application example

based on an improved artificial immune algorithm are

shown in Fig. 4. From Fig. 4, we can see that the im-

proved artificial immune algorithm can get a better flex-

ible job shop scheduling scheme. The simulation

experiment results prove the effectiveness of the im-

proved artificial immune algorithm in flexible job shop

scheduling problems.

Zeng and Wang EURASIP Journal on Wireless Communications and Networking  (2018) 2018:101 Page 6 of 10



a

b

c

d

e

f

g

Fig. 3 Comparison of performance before and after improvement of artificial immune algorithm. a Comparison of the convergence curves of f1.

b Comparison of the convergence curves of f2. c Comparison of the convergence curves of f3. d Performance comparison of f4. e Performance

comparison of f5. f Performance comparison of f6. g Performance comparison of f7
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d)

c)

b)

a)

Fig. 4 Improved FJSP solution result of artificial immune algorithm. a 4 workpieces 6 machines (4 × 6). b 8 workpieces 6 machines (8 × 10). c 12

workpieces 9 machines (12 × 9). d 12 workpieces 10 machines (12 × 10)
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3.2.2 Analysis of advantages of improved artificial immune

algorithm

In order to test the superiority of the improved artificial

immune algorithm, the FJSP classical algorithm of the

literature [14–16] was selected for comparison experi-

ments. All the experiments were performed 100 times.

The improved artificial immune algorithm and the clas-

sical algorithm searched for flexibility. The number of

optimal solutions for the job shop scheduling problem

and the number of iterations are shown in Table 1. Ana-

lysis of the Table 1 shows that for a smaller flexible job

shop scheduling problem. The success rate of all algo-

rithms is relatively high and the number of iterations is

also relatively small. For the smaller flexible job shop

scheduling problems, such as 12 workpieces 10 ma-

chines, the success rate of the improved artificial im-

mune algorithm is much higher than that of the current

classical solution algorithm, and the number of itera-

tions is relatively small. This algorithm improves the

efficiency of solving the flexible job shop scheduling

problem and proves that is superior of solving in FJSP.

4 Conclusions
FJSP is a major topic in the current production practice.

There are many constraints, and the traditional intelli-

gent algorithm has its own defects. This study proposes

an chaotic simulated annealing and particle swarm

improved artificial immune algorithm and applied to

flexible job shop scheduling problem solving process.

The experimental results show that the improved artifi-

cial immune algorithm’s optimization ability and

optimization efficiency are better than that of the stand-

ard artificial immune algorithm, and a better solution to

the flexible job shop scheduling problem is obtained.

Compared with the current typical flexible job shop

scheduling problem, the algorithm is solved. Improving

artificial immune algorithms has obvious advantages.

How to introduce a better intelligent algorithm to obtain

a better flexible job shop scheduling solution is the con-

tent that will be studied in the next step.

Abbreviations
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JSP: Job shop scheduling problem; MAIA: Modified artificial immune algorithm
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