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A CHARACTER THEORETIC APPROACH TO 
EMBED DINGS OF ROOTED MAPS IN 

AN ORIENTABLE SURFACE OF GIVEN GENUS 

D. M. JACKSON AND T. I. VISENTIN 

ABSTRACT. The group algebra of the symmetric group and properties of the 
irreducible characters are used to derive combinatorial properties of embeddings 
of rooted maps in orientable surfaces of arbitrary genus. In particular, we 
show that there exists, for each genus, a correspondence between the set of 
rooted quadrangulations and a set of rooted maps of all lower genera with a 
distinguished subset of vertices. 

1, INTRODUCTION 

Let JJ be a connected (unlabeled) graph with a finite number, n, of edges 
in which each edge is given a direction and is labeled uniquely with an integer 
between 1 and n. Loops and multiple edges are allowed. The symbols e + 
and e - , respectively, denote the origin and terminus of the edge e. Let 1: 
be a closed oriented surface without boundary. An embedding of JJ in 1: 
is a continuous injective function e: JJ ---> 1:. Two embeddings e, e' are 
equivalent if there is an orientation-preserving homeomorphism 1fI: 1: ---> 1: such 
that lfIe = e', lfIe(e) = e'(e), and lfIe(e+) = e'(e+), for all e E {I, ... , n}; 
that is, IfI respects labeling and directing of edges. A map with associated graph 
JJ is an embedding of JJ in 1:. The deletion of JJ separates 1: into regions 
homeomorphic to open discs, called the faces of the map, and the number of 
edges bordering a face is called its degree. A p-face-regular map is a map in 
which each face has degree p. In particular, 3- and 4-face-regular maps are 
called triangulations and quadrangulations, respectively. A map has genus g 
if it is embeddable in an orientable surface of genus g and no lower. By the 
Euler-Poincare formula, the genus, g, of JJ is given by 2 - 2g = i - k + j 
where JJ has i vertices, k edges, and j faces, Fuller details are found in 
[9]. Figure 1 gives a triangulation with two vertices and four faces in the torus, 
its number of rootings (in parentheses), and an embedding of it in a polygonal 
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(i) (ii) 

FIGURE 1. A map and its embedding in the torus 

representation of the torus in which faces are the union of similarly shaded 
areas. 

This work has two purposes. The first is to investigate the connections be-
tween the group algebra of the symmetric group, character theory, and embed-
dings of maps in orientable surfaces. The second is to use this information to 
derive some new results about embeddings. The context is an enumerative one, 
so these results concern bijections between classes of rooted maps. These hold 
for all genera, thereby giving extensions to the classical results for the sphere. 
It is shown that there is a bijection between rooted maps and rooted quadran-
gulations (Corollary 5.2). A combinatorial description of this bijection would 
clearly be of considerable interest. Two further bijections are given in [14], a 
continuation of the methods of this paper. 

Maps, their properties, and, in particular, their enumeration have been stud-
ied extensively. It is clear that their enumeration is made difficult by the pres-
ence of automorphisms in the associated graph and by the restrictions imposed 
by the presence of the surface. The automorphisms can be destroyed (restricted 
to the identity) by distinguishing a mutually incident vertex, the root vertex, and 
edge, the root edge, in the map, that is, by rooting the map. This is represented 
by a directed edge with the convention that the root vertex is its origin. Al-
though rooting is an artifice, asymptotically for many natural classes of maps, 
the maps have no symmetries, so in these classes the ratio of the numbers of 
rooted to unrooted maps on n edges approaches [4] the number of distinct 
rootings, for large n. This ratio is 2n, the number (n) of ways of selecting 
an edge and its direction (2 ways), and is 4n if the orientation of the surface 
is taken into account. The enumeration of maps is therefore often recoverable 
from that of rooted maps, at least asymptotically for n. 

Little attention has been given to the use of the group algebra of the symmetric 
group and the associated character theory to elicit further information about 
embeddings. The group algebra is relevant since an embedding of a rooted map 
in an orientable surface is uniquely defined by a permutation, called a rotation 
system, encoding the vertices in its cycles. The cycles in the product of this 
with a particular fixed-point free involution determine the faces in the minimal 
embedding, and thence the genus. Drouffe [5, Appendix] briefly referred to the 
use of characters and made some calculations for maps with one face. 
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EMBED DINGS OF ROOTED MAPS 345 

To make this paper self-contained we have stated essential results from com-
binatorial topology [9] and character theory [17] without proof, and the reader 
is referred to the indicated sources for further details. In general, we have re-
mained consistent with Macdonald's [16] notational conventions for symmetric 
functions. For graph theoretic terminology, of which we have used a minimal 
amount, we have followed [9]. 

The combinatorial connections between the group algebra and embed dings 
of rooted maps and between rotation systems and transitive rotation systems 
are given in §2. Expressions for the generating functions for classes of rooted 
maps indexed by the number of vertices, edges, and faces and for the associated 
rotation systems are given in terms of central elements corresponding to conju-
gacy classes in §3. Each of these generating functions determines the other, but 
it is more convenient to work with rotation systems. The generating function 
for rotation systems is expressed in terms of the irreducible characters of the 
symmetric group evaluated at elements all of whose cycles have the same length. 
A factorization of these values into irreducible characters evaluated at elements 
of the same type in symmetric groups of lower orders is given in §4. A factor-
ization of a class of rotation systems is given in §5, and this leads to a simple 
linear relationship between the generating function for rooted quadrangulations 
and the generating function for all rooted maps. 

The following notation is used extensively in the statements of the main re-
sults. The notation required for more local purposes appears in the introductory 
paragraphs of the appropriate section. A partition e = (e 1 ' e2 , ••• ) is a (possi-
bly infinite) sequence of integers such that e1 2: e2 2: ... 2: 0, and their sum is 
called the weight, lei, of e. We write e f- n to indicate that e is a partition of 
n. The nonzero elements of e are called its parts, and their number, I (e) , is 
the length of (). If i occurs mi times as a part in e, we write e = [1 m, 2m2 . .. ] , 
suppressing im; if mi = O. The conjugate, e, of e is (()~, e; , ... ) , where e; 
is the number of parts of e which are greater than or equal to i, i = 1 , ... , e 1 • 

Clearly e f- lei. For s1 ~ ./Y = {I , 2, ... }, TIM' denotes the set of all parti-
tions with no part not in s1 . A sequence (e(l), ... , ()(k)) of partitions whose 
weights sum to n is called a multipartition of n, and the set of all multipart i-
tions of weight n with k components is denoted by TIk , n • 

The set {e f- n} is a natural index set for the conjugacy classes of 6 n , 
the symmetric group of n symbols. The cycle-type of 7r E ~, a conjugacy 
class of 6 n , is [1 m, 2m2 . .. ] f- n, where n has mi cycles of length i for 
i = 1, 2, .... The natural indexing is such that e = [1 m, 2m2 . .. ]. Thus I (e) 
is the number of cycles of n. The order of ~ is he = n!g(e), where gee) = 
ITi>IUm;mi!)-I. The group algebra of 6 n over the complex field C is denoted 
by -C6 n . Multiplication of permutations is carried out from right to left. A 
permutation in 6 kp is p-semiregular if its cycle-type is [pk]. Occasionally, we 
drop the prefix and refer to such permutations as semiregular. 
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l denotes the irreducible (ordinary) character associated with ~ and x~ 
denotes its value at any element of ~ where 0:, e f- N. For convenience, we 
adopt the convention that the character associated with the empty partition is 
identically 1 and that x~ = 0 if lei =I- 10:1. The degree, t, of the irreducible 
representation indexed by e is equal to XrIN]. 

If A is an r x s matrix whose (i, j)-element is ail' we write A = [aij]rxs . 
When r = s, the determinant IAI of A is denoted by Ilaijll (or by Ii[aijlllrxr)' 

If {a I , ... , a,} is a set of real numbers, then we write {b I , ... , br} = 
{a I , .. ·, ar}< to signify that {b I , .. ·, br} = {al''''' ar} and b i 5:. ... 5:. br . 

The rising and falling factorial functions are, respectively, (x)(n) = 
x(x + 1)· .. (x + n - 1) and (x)n = x(x - 1)··· (x - n + 1). Finally, Ho(x) 
denotes the polynomial rL~i9(0)(x - i + 1)(0,) . 

2. GRAPH EMBED DINGS AND THE GROUP ALGEBRA 

The set of origins e + and termini e - of edges in the edge-set E (J1) = 
{ 1 , ... , n} of J1 is called the directed edge set of J1 . Each vertex v of J1 is 
represented as a subset of the directed edge set, so e + is in the subset if and only 
if v is the origin of e , and e - is in the subset if and only if v is the terminus 
of e. These subsets partition the directed edge set. For each vertex v of J1 , we 
specify a cyclic list of the directed edges encountered in traversing the boundary 
of a small disc, centered at v, in the sense specified by the orientation of L. 
We shall fix this sense to be anticlockwise. This partition of the directed edge 
set into cyclic lists is called a rotation system, and it represents a permutation on 
the set {I + , 1 - , ... , n + , n -}. By a generalization of a theorem of Schoenflies 
[11] it is known that, for every embedding of J1 in L, J1 is contained in the 
I-skeleton of a triangulation of this surface. This permits the analysis of graph 
embeddings by combinatorial methods. 

Theorem 2.1. Every rotation system for a connected graph J1 induces, up to 
equivalence of embeddings, a unique embedding of J1 in L. Conversely, every 
embedding of J1 in L induces a unique transitive rotation system. 

This one-to-one correspondence, sometimes called the Edmonds embedding 
theorem [6], was given originally in dual form by Heffter [10] and has been 
generalized to graphs with loops and multiple edges by Gross and Alpert [8]. 
An important consequence of this theorem is that the faces of the embeddings 
can be determined by algebraic means. 

Proposition 2.2. Let v be the rotation system of a graph J1 on n edges. Let 
En = (1+1-)(2+T)··· (n+n-) be the fixed permutation describing, in its cycles, 
the edges of J1. Then the cycles of VEn list the directed edges encountered in 
traversing the boundary of the faces of the embedding in a direction consistent 
with the orientation of L. 
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1 4 

3 d 

FIGURE 2. A transitive rotation system 

For example, the rotation system corresponding to the graph in Figure 2 is 
v = (1+3+2+1-)(Tr4+4-). From Proposition 2.2, its faces are therefore 
given by ¢ = VE4 = (1 +)(2+ r)( 4-)( 1- 3+ 4+2-). The cycle (2+3-) represents 
the face labeled b in Figure 2 and indicates that edge 2 is encountered in its 
positive direction followed by the edge 3 in its negative direction in traversing 
the boundary of this face in the direction consistent with the orientation of L. 
In this embedding there are four faces, so the genus of this map is zero. 

The number of rooted maps is readily deducible from the number of rotation 
systems. 

Lemma 2.3. For each rooted map on n edges there are t(n) = (n - 1)!2n - 1 

distinct (transitive) rotation systems. 
Proof. The nonroot edges can be labeled in (n - I)! ways, and each such edge 
can be directed in two ways. 0 

Not every permutation v E 6 2n corresponds to a rotation system for an 
embedding of a graph with n edges. If v and En do not generate 6 2n , then 
the associated graph :§ is not connected. However, the following corollary 
of Theorem 2.1 gives a combinatorial description of every element of . 6 2n in 
terms of transitive substructures. 

To this end, for p, a E 6 N , let lip, all denote the number of orbits of the 
group generated by p and a. For any J = {ii' ... , ik } ~ ~, let .9'J be 
the set of all permutations of the symbols it, i~ , ... , i; , i~ and let E J = 

(it i~ ) ... (it i~) E .9' J' Let s¥ ~ {I, 2, ... } and let .9':1 be the subset of 
.9' J consisting of all permutations having no cycles of length not in S¥. Let 
:7; = {a E.9':1: IIEJ , all = I}. 

Corollary 2.4. .9';:' is in 1-1 correspondence with 
n 

~ = U {{al, ... ,am}:ajE~W, j=I, ... ,m; ~u ... UJm=~}' 
m=l 

Proof. For 7r E.9'S: , let:§ be the group generated by 7r and En . Suppose that 
./, n rr 

:§ has orbits J.] , ... , J . Let 7r. be the permutation formed by the product rr m } 
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348 D. M. JACKSON AND T. l. VISENTIN 

of the cycles of 7T. which act on Jj, for j = 1, ... , m. Then {7T. J ' ••• , 7T.m } E < . Let VI be the mapping 

VI: g: -t ~ : 7T. f-+ {7T. J ' ... , 7T. m }. 
n 

Let {aJ ' ••• , am} E < . Since a J , ••• , am all act on different sets, the product 
a J ••• am is uniquely determined, and a E g: . It is a straightforward matter 
to check that VI is bijective. 0 n 

In view of Corollary 2.4, each permutation of 6 2n is a rotation system for 
an unordered collection of graph embeddings. Proposition 2.2 can be applied 
in this more general setting to show that the cycles of VEn describe the faces of 
the embeddings of the unordered collection. 

We conclude this section with some combinatorial facts about C6 N which, 
when combined with observations on the connection between rooted maps and 
rotation systems, will enable us to enumerate classes of rooted maps, at least in 
principle. 

Each element of C6 N can be expressed uniquely as a finite linear combina-
tion of elements in 6 N with coefficients in C. The product of two elements in 
C6 N is taken distributively with respect to the product on 6 N • Let Ke be the 
formal sum of all elements of ~ for e f- N. Then {Ke: e f- N} is a basis for 
the center of C6N , so the coefficient of Ke in the product KaKp, for a, P f- n, 
is uniquely defined. This is denoted by [KelKaKp, and, in the present context, 
it has the following useful combinatorial interpretation [12, Proposition 2.21. 

Proposition 2.5. Let a, p , e f- N. Then the number of ways of expressing an 
arbitrary element C E ~ as c = ab with (a, b) E ~ x ~ is [KelKaKp. 
Moreover, this is equal to [KplKaKe' 

We therefore have the following basic enumerative result for rotation systems. 
Lemma 2.6. Let n be a nonnegative integer and let v, ¢ f- 2n. Then 

h1> 
I~En n '6¢1 = h[2nj [ KelKv K[2nj' 

Proof. 

h1> 
= h[2nj L. 1 

(a,b)E~X?5[2nJ 

ab=c 

for an arbitrary but fixed c E '6¢. The result follows from Proposition 2.5. 0 

3. GENERATING FUNCTIONS FOR ROOTED MAPS 

The following conventions for generating functions are adopted in the in-
terests of brevity. Let m = (mJ' ... , m p )' n = (nJ' ... ,nq) be sequences 
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EMBED DINGS OF ROOTED MAPS 349 

of nonnegative integers, empty if p = 0 or q = O. Let x = (XI' ... , xp )' 

y = (y I ' ... , y q) be sequences of commuting indeterminates. Then m! de-
notes m l !··· mp! , and xm denotes x~t ... x;p. Let Op = (0, ... , 0) , with p 
components, and let x 2: m mean that Xi 2: mi for i = 1 , ... , p. For brevity, 
we write m 2: 0 instead of m 2: Op' the suppressed suffix being understood 
from the context. 

A generating function (series) for the sequence (a(m, n) E Q: m, n 2: 0) is 
<l>(x I y) = Lm 0>0 a(m, n)xmyo In!. When q = 0, this is denoted by CIl(x). Let 
k = (k l ' ... , kp ) be a sequence of integers. The coefficient operator [.] is 

[xk]: Q[[x, y]] -+ Q[[y]]: CIl f-> bk(y) 

where Lm bm(y)xm is the image of CIl under the natural isomorphism 

Q[[x, y]] -+ (Q[[y]]) [[x]] . 

For example, [x]xy = y, [xl]xy = O. When a(m, n) is the cardinality of 
a set of combinatorial objects, combinatorial considerations [7] determine the 
selection of p and q that is convenient for the particular instance. We say that 
Xi marks the combinatorial feature counted by mi' 

In view of Lemma 2.3 and the Euler-Poincare formula, it is convenient to 
introduce the mapping Qu defined by Qu(Xiyj zk Ik!) = xiyj zk U2+k-i- j It(k) , 
extended linearly to Q[[x, y, z]]. We shall apply this only when i, j, k 
count, respectively, the vertices, faces, and edges of a map, so 2 + k - i - j = 2g 
where g is the genus of the map. The action of Qu on f E Q[[x, y, z]] can 
be represented differentially by 

n f 2 8 f (-I -I 1 ) :.lou (x,y,z)=2uz 8z xu ,yu '2zU . 

For .s:f ~ ff , let M.Yi' (u , X , y, z) be the generating function for m.Yi'g . . k ' 
.I.} • 

the number of rooted maps of genus g with i vertices, j faces, and kedges, 
and with no faces of degree not in .s:f . This is also called the genus distribution 
of the class of maps designated by .s:f. Let R.Yi' (x, y I z) be the generating 
function for r.Yi'. k' the number of rotation systems v E 6 2k with i cycles 

I.} • 

such that fkV has j cycles, none of whose lengths are not in .s:f . Thus M.Yi' E 
Q[u, x, y] [[z]] , since maps with a finite number of edges are themselves finite. 
Similarly, R.w E Q[x, y][[z]]. Note that M,A/ and M{4} are the generating 
functions for all rooted maps and rooted quadrangulations, respectively. 

Proposition 3.1. M.Yi' (u, x , y, z) = M.w (u, y , x , z) . 

Proof. By duality. D 

It is clear from Corollary 2.4 that log R.Yi' (x, y I z) is the generating function 
for the corresponding set of transitive rotation systems. We may now express 
M.Yi' fully in terms of the group algebra of the symmetric group. 
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Theorem 3.2. 

(1) 2 M.Y/(u ,X, y, Z) = nu 10gR.Y/(x, y I Z). 

""' Zn ""' h¢ /(v) /(¢) R.Y/(x, y I Z) = ~ n! ~ [2"j[K¢]KvK[2"]X y 
n~O v,¢'r-2n h 

(2) 

¢En", 

Proof. (1) Let c~ j, n be the number of transitive rotation systems among those 
counted by r~j, n ' and let C.Y/ (x , y I z) be the generating function for (c~j, n : 

i, j, n ~ 0). By Corollary 2.4, Red = exp C ed • But, from Lemma 2.3, c.Y/. = 
.w.w I,J,n 

.Y/ l(n)mg,i,j,n where 2g = 2 + n - i - j so 

whence 

n .Y/ i jZ L l(n)mg,i,j,n X y n! 
i,j ,n~O 

2 nulogR.Y/(x, y I z) = nuc.Y/(x, y I z) = M.Y/(u ,x, y, z). 

(2) Now r~j,k = L: I~fk n ~I where the summation is over ¢ f- 2k such 
that I (¢) = j, ¢ E I1'y/ ' and /J f- 2k such that I (/J) = i. The result follows 
from Lemma 2.6. 0 

In view of Theorem 3.2, it is sufficient to focus attention on R'y/ in the 
determination of M'y/ . We now use properties of the center of C6 lY • 

Since C6 N is semisimple [17], its center has a basis {Fe: e f- N} of or-
thogonal idempotents, which are therefore expressible in terms of {Ke: e f-
N} and vice versa. These are expressed in terms of each other by Fa = 
N!-lrL:e'r-NX~Ke and Ka = haL:e'r-NX(~Fel!e for a f- N. These central 
idempotents can be used to express as explicit character sums the enumerative 
quantities of the type appearing in Lemma 2.6 and in association with various 
classes of maps. 

Lemma 3.3. 
1 a p,,", 1 e e e 

[Ky]KaKp = N,h h ~ eXaXpXy . 
. e'r-N! 

Proof. From the above expressions connecting {Ke: e f- N}, and {Fe: e f-
N} , and from the fact that the Fa's are orthogonal idempotents, the left-hand 
side is hahP L:e'r-NCt)-2 X!X;[K y]Fe , and the result follows since [Ky]Fe = 

!ex:IN !. 0 

Proposition 3.4. 

a'r-N 
Proof. See, for example, [13]. 0 

The next corollary gives explicit expressions for the generating functions for 
rotation systems, with and without conditions. 
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Corollary 3.5. 
n 

(1) R~1i(x, Y 1 z) = L n!t2n)! L / Xrzn)Ho(X)Ho(Y). 
n;:::O Of-2n 

n 
~ Z ~ h¢ I(¢) ~ 0 0 

(2) RS!I(x, Y 1 z) = ~ n!(2n)! ~ Y ~ X¢X[2n)Ho(x). 
n;:::O ¢EII.w Of-2n 

Proof. (1) From Theorem 3.2(2) 

and the result follows directly from Lemmas 3.3 and 3.4 after rearrangement 
of the sums. 

(2) The proof is similar. 0 

In principle, it can be checked that [u 2g ]Qu log R./y (1, liz) indeed gives the 
known results for the sphere [19] and the torus [2], with g = 0 and g = 1, 
respectively. 

An explicit expression for the generating function for maps counted without 
regard to genus is immediately recoverable. Of course, this can be obtained 
directly from the embedding theorem (Theorem 2.1). 

Proposition 3.6. 
o ~ 1 n (2n) 

M..,y(1,x, 1, z)=2zozlog~Ttz (x) . 
n;:::O n. 

Proof. From Theorem 3.2 and Corollary 3.5 

M..,y(I,x, I,Z)=2Z:z l0gL 2n ~(: )' L/Xrzn)Ho(X) II (2_i)(0;). 
n;:::O n. n. Of-2n l:'Si:'SI(O) 

But Il1:'Si:'SI(0)(2 - i)(O;l = 181!£51,1(0) and xg:l = 1 = 12n). The result fol-
lows. 0 

Note that M..,y(I, x, 1, z) is the generating function for all rooted maps, 
without regard to genus, with respect to edges and vertices. When the set of 
such maps is counted with respect to the number of edges alone, then 

Corollary 3.7. 

o ~ (2n)! n 
M..,y(I, 1,1, z) = 2z OZ log~ -ylz . 

n;:::O n. 

o ~ (4n)! 2n 
M{4}(I, 1,1, z) = 2z !lz log~ 6n '(2 )'z . 

u n;:::O 1 n. n. 
Proof. From Theorem 3.2 and Corollary 3.5. 0 

It is convenient to give explicitly the generating functions of rotation systems 
corresponding to face-regular rooted maps. 
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Corollary 3.8. 
(1) k = 2m: 

mn n 
"z y "e e R{2m}(X, y I z) = ~ -( -)' -kn , ~ X[k"jX[2mn jHe(x). mn. n. n<::O ef-kn 

(2) k odd: 
kn 2n 

"z y "e e R{k}(x, y I z) = ~ (kn)' 2n , ~ X[k2njX[2knj He(X). 
n<::O . k (2n). ef-2kn 

Proof. Direct from Corollary 3.5. D 

4. FACTORING CHARACTERS AT SEMIREGULAR ELEMENTS 

The importance of / at semiregular permutations has been seen in Corollary 
3.5. We now consider the question of evaluating /at these permutations. For 
this purpose, the following facts (see, for example, [16]) are used. 

Let {XI' x2 ' ••• } be a countably infinite set of algebraically independent 
commuting indeterminates and let A be the ring of symmetric functions in 
x = (XI' x2' ... ). Restriction to the finite case is obtained by setting Xk+1 = 
Xk+2 = ... = O. The complete symmetric functions and power sum symmetric 
functions associated with the partition 8 are he = he he ... where 2:r>O h,t' = 

1 2 -

fL<::1 (l-tX)-1 ,and Pe = Pol e2 ... where Pr = x~ +x;+··· . These are related 
by hr = 2:af-r g(a)Pa' By a result of Jacobi, the Schur symmetric function 
associated with 8 is se = Ilhej-i+jllnxn for any n ~ 1(8), and, by a result of 

Frobenius, se = 2:af-lel g(a)x!Pa · The sets {he}, {Pe} , {se} each afford a 
basis of A, so, in particular, the coefficient operator [Pel on A is well-defined 
and acts linearly. The Pi are algebraically independent, as are the hi' 

Furthermore, we need to construct an explicit bijection between two par-
ticular sets of partitions whose roles will become clear when they are used, for 
example, in Lemma 4.8. The bijection is denoted by 11k and is given in Lemma 
4.6. It is preceded by preparatory results of an apparently unavoidably technical 
nature. 

Definition 4.1. Let k, n be positive integers. For a = (a I ' a 2 ' .•• ) f- k n we 
fi 1\ ((I) (k)) b de ne a = a , ... , a y 

(1) {11 I' ... , 11· } = {i: a· - i == - j mod k}< for ) = 1 , ... , k , J, J, mj I 

(2) (j) - ( (j) (j)) c . - 1 k a - a l , ... , am lOr} - , ... , , 
) 

(3) aV) = k(a'l)" -11j,i+))+i-l for i= 1, ... , mj' 

If mj = rU(a) -) + l)jkl for all ) = 1, ... , k, then a is said to be k-
balanced. Let ~k, n be the set of all k-balanced partitions of kn. Clearly, for 
a with I(a) = qk + r where q, r are integers and 0::; r < k, a is k-balanced 
if m l = ... = mr = q + 1 and mr+1 = ... = mk = q. 
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Proposition 4.2. If a E !JiJk, n then a" E ilk, n . 

Proof. From Definition 4.1 (1), all]) is an integer and aU) > ... > aU). But 1 - - m] 

a E!JiJk n' so 

(j) 1 . a = -(a -1'/ +J)+m.-1 m) k rJj,mj j,m) j 

2: k (1 - I (a) + j) + r k (l (a) - j + 1)1- 1 

2: r k(l(a) - j + 1) 1- k(l(a) - j + 1) + ~ - 1 2: 0 

since a~) is an integer. Thus a" is a multipartition. 
) 

Moreover, la"l = k -I 2.::~=1 2.::~~darJ . -17j, i + k(i - 1) + j}. But k(i - 1) + j 
), , 

and 17· i take each value in {I, 2, ... , I (a)} exactly once for each (i, j) in 
j, 

the indicated range. Thus the second and third sums together contribute zero 
to the summation, whence la" I = lall k = n and so a" E ilk, n' 0 

The following proposition follows immediately from the proof of Proposition 
4.2 and, although it seems obvious, it plays a subtle and important role in 
Lemma 4.8. 

Proposition 4.3. If 0 is k-balanced, then k divides 101. 
Definition 4.4. Let k, n be positive integers. For p = (p(l) , p(2) , ... , p(k)) E 

ilk n we define pV = (a l + 1, ... , am + m) by 
(1) q + 1 = max{l(pU)): 1 :::; j:::; k}, r = max{j: l(p(j)) = q + I}; 
(2) m l = ... = mr = q + 1, m r+1 = ... = m k = q ; 
(3) {ai' ... , am} = (A(I) U··· U A(k))> 

where AU) = {a. I' ... , a } and a . = k(p(j) - i + 1) - j for j = 1, ... , k j, j ,m] j, / / 
with the convention that pji) = 0 for i> I(PU)) . 

Proposition 4.5. If P E ilk, n then p v E!JiJk , n . 

Proof. AU) contains only integers congruent to - j mod k so the AU) are 
pairwise disjoint, whence m = kq + r. Moreover, a 1 > ... > a for 

j, j ,m) 

j=1, ... ,k. 
Now al > ... > am so al + 1 2: ... 2: am + m. Consider am + m = 

k(P~) - m j + 1) - j + m for some 1 :::; j :::; k. There are three cases to consider. 
) 

Case 1 U < r). Then am + m 2: k(O - (q + 1) + 1) - j + qk + r = r - j > O. 

Case2 U = r). Then p~) 2: 1 so am+m 2: k(l-(q+l)+l)-r+qk+r = k > O. 
) 

Case 3 U>r). Then am+m2:k(O-q+1)-j+qk+r=k-j+r>O. 
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We conclude that pV is a partition and that I(pv) = qk + r = m. Finally, 
m k ~ ~~ 

Ipv l = l)a i + 1) = LL)k(PY) - i + 1) - j} + L i 
i=1 j=1 i=1 i=1 

qk~ k mj 

= k(IP(I)1 + ... + lik)!) + L i - LL{k(i - 1) + j} 
i=1 j=1 i=1 

= kn, 
since k(i - 1) + j takes each value in {1, ... , qk + r} as (i, j) varies over its 
range. Thus pV f- kn. Moreover, it is clear from the construction that pV is 
k-balanced. 0 

Lemma 4.6. I1k :!$k, n ---> ITk , n: e f--+ ell is bijective. 
Proof. It is now a matter of straightforward calculation with Definitions 4.1 
and 4.4 to establish that (ell)v = e for all e E !$k,n' and (¢V)II = ¢ for all 
¢ E ITk n' 0 

We call 11k (8) the (ordered) k-factorization of e E !$k, n . Appendix A gives 
the 2-factorizations for 6 2 and 6 4 , and the 2- and 3-factorizations for 6 6 , 

For example, it is seen from this that [3 2 1] is not 2-balanced and that the 
remaining partitions of 6 are in one-to-one correspondence with IT2 3' In ad-
dition, we give an instance of the connection between an a-factori~ation and 
an ab-factorization. The 2- and 4-factorizations of [32 22 12] are ([1 2], [2 12]) 
and (0, [12], [1], 0), respectively. The latter is the interleaving of (0, [1]) 
and ([12], 0), the 2-factorizations (see Appendix A) of [12] and [2 12], re-
spectively, to the first and third positions and the second and fourth positions. 

Definition 4.7. Let 7ra , < E 6 1(a) be defined by 

( 1 2 .. · m m + 1 ... 1(0.) ) 
7r = 1 1 , 

a ~ ~ ... ~ ~ ... ~ 1 , 1 1 ,2 1 , m, 2, 1 k , mk 

(1) 

(2) I ( 1 2 3·.. ... 1(0.)) 
7ra = 1 k + 1 2k + 1 ... 2 k + 2 ... 

where ~s,t and m t are given in Definition 4.1(1). Then 7ra and < are called 
the associated permutations of all . 

With these preliminary results, we may now give the desired factorization of 
X(J at a semiregular element. 

Lemma 4.8. Let e f- abn. If e is not a-balanced, then Xrrab)n] = O. Otherwise 
let l1a(e) = (e(') , ... , eta)) with associated permutations 7r(J' 7r~, and let ns = 
le(S)I/b for s = 1, ... , a. Then 

(J I a 1 a(J) 

X[(ab)n] = sgn( 7ra7r(J)n! II -, X[b nJ ] ' 
s=1 ns' 

(J(J) 

with the convention that Xfb"J] = 0 if ns ~./f/ . 
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Proof. Since the P Q's form a basis of A, 

Sk: A -+ Q[[t]]: P Q f-+ lr J Q, [k'] , 

extended linearly to A, is a ring homomorphism. Thus, from the results of 
Jacobi and Frobenius given at the beginning of this section, 

But 

o -) b n) n X[(ab)n] = g ([(a)] [Pab]sO 

= (ab)n n![p;b] IlhOj - i+ J 11/(0) x/(O) 

= (ab)n n![tnab]Sab Ilho, -i+J 11/(0) x/(O) 

= (ab)nn![tnab]IISabhoj_i+JII/(o)x/(O)' 

( 
(abr1ab(r/ab)! 'ab(r) 

where 'J(r) = 1 if r == 0 mod j and is 0 otherwise. Since e r abn , 

(1) o _ ( b) n 'II ' ab ( e i - i + j) II -, 1 M 1 

X[(ab)n] - a n. (ab)(O,-i+J)lab((ei _ i + j)/ab)! /(O)x/(O) - n. 

where 
M=II'ab(e~-i·+j),11 . 

((ei - I + J)/ab). /(O)x/(O) 

Whether or not e is a-balanced, we can still define ell = (e(l) , ... , e(a)) 
by setting k = a in Definition 4.1. Thus ms and '1i, s are determined. The 
permutations p = n~ acting on the rows of this matrix and (J = no acting 
on its columns (have been constructed to) rearrange the matrix as a direct sum 
while preserving the determinant, of course, up to sign. Thus 

where 

for 1 ~ i, j ~ l( e) , and Ms is ms x r(l( e)-s+ 1)/ a 1 . To see this, it is sufficient 
to note that 'ab(ep(i) - p(i) + (JU)) = 0 for any (i, j) not corresponding to 
an element position in one of the blocks M) , ... , Ma of the direct sum, since 
e p(i) - p(i) + (JU) t 0 mod a for such values of (i, j) . 
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If 0 IS a-balanced, then Ms is square so X~ab)n] 
where 

M _ Tab(O"s., - Y1s,i + (k - I)a + s) 
[ s]ik - ((0 -- YI . + (k - I)a + s)/ab)! 

115 , is, I 

_ Tab(a(O?) - i + k)) _ Tb(Oi S ) - i + k) 
- ((Oi S ) - i + k)/b)! - ((015 ) - i + k)/b)! . 

Since Ms has the same form as M, we can evaluate IMsl by trying to find a 
b-factorization of O(s) and then using its associated permutations to rearrange 
Ms' If ns fi AI' , then from Proposition 4.3, O(s) is not b-balanced. Then, 
using the same argument that was used to show that IMI = 0 when 0 is not 

1 e1sl 
a-balanced, we have IMsl = O. If ns E AI', then IMsl = n)- X[bnS] from (1) 
and this completes the proof. 0 

An immediate consequence of Lemma 4.6 and Lemma 4.8 is that 

I{O f- pn: X~nl-::J O}I = [qn]II(1- /)-p. 

From the Jacobi triple product identity [1] we have I{O f- 3n: X[~n] -::J O}I = 

[qnJU::k>o(-Il(2k + I)q(k;l)rl . 
When - b = 1 , then 0 f- na and Lemma 4.8 gives 

X~n] = sgn(nen~) [n l ' .~. , nJ TI IIJI . 
This appears in [15], where it is proved by means of p-cores and p-quotients of 
tableaux, in conjunction with the Murnaghan-Nakayama rule. 

The a-factorization of () can be deduced from the a-factorization of 0 . 

Proposition 4.9. Let (0(1), ... ,O(a)) be the a-factorization of O. Then ({)(a) , 
... , ()(1)) is the a-factorization of () . 

The expression TI1::::;i::;t(e)(x - ki + k)(ke i ) , which is related to He' has a 
particularly useful form when it is reexpressed in terms of the a-factorization 
of O. A preliminary result is required. 

Proposition 4.10. Let J S;; AI' and let ai' bi E AI' be such that ai ~ bi for all 
i E J. Let n be a permutation on the elements of J such that an(i) ~ bi for 
all i E J. Then, for any fixed c E AI' 

I{i EJ: an(i) ~ c ~ b)1 = I{i EJ: ai ~ c ~ b)l· 
Proof. The left-hand side is 

i{i E J: an (i) ~ c}I-I{i E J: an(i) ~ c and bi < c}1 
= I{i EJ: an(i) ~ c}I-I{i EJ: bi < c}1 
= I{i E J: a i S c}I-I{i E J: bi < c}1 
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since an (i) S c is forced by bi < c, and this then gives the right-hand side. 0 

Lemma 4.11. Let H:(x) = TII~i9(e)(x - ki + k)(ke;l. Then 

e e(1) e(2) elk) 
HI (x) = Hk (x)Hk (x - 1)··· Hk (x - k + 1) 

h 8 . kb I d d (8(1) 8(k)) kfi w en ever lS - a ance an , ... , is its - actorization. 

Proof. From Definition 4.1 ( 1) 
k 

H~(x) = IT (x - i + l)(e) = IT IT (x - tlj,i + l)(e~J) 
l~i9(e) j=1 l~i9(e(j)) 
k 

= IT IT (x - tI ,+ l/kejJ)-ki+k+'1J,i-j) 
J, I 

j=1 l~i9(e(j)) 

whence 
k 

e(l) elk) 
Hk (x) .. ·Hk (x-k+ 1) = IT II (keU)) 

(x - j + 1 - ki + k) i . 
j=1 l~i9(e(j)) 

e +00 u k eU). +00 v Thus HI (x) = TIr=_oo(x + r) , and TIj=1 Hk (x - ) + 1) = TIr=-oo(x + r) , 
where ur' vr 2:: 0 for all r and only a finite number of them are nonzero. It 
remains to prove that ur = vr for all integers r. Now 

ur = I{U, j): 1 - tlj,i S r S k8;j) - ki + k - j, 1 S j S k, 1 SiS 1(8(J))}1 

and 

vr = I{U, j): 1-k(i-1)-j S r S k8;j)-ki+k-j, 1 S j S k, 1 SiS 1(8(J))}1. 

But 8 is k-balanced, so as U, j) takes permissible values, both kU - 1) + j 
and tlJ' , take the values 1, 2, ... ,/(8) exactly once each. Thus ur = v by 

, I r 
Proposition 4.10. 0 

5. QUADRANGULATIONS OF ARBITRARY GENUS 

We can now give the first of the combinatorial applications of this theory by 
deriving a bijection between the sets of all rooted quadrangulations of genus 
g and a set of rooted maps of genus less than or equal to g. The result is a 
consequence of a particular factorization of R{4}' Other bijections are given 
in [14]. 

Theorem 5.1. 

R{4}(X, y I z) = R,A'"(1x, 1(x + 1) I 4iy )R,A'" (1 (x - 1), !x 14iy ). 
Proof. From Corollary 3.8( 1) 
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Let (0(1), 0(2)) be the 2-factorization of O. From Lemma 4.8, the second 
summation may be restricted to 2-balanced 0 for which 10(1)1 and 10(2)1 are 
even, for otherwise X~nl = O. With 10(1)1 = 2k and 10(2)1 = 2n - 2k, Lemma 
4.8 gives 

. (0) Oil) 0 (2 ) 
Moreover, from Lemma 4.11, TII:'Oi:'O/(O) (x -/ + 1) , = H2 (X)H2 (x - 1). It 
is known from Lemma 4.6 that tlk : !iJ2 n ~ il2 n is a bijection, so the above 
summation can now be transformed into ' 

= A(x , y I z)A(x - 1, y I z) 

where 

A(x, y I z) = 

To identify A(x, y I z), note that 

H: (x) = II (x - 2i + 2)(20 j ) 

I :'Oi:'O/(O) 

20 (1 )(0,) (1 )(OJ) II 2' 2 x - i + 1 2(x+l)-i+l 
l:'Oi:'O/(O) 

so, from Corollary 3.5(1), A(x, y I z) = RA"(~x, ~(x + 1) I 4z2y) , which gives 
the result. D 

The next corollary gives the bijection. 

Corollary 5.2. Let M;jl(x, y, z) = [u2g ]M.w(u2 , x, y, z). Then 
( 1 ) 
M{4}(i, x, y, z) = !{Mft(4i, x + u, x, /y) + ~1'"(4U2, X - u, x, Z2y )} , 

(2) 
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Proof. (1) From Theorem 3.2(1), 
2 

M{4}(U ,x,y,z)=nu logR{4}(x,ylz) 

2 EJ -I -I 1 
= 2u z EJz logR{4}(xU ,yu 1 ZZU) 

so, from Theorem 5.1, 
2 2 EJ 1 -I 1 -I 1 2 M{4}(U ,X, y, Z) = 2u z EJz 10gRA"(ZXU 'Z(XU + 1) z yU) 

2 EJ 1 -I 1 -I 2 
+2u zEJzlogRfi/(z(xu -1), zXu Iz yu). 

Let log Rfi/(x ,y 1 z) = L.i,J,k'20Ci,J,kXiyJ zk /k!. Then 
2 

M{4}(U ,x,y, z) 
2k k L Ci,J'k(kz_l)!2i~J_2uk-i-J+2(Xi(X+U)J +xJ(X_U)i) 

i,J,k'20 
2k 

1 '" Z k k-i-+2 i .. i =2 L.. ci,J,k k-I _ ,y (2u) 1 (X(X+U)l+Xl(X-U)) 
i,J ,k'20 2 (k 1). 

1 2 2 2 2 
=2{Mfi/(4u ,X,X+U,Z y)+Mfi/(4u ,X-U,X,z y)} 

from Lemma 2.3. The result now follows from Proposition 3.1. 
(2) From (1) 

359 

(g) ( 1 2g {2 2 ) (2 2 )} M{4}X,y,z)=z[u ] Mfi/(4u ,X+U,x,zy +Mfi/4u ,x-u,x,zy 
2g 2 2 

=[u ]Mfi/(4u ,X+U,X,z y) 
g 

= L 4 i [i g - 2i ]M;;J(x + u, X, i y ) 
i=O 

and the result follows. 0 

When g = 0 we obtain M~~i(x, y, z) = M~)(x, X, Z2y ) , a generating 
function equation corresponding to the following known explicit bijection [18] 
between rooted quadrangulations on 2n edges in the sphere and rooted maps 
on n edges in the sphere. Consider a rooted map f1. and let 't/ be its vertex 
set. Now put a vertex in the interior of each face of f1.. Let 't/' denote the set 
of these new vertices. In traversing the boundary of each face, join each vertex 
encountered to the vertex in the face. Now consider the tail v of the root edge 
of f1., and find the first edge e' not in f1. encountered in a direction consistent 
with the orientation of the sphere. Delete the edges of f1. and direct the edge e' 
so that its tail is v. Designate this to be the rooting of the resulting map f1.* • 
This map is called the medial of f1., and it is 4-face-regular. The construction 
is reversible and it gives the desired bijection. Each edge in f1.* joins a vertex in 
't/ to a vertex in 't/' , so f1.* is a bipartite map. In the sphere, all 4-face-regular 
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FIGURE 3. Rooted maps and their medials 

maps are bipartite. Figure 3 gives four rooted maps, and below them, their 
medials. The construction is not bijective if the rooting is not made, since dual 
maps have the same medial. 

To see that the construction is reversible, note that the root vertex of ,./ is 
the root vertex v of f.l. The associated graph is bipartite with vertex partition 
('P, 'P') , with v E 'P . In traversing the boundary of each face of f.l* exactly 
two (possibly identical) vertices of 'P are encountered. These are joined to 
form the edge set of f.l. 

In surfaces of higher genus, the medial construction extends to a bijection 
between the set of all rooted maps and the set of all bipartite 4-face-regular 
rooted maps, a fact which is easily proved both combinatorially and by this 
(character theoretic) approach. However, both (1) and (2) of the above corollary 
suggest combinatorial bijections between the set of rooted maps and the set of 
all 4-face-regular rooted maps. Note that m!-I (8 m /8xm)M~p(x, y, z) in (2) 
is the generating function for all rooted maps of genus g, with an unordered 
set of m marked vertices (the hollow vertices in Figure 4), with respect to the 
number of edges, faces, and unmarked vertices. In (I), the argument x + u 
suggests that there may be a combinatorial bijection in which handles, marked 
by u, in some way behave as vertices (marked by x). 

The bijection can be illustrated readily in a small example by listing the 15 
rooted quadrangulations, with 4 edges, in the torus. These are shown in Figure 
4(a). Now the number of such maps is, by definition, [z4]M~~i(1, 1, z), and 
from Corollary 5.2(2), with g = 1 , this is equal to 

2 I 4 1 8 (0) 2 4 (I) 2 [z ]2:-2MA/(X, l,z) +[z ]4MA/(I, l,z), 
8x x=1 

(2) 

which is now interpreted combinatorially. 
In (2), the term [z4H(82 /8X2)M;;'\x, 1, z2)1 x=1 is the number of rooted 

maps with two edges in the sphere, having exactly two marked vertices (shown 
as hollow), counted with multiplicity 1. Figure 4(b) gives the 11 such maps 
(the multiplicity is in parentheses). Thus the contribution to (2), with regard 
to multiplicity, is 11. In addition, the term [z4]4M;;') (1, 1, z2) is the number 
of rooted maps on two edges in the torus, each counted with multiplicity 4. 
Figure 4(b) shows the single such map, whose contribution to (2), with regard 
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(a) rooted quadrangulations, with 4 edges, in the torus 

(b) rooted maps, on 2 edges, in the torus and the sphere 
FIGURE 4. The bijection for quadrangulations in the torus 
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to multiplicity, is therefore 4. The sum of these contributions to (2) is therefore 
15, in agreement with the listing of the rooted quadrangulations with 4 edges 
in the torus. 

6. CONCLUDING COMMENTS 

M ff(U, x, y, z) has been expressed in terms of a summation, over parti-
tions, of an expression whose dependence on character evaluations is 
through the degree, .t, only, for which there is an explicit expression. For 
[zn]M ff(U, x, y, z) , the summation is over all partitions of n. 

Decompositions of rooted maps in surfaces of arbitrary genus are uncom-
mon. It would therefore be of interest to have a combinatorial explanation of 
Corollary 5.2. 

Bender and Canfield [3] have proved the following result. Let p = VI - 12z . 
Then the generating function for maps of genus g with respect to the number 
of edges is 

g Z2g pg (p) 
[u ]Mff(u, 1, 1, z) = a( 1)2( 2)b( 5)C p p+ p+ p+ 

where a, b, c are nonnegative integers and Pg (p) is a polynomial in p. Again, 
it seems to be a difficult task to prove this algebraically from the character 
theoretic forms of the generating functions which we have given here. 

Certain algebraic tasks appear to be difficult. For example, it is unclear alge-
braically that Q u log R.w' is a formal power series, although combinatorially this 
is clearly so. Such proofs may reveal points of value for extracting combinatorial 
information elsewhere in this context. 
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e 
[ 16 ] 

[2 14] 

[22 12] 

[23] 

[3 13] 

[3 2 1] 

[4 12] 

[32] 

[42] 

[5 1] 

[6] 

D. M. JACKSON AND T. I. VISENTIN 

A. Factorizations for 6 2 , 6 4 , and 6 6 

2-factorization e 
X[2) 

(0, [1]) 

([1],0) 

-1 

e 2-factorization e 
X[22) 

[14] (0,[1 2]) 

[2 12] ([1 2],0) -1 

[22] ([1], [1]) 2 

[3 1] (0, [2]) -1 

[4] ([2] , 0) 

2-factorization e 3-factorization X[2 3) 

(0,[1 3]) -1 2 (0,0,[1]) 

([1 3], 0) 2 (0, [1 ], 0) 

([1], [12]) -3 

([12], [1]) 3 (0, [1], [1]) 

(0, [21]) 2 2 ([1 ], 0,0) 

0 ([1],0, [1]) 

([21], 0) -2 (0,0, [2]) 

([1], [2]) -3 [[1], [1],0) 

([2], [1]) 3 

(0, [3]) -1 (0, [2], 0) 

([3], 0) ([2], 0, 0) 
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