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A CHARACTERISTIC FREE APPROACH
TO BRAUER ALGEBRAS

STEFFEN KÖNIG AND CHANGCHANG XI

Abstract. Brauer algebras arise in representation theory of orthogonal or
symplectic groups. These algebras are shown to be iterated inflations of group
algebras of symmetric groups. In particular, they are cellular (as had been
shown before by Graham and Lehrer). This gives some information about
block decomposition of Brauer algebras.

1. Introduction

Schur–Weyl duality relates the representation theory of the infinite groupGLn(k)
with that of the symmetric group Σr via the mutually centralising actions of the
two groups on the space (kn)⊗r. Brauer defined the algebras which are now called
‘Brauer algebras’ (or, somewhat incorrectly, ‘Brauer centraliser algebras’) by an
analogous situation where GLn is replaced by either an orthogonal or a symplectic
group and the group algebra of the symmetric group is replaced by a Brauer algebra.
More precisely, for a fixed integer r and a given base field k, a whole family of
Brauer algebras Bk(r, δ) is defined, depending on a parameter δ ∈ k, which has to
be specialised to certain integers to cover the situation Brauer was interested in.

More recently Brauer algebras and their generalisations, especially the BMW al-
gebras, have been looked at in the context of quantum groups and low–dimensional
topology (see [GHJ]).

The classical case of k being the complex numbers (or just having characteristic
zero) has been clarified to a large extent by results of Brown, Hanlon and Wales, and
Wenzl: If δ is not an integer of small absolute value, then Bk(r, δ) is semisimple and
its simple representations are known. In the other case of δ being ‘singular’, Wenzl
also obtained a good description of the simple modules. Another such description in
the semisimple case has been announced by Kerov. The ring structure of Bk(r, δ),
however, seems to be still unknown even in the characteristic zero case.

Recently, Graham and Lehrer have shown that over any field k, and for any δ, the
Brauer algebra Bk(r, δ) is a cellular algebra. In this way they got a parametrization
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1490 STEFFEN KÖNIG AND CHANGCHANG XI

(which in fact does not depend on k) of the isomorphism classes of simple modules
in general. Considering cellular structures thus opens a way for a characteristic free
structure theory of Brauer algebras.

The aim of this paper is to work out such a characteristic free approach and
to avoid any complicated computation in doing so by using structural properties
instead. We start from scratch and do not use any of the results mentioned above.
We first prove that Brauer algebras are cellular (our proof is different from and less
computational than that of Graham and Lehrer). More precisely we exhibit in this
algebra a structure which we call ‘iterated inflation’. As a consequence we do get
a new proof not only of the result of Graham and Lehrer, but also of some results
of Hanlon and Wales.

Moreover we consider block decompositions of Brauer algebras. Assuming that δ
is not singular (but k is arbitrary) we prove in theorem 7.3 that the Brauer algebra is
Morita equivalent to a direct product of group algebras of symmetric groups (which
correspond to the layers in the iterated inflation). Hence this case is equivalent to
the type A case. As a corollary (7.5) we classify under this assumption the blocks
of finite representation type of Brauer algebras – these turn out to be Brauer tree
algebras.

We organize the paper as follows: In section two we recall the definition of
Brauer algebras and the axiomatics of cellular algebras. In sections three and four
we consider inflations, which in general are algebras without unit. They occur as
pieces of the iterated inflation as which we write the Brauer algebra in section
five. More precisely theorem 5.6 tells us that any Brauer algebra can be written as
iterated inflation of certain group algebras of symmetric groups (which are explicitly
given). This implies the results of Graham and Lehrer. In section seven we consider
Brauer algebras over a field with nonsingular parameter. In this case, we determine
the blocks of the Brauer algebra, and among them those of finite representation
type.

2. Definitions

In this section we recall the definition of Brauer algebras and also that of a
cellular algebra, which is our main tool.

2.1. Definition of Brauer algebras. Let k be any field and n a natural number.
Let V be the vector space kn on which the group GLn(k) acts naturally, say on the
left. Then Gln(k) also acts (diagonally) on the r–fold tensor product V ⊗r for any
natural number r. On this space, also the symmetric group Σr acts on the right,
by place permutations. The two actions centralise each other. In particular, the
endomorphism ring EndkGln(k)(V ⊗r) is a quotient of the group algebra kΣr. This
setup is called Schur–Weyl duality. Richard Brauer’s starting point for defining
‘Brauer algebras’ was the following question: Which algebra shall replace kΣr in
this setup if we replace GLn(k) by either its orthogonal or its symplectic subgroup
(in the latter case, of course, n has to be even)? He defined such an algebra by
generators and relations, and he also gave an equivalent definition via diagrams.
This definition is a special case of the following one, where the parameter δ has to
be chosen as a positive or negative integer (for orthogonal or symplectic groups,
respectively).

Definition 2.1. Fix a commutative noetherian domain k, an element δ ∈ k and a
natural number r. Then the Brauer algebra Bk(r, δ) is a k–vector space having a
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A CHARACTERISTIC FREE APPROACH TO BRAUER ALGEBRAS 1491

basis consisting of diagrams of the following form: a diagram contains 2n vertices,
n of them called ‘top vertices’ and the other n called ‘bottom vertices’, such that
the set of vertices is written as a disjoint union of n subsets each of them having two
elements; these subsets are called ‘edges’. Two diagrams x and y are multiplied by
concatenation, that is, the bottom vertices of x are identified with the top vertices
of y, thus giving rise to edges from the top vertices of x to the bottom vertices of
y, hence defining a diagram z. Then x · y is defined to be δm(x,y)z, where m(x, y)
counts those connected components of the concatenation of x and y which do not
appear in z, that is, which contain neither a top vertex of x nor a bottom vertex
of y.

Let us illustrate this definition by an example. We multiply two elements in
Bk(4, δ):

• • • •
@
@
@@


 	 �����������
� �• • • •

·
• • • •
@
@
@@


 	�
�
��
� �• • • •

=

δ1·
• • • •
 	 �������
� �• • • •

In the literature, the Brauer algebra sometimes is called Brauer centraliser alge-
bra, a term which we will not use, since it is slightly misleading. In fact, in Brauer’s
original setup, the endomorphism algebra of V ⊗r in general is just a quotient of
the Brauer algebra.

2.2. Cellular algebras. First, we recall the original definition of Graham and
Lehrer. Then we give our equivalent definition which is convenient to use for looking
at the structure of cellular algebras.

Definition 2.2 (Graham and Lehrer, [GL]). Let R be a commutative Noetherian
integral domain. An associative R–algebra A is called a cellular algebra with cell
datum (I,M,C, i) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a
finite set M(λ). The algebra A has an R–basis CλS,T , where (S, T ) runs through all
elements of M(λ)×M(λ) for all λ ∈ I.

(C2) The map i is an R–linear anti–automorphism of A with i2 = id which sends
CλS,T to CλT,S .
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1492 STEFFEN KÖNIG AND CHANGCHANG XI

(C3) For each λ ∈ I and S, T ∈M(λ) and each a ∈ A the product aCλS,T can be
written as (

∑
U∈M(λ) ra(U, S)CλU,T ) + r′, where r′ is a linear combination of basis

elements with upper index µ strictly smaller than λ, and where the coefficients
ra(U, S) ∈ R do not depend on T .

The following is our equivalent definition of cellular algebra:

Definition 2.3 ([KX1]). Let A be an R–algebra where R is a commutative Noe-
therian integral domain. Assume there is an anti–automorphism i on A with i2 = id.
A two–sided ideal J in A is called a cell ideal if and only if i(J) = J and there
exists a left ideal ∆ ⊂ J such that ∆ is finitely generated and free over R and such
that there is an isomorphism of A–bimodules α : J ' ∆⊗R i(∆) (where i(∆) ⊂ J
is the i–image of ∆) making the following diagram commutative:

J
α //

i

��

∆⊗R i(∆)

x⊗y 7→i(y)⊗i(x)

��

J
α // ∆⊗R i(∆)

The algebra A (with the involution i) is called cellular if and only if there is
an R–module decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i(J ′j) = J ′j
for each j and such that setting Jj =

⊕j
l=1 J

′
l gives a chain of two–sided ideals

of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A (each of them fixed by i) and for each
j (j = 1, . . . , n) the quotient J ′j = Jj/Jj−1 is a cell ideal (with respect to the
involution induced by i on the quotient) of A/Jj−1.

In the following, an R–linear anti–automorphism i of A with i2 = id will be
called an involution.

Typical examples of cellular algebras are the group algebras of symmetric groups
(or more generally, their Hecke algebras) and the classical Schur algebras (whose
representation theory gives the polynomial representation theory of GLn(k) over
an infinite field k).

3. Inflations

In order to recognise Brauer algebras as cellular algebras and also in order to
study block decompositions of Brauer algebras, we will exhibit them as iterated
inflations of group algebras of symmetric groups. We have introduced this concept
for general cellular algebras in [KX2] and shown (theorem 4.1 in [KX2]) that ac-
tually an algebra is cellular if and only if it is such an iterated inflation. Special
cases of inflations can be found in the papers of Graham and Lehrer [GL], Hanlon
and Wales [HW1] and even in the early studies of Brown [Brow1, Brow2, Brow3],
who considered ‘generalised matrix algebras’ which coincide in his case with our
inflations.

We first recall the definition of inflations and then look at the structure of inflated
algebras. This information is basic for all that follows. Thus we give the details
although most of the arguments can be found in several of the above references.

In the following, all tensor products are over the base field k which we omit in
the notation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CHARACTERISTIC FREE APPROACH TO BRAUER ALGEBRAS 1493

3.1. Definitions. Given a k–algebra B, a k–vector space V , and a bilinear form
ϕ : V ⊗V → B with values in B, we define an associative algebra (possibly without
unit) A = A(B, V, ϕ) as follows: As a k–vector space, A equals V ⊗ V ⊗ B. The
multiplication is defined on basis elements as follows:

(a⊗ b⊗ x) · (c⊗ d⊗ y) := a⊗ d⊗ xϕ(b, c)y.

We need an additional property, namely an involution on A: Assume, there is an
involution i on B. Assume moreover, that ϕ satisfies i(ϕ(v, w)) = ϕ(w, v). Then
we can define an involution j on A by putting j(a⊗ b⊗ x) = b⊗ a⊗ i(x).

This definition makes A into an associative R–algebra (possibly without unit),
and j is an involutory anti–automorphism of A.

We call A an inflation of B along V .
If V has dimension one and the image of ϕ contains the unit element of B, then

A is clearly isomorphic to B. Otherwise, A need not have a unit element, but it
may contain idempotents.

Now we are going to produce iterated inflations.
Assume we are given an algebra B (maybe without unit) – which in practise

will be an inflation of some other algebra – and an algebra C (with unit). We
define an algebra structure on A := B ⊕ C which extends the given structures
and which makes B into a two–sided ideal such that A/B becomes isomorphic to
C. Multiplication is defined by fixing the eight summands of a multiplication map
(B ⊕ C) ⊗ (B ⊕ C) → (B ⊕ C). In order to make B into an ideal we put the
summands B ⊗ B → C, C ⊗ B → C and B ⊗ C → C all zero. The summands
C ⊗ C → C and B ⊗ B → B are defined to be the given multiplications on C
and B, respectively. Thus we have to choose three bilinear maps α : C ⊗ C → B,
β : B ⊗ C → B and γ : C ⊗ B → B. Then multiplication in A is defined by
(b1 + c1)(b2 + c2) = b1b2 + β(b1, c2) + γ(c1, b2) + α(c1, c2) + c1c2.

This multiplication is associative if and only the following conditions are satisfied:
(I) β is a homomorphism of left B–modules,
(II) γ is a homomorphism of right B–modules,
(III) for all b inB and c1, c2 in C there is an equality: β(β(b, c1), c2) = bα(c1, c2)+

β(b, c1c2),
(IV) for all b in B and c1, c2 in C there is an equality: γ(c1, γ(c2, b)) = γ(c1c2, b)+

α(c1, c2)b,
(V) for all c1, c2, c3 in C there is an equality: α(c1c2, c3) + β(α(c1, c2), c3) =

α(c1, c2c3) + γ(c1, α(c2, c3)),
(VI) for all b1, b2 in B and c in C there is an equality: β(b1, c)b2 = b1γ(c, b2),
(VII) for all c1, c2 in C and b in B there is an equality: β(γ(c1, b1), c2) =

γ(c1, β(b, c2)).
We need another condition in order to make sure that A has a unit element

which is mapped to the unit element 1(C) of C by the quotient homomorphism.
(U) There exists an element b in B such that b+ 1(C) is a unit element in A.
Some other (obvious) conditions are needed in order to extend the given invo-

lutions on B and C to an involution on A. More conditions (again all of them
obvious) make sure that all the inflation pieces are subquotients of ideals in the
algebra which is the result of the iterated inflation.

Applying this procedure inductively to algebras C,B1, B2, . . . , Bn where each
Bj itself is an inflation of an algebra B′j , we define an iterated inflation A of
C1, B

′
1, B

′
2, . . . , B

′
n.
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1494 STEFFEN KÖNIG AND CHANGCHANG XI

In [KX2] (theorem 4.1) we have shown that an algebra is cellular if and only if
it can be written as an iterated inflation of copies of full matrix algebras. Moreover
([KX2], proposition 3.4) an iterated inflation of cellular algebras always is cellular
again.

3.2. Inflated algebras. Let B be any algebra, ϕ : V ⊗ V → B a bilinear form
(for any finite dimensional k–vector space V ) and A = V ⊗ V ⊗ B the resulting
inflation of B. We are going to discuss the ring structure of A.

Since B need not have a unit element, we have to be careful, when talking
about its radical. By radical we always mean the Jacobson radical which is the
intersection of the annihilators of the simple left modules and which contains any
nilpotent ideal.

The following lemma is obvious.

Lemma 3.1. (a) The vector space I := V ⊗ V ⊗ rad(B) is a two–sided ideal of A
which is contained in rad(A). Moreover, I is nilpotent of nilpotence degree smaller
than or equal to the nilpotence degree of B.

(b) If B admits a decomposition B = B1 ⊕B2 into two-sided ideals, then A also
admits a decomposition A = (V ⊗ V ⊗B1)⊕ (V ⊗ V ⊗B2).

For all the questions we will be interested in later on, we may without loss of
generality assume that B has the following properties:

(1) It is semisimple, since by corollary 8.4 in [KX2] the maximal semisimple
quotient of a cellular algebra carries an induced cellular structure.

(2) It is indecomposable as a ring, since a block of a cellular algebra again is
cellular.

Hence it is simple and thus (because it is cellular, see [KX1], proposition 3.4) a
full matrix ring over k.

We decompose B as a left and as a right module into BB =
⊕
Lm and BB =⊕

Rm. Finally, we fix a basis v1, . . . , vl of V .

Lemma 3.2. Let V be a non-zero vector space. Fix a basis v1, . . . , vl of V and a
decomposition of the left B–module B into simple submodules as follows: BB =⊕

m Lm.
(a) For each m and n the vector space V ⊗ vn⊗Lm is a left A–module which we

denote by P (m,n).
(b) Fix m and n. Denote by N(m,n) the subspace of P (m,n) defined as follows:

An element
∑
v∈V,l∈Lm v ⊗ vn ⊗ l is in N(m,n) if and only if for all w ∈ V , the

sum
∑
v,l ϕ(w, v)l equals zero.

Then N(m,n) is a submodule of P (m,n), and every element of A acts as zero
(from the left) on N(m,n).

(c) If ϕ 6= 0, then the quotient module P (m,n)/N(m,n) is simple. Denote it by
L(m,n).

(d) If ϕ = 0, then the multiplication in A is zero.

Proof. (a) By definition, a basis element u⊗v⊗b of A acts on an element w⊗vm⊗x
on the left by sending it to u ⊗ vm ⊗ bϕ(v, w)x, which is an element of P (m,n).
Thus P (m,n) is a submodule of A. As a vector space, A is a direct sum of the
subspaces V ⊗vm⊗Ln (where m and n run), hence each of them is a module. This
proves (a).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CHARACTERISTIC FREE APPROACH TO BRAUER ALGEBRAS 1495

(b) Let u⊗w⊗x be an element in A and multiply it with an element of N(m,n).
We get

(u⊗ w ⊗ x) · (
∑

v∈V,l∈Lm

v ⊗ vn ⊗ l) = u⊗ vn ⊗ x(
∑
v,l

ϕ(w, v)l) = 0.

(c) If ϕ 6= 0, then N(m,n) 6= P (m,n). In fact, if P (m,n) = N(m,n), then for
any w, v ∈ V and l ∈ Lm we have ϕ(w, v)l = 0. This implies that ϕ(w, v)Lm = 0.
Since B is a simple artinian algebra, Lm is a faithful B–module. Thus ϕ(w, v) = 0
for all w, v ∈ V , which is a contradiction. Hence N(m,n) is a proper subspace of
P (m,n).

Pick an element z :=
∑
v∈V,x∈Lm v ⊗ vn ⊗ x which is in P (m,n), but not in

N(m,n). We show that z generates all of P (m,n) as a left A–module. Multiplying
z with an element of A from the left, we get the following expression:

(u⊗ w ⊗ x) · (
∑

v∈V,l∈Lm

v ⊗ vn ⊗ l) = u⊗ vn ⊗ x(
∑
v,l

ϕ(w, v)l),

in which u, w, and x can be chosen arbitrarily. Since z is not in N(m,n) we can
choose w in such a way that

∑
v,l ϕ(w, v)l is not zero. But then we can let x vary

in such a way that the expression x(
∑

v,l ϕ(w, v)l) runs through all of Lm (which
is simple). Hence the claim follows.

This implies that any non–zero element in P (m,n)/N(m,n) generates all of it,
hence this is a simple A–module.

(d) This is trivial by the definition of A.

We note that similar statements hold true for right modules. In order to formu-
late them appropriately for later use, one has to observe that the involution i on A
restricts to a k–isomorphism V → V which identifies the first and the second copy
of V in V ⊗ V ⊗B = A. This provides V with another basis i(v1), i(v2), . . . , i(vl).

We note that both the description of the maximal semisimple quotient of A
immediately carries over to the general situation where B is not assumed to be
semisimple.

We have to determine the radical of the algebra A. The previous lemma gives
us an obvious candidate, since it provides us with simple modules of the form
P (m,n)/N(m,n). We shall show that there really is a simple quotient algebra
having as simple left modules precisely the L(m,n).

Lemma 3.3. Let N̂L :=
∑

m,nN(m,n), and N̂R the analogous sum of right mod-
ules. Let N̂ be the sum (of vector spaces)

N̂ := N̂L + N̂L ·A+ N̂R +A · N̂R,
where N̂L · A is the k–space generated by products of the form n · a with a ∈ A
and n ∈ N̂L. Then N̂ is a two-sided ideal of A, it is nilpotent of degree three, i.e.
N̂3 = 0, and A/N̂ is a simple algebra which is Morita equivalent to Endk(L(m,n))
for any m,n. In particular, N̂ equals the Jacobson radical of A.

The proof of this lemma will be postponed to the end of the next section. Let
us first state a few corollaries of the lemma.

Corollary 3.4. If N̂ is not equal to A, then A/N̂ is Morita equivalent to B.

Corollary 3.5. The algebra A has a unit element if and only if N(m,n) = 0 for
all m,n, or equivalently, N(m,n) = 0 for some m and n.
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1496 STEFFEN KÖNIG AND CHANGCHANG XI

Proof. If A has a unit, say e, then e must act non–trivially on N̂ , which implies
that N(m,n) equals zero for all m,n. Conversely, if N(m,n) is zero, then A is a
simple artinian ring, hence has a unit element.

We now have precise knowledge on the simple A–modules. To be consistent with
our use of (Jacobson) radical, a module M has to be called simple if AM 6= 0 and
there are no non–trivial submodules. Hence we have the following description of
simple modules.

If N̂ = 0, then A has precisely one isomorphism class of simple modules, rep-
resented by any indecomposable direct summand of A. Moreover, A acts non–
triviallly on any non–zero A–module.

If 0 6= N̂ 6= A, then A has precisely one isomorphism class of simple modules,
again represented by any indecomposable direct summand of A/N̂ . But there is
also the module k with trivial A–action.

If A = N̂ , then A has no simple module, but there is again the module k with
trivial A–action.

Suppose B is semisimple. We call the bilinear form ϕ singular if Nϕ(L, n) 6=
0 for some simple B-module L and n, where Nϕ(L, n) stands for the subset of
V ⊗ vn ⊗ L consisting of all elements

∑
v∈V,l∈L v ⊗ vn ⊗ l with

∑
v,l ϕ(w, v)l = 0

for all w ∈ V.
If B is arbitrary, we call ϕ singular if ϕ̄ : V ⊗V −→ B −→ B/rad(B) is singular.

4. Matrix presentation of inflated algebras

In this section we use matrices to present and study the inflated algebras (see
Brown’s generalised matrix algebras [Brow1]). We assume that V is a non-zero
vector space with a basis {v1, · · · , vm} and that B is an arbitrary k–algebra with
identity. Again we denote by A the inflated algebra (B, V, ϕ). Let Mm(B) denote
the full matrix algebra over B.

Clearly, the bilinear form ϕ can be described by an m × m matrix Φ over B,
that is, Φ = (ϕ(i, j)), where ϕ(i, j) = ϕ(vi, vj) for all 1 ≤ i, j ≤ m. Now we use this
matrix to define a new multiplication ◦ on Mm(B) in the following way:

X ◦ Y := XΦY for all X,Y ∈Mm(B).

This multiplication is associative and hence (Mm(B), ◦) is an associative algebra.
(The addition of two matrices is the usual matrix addition). We denote this algebra
by (Mm(B),Φ).

The following lemma shows that the inflated algebra A can be described by this
new algebra.

Lemma 4.1. The inflated algebra A(B, V, ϕ) is isomorphic to (Mm(B),Φ) as k–
algebra.

Proof. Since each element of V ⊗ V ⊗B can be uniquely written in the form
m∑
i,j

vi ⊗ vj ⊗ bij ,

this gives us a matrix (bij) ∈Mm(B). Thus we may define a linear map (depending
on the choice of basis in V )

µ : A = V ⊗ V ⊗B −→ (Mm(B),Φ),
∑
i,j

vi ⊗ vj ⊗ bij 7→ (bij).
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It is easy to check that this is an algebra homomorphism. Comparing the dimensions
of the two spaces, we see easily that µ is an isomorphism.

From this matrix presentation of inflated algebras, we have the following fact.
Note that in an artinian algebra left and right invertibility is the same, hence a left
unit is a right unit and so on.

Proposition 4.2. The following are equivalent for the inflated algebra A:
(1) The algebra A has a unit element.
(2) The matrix Φ is invertible, that is, there is a matrix X ∈ Mm(B) such that

ΦX = Im, where Im denotes the identity matrix in Mm(B).
(3) The matrix Φ̄ := (ϕ(i, j)) ∈ Mm(B̄) is invertible, where B̄ stands for

B/rad(B) and b̄ stands for the residue class of an element b ∈ B.

Proof. The equivalence of (1) and (2) follows from Lemma 4.1. It is obvious that
(3) is implied by (2).

Now assume that Φ̄ is invertible, that is, there is a matrix X = (xij) ∈ Mm(B)
such that Φ̄X̄ = Im ∈ Mm(B̄), where X̄ = (x̄ij) ∈ Mm(B̄). Since rad(Mm(B)) =
Mm(rad(B)) and Mm(B/rad(B)) = Mm(B)/rad(Mm(B)), there is a matrix Z ∈
Mm(rad(B)) such that ΦX − Im = Z. Since Z is a nilpotent matrix over B, the
matrix Im+Z is invertible in Mm(B). This shows that the matrix ΦX is invertible
and therefore Φ is invertible.

Corollary 4.3. If Φ is invertible in Mm(B), then for any B-module M we have
Nϕ(M,n) = 0.

Proof. As remarked above, the fact that Mm(B) is an artinian algebra implies that
always XΦ = Im if ΦX = Im holds true.

Suppose
∑t

i ui ⊗ vn ⊗ li ∈ N(M,n), where we may assume that l1, · · · , lt are
k–linear independent. By definition, we have for any vj that

∑
i ϕ(vj , ui)li = 0.

Now let uj =
∑
k αjkvk. Then

∑m
k=1

∑t
i=1 αikϕ(vj , vk)li = 0. If X = (xij), then

multiplying by xs,j and summing up over j, we have

0 =
∑
i,k

αik
∑
j

xsjϕ(vj , vk)li =
∑
i,k

αikδskli =
∑
i

αisli.

Since l1, · · · , lt are linear independent, αis = 0 for all i and s. Hence ui = 0 for all
i.

Now let us give the proof of lemma 3.3.

Proof of 3.3. We keep all notation introduced before.
Assume now that B is a matrix algebra Ms(k) over k. The algebra A acts

trivially from the left on N̂L and from the right on N̂R. It follows that N̂ is a two-
sided ideal. Products of elements in N̂ are elements of N̂L · N̂R + N̂L ·A · N̂R. But
this space is annihilated by all of A both from the left and from the right. Hence
triple products of elements in N̂ are zero. Thus N̂ is contained in the Jacobson
radical of A.

Define E( ijλµ) = vi⊗ vj ⊗Eλµ, where Eλµ is the matrix units in Ms(k). Then the
elements E( ijλµ) = vi ⊗ vj ⊗ Eλµ, 1 ≤ i, j ≤ l, 1 ≤ λ, µ ≤ s, form a basis of A, and
the multiplication in A with respect to this basis reads as follows:

E( ijλµ)E(mnγδ ) = ϕ( jmµγ )E( inλδ )
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where ϕ( ijλµ) is defined by

ϕ(vi, vj) =
∑
λ,µ

ϕ( ijλµ)Eλµ.

Define Φ = (ϕ( ijλµ)) to be the matrix with (
(
i
λ

)
,
(
j
µ

)
)-th entry ϕ( ijλµ); then by

a similar argument as in [Brow1] we will prove that the radical of A has the k-
dimension l2s2 − r2, where r is the rank of the matrix Φ.

We fix a left ideal Lµ0 in B and its basis {Eλµ0}. Let σ : V ⊗ Lµ0 −→ V ⊗ Lµ0

be the linear map defined by vi ⊗Eλµ0 7→
∑

j,µ ϕ( jiµλ)vj ⊗Eµµ0 . Clearly, the linear
map has Φ as its matrix. The kernel of σ consists precisely of the elements of
the form

∑
i,λ αiλvi ⊗ Eλµ0 with

∑
i,λ ϕ( jiµλ)αiλ = 0 for all j and µ. An equivalent

condition is that
∑

i,λ αiλvi ⊗ vn ⊗ Eλµ0 lies in N(µ0, n). Now we identify A with
(V ⊗Lµ0)⊗(V ⊗Lµ0) via the k-linear map vi⊗vj⊗Eλµ 7→ (vi⊗Eλµ0)⊗(vj⊗Eµµ0).
Thus, as in [HW1], we prove that the dimension of A/N̂ is r2. (Note that the
dimension of the image of σ is the rank of the matrix Φ.) Hence the dimension of
N̂ is equal to the dimension of the radical A. It follows from N̂ ⊂ rad(A) that the
radical of A coincides with N̂. Now the rest of Lemma 3.3 becomes transparent.

Let us note here that lemma 4.1 shows that an inflation is a generalized matrix
algebra in the sense of Brown [Brow1]. In his language, an equivalent version of
the above proof runs as follows: The isomorphism class of the algebra A is not
changed if we replace the ‘multiplication matrix’ Φ by a matrix SΦT (with S and
T being invertible). Hence one can replace Φ by its normal form, with some 1’s

on the diagonal and 0’s elsewhere, say
(
Ir 0
0 0

)
with Ir denoting an identity

matrix of size r × r and 0 denoting matrices of appropriate sizes. Then clearly N̂L

consists of matrices of the form
(

0 0
? ?

)
(with ? denoting arbitrary entries), and

N̂R consists of matrices of the form
(

0 ?
0 ?

)
. The two-sided ideal N̂ generated

by them according to the multplication rule in A consists of matrices of the form(
0 ?
? ?

)
. Hence the quotient algebra A/N̂ has a basis represented by matrices of

the form
(
? 0
0 0

)
, which implies the assertion of the lemma.

Under an additional assumption, which is easily seen to be satisfied by Brauer
algebras, one can avoid some of the above computations by directly writing down
a set of primitive idempotents in A. Assume that for the given basis v1, . . . , vl all
elements ϕ(vj , vj) are non-zero scalar multiples of the identity of B. Then elements
of the form

1
ϕ(vj , vj)

vj ⊗ vj ⊗ e

(for e a primitive idempotent in B) are primitive idempotents.

5. Brauer algebras are iterated inflations

In this section we prove the main technical result of this paper: Brauer algebras
are iterated inflations of group algebras of symmetric groups. We observed this fact
already in [KX2] – without giving details of the proof – as a consequence of the
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rather complicated computations in [GL]. The proof we give here is much more
elementary, and it works for related ‘diagram algebras’ as well. (We have checked
this for Temperley–Lieb algebras and for Jones’ annular algebras.)

As an immediate consequence we get that Brauer algebras are cellular, and we
also obtain a description of the simple modules of the Brauer algebra over a field.

We fix a commutative noetherian domain k, a natural number r, a parameter
δ ∈ k, and the corresponding Brauer algebra A := Bk(r, δ). Note that k need not
be a field, so we cover in particular the case of δ being an indeterminate over a
given field. It is well–known how to define an involution on A:

Lemma 5.1. Sending a diagram d to a digram i(d) which has the same edges, but
whose top and bottom vertices are interchanged (that is, the vertex l of d is the
vertex r + l of i(d) and the vertex r + l of d is the vertex l of i(d) for all l with
1 ≤ l ≤ r), defines an involution i : A→ A.

The first step in exhibiting the structure of an iterated inflation consists in
defining an appropriate filtration which also is well–known:

Lemma 5.2. Assign to a diagram d the number t(d) of ‘through strings’, that
is, edges which connect a top vertex with a bottom vertex. Let Jl be the k–space
generated by all diagrams with t(d) ≤ l. Then Jl is a twosided ideal of A. This
defines a filtration of A by twosided ideals: 0 ⊂ Ja ⊂ Ja+2 ⊂ · · · ⊂ Jr−2 ⊂ Jr
(which starts with either a = 0 or a = 1 depending on whether r is even or odd).

Proof. If a diagram d has t(d) through strings, then it has r − 2t(d) edges which
connect top vertices with top vertices and it also has r − 2t(d) edges which only
involve bottom vertices. Multiplication of two diagrams d1 and d2 yields a scalar
multiple of a diagram d3 with t(d3) ≤ min{t(d1), t(d2)}, since those edges of d1

involving only top vertices are not changed by the multiplication, and the same
holds for the ‘bottom’ edges of d2.

In the following we use the convention kΣ0 = k in order to simplify notation.

Lemma 5.3. Fix an index l and let B be the k–algebra (possibly without unit)
B := Jl/Jl−2. Then B is isomorphic (as a k–algebra) to an inflation Vl ⊗ Vl ⊗ kΣl
of the group algebra of the symmetric group Σl along a free k–module Vl. The k–
rank of Vl equals the number of possibilities to draw (r − l)/2 edges between r − l
out of r vertices. The bilinear form ϕ will be defined in the proof.

We remark that the mentioned number of configurations of f := (r− l)/2 edges
in the top row of a diagram equals

r!
2f l!f !

,

hence the dimension of B equals

(r!)2

4f l!(f !)2
.

Proof. Denote the vector space Vl ⊗ Vl ⊗ kΣl by C. We define a k–isomorphism
ψ : B → C as follows: B has a k–basis consisting of diagrams d with t(d) = l,
that is, there are (r− l)/2 edges connecting top vertices with top vertices, another
(r − l)/2 edges connecting bottom vertices with bottom vertices, and another l
through strings. Fix a diagram d. Denote by e the configuration formed by the
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edges relating top vertices only and by f the configuration formed by the edges
relating bottom vertices only. Renumber the top vertices of the through strings as
1, . . . , l (from left to right) and their bottom vertices also (from left to right) as
1, . . . , l. Then the through strings define a permutation σ of the set of l letters by
sending the numbers assigned to the top vertex of a string to the numbers of its
bottom vertex.

Define ψ : B → C to send d to

ψ(d) := e⊗ f ⊗ σ.

This clearly defines an isomorphism of k–modules.
In order to give C a multiplicative structure we have to define ϕ. This will be

done using the isomorphism ψ, thus verifying at once that ψ is a ring isomorphism.
Let x := e⊗ f ⊗ σ and y := g ⊗ h⊗ τ be two basis elements of C. The product xy
has to be of the form e⊗ h⊗ σϕ(f, g)τ . We have to distinguish two cases.

First case: Each edge in f has at least one common vertex with an edge in
g (after identifying as usual the vertices in f with those in g and thus forming a
graph Γ consisting of these vertices together with all edges of f and of g). Then
we define ϕ(f, g) := δm · σ where the data m and σ are defined as follows: The
group element σ is the permutation defined by the through strings of the product
ψ−1(f⊗f⊗Id) ·ψ−1(g⊗g⊗Id). The number m counts the connected components
of the graph Γ, which is defined as follows: Denote the bottom vertices of e by
r + 1, r + 2, . . . , 2r and the bottom vertices of f by 1, 2, . . . , r. Then identify r + j
with j for each j, 1 ≤ j ≤ r. The set of edges of Γ is the union of the set of edges
in e and the set of edges in f .

The product xy defined in this way obviously coincides with ψ(ψ−1(x)ψ−1(y)).
Second case: There is at least one edge γ in f which does not share a vertex

with any edge in g. Then we define ϕ(f, g) := 0. We have to show that this fits
together with multiplication in B. In fact, forming the product of the two diagrams
representing ψ−1(x) and ψ−1(y) inside A gives a result which has a strictly smaller
number of through strings, since the edge γ yields an additional bottom edge in
the product. Hence, inside B the product is zero.

This defines ϕ and shows that ψ is an isomorphism of k–algebras.

It is easy to check that ψ ‘preserves’ the involution i:

Lemma 5.4. Under ψ the involution i : B → B corresponds to the standard invo-
lution on C which sends e⊗ f ⊗ σ to f ⊗ e⊗ σ−1.

This finishes our consideration of the candidate layers of the iterated inflation. It
remains to make sure, that the layers fit together (which is more than just having
a filtration by two-sided ideals). For simplicity we denote all the isomorphisms
identifying a layer with some inflation by the same letter ψ.

Lemma 5.5. Let d1 ∈ Jm\Jm−2 and d2 ∈ Jn\Jn−2 be two diagrams in A and let
their respective ψ–images be a ⊗ b ⊗ σ and e ⊗ f ⊗ τ . Assume that m ≥ n. Then
the product d1d2 either is an element of Jn−2 or is an element of Jn\Jn−2, and in
the latter case it corresponds under ψ to a scalar multiple of an element c⊗ e⊗ µτ
where c is an element in Vn and µ is an element in kΣn.

A similar assertion is valid in the case of m ≤ n. The proof is similar to that of
lemma 5.3.
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The outcome of this lemma is that we can now define the bilinear maps α, β, γ
which are needed for getting an iterated inflation. The precise definitions are very
similar to that of ψ given in Lemma 5.3, and thus we omit them.

Altogether we have proved the following theorem.

Theorem 5.6. The algebra A = Bk(r, δ) is an iterated inflation of group algebras
of symmetric groups.

More precisely: as a free k–module, A is equal to

kΣr ⊕ (Vr−2 ⊗ Vr−2 ⊗ kΣr−2)⊕ (Vr−4 ⊗ Vr−4 ⊗ kΣr−4)⊕ . . . ,
and the iterated inflation starts with kΣr, inflates it along Vr−2⊗Vr−2⊗kΣr−2 and
so on, ending with an inflation of k = kΣ1 or k = kΣ0 as bottom layer (depending
on whether r is odd or even).

As immediate consequences we get several results from the literature:

Corollary 5.7 (Graham and Lehrer [GL]). The Brauer algebra Bk(r, δ) over any
commutative noetherian domain k is cellular.

Corollary 5.8 (Graham and Lehrer [GL]). Let k be a field. If δ is not zero, then
the simple representations of the Brauer algebra Bk(r, δ) are indexed by pairs
(l, L(λ)) where l runs through the non–negative integers r, r− 2, . . . and L(λ) runs
through the isomorphism classes of simple modules over kΣl.

In the case of δ = 0, the above assertion is also valid except that the case l = 0
(which occurs only for r even) does not contribute a simple module.

The exception in the case of r even and δ = 0 comes from the fact that precisely
then there is a piece in the iterated inflation which has ϕ(−,−) equal to zero.

Corollary 5.9. (a) The radical of a Brauer algebra Bk(r, δ) is nilpotent of degree
less than or equal to

∏
l 3
nil(kΣr−2l), the product of powers of 3 to the nilpotence

degrees of the radicals of the group algebras occurring in the inflation.
(b) (Hanlon and Wales [HW3], corollary 7.1.5) If k has characteristic zero or

bigger than r, then the radical of Bk(r, δ) is nilpotent of degree less than or equal
to 3[r/2]+1, where [r/2] is the integer part of r/2.

Proof. An inflation of a semisimple algebra has radical of nilpotence degree up to
three. Thus part (a) follows by writing a group algebra of a symmetric group as an
iterated inflation. Under the assumption of (b), the occurring group algebras all
are semisimple.

6. Comparing with other constructions

The aim of this section is to explain the differences between our construction of
Brauer algebras and other constructions which are already known in the literature.

The pioneering work by Wenzl [We1] constructs Brauer algebras by towers of
algebras in the following sense: Fix a field k and a parameter δ. Then the Brauer
algebra Bk(r, δ) contains subalgebras isomorphic to Bk(r − 1, δ), to Bk(r − 2, δ),
and so on. The tower construction produces Bk(r, δ) from the smaller algebras,
i.e. by an inductive procedure. If all the algebras involved are semisimple, this is a
special case of Jones’ basic construction.

Hanlon and Wales [HW1, HW2, HW3] went one step further and extended the
tower construction to the non–semisimple case as well. In particular, they obtained
a description of the radical ofBk(r, δ) in terms of data coming from smaller algebras.
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Our approach is different. We fix r and never use any of the subalgebras Bk(s, δ)
(for s < r), thus no induction is involved. We derive all information from the
iterated inflation and the information contained therein. Of course, these filtrations
have been used before, in particular in the semisimple case. Brown [Brow1, Brow2,
Brow3] and Hanlon and Wales (see section 2 in [HW3]) used the subquotients
in this filtration. The new point in our approach, however, is to identify these
subquotients as inflations of group algebras of symmetric groups. This does not
give much new information if one restricts attention to characteristic zero (as all the
references quoted before do) where these algebras are semisimple. But it is crucial
in the general case where these algebras are not necessarily semisimple, but may
carry highly non–trivial structures. We note that the group algebras of symmetric
groups occurring in this context are not subalgebras of Bk(r, δ) (unless δ = 1),
since the inflation procedure ‘deforms’ the multiplication. Therefore, no ‘tower of
algebras’ construction could cover this situation.

Although we do not make use of the ‘towers of algebras’ approach, many of the
results based on that are useful in our context as well. This applies, in particular, to
the precise numerical results and working out of examples in [HW1, HW2, HW3],
which can be used in dealing with concrete examples of Brauer algebras and also
for determining which values of δ are singular as defined in the next section.

7. Block decomposition

Throughout this section k is assumed to be a field. We are going to determine
the blocks of the Brauer algebra in case δ is not singular in the following sense.

Recall that a bilinear form ϕ defining an inflation is called singular if Nϕ̄(L, n)
:= {

∑
v∈V,l∈L v ⊗ vn ⊗ l |

∑
v∈V,l∈L ϕ̄(w, v)l = 0} does not vanish for some simple

B–module L and some n.
We have seen that for non–singular ϕ, the algebra (V ⊗V ⊗B)/(V ⊗V ⊗rad(B))

has a unit element (by lemma 3.5). (We note that this statement becomes wrong
if one replaces the field k by a noetherian domain, say a polynomial ring in one
variable.) Now by proposition 4.2, the algebra V ⊗ V ⊗B has a unit element.

The parameter δ is called singular if for some l the associated bilinear form ϕ
is singular. (This is well-defined since the singularity of ϕ depends upon ϕ̄ and the
latter depends only on δ.) As we have seen in section four, the singularity of δ is
decided by the vanishing of at least one of finitely many polynomials; hence there
are only finitely many singular values of δ.

Based on some partial results as well as on extensive computations, Hanlon and
Wales [HW1] formulated a precise conjecture (in the case of characteristic zero) for
which values δ should be singular, namely only integers of ‘small’ absolute value.
This conjecture has been proved by Wenzl [We1]. Thus in characteristic zero, most
integer values of δ are not singular, whereas in prime characteristic it may happen
(depending on the choice of r) that all ‘integer’ values are singular.

We will show that in the case of δ not singular the Brauer algebra A = Bk(r, δ)
is a direct sum of the group algebras of symmetric groups occurring in the above
picture of iterated inflation. Thus the blocks of A are known, since the blocks of
group algebras of symmetric groups are known by Nakayama’s rule.

Lemma 7.1. Let A be any ring and J a twosided ideal in A. Then the inclusion
J ⊂ A induces a ring decomposition A = J ⊕ A/J if and only if J (seen as a
subalgebra of A) has a unit element.
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Proof. If A has such a block decomposition, then J clearly has a unit element.
Conversely, assume J has a unit element, say e. Then J equals eJe, which is
contained in eAe, which in turn is contained in the twosided ideal J containing e.
Thus J equals eAe. Moreover, (IdA−e)Ae is contained in (IdA−e)J , which equals
(IdA − e)eJ , hence it is zero. Similarly, eA(IdA − e) is zero. Thus A is a direct
sum eAe ⊕ (IdA − e)A(IdA − e) and the first summand is J ; thus the second one
is isomorphic to A/J .

This lemma will be used to find the block decomposition of the Brauer algebra.
Alternatively, one may use the following statement, which is in terms of cellular
algebras and which contains some information of independent interest.

Lemma 7.2. Let A be a cellular algebra (over a field) with cell chain 0 ⊂ J1 ⊂
· · · ⊂ Jn = A.

(a) If L is a simple A–module which occurs as a composition factor of a standard
module ∆(l) for some l, then there is some m ≥ l such that Jm/Jm−1 maps onto
L. In other words: composition factors of standard modules are associated with
‘higher’ layers in the cell filtration.

(b) If some ideal Jl in the cell chain has a unit element, then A has a ring
decomposition A = Jl⊕A/Jl. If l equals 1, then in addition J1 is a full matrix ring
over k.

Proof. We first recall from [KX1] that a cell ideal J in an algebra A over a field is
either nilpotent (in which case its square is already zero) or generated (as a twosided
ideal) by a primitive idempotent, say f , and in the latter case J is a hereditary
ideal, that is, it has the form Af ⊗k fA and the endomorphism ring fAf equals k.

For the proof of (a) we use induction on n. If n equals 1, then A is simple (see
[KX1], proposition 3.4), hence the assertion is obvious. Assume now that n is bigger
than 1 and pick any l. If l is bigger than 1, then both L and ∆(l) are modules
over the cellular algebra A/J1, thus the assertion follows by induction. Hence we
can assume l = 1. If J1 is nilpotent with square zero, then again both L and ∆(l)
are modules over the cellular quotient algebra A/J1 and again the assertion follows
by induction. In the other case, J1 is a hereditary ideal of the form Af ⊗ fA. In
particular, the endomorphism ring fAf of ∆(1) ' Af is isomorphic to k. Thus
either L is the unique top composition factor of Af – and then it is a quotient of
J1 itself – or it is a composition factor of rad(Af) and hence a module over A/J1,
and again we can apply induction. This proves (a).

If the ideal Jl has a unit element, say e, then ∆(l) equals e∆(l), hence it cannot
have any composition factor L on which A/Jl acts non–trivially. By part (a) also
A/Jl does not have any composition factor L which occurs as a quotient of any of
the ideals J1, . . . , Jl. Hence A can be decomposed into Jl ⊕A/Jl.

In the case l = 1 we have, moreover, that ∆(1) cannot have any other composition
factors than just its top factor. Thus J1 is a simple algebra. Since it is cellular, it
must be a full matrix ring over k by [KX1].

Theorem 7.3. Let k be any field, r any integer, and choose a parameter δ ∈
k which is not singular for the Brauer algebra Bk(r, δ). Let Λ be the set of all
nonnegative integers smaller than or equal to r and congruent to r modulo two.

Then the Brauer algebra Bk(r, δ) decomposes into a direct sum

Bk(r, δ) '
⊕
l∈Λ

Vl ⊗ Vl ⊗ kΣl
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of the layers occurring when writing Bk(r, δ) as iterated inflation as in theorem 5.6.
Moreover, Bk(r, δ) is Morita equivalent to⊕

l∈Λ

kΣl.

Hence the block decomposition of Bk(r, δ) is given by applying Nakayama’s rule for
block decomposition of group algebras of symmetric groups.

For a precise statement of Nakayama’s rule we refer to [J, JK].
Proposition 4.2 implies that in the singular case the statement of the theorem is

not true.

Proof. The previous section tells us how to write Bk(r, δ) as an iterated inflation
the layers of which are inflations of group algebras of symmetric groups. Since δ is
not singular, each of the layers has a unit element (by 4.2 and 3.5), hence applying
7.1 inductively we can split off layers as direct summands.

We noticed already that the theorem is not true if one replaces k by a polynomial
ring in one variable or if k is a field, but δ is singular. The method of proof can
however be used to split off some layers in the singular case as well. In case of
characteristic zero, Wenzl [We1] (theorem 3.4 and corollary 3.5) obtained a block
decomposition with rather different methods which seem to be restricted to this
case (or rather to the case of a field k over which all group algebras of symmetric
groups occurring in the iterated inflation are semisimple). At present we have to
leave open the following problem:

Problem. Let k be a field of prime characteristic or a polynomial ring (of any
characteristic). Determine the blocks of a Brauer algebra with singular parameter
δ.

Finally, we list a few corollaries to the theorem.

Corollary 7.4 (Brown [Brow2], Wenzl [We1] Theorem 3.2(a)). If the characteris-
tic of k is zero or bigger than r and if δ is not singular, then the Brauer algebra
Bk(r, δ) is split semisimple.

We note that under the assumptions of this corollary one may deduce branching
rules and character formulae for the Brauer algebra. We do not formulate these
results since they are (properly) contained in results of Wenzl [We1] and Ram
[Ram].

Corollary 7.5. Let k be any field, r any integer and δ not singular. Then a block
of the Brauer algebra Bk(r, δ) has finite representation type, that is, there are up to
isomorphism only finitely many indecomposable modules, if and only if this block is
up to Morita equivalence a Brauer tree algebra. In this case, the Brauer tree is a
line with no exceptional vertex.

Proof. We refer to [Alp] for the definition and a discussion of Brauer tree algebras
and their ring structure (which is completely known). There it is proven that a block
of a group algebra of a finite group (over a splitting field) has finite representation
type if and only if it is a Brauer tree algebra. This applies to our situation, since
any field is a splitting field for the symmetric group. In [KX1] it has been shown
that a Brauer tree of a cellular algebra must be a line. In [K1] it is moreover shown
that in the case of an integral cellular algebra (which the Brauer algebra is) no
exceptional vertex can occur.
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