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A CHARACTERISTICS-MIXED FINITE ELEMENT 
METHOD FOR ADVECTION DOMINATED 

TRANSPORT PROBLEMS* 

TODD ARBOGASTtAND MARY F. WHEELERt 

Abstract. We define a new finite element method, called the characteristics-mixed 
method, for approximating the solution to an advection dominated transport prob­
lem. The method is based on a space-time variational form of the advection-diffusion 
equation. Our test functions are piecewise constant in space, and in time they ap­
proximately follow the characteristics of the advective (i.e., hyperbolic) part of the 
equation. Thus the scheme uses a characteristic approximation to handle advection 
in time. This is combined with a. low order mixed finite element spatial approxima­
tion of the equation. Boundary conditions a.re incorporated in a natural and mass 
conservative fashion. The scheme is completely locally conservative; in fact, on the 
discrete level, fluid is transported a.long the approximate characteristics. A post­
processing step is included in the scheme in which the approximation to the scaler 
unknown is improved by utilizing the approximate vector flux. This has the effect 
of improving the rate of convergence of the method. We show that it is optimally 
convergent to order one in time and at lea.st suboptimally convergent to order 3/2 
m space. 

Keywords. Advection-diffusion equation, characteristics, mixed finite element 
method, characteristics-mixed method 

1. Introduction. We consider the model a.dvection-diffusion equation 

(1.1) (c/>c)t+V-(cu-DVc)=fi-hc 

for the unknown function c( :r, t) in a. spatial domain D C ffi_rl, d = l, 2, or 3, over 
a time interval J = (0, Tl, where subscript t denotes partial differentiation with 
respect to time. This equation governs such phenomena. as the flow of heat within 
a moving fluid, the transport of dissolved nutrients or contaminants within the 
groundwater, and the transport of a surfactant or tracer within an incompressible 
oil in a petroleum reservoir. In the latter two cases, c is the concentration of the 
miscibly dissolved substance, cp(:r, t) is the porosity of the medi.um, u(:r, t) is the 
Darcy velocity of the fluid mixture, D( :r, t) is the diffusion/ dispersion tensor, fi ( :r, t) 
represents the injection wells, and h ( :r:, t) 2:: 0 represents the production wells. 

Because of molecular diffusion, D is uniformly positive definite. Although this 
implies that the equation is uniformly parabolic, in many applications the Peclet 
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number is quite high. Thus advection dominates diffusion, and the equation is 
nearly hyperbolic in nature. The concentration often develops sharp fronts that are 
nearly shocks. 

It is well-known that strictly parabolic discretization schemes applied to the prob­
lem do not work well when it is advection dominated. It is especially difficult to 
approximate well the sharp fronts and to conserve the material or mass in the 
system. 

Effective discretization schemes recognize to some extent the hyperbolic nature of 
the equation. Many such schemes have been developed, such as the explicit method 
of characteristics, upstream-weighted finite difference schemes [25], interior penalty 
Galerkin methods [14, 12], higher-order Godunov schemes [9, 2], the streamline dif­
fusion method [19], the modified method of characteristics-Galerkin finite element 
procedure (MMOC-Galerkin) [16, 18, 13], and the Eulerian-Lagrangian localized ad­
joint method (ELLAM) [8]. Each method has its advantages and disadvantages. 
Explicit characteristic and Godunov schemes require that a CFL time step con­
straint be imposed. Upstream weighting tends to introduce into the solution an 
excessive amount of numerical diffusion near the sharp fronts. Compared to up­
stream weighting, the streamline diffusion method reduces the amount of numerical 
diffusion. It adds a user defined amount biased in the direction of the streamline. 
The interior penalty Ga.lerkin method is subject to overshoot and undershoot, and 
although no CFL constraint need be imposed, relatively small time steps must be 
used in practice. In ELLAM, it can be difficult to evaluate the resulting integrnls. 

We concentrate on MMOC-Galerkin. It is an implicit scheme, so reasonably large 
time steps may be used, and it does not numerically diffuse the fronts to a particu­
larly excessive degree. Unfortunately, it has certain inherent difficulties, especially 
with regard to local mass balance. Since it uses a Galerkin spatial discretization, 
local constants are not in the space of test functions. As a consequence, there is no 
discrete, element-by-element mass balance (mass is conserved only globally over all 
of D). It is also difficult to compute the integral of the trace-back concentration, 
since both the approximate concentration and the test function necessarily vary in 
space. 

In this paper, we propose a. new scheme that ( theoretically, at lea.st) conserves 
mass locally. It is similar to MMOC-Ga.lerkin in that we approximate the hyperbolic 
part of the equation a.long the characteristics. We use, however, a. mixed finite 
element spatial discretization of the equations. Piecewise constants are then in 
the set of test functions, so mass is conserved element-by-element. We call our 
procedure the characteristics-mixed method. It can be viewed as a procedure of 
ELLAM type. 

The origin of our scheme can be seen by considering the advection-diffusion equa­
tion in a space-time framework. Choose some domain RC fl (later considered to be 
a. finite element) and two times O :S t 1 < t 2 :S T. The hyperbolic pa.rt of the equa­
tion (1.1), <pct+ u · v7c, defines the characteristics :i:(:D, t) E lRd along the interstitial 
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velocity v = u/ <P by 

(1.2a) 

(1.2b) 

:i:t = v(:i:, t), t1 ::; t ::; t2, 

:i:(:r, i2) = :r:. 

Now let R(t) denote the trace-back of R to time t (see Fig. 1), 

R(t) = {:r E D: :i: = :i:(y, t) for some y ER}, 

and let n denote the space-time region that follows the characteristics, 

n = {(:r:, t) E D x J: t 1 ::; t::; t2 and :r: E R(t)}. 

Also define B = {(:r:, t) E an: :r: E aD}. 

R X 

---------------..... - t2 

t I time 

R(t1) _______ ....,. ________ t1 

:i:(:r:' ti) 

--~C> 
space 

Fig. 1. The space-time region n. 

Multiply (1.1) by a smooth test function '1/;(:r, t) and integrate over n. With 
r(:r, t) = (u(:r, t), ¢(:c, t)) denoting the characteristic direction, the hyperbolic terms 
integrate by parts as follows: 

(1.3) / [ </Jct + u · 'V c:J'IP dn = l ('V, % ) c · T 'lj; dn ln ln t 

= 1n c r · 1/n 'IP d( an) - l c ( 'V, ! ) . r 'IP c1n - j~ c r . ( 'V, gt) 'IP c1n 

= l ¢(:r,t2)c(:i:,t2)'1/;(:c,t2)dR- /: ¢(:r,ti)c(:r,t1)'1P(:r,ti)dR(t1) JR JR(t 1 ) 

+ l Cu . I/fl 'IP dB - l C ( <Pt + 'V . u )'tjJ dn - l C ( <p'lpt + 'U . 'V'tp) dn, JB JR .In 
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where 1/5(:r:, t) is the unit normal to a set S (we used that T·l/n = 0 on the space-time 
"sides" an n (ii, t2 ) \ B). Therefore we have that 

(1.4) f </>(:r:,t2)c(:r:,t2)'1/;(:r:,t2)dR- ( </>(:c,t1)c(:r,ti)'l/;(x,t1)dR(t1) 
j R j R(ti) 

- f c(¢n/;t+u·'7't/;)dR- f \J.(D'vc)'t/;dR ln Jn 
= r (fi-hc)'t/;dR- r C'IL·l/n't/;dB. ln JB 

Since the solution is not very smooth in space and time, we concentrate on low 
order approximations of (1.4). By low order, we mean a mixed method with a 
piecewise constant approximating space for the unknown scaler function c. Then 
our test functions 'I/; are also piecewise constant in space. In time, we let 'tp follow 
the characteristics; that is, for each element R, we have a test function 't/;(x, t) that 
is a constant for (:c, t) E R and 't/;(:c, t) = 0 elsewhere. The second term on the 
left-hand side of (1.4) is then easy to compute, since c(:c,t1 )'t/;(:r,t1 ) is a piecewise 
polynomial. The third term on the left-hand side vanishes, since 'tp trivially satisfies 
</xt/;t + u · \J,t/; = 0. Clearly these are the two critical terms to approximate well. 

An outline of the paper follows. In the next section we define an approximation 
to the characteristics. By considering fluid flow along these approx'imate character­
istics, we derive a special, mixed, variational form for our differential problem. This 
variational fonn is the basis of om· characteristics-mixed method, which we define in 
Section 3 for the lowest order Raviart-Thomas-Nedelec mixed finite element spaces 
[22, 21] over fairly general grids. 

In Section 4, we present our convergence results. Since the scaler c is approxi­
mated by a piecewise constant function, we should expect no better than first order 
convergence in space and time. However, a post-processing step of our procedure 
uses the mixed method approximation to the vector - D '7 c to improve the accuracy 
of the scaler approximation. As a consequence, we obtain better than first order 
convergence in space. The error analysis is given in Sections 5-6. 

Based on our error analysis, we extract a stability result in Section 7. In Section 8, 
we remark on the generalization of the characteristics-mixed method to other mixed 
spaces. 

To avoid confusion, the reader should note that in Sections 2 and 3, we define 
the characteristics-mixed method for a problem with inflow, outflow, and Dirichlet 
boundary conditions. However, the results of Sections 4-8 assume periodic boundary 
conditions. 

2. Approximate characteristics and the variational problem. We begin 
this section by defining completely our transport problem. We state it for three 
boundary conditions, Dirichlet, inflow (Dankwerts or Robin), and outflow (homo­
geneous Neumann). So let an = I'n u nu u I'011 t be decomposed into three disjoint 
pieces such that u(:c, t) · 1/ < 0 for :c E nu and u(:r:, t) · 1/ ~ 0 for :r E I'out, where 
1/ = 1/[}. Also let cn(:c, t) denote the Dirichlet concentration and Cin(:r:, t) denote the 
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inflow concentration. Introducing the diffusive flux z, our transport problem is 

(2.la) 

(2.lb) 

( cpc )t + V · ( cu + z) = fi - h c in fl x J, 

z=-DVc inflxJ, 

with the boundary conditions 

(2.2a) 

(2.2b) 

(2.2c) 

c(:c, t) = CD(:c:, t) 011 I'D X J, 

z · 1/ = ( Cin ( :r, t) - c) u · 1/ on I'in X J, 

Z • 1/ = 0 011 I'out X J, 

and the initial condition 

(2.3) c(:r:,O) = c0 (:r:) on fl. 

Assume that our functions a.re smooth enough for the discussion that follows. 
Specific assumptions are enumerated in Section 4. 

In general, the characteristics can be determined only approximately. For sim­
plicity of discussion, let u be extended as a smooth, bounded vector field outside fl, 
and let ¢ be extended smoothly as a uniformly positive function. There are many 
ways to solve the first order ordinary differential equation (1.2) for the approximate 
characteristics. We consider here only the Euler method. Alternate schemes can be 
used, such as the improved Euler or a Runga-Kutta. method. 

We discretize time by choosing a partition of J, 0 = t0 < t1 < ... < tN = T, and 
setting f::..t" = t 11 

- t 11
-

1. As usual, let L:::..t = max 11 f::..t". For a function '1/;(t), let 
'tp 11 = 1P ( t n ) . 

The Euler method can be used to solve (1.2) for the approximate characteristics 
in Mn 2: 1 discrete steps as follows: With t n- l, m = t n - l + m6.t11 

/ M 11
, for m = 

Mn, ... , l, let 

(2.4a) 

(2.4b) 

:c;;-1,m-l ( :r:) = i:;;-1,m( :r) _ v(.1:;;-1,m( :r: ), tn-1,m )f::..t" / M", 

'l-.n-1,M" (''") _ ,,. 
• ,,,, ,t., - .u. 

Let :i: 11 (:r, t) denote the piecewise linear interpolant in time of the :c;:- 1 ,"'(x). If 
t:::..tn / M 11 is small enough ( depending on the smoothness of v ), then the approximate 
characteristics do not cross each other. We assume this to be the case. We then 
l t . - ( ) f" IR d . IR d 11 . . ~ ( ) rnve a one- o-one mappmg :r: 11 ·, t o , mto , ; ca. its mverse :c: 11 ·, t . 

For any time t such that t 11 -l,m-l < t :=:; tn-l,m, let us define 

(2.5) 'u(:c, t) = v(:i: 11 (:'i:n(:c, t), t7'-1,"'), tn-l,m) and fi = 'ucp. 

Our approximate characteristics are defined equivalently with respect to 'u: 

(2.6a.) 

(2.6b) 

- -(- i) tn-l < t < t 11
, '.Cn,t = V :en, , , 

-11( ) ,,. ' '[' = '(" 
''11. ,, •'• 
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We assume that ii· 1/ < 0 on .I1u and ii· 1/ 2: 0 on I'out· 

For a function 'tp(:c, t) and any t E J, if tn-l < t '.S t 11
, let 

Then ¢( x, tn-l ,+) ,Jn-1 ,+( :c) follows the approximate characteristics forward 
from time t n- l to t11 to become 't/J 11 

( :r:); this is the type of test function we will use. 

The natural, mixed variational problem corresponding to (2.1)-(2.2) is posed in 
terms of ( c, z) E L 2

( fl) x V, where if H( fl; div) denotes the set of square integrable 
vector functions which have a divergence in L2 (fl), then V ={VE H(fl;div): 
V · 1/ = 0 on I'011 t}. Let us define W ={WE L2 (fl): Wis piecewise constant}; W 
is dense in L2

( fl). 

We now define our special, mixed, variational form of (2.1)-(2.2). Let ( ·, · )s 
denote the L2 (S)-inner product (or more generally integration over S), wherein we 
omit S if S = fl. Replacing 'tl by 'ti+ (u - fi) in (2.la), following the argument given 
in (1.3)-(1.4) for the velocity fi and the approximate characteristics :i: 11 , and using 
(2.2), we obtain for any test function 'tp(:c, t) = W(:c, t), W E W extended by zero 
outside fl, that 

t" 

(2.7) (¢ncn, W)- (¢n- 1cn- 1 , Tvn-i,+) + 1 (V · z, TV)dt 
1n- l 

• tn 

= / [(fi - fzc, vfl) - (cou · 1/, W)r0 - (ciu'll · 1/ - z · 1/, W)r;u] dt ltn-1 
• t 11 

+ j,,_
1 

{ (v · [(a - u)c], w) - (c('u, - u). 1/, w) nn} dt. 

This variational equation expresses conservation of mass along the approximate 
characteristics. Multiply (2.lb) through by n-1 v, VE V, and integrate by parts 
in space to obtain that 

(2.8) (D-1 z, V) = (c, V · V) - (c, V · 1/)ri,, - (co, V · 1/)ro-

It would be difficult to approximate conservatively the inflow boundary conditions in 
(2.7)-(2.8), since the unknown solution c and z appears in the integrals over .I1n- To 
rectify this, for W E W, let T(W) = {R C fl : Wis constant on R, R maximal}, 
and let Rn(t) = {:r: E fl : :r: = :'i:n(Y, t) for some y E R} C fl. Integrate by parts 
locally in space on each R the third term on the left-hand side of ( 2. 7) and the first 
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term on the right-hand side of (2.8) to obtain the variational problem 

•tn 

(</Jncn W)-(</Jn-lcn-1 v11n-l,+)+ f " (z·JJ· W) ... di ' ' j
1 

L.....t R,,' <JR,, \I'11 , 

tn-i RET(W) 

(2.9a) 

.fn 

= / [(f1 - fie, W) - (cofi · 11, W)rD - (ciu'll · JJ, W)nJ dt 
ltn-1 

. f n 

+ J,
11

_

1 
{ (v · [(fi - u)cl, w) - (c(fi - u). JJ, w) riJ dt, 

WEW, 

(2.96) (D- 1 z,V)= L (c,V-11RJaR
11
\ri"-(co,V·11)rD, VEV, WEW. 

RET(W) 

3. The characteristics-mixed method. To discretize space, choose an h > 0 
and some quasi-uniform grid T,, over [l such that the inner and outer diameter of 
ea.ch element is comparable to h. For any element R adjacent to the boundary, 
we assume that 8R nan is contained in only one of I'o, l1n, or I'out.· We also 
assume that the lowest order R.a.via.rt-Thoma.s-Nedelec mixed finite element spaces 
[22, 21] W1i x V1i C W x V ca.n be defined over our grid ( or more generally any 
similar spaces, e.g., see also [15] for elements with a. curved boundary, [24] and [7] 
for quadrilateral elements, a.nd [10] for prismatic elements). Finally, we need to 
define a post-processing space W1, consisting of functions that a.re discontinuous 
and piecewise linear over the grid. 

We define the characteristics-mixed method from (2.9) a.s follows. Both c,: E W1, 
a.ncl c,: E W1, approximate c11

, and z;: E V1, approximates z11
• We begin by finding 

some reasonable approximation ci E W1i to c0 (such as the L2 (rl)-projection). For 
ea.ch n 2'. 1, we define first ( cj;, z11

1
) E W1i x V,1 such that 

(3.la.) ( ,1..nc.n W) _ (,1..n-1--:n-1 rx1n-1,+) + " (.,,n. W)·. "tn '+' ,1,, 'I' C1,, , n L.....t -1, 11 R, <iR\I'iu Ll · 

RET1, 
tn 

= r [(Ii - fie,,, W) - (cD'U · JJ, W)rD - (ciu'll · 11, W)nJ dt, ltn-1 

(3.lb) 

We then locally post-process the concentration by finding c,: E W1,, such that on 
ea.ch element R E T,, , 

(3.2a.) 

(3.2b) 

( ,1..n(-n 11) 1) 0 'I' C1,, - C1,, , R = , 

(D n.,-n + n _, ) 0 
V Ch z I, ' V w R = ' w E W1,. 

If I'in = 0, we can apply the Divergence Theorem to the two terms in (3.1) over 
8R \ I'iu to obtain the more usual mixed formulation; (3.1) is written to enable us to 
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handle I1.n in a conservative form. We have also handled the fzc term conservatively, 
and it is computed on an element R as 

(3.3) 
t" tn 

j 
(f2c1i,W)Rn(t)dt=(ci:W)/Rj r_ fzd:cdt. 

tn-1 tn-1 }Rn(t) 

Mass is conserved locally on ea.ch element up to the error in approximating the 
integrals. In fact, the discrete equations express local conservation of mass in which 
fluid is transported along the approximate characteristics. 

We remark that it is well known that for the mixed method, the error in the 
approximation of the scaler variable in the L 2 

( D)-nonn is only of the first order in 
h. Our post-processing technique (3.2) is similar to that used by Stenberg for the 
Stokes problem [23]. It improves the approximation ci; so that the error between 
cK and en is of higher order. This post-processing preserves mass on each element, 
and it is easily computed. It is anti-diffusive, so a slope limiting procedure [20, 11] 
should be applied to c;; to prevent overshoot and undershoot. This has the effect of 
adding numerical diffusion near sharp fronts, where higher order accuracy cannot 
be expected. 

Issues of implementation will be discussed elsewhere (see also the preliminary 
report [l]). 

LEMMA 1. If¢ is uniformly bounclecl above and below by positive constants, D 
and n- 1 are uniformly bounded, symmetric, positive definite tensors, all integrals 
converge, and tl1e approximate clrnracteristics do not cross, then there exists a 
unique solution to the clwracteristics-rnixed 111etl10d. 

PROOF: The linear system generated by (3.1 )-(3.2) is square, so the existence of 
a solution is implied by uniqueness. If c;:-1

, fi, co, and Cin are zero, then take 
W = cj;, V = zj:, and w = cj;, to conclude uniqueness, since fz 2:: 0. I 

4. Convergence results. We give an analysis of the approximation error in the 
restricted case that our problem has periodic boundary conditions. We then have 
a natural, periodic extension of 'tl and ¢, and for fixed t, :i:n( ·, t) is known to be 
a differentiable homeomorphism of D to itself, assuming l:l.t7' is sufficiently small 
( depending on the smoothness of u and ¢, see [18] and also Lemma 2 in Section 6). 
We also assume for convenience that a single Euler step is taken to define the 
approximate characteristics (i.e., M 11 = 1 for all n): 

:i: 11 (:c, t) = :r - v(:c, t 11
) (tn - t) and fi(:c, t) = v(i: 11 (:r:, t), tn) = D(:c, t). 

We restate the variational problem (2.9) as 

(4.la) 
•t'T/, 

( (rcn, W) - (q/'-lcn-1, wn-l,+) + ln-1 (V. z, W) dt 

t" 

= j {(.h -f2c, vfl) + (V · [('u, - u)c], W)} dt, WE W, 
tn-1 

( 4.lb) (D- 1 z,V)=(c,V-V), VEV, 
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and our characteristics-mixed scheme ( 3 .1) as 

(4.2a) (c/>nc,:, W)-(c/>n- 1c;;- 1
, wn- 1,+) + (V · z,:, W)~tn 

t" 

= j (Ii - hc1i, W) dt, w E W1i, 
tn-1 

( 4.2b) ( ( D n )-
1 z 1,\ V) = ( c ;; , V · V), V E V 1,, 

together with the post-processing step (3.2). Clearly Lemma 1 continues to hold. 
We denote by Wk,P(S) the standard Sobolev space of k-differentiable functions 

in LP(fl). Let II . llk,S be the norm of Hk(S) = wk, 2(5) or (Hk:(s)r\ where we 
omit S if S = fl. Let Wk ,P ( J; W.i' If ( [l)) denote the usual set of functions with the 
norm 

11'1llwk,P(J;Wi,q(D)) = { t 1· 11 :;;'IP(·, t)IIP . dt}
11

P, 
i=U J WJ,q(D) 

where if p = oo, the integral is replaced by the essential supremum. We will denote 
by Q a generic positive constant independent of h, n, the ~t11

, and c. 
The standard assumptions a.re as follows. 

(Al) c, z, V · z E C 1(J; H 1 (fl)). 
(A2) an is 2-regular ( e.g., an is C1 or fl is convex). 
(A3) cf> E w1 ,=(J; W 1,=(fl)) and Q- 1 :S; cf>(:c, t). 
(A4) D is a uniformly bounded, symmetric, positive definite tensor such that 

D, n-1 E (w1,=( J; V{/1,=(.f?))) dxd_ 

(A5) v, v. v E w 1 ,=(n x J). 
(A6) h E L=(J; w 1,=(fl)) and h 2: 0. 
(A7) fi E L 1(fl x J). 

THEOREM 1. Assume (Al)-( A 7). If the initialization error satisfies 

(4.3) 111:~. - cullu :S Ku(c0
) h2 

for some constant Ku depending on cu, and if there is some constant ](' > 0 such 
that ~tn 2: I(' h3 12 , then for h and ~t sufficiently small, 

(4.4) max lie,; - c"llu :S K(c)(h:~/2 + ~t), 
n 

( 4.5) max lie,; - c11 llu :S K(c) (h + ~t), 
n 

( 4.6) { t, llzi: - z" II( t>t"} 112 

c; K( c) (h + t>t), 

where J( depends on c but not 011 h or ~t: 

( 4.7) K(c) = I{ { [ j~ ( IJcJJi + llcrll~ + ll(V · z)rll~ 

+ IIV · zllB + llzt Iii + IIV · Zt Iii) dt] 
1 /2 

+ max [ llzll1 + IIV · zlli] + Ku(cu)}, 
tEJ 
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for some constant R. Moreover, there is some constant E
1 > 0 such that if u = 0 

and c16.tn 2: h2 , then for hand 6.t sufficiently small, (4.5)-(4.6) hold and 

( 4.8) max lie;; - c"llu :S K(c) (li2 + 6.t). 
n 

If there is no advection (u = 0), then we have optimal order convergence in space 
and time; otherwise, we are only able to show a suboptimal result with a loss of 1/2 
power on the spatial convergence rate of the post-processed concentration. 

In our analysis, we will use the technique of comparing the finite element solution 
to an elliptic projection (C1i, Z1i) E W1i x V1, of the true solution (c, z) [26]. Define 
it by 

( 4.9a.) 

( 4.96) 

(¢(C1, - c), W) + (V · (Z1, -z), vV) = 0, WE W1i, 
(D- 1 (Z1t - z), V) = (C1, - c, V · V), VE V,,. 

Also define Ch E W1, on each element R E T,1 : 

( 4. lOa.) 

( 4.106) 

(¢(C',, - C1,), l)R = o, 

(DVC!i, + Z1i, Vw)R = 0, w E W1,. 

THEOREM 2. Assume (Al)-(A4). Then for each t E J and for h sufficiently small, 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

IIC1i - cllu :S Kllzll1 h, 

IIZ,, - zllu :S Kllzll1 h, 

II Ch - cllu :S K { llzll1 + IIV · zlld li2, 

ll(Ch - c)tllu s; K{llzll1 + 11v. 2 111 + llztll1 + IIV. Ztlli}h2, 
where K is independent oft, c, h, and 6.t. 

5. Proof of Theorem 2. Results (4.11)-(4.12) are known; moreover, if Pw,. 
L 2 (D) ---+ Wh denotes the L 2 (D)-projection operator defined by 

(Pw,, 'IP - 4), W) = 0, vV E w,,, 

then 

(5.1) II Ch - Pw,, cllu :S Q{llzll1 + IIV · zll1} li2, 

and also 

(5.2) 11 Z I, - Z I I -1 :S Q { 11 Z 11 1 + 11 \7 . Z 11 d /i2 , 

where II · ll-1 denotes the norm of the dual to H 1 
( D). These results are derived by 

making strong use of the Ra.via.rt-Thomas Projection opera.tor 7rh : ( H 1 ( D)) 
11 

---+ V1,,, 
which has the properties that 

(5.3) 
(5.4) 

(V · 'P - V · 1r1i'P, W) = 0, WE W1i, 

ll'P - 7rh'Pllu :S Qll'Pll1 h. 
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Strong use is also made of a duality argument to obtain (5.1)-(5.2). See [15] for a 
proof in the case of a Dirichlet problem ( a straightforward variant of the proof han­
dles our periodic problem-see also the argument given below for obtaining (4.14)). 

In general we have only that 

(5.5) 

The superconvergence of (5.1) can be exploited to obtain (4.13) as follows. 
With 

11 = C1,, - c and 17 = C1,, - c, 

the post-processing error equation is 

(5.6a) 

(5.6b) 

(cpiJ, l)R = (c/>(C1, - Pw,.c), 1) R + (c/>(Pw,,c - c), 1) R' 

(DViJ, Vw)R = (z - Z1,, Vw)R, w E ½\, 

since -DVc = z. For w E W1,, let w = 'IJ + (c - w) E W1, to obtain that 

(DVit, V1J)R = (z - Z1,,, V,,, + V(c - w)) R - (DV17, V(c - w)) R 

:SQ{ llz - Z1,IIG,R + IIV(c - w)IIG,R} + ½IID112 V11IIG,R· 

Since W1, contains the linear functions, the Bramble-Hilbert Lemma. [3, 4, 17], a 
good choice of w, and ( 4.12) imply that 

(5.7) { } 
1/2 

L IIVi,11~,R :S Qllzll1 h. 
RET,, 

Now for any constant W, by (5.Ga.), 

(cpiJJ!)R = (cpiJ,iJ-W)R + (c/>(C1, -Pw,,c), W)R + (c/>(Pw,.c- c), W)R, 

and this la.st term is 

(c/>(Pw,,c - c), w) R = ((c/>-Pw,,c/>)(Pw,,c - c), w) R' 

We therefore estimate that 

lliJIIG,R :SQ{ ll'IJ - VVIIG,R + 11c,, - Pw,, ciiG,R 
2 . 2 } + lie/>- Pw,,c/>IIL=(R)IIPw,,c - cilo,R · 

Since a good choice of W implies that 

11'17 - Wllo,R :S QIIV11llo,R h, 

we obtain (4.13) with (5.7), (5.1), and (5.5). 
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To prove (4.14), differentiate (4.9) in time: 

(5.8a) (¢>r1t, W) + (V · (Z1i - z)t, W) = -(c/>trJ, W), WE W1i, 

(5.8b) (D- 1 (Z1, - z)t, V) = ('r1t, V · V)- ((D- 1 )t(Z1i - z), V), VE V1,. 

Using (4.11)-(4.12), an analysis as in [15] leads to 

(5.9) ll''ltllo :S Q{llzll1 + llztlli}h, 
(5.10) ll(Z1i - z)tllo :S Q{llzll1 + llztlli}h, 
(5.11) [IV· (Z1, - z)t[lo:; Q{[[z!l1 + [Jzt[[1 +[IV· Zt[Ji}h. 

In fact, superconvergence is obtained for (C1, -Pw,,c)t- Since this result is critical, 
we derive it in detail. 

Let '!p solve the elliptic problem 

so that 

(5.12) 

and 

¢>'</; - V · (DV,1/J) = (C,, - Pw,,c)t in fl, 

'</J = o on an, 

The last term above can be expanded by using ( 5.8b) with V = 1r1i(DV'</; ): 

(5.14) 
-((C1i - Pw,,c)t, V · (D"\hp)) = -(Pw,,1Jt, V · (DV,1/J)) 

= -(Pw,Jlt, V · 1r1,(D"\hp)) = -(rJt, V · 1r1,(DV4;)) 

= -(D- 1 (Z1i - z)t,1r1i(DV,f)) - ((D- 1 )t(Z,, - z),1r1,(DV,f)) 

= - ( n- 1 
( Z ,, - z) t , 1r ,,( D V '/jJ) - D V 7P) - ( ( Z 1, - z) t , V '<P) 

- ( ( n- 1 )t( z,, - Z ), 7rl, ( DV'tp) - DV'lj!) - ( ( n-1 )t( Z1i - Z ), DV'</;). 

The second term on the far right-hand side above can be integrated by parts and 
combined with (5.8a) for any vV E W,, to obtain 

(5.15) -((Z1, - z)t, V'1/J) = (V · (Z1i - z)t,'<P) 

= (V · (Z1, - z)t,'<P - W) - (1>''7t, W)-(1>t"7, W). 

The next to last term above is 

(5.16) -(¢nJt, W) = -(¢>(Ci, - Pw,,c)t, W) - (¢(Pw,,c - c)t, W) 

= -(¢>(C1, - Pw,,c)t, W) - ((1>-Pw,,1>)(Pw,,c - c)t, W). 
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The last term in (5.15) is similarly expanded. Note that we can combine one term 
in (5.16) with (5.13), so (5.13)-(5.lG) yields that 

(5.17) ll(C,, -Pw,,c)tll~ 
= (c/>(C1i -Pw,,c)t,'t/;- W) - (D- 1 (Z1i - z)t,1r1i(D\J,t/;) - D\J,t/;) 

- ( ( n-1 ) t ( z 1i - z), 1r ,, ( D \17./;) - D \7 '1/;) - ( ( n-1 ) t ( z,, - z), D \7 't/;) 

+ (\7 · (Z1, - z)t, 'lj; - W) - (( cp - Pw,, cp )(Pw,, c - c)t, W) 
- (1>t(C1i -Pw,,c), W) - ((1>-Pw,,c/>)t(Pw,,c - c), W) 

:S: Q{ll(C1, -Pw,,c)tlloll'1/;- Wllo 
+ [ll(Z1i - z)tllo + IIZ1, - zllo] ll1r1,(D\l't/;) - D\77./;llo 
+ IIZ1, - zll-1117./;ll2 + ll'v · (Z,, - z)tlloll't/;- Wllo 
+ [111> - Pw,, 1>11 L= (!]) ll(Pw,,c - c)t llo + 11c,, - Pw,,cllo 

+ 11(1>- Pw,,c/>)tllL=(n)IIPw,,c - cllo] llliVllo} 
:S: Q{ [ll(C,, -Pw,,c)tllo + ll(Z,, - z)tllo + IIZ1, - zllu]h 

+ IIZ1, - zll-1 + ll'v · (Z,, - z)tllu h 

+ ll'vctllu h2 + IIC,, - Pw,,cllu + ll'vcllu li2}11'fll2 
:S: Q{ ll(C1, - Pw,.C)tllu h 

+ [llzll1 + ll'v · zlli + llzt 111 + ll'v · ztlli] h,2} II( C1, - Pw" c)t llo, 

wherein for the second inequality we use (5.4), (5.5), and the fact that a good choice 
of W gives us that 

and also wherein (5.17) for the third inequality we use the results ( 4.12), (5.1)-(5.2), 
and (5.10)-(5.12). For h sufficiently small, we obtain our desired superconvergence 

As in the proof of (4.13), (5.1) and (5.18) can be exploited in an analysis of the 
derivative of (5.6) to obtain (4.14). 

6. Proof of Theorem 1. Let us define 

en - n - en E W <., - c,, h h, {
11 = c;; - CJ/ E w,,, l /n n zn EV anc .,, = z1, - h h· 
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Combining (4.1), (4.2), and (4.9), the error equation can be written as 

(6.la) (¢"(C' + ry"), W) _ (¢"-1(["-1 + ,qn-1), wn-1,+) 
•tn 

+ ('v. C', W) !::::.{" + j,,_l (fil, W) dt 

.{n .f n 

= I (h(c - c,,), w) dt - I ('v. [(fi - u)cl, w) dt ltn-1 lt11-I 
•t n 

+ in-I ('v · z, W) di - ('v · Z 1I
, W) f::::.t 11 + ( q>

11 r/1, W) f::::.t11, 

WE W1i, 

(6.lb) ((Dn)- 1 (71, V) = (C, 'v · V), VE V1i. 

Take W = CI and V = (7' in (6.1), add the two e(1uations, and use (3.2a) and 
( 4.10a) to obtain that 

(6.2) (r/>"[n,(1)-(r/>"-I[n-l,[n-l,+) 
•t n 

+ ((D")- 1 ('1,('1)f::::.i 11 + i,,_
1
(h[,[)di 

.f n .f1' 

= / (h(c - C\), {) dt - / ('v · [(fi - u)c], {) dt 
ltn-1 ltn-1 

•fn 

+ f [('v · z,[)-('v · z 1I ,C)] dt 
ltn-1 

_ ( r/>ni(, C')(l _ f::::.i") + ( ¢11-l,qn-l, [n-1,+). 

The first three terms on the right-hand side above represent primarily time dis­
cretization errors. We will estimate them sequentially. It will be helpful to note the 
following general results. 

LEMMA 2. Jh/;1 E L 1 (J; V'(D)) ancl 'i/;2 E LP' (D), 1::;: p::; oo, ¾ + 
1
~, = 1, then for 

almost every fixed t such that tn-l < t :=;: t 11
, 

(6.3) 

for some Jn(:r, t) = 1 + J 1'.(:r, t) such that 

(G.4) IJ:1 (:1:, t)I :=;: K(tn - t), 

where I( depends on llvllL=(J;Wl,=(!!))· Moreover, for some positive K1 and K2 
depending on I(, and for f::::.t" sufficiently small, 

(6.5) (1 + K1(!::::.t11
)
1IP) 11'1/;1 IILP(!]) :S 11·J1 llu,(n) :S (1 + K2(!::::.tn)lfp) ll1/J1 IILJJ(il), 

(6.6) (1 + K1(!::::.t 11
)
1lz,')ll'I/J2llu'(n)::;: ll·J2IILv'(n)::;: (1 + K2(!::::.t 11

)
1fr')ll·i/J2llv,'(n)· 
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PROOF: For any coordinates i and j, 

(6.7) 8:cn,i(:r:,t) _ C. _ 8vi(:r:,t 11
)( n _ ) 

----'---'--- - (11._1 ----'--- t t ) 
8:c:_; 8:c:_; 

where bi.i is the Kronecker delta. The change of variables :r: 1---t :i:n(:r:, t) gives (6.3), 
where :ln(:c:, t) is the determinant of the Jacobian 8:i: 11 (:c:, t)/8:r:. It has the form 

,1 

(6.8) :rn = 1 - \7 . v" w· - t) + L n:, ( c· - t l', 
f.=2 

where the R;
1 

depend on products of derivatives of vn; thus, (G.4) holds. Provided 
that J{ llt 11 is strictly less than one, the final two results follow from (G.3)-(6.4) 
(unless p or p' is oo, but these cases are trivial). I 

LEMMA 3. If 'ljJ E vV 1,P(ft X J), 1 :Sp :S oo, e•-l < t :S t 11
, and 'IPr is defined by 

(6.9) ·t/Jr(:r:n(:c:, t), t) = aa (-J(:r, t)) = aa (-ip(:i:n(:c:, t), t)) 
t t 

= 'lpt ( :i: n ( :r:, t), t) + V ( :i: n ( :c:, t), t) · \7 'tp ( i: n ( :r:, t), t) 

as the derivative along the approximate clrnrncteristic (recall (2.6)), then 

(6.10) 

• tu 

'lj/' ( :t) - '/~ ( ;{; l f) = 1 'lp T ( :C 11 ( :C) 8)) 8) d.s 

and, for llt 11 sufficiently srna.11, 

(6.11) 

(6.12) 

114/' - ·Jllv,un :S (1 + K(llt 11
)

11P)ll·1farllu(nx(t 11 -1,t")) (llt1') 1
-

1
/P, 

II -,i - ·,t, II LI'(!?) :S ( 1 + K( 6t 11 
)
1 IP) ll·t/Jr II LP ( n X ( tn- 1 ,t")) ( llt1' )1- 1 /p' 

where K is a constant depending 011 llvllL=(J;wi.=(Jl))· 

PROOF: Result (6.10) is im~ediate, and (6.11) follows with the Cauchy-Schwarz 

inequality and (6.5). Since -,i = ·t/J", (6.12) follows from (6.5) and (6.11). I 

LEMMA 4. If ·1p E L 2(ft) and a E li\I1•=(f? x J), then for any n, 

(6.13) 

where K;::: 0 depends on llvllL=(J;Wl,=(n)) and liallw1.=(nxJ)· 

PROOF: Use Lemma 2 to make the change of variables 

( (Ln-l ,J11-l ,+ l ,Jn-1,+) = ( an-l ,+ ·t/J) ·t/J:Jn) 

= (cl'·1p,'l/J) - ((cl' - {i,1'- 1 ,+)·ip,·ip) + (an-l,+'1/J,·ip:J:,) 

:S (a"·,j,,·,j,) + {II(/' - ii,n-l,+llu=(!?) + QJla 1
'-

1 llu"'(!])6t 11 }ll·t/JII~, 
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and then apply (6.11). I 
Returning to the right-hand side of (6.2), by Lemma 2, the first term is 

•tn tn 

(6.14) ln-1 (h(c - C:1,),t) dt = ln-1 (12 (c - c;ii),C'.Jn) dt 

t" t" 

= /. (.f2(cn-Cj/),C'.J1,)dt+ /. (.f2(c-cn),C.Jn)dt 
ltn-1 ltn-1 

f 11 

::; - j U2 rt, c) c1t 
trt-1 

+ Q{ 11'1" Iii( LH" )
2 + IIC' lli~t" + J,.'.:, IIC - c" Iii dt}, 

where Q, a. generic positive constant, depends on llvllL=(J;w1,=(fl)) and also on 
llhliL=(.J;L=(n))· (In this section, we will keep track only of new quantities that 
Q may depend on and assume that it depends on all previous quantities.) Using 
(4.10a), 

(6.15) -(.12 ·,t",C') = (¢[Pw" (-t; )- ·t; ]rt,C1
) - (¢Pw,, (-t; };r',t11

) 

~ Q{ llr/' llu h + llrf' Jiu} IIC1 llu, 

where Q depends also on ll¢IIL=(.J;W1,=(fl)), llhllL=(.J;W1,oo(fl)), and on the lower 
positive bound for ¢. Therefore with Lemma 3, 

tn 

(G.16) J,,_
1 

(h(c - C:1,), {) dt 

s Q{ 11'1"11/. (h 2 + M') + llrl''lli + IIC'lli + [". lier Iii dt M' }~t". 

For the second term on the right-hand side of (6.2), 

(6.17) 
.f n 

- j,,_j (v. [(fi -u)c],{) dt 

SQ{ IIC'II/.M' + _(, IIV · [(fi - u)c]lli dt} 

Note that 

(6.18) V · [('u - u)c] = V · (('u - v)c</J) = V · (D - v)c</J + ('u - v) · V(c</J). 

The chain rule and (6.7) show that 

(6.19) V · D(:r, t) = V · (v(i: 11 (:c, t), t 11
)) 

= V · V ( i: n (:r:, i), t1') + 0 ( ( i 11 
- f)) 

= ( V ~. v) ( :r:, t) + 0 ( ( t1' - t)) , 
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where the last term depends only on JlvllL=(J;W1,oo(!?)), so 

• tn 

(6.20) J,,,_
1 
llv' · ('v - v)c<fillG dt 

.f u 

:S Q{ ll(y'~. V) - y' 'viii=(!] X J) + (6t")2} in-l licll~ di 

tn 

s: Q r 11c11~ dt (6t1' )2, ltn-1 
where Q depends on ll(v' · v)rllL=(nxI) hy Lemma 3. Also, 

j ,tn ;·t" a 
·v(:c, t) = ·v(:c, t) = v(:r:, t) + Vt(:r:, 8) d,c; - -a. D(:c, .s) d8. 

t t .s 
(6.21) 

Therefore, 

(G.22) - _(, (v · I( v - "),],() rlt co Q { IIC' IIJ6t" + [:, lfclli dt (M' )2
}, 

where Q depends also on llvlJw1,=(nxI)· 
The third term on the right-hand side of (6.2) is estimated with Lemmas 2 and 3: 

(6.23) (" {(v' · zl)-(v' · z 1',C')} dt 
l1ri-l 

:SQ{ Jj('Jj~6t7' + /,:~1 IJ(v'-- z)Jn - v' · z"II~ dt} 

:SQ{ IIC'IIG6 t7' + .l:~l [ ll(v' · z)rllG + llv' · zllti] dt (6tn)2 
}· 

Combining (6.2) with (6.16), (6.22), and (G.23) yields the estimate 

(G. 24) (¢in[n,C')-(¢i1,-1r,-1,t7,-1,+) 
•t n 

+ ((D 11 )-1
(7',(

11) 6f1' + ./n-l (fzl,l)df 

:SQ{ IIC'IIG + llr/'IIG (h2 + 6t") + llif'IIG + /,:~l [ liclli + Iler II~] dt 6tn 

+ [~, [ ll(V · z)rllf, + flv' zfi/,] dt 6t" }6t" 

_ (¢inf', C') + ( <Pn-1,,y-1, t7,-1,+). 

We now analyze the first two terms on the left-hand side of (6.24). They nearly 
collapse under summation. Use Lemma 4 to estimate that 

(6.25) ( <Pn-1 en-1' tn-1,+) 

:S ½(<Pn-1{11-l ,(11-l) + ½(<P11-1t71-1,+,en-l,+) 

:S ½( <Pn-1 {n-1, (11-l) + ½( <Pn ~n, ~n) + QJJ~n JIG 6fn, 
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where Q depends also on ll</>llw1,=(f.?x.J)· Since (<f 11C',C1) = (</>n[ 11 ,(11
), 

(6.26) (</>n[n,C')-(<Pn-l{11-l,[11-l,+) 

2: ½[(<t>n[n,en)-(<Pn-l{n-l,{n-l)]-Qlllnll~6tn 
= ½[ ( <P n ti, { n) _ ( ¢ n - 1 { n- l ,{ n - l ) ] _ Q 11 l n 11 i 6 t11 

_ ½(<Pn({n _ C'),{n). 

We have now extracted the collapsing pa.rt of our expression. The la.st term above 
must be controlled. 

LEMMA 5. For any element R, 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(</>n([n - C'),[n) = ll#({n - C')II~ 
llffeC'llu ~ llffef11 llu, 
ll(D11 

)
112 Vf11 llu,R ~ ll(D 11 

)-
112 (7' llu,R, 

11#({11 
- C')llu R ~ Kl1Vt11 llo,R h, 

' , 

where I( depends on the positive upper and lower bounds for D 11 and ¢ 11
• 

PROOF: By (3.2) and (4.10), we note that 

(6.31a) 

(6.31b) 

(</>n(t71 - ('), 1) R = 0, 

(D 11 V{n + (7\ Vw)R = 0, w E W1i. 

Since C1 is constant on R, (6.27)-(6.28) follow immediately from (6.31a). Ta.king 
w = [11 in (6.31b), we obtain (G.29). Finally, for a good choice of constant W, 

( ¢ 71 ( t71 - C)' {" - C') R = ( <P n ( t71 - en) ,[n - w) R 

~ Qll#(t11 
- C')II lli11 

- vVII . o,R o,R 

~ Qllffe([" - (")11 0 RIIV["llu,R h, , , 

and (6.30) follows. I 
We conclude that 

(6.32) 

where Q depends on the positive upper and lower bounds for Dn and <fn. Later we 
will use our assumed relation between 6t and h to control this term. 

It remains to analyze of the la.st two terms on the right-hand side of (G.24). First 

(6.33) 
t 1/. 

-(¢nFt,C) = -(¢11-1,,r-1,C') - l ((¢i/)t,C') dt ltn-1 

~ -( <Pn-l,,'i7'-l, C') + Q{ I:~
1 

[11'1711~ + ll'1JtllG] di+ IIC'IIG 6i 71
}, 
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so we are left with 

(6.34) ( <Pn-lijn-1, [n-1,+ _ C') 

_ ((,i:,-)n-1,+ J _ ,1_11-l,-n-l 1:n) - 'f'17 .._ 11 'f' 71 , -, 

::; ((<P~ii(-l,+ - ¢ 11
-
11f'-1,C') + Q{llif'-1IIG + IIC'IIG}Eit 71

, 

The first term on the far right-hand side is the most difficult to estimate. In the stan­
dard analysis of the modified method of characteristics [18], one extracts a negative 
norm of the left-hand side of the inner product; however, in the characteristics-mixed 
method, C' is discontinuous and therefore not in H 1 ( fl). We begin by finding an 
H 1 ( D)-function approximately equal to C'. 

LEMMA 6. There is some 3 11 E H 1 
( il) and some constant J( depending 011 upper 

and lower bounds for D and 011 IIDIIL=(J;Wl,=(!])) but independent of hand n sucl1 
that 

(6.35) 112 11 111::; K{IIC'll-1 + IIC'llu} 

and, for sufficiently small h, 

(6.36) 11211 
- C'llo::; K{IIC'll-1 + IIC'llo} h, 

where II · ll-1 denotes the norm of the dual to H 1 
( fl). 

PROOF: Let M1, denote the standard Galerkin space of continuous, piecewise linear, 
bilinear, or trilinear functions ( as appropriate) defined Ly its nodal values over the 
grid T,i. Then define 3 11 E M 1, by 

(6.37) (3n - C', x) + (D 11 V3 11 + (', Vx) = 0, X E M1,. 

With X = 3n, we obtain ( 6.35) ( and therefore also existence and uniqueness of 3 11 
). 

Let 'tp solve the dual problem 

for which 

(G.38) 

Then for any x E M1,, 

'IP - V · (D 11 'V'tp) = 3 11 
- C' in fl, 

- D 11 'J4J · II = (} 011 Ofl, 

(6.3!J) 112 11 -C'IIG = (2 11 -C','1/J-V -(D 11 V'f)) 

= (311 - C',4J) + (Dnv:::;n, V4J) + (C', V. (Dn'J,t/;)) 

= (3 11 
- C, 'IP - x) + (D 11 V3 11

, V('ip - x)) 
+ (C', V · (D 11 V,1/J)) - ((7', Vx). 
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Since ln E W1,, using (6.lb), 

(6.40) (C, "v · (Dn"v,ip)) = (C, "v · 1r1,(Dn"v,ip)) = ((Dn)- 1
(", 1r1,(D 11 "v,ip)) 

= (C', "v'i/J) + ((D11)-1(1',1r1,(Dn"v,ip)- D""v'i/J). 

Combining this with (6.39) yields for a good choice of x E M1, that 

(6.41) ll3n - C Iii = (3 11 
- C' '1P - x) + (D 11 "v3 11 + (n' "v('i/J - X)) 

+ ((Dn)-1(1',1r1,(Dn"v'i/J) -Dn"v,ip) 

:::; Q{ 11311 
- C'llo h + IID 11 "v3"llo + IIC'llo} 11,0112 h, 

using (5.4). With (6.38) and (6.35), (G.36) follows for a sufficiently small h. I 

Note that for any 4J E L2 ( !?), 

('1/J, C') = ('1/J, 311
) + (4), ( 1 

- 3n) 
:::; ll'1Pll-ill3"ll1 + ll't/JllollC - 311 llo 
:::; Q{ll4)11-1 + ll'1Pllo h HIIC'll-1 + IIC1 llo}, 

where Q depends on IIDIIL=(J;w1,"°(fl))· Hence, 

(6.42) ((¢17)'1-l,+ - q>11-l1711-l,C') 

:::; Q{ II( j,1(-i,+ - </> 11
-

1W1
-
1 ll-1 

+ II( f,,7)"-l,+ - </>"- 1,,f'-1 llo h HIICllo + IIC1 llo}. 

By [18, equations ( 4.32)-( 4.37)] ( cf. [13, equation (3.37)]), 

(6.43) 

and by Lemma 2, 

(6.44) 

This last estimate is not optimal ( discontinuities in r7 preclude the use of Lemma 3). 
We have that 

(6.45) ( ( ¢f/(-1,+ - ¢/'-1f/"-1, C) 

:::; Q{ [IICII~ + IICII~ + 11,,r-111~] 6.t1' + 11,,r-1lll h? (6.tn)- 1 
}. 
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Combining (G.24) with (G.2G) and (6.32), and with (6.33)-(6.34) and (6.45), we 
obtain that 

(6.46) ½[(<//'[",[")- (</>"-l[n-1,[n-l)] 
• t n 

+ ((D")- 1
(",(") (½6t 11 

- Q'h2
) + /

11

_

1 

(h[,[)dt 

:SQ{ [11(11 11~ + llrtll~ (li2 + 6t") + llitll~ + ll'JJ"- 1 II~ 
•t" 

+ in-l [ llclli + lier II~] di 6i
11 

+ .l~~
1 

[ ll(V · z)rllt + IIV · zlll] dt 6t
11

] 6t
11 

+ i~~l [ llrillt + llihllt] dt + llir'-1 Ill h2 
(6t

11
)-l }, 

where Q' is the generic constant iu (6.32). Since we have assumed that 6t 11 > 
JC 7ia/2 

' Q' h2 :S Q' ]{' 6t 11 1i 1!2 

is negligible for h sufficiently small. Therefore, a summation on n, an application 
of Gronwall's inequality (provided that 6t 11 is sufficiently small), and Theorem 2 
yield that 

(6.47) N ;· max 11{11 11~ + L 11( 11 11~ 6t 11 + (h[, €) dt 
11 

n=l J 

:SQ{ j~ [ llclli + llcrll~ + ll(V · z)rll~ + IIV · zllt] dt (6t)
2 

+ max [ llzlli + IIV · zlli] (h 4 + 1.2 6t + hG (6t)- 2
) 

tEJ 

+ j~ [ llzt Iii + IIV · Zt Iii] dt h
4 + 11[0 lit} 

:S Q(c){h4 + (ilt)2 + hti (ilt)- 2 + 11(0 11~}, 

where Q( c) has the form of J{ ( c). Since 

the first half of Theorem 1 results. 
If u = 0, then (ji:,)

11

-i,+ = ¢ 11
-

1 ,T-1 and the term in (6.44) vanishes. With 
E

16t 11 2: h2, for E
1 sufficiently small, f'Q' is negligible compared to ½, and we can 

obtain the last half of Theorem 1. 

7. A stability result. As a corollary to the proof of Theorem 1, we have the 
following stability result independent of any assumptions on the true solution. 
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THEOREM 3. Assume (A3)-(A6) a.nd tl1a.t fi E L 2 (il x J). Tl1ere is some constant 
E

1 > 0 such tlrnt if E1 6.tn 2 h2 , then for h a.nd 6.t sufficiently sma.11, 

(7.1) rn,~x { IIC/:llu + lic/:llu} + { t llz/:111 to.t"} 
112 

SK {II!, IIL'(UxJ) + IIC1.llu}, 
n=l 

for some constant ](. 

PROOF: Set W = c;: and V = Zf,' in ( 4.2) and combine with (3.2a) to obtain that 

-t" 

(7.2) ( ,+.n-n n) (,+.n-1-n-l An-I,+) ((Dn)-1 n n) Afn / (j" A A ) lf 
'f' Ch , Ch - 'f' CI, , CI, + Z I, , Z h L...l. , + J t" _ 

1 
2 Ch, C/1 C , 

= /,~~/fi,c1,.)rlt s; Q{ /.~~
1 

11.fillG rlt + llci:IIG ~t
1

'}, 

using Lemma 2. 
An argument analogous to (G.25)-(G.2G) yields that 

(7.3) 

and so 

(7.4) 

Since (6.31) has the same form as (3.2), we obtain an analogue of Lemma 5 with 
cj: replacing C' and zj; replacing (7'. Therefore, 

(7.5) 

and 

(7.6) I (,+.nc--:n - n) -n) I < Qll(Dn)-1/2 n112, 2 'f' C1, C1, ,ch _ Z1,. 0 l 

s; f' Qll(D 11 )-l/2 zj,'. IIG ~t1' · 

The Theorem results from combining (7.2) with (7.4)-(7.6), taking E
1 sufficiently 

small, and applying Gronwall. I 
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8. A remark on the use of other mixed spaces. We close the pa.per by 
remarking that the characteristics-mixed method can be defined for other mixed 
spaces. If W1i. does not consist of piece-wise constants, then W must be interpreted 
carefully, since its spatial variation must be carried a.long the characteristics. 

However, we a.re unable to modify our proof given above to obtain any better 
results on the convergence of the postprocessed concentratio11. Our proof suggests 
that the diffusive flux can be better approximated by higher order methods, but only 
to order h312 . It would be natural to use the lowest order spaces of Brezzi-Douglas­
Marini [6] and Brezzi-Douglas-Dura,n-Fortin [5] to obtain a better approximation 
to z, though it is difficult to see why this would be desired. Since these higher 
order approximation spaces are computationally rnore difficult to implement, it is 
uncertain that their use is of any benefit. 
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