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A CHARACTERISTICS-MIXED FINITE ELEMENT
METHOD FOR ADVECTION DOMINATED
TRANSPORT PROBLEMS*

TODD ARBOGAST}{aAND MARY F. WHEELER#}

Abstract. We define a new finite element method, called the characteristics-mixed
method, for approximating the solution to an advection dominated transport prob-
lem. The method is based on a space-time variational formn of the advection-diffusion
equation. Our test functions are piecewise constant in space, and in time they ap-
proximately follow the characteristics of the advective (i.e., hyperbolic) part of the
equation. Thus the scheme uses a characteristic approximation to handle advection
in time. This is combined with a low order mixed finite element spatial approxima-
tion of the equation. Boundary conditions are incorporated in a natural and mass
conservative fashion. The scheme 1s completely locally conservative; in fact, on the
discrete level, fluid is transported along the approximate characteristics. A post-
processing step is included in the scheme in which the approximation to the scaler
unknown is improved by utilizing the approximate vector flux. This has the effect
of improving the rate of convergence of the method. We show that 1t is optimally
convergent to order one in time and at least suboptimally convergent to order 3/2
in space.

Keywords. Advection-diffusion equation, characteristics, mixed finite element
method, characteristics-mixed method

1. Introduction. We consider the model advection-diffusion equation
(1.1) (¢c)t + V- (cu — DVc) = fi — fac

for the unknown function ¢(z,*) in a spatial domain 2 C RY, d=1,2, or 3, over
a time interval J = (0,7], where subscript t denotes partial differentiation with
respect to time. This equation governs such phenomena as the flow of heat within
a moving fluid, the transport of dissolved nutrients or contaminants within the
groundwater, and the transport of a surfactant or tracer within an incompressible
oil in a petroleum reservoir. In the latter two cases, ¢ 1s the concentration of the
miscibly dissolved substance, ¢(z,t) is the porosity of the medium, u(z,t) is the
Darcy velocity of the fluid mixture, D(z,t) is the diffusion/dispersion tensor, f1(z,t)
represents the injection wells, and f2(z,#) > 0 represents the production wells.
Because of molecular diffusion, D is uniformly positive definite. Although this
implies that the equation is uniformly parabolic, in many applications the Peclet
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number is quite high. Thus advection dominates diffusion, and the equation is
nearly hyperbolic in nature. The concentration often develops sharp fronts that are
nearly shocks.

It is well-known that strictly parabolic discretization schemes applied to the prob-
lem do not work well when it is advection dominated. It is especially difficult to
approximate well the sharp fronts and to conserve the material or mass in the
system.

Effective discretization schemes recognize to some extent the hyperbolic nature of
the equation. Many such schemes have been developed, such as the explicit method
of characteristics, upstream-weighted finite difference schemes [25], interior penalty
Galerkin methods [14, 12], higher-order Godunov schemes [9, 2], the streamline dif-
fusion method [19], the modified method of characteristics-Galerkin finite element
procedure (MMOC-Galerkin) [16, 18,13}, and the Eulerian-Lagrangian localized ad-
joint method (ELLAM) [8]. Each method has its advantages and disadvantages.
Explicit characteristic and Godunov schemes require that a CFL time step con-
straint be imposed. Upstream weighting tends to introduce into the solution an
excessive amount of numerical diffusion near the sharp fronts. Compared to up-
stream weighting, the streamline diffusion method reduces the amount of numerical
diffusion. It adds a user defined amount biased in the direction of the streamline.
The interior penalty Galerkin method is subject to overshoot and undershoot, and
although no CFL constraint need be imposed, relatively small time steps must be
used in practice. In ELLAM, it can be difficult to evaluate the resulting integrals.

We concentrate on MMOC-Galerkin. It 1s an implicit scheme, so reasonably large
time steps may be used, and it does not numerically diffuse the fronts to a particu-
larly excessive degree. Unfortunately, it has certain inherent difficulties, especially
with regard to local mass balance. Since it uses a Galerkin spatial discretization,
local constants are not in the space of test functions. As a consequence, there is no
discrete, element-by-element mass balance (mass is conserved only globally over all
of £2). It is also difficult to compute the integral of the trace-back concentration,
since both the approximate concentration and the test function necessarily vary in
space.

In this paper, we propose a new scheme that (theoretically, at least) conserves
mass locally. It is similar to MMOC-Galerkin in that we approximate the hyperbolic
part of the equation along the characteristics. We use, however, a mixed finite
element spatial discretization of the equations. Piecewise constants are then in
the set of test functions, so mass 1s conserved element-by-element. We call our
procedure the characteristics-mixed method. It can be viewed as a procedure of

ELLAM type.

The origin of our schemne can be seen by considering the advection-diffusion equa-
tion in a space-time framework. Choose some domain R C 2 (later considered to be
a finite element) and two times 0 < #; < t, < T. The hyperbolic part of the equa-
tion (1.1), ¢y +u - Ve, defines the characteristics #(x,1) € IR? along the interstitial
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velocity v = u/¢ by

(1.2a)
(1.2b)

( ‘9 ) tl ngt27
:(.’L‘,tg) .

¢ ?-‘4(

5

Now let R(t) denote the trace-back of R to time t (see Fig. 1l),
R(t) ={x € 2: 2 = i(y,t) for some y € R},
and let R denote the space-time region that follows the characteristics,
R={(z,t) e 2 xJ:t; <t<tyandx € f?(f)}

Also define B = {(x,t) € OR : « € 042}.

space

Fig. 1. The space-time region R.

Multiply (1.1) by a smooth test function ¢(x,#) and integrate over R. With
T(x,t) = (u(:r;, t), ¢(x,t)) denoting the characteristic direction, the hyperbolic terms
integrate by parts as follows:

(1.3) /[¢ct+u Vel dR = /( )c T dR
:/ﬁncr-ywd(an)_/nc< ,—) rpdR — / ( )z/)dR

:/’ ¢(:1:,t2)c(:z:,tg)'(/)(:c,tz)dR—/: é(w,ty) e, tl)t/)(:L',tl)dR(tl)
R R(11)
+/ cu-voypdB — / c(qﬁt-{—v-u)'(bdR—/ (e +u-Vip)dR
B JR R
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where vg(x,t) is the unit normal to a set S (we used that 7-vg = 0 on the space-time
“sides” R N (t1,t2) \ B). Therefore we have that

(1.4) / d(x,t2) c(x, tz)p(x,t2)dR — / d(z,t1) c(x, ty) (e, 1) dR(t)
R v R(t1)
— / (g +u-V¢)dR — / V- (DVc¢)y dR
R R

_ / (fr = fac) dR—/l;cu-l/g'l,/) dB.

R

Since the solution is not very smooth in space and time, we concentrate on low
order approximations of (1.4). By low order, we mean a mixed method with a
plecewise constant approximating space for the unknown scaler function ¢. Then
our test functions i are also piecewise constant in space. In time, we let ¢ follow
the characteristics; that is, for each element R, we have a test function ¢(x,t) that
1s a constant for («,t) € R and ¢(x,t) = 0 elsewhere. The second term on the
left-hand side of (1.4) is then easy to compute, since c(x,t1)¥(z,t;) s a piecewise
polynomial. The third terin on the left-hand side vanishes, since ¢ trivially satisfies
dhe +u - Vip = 0. Clearly these are the two critical terms to approximate well.

An outline of the paper follows. In the next section we define an approximation
to the characteristics. By considering fluid flow along these approzimate character-
1stics, we derive a special, mixed, variational form for our differential problem. This
variational form is the basis of our characteristics-mixed method, which we define in
Section 3 for the lowest order Raviart-Thomas-Nedelec mixed finite element spaces
[22,21] over fairly general grids.

In Section 4, we present our convergence results. Since the scaler ¢ is approxi-
mated by a piecewise constant function, we should expect no better than first order
convergence 1n space and time. However, a post-processing step of our procedure
uses the mixed method approximation to the vector —DV ¢ to improve the accuracy
of the scaler approximation. As a consequence, we obtain better than first order
convergence 1n space. The error analysis 1s given in Sections 5-6.

Based on our error analysis, we extract a stability result in Section 7. In Section 8,
we remark on the generalization of the characteristics-mixed method to other mixed
spaces.

To avoid confusion, the reader should note that in Sections 2 and 3, we define
the characteristics-mixed method for a problem with inflow, outflow, and Dirichlet
boundary conditions. However, the results of Sections 4-8 assume periodic boundary
conditions.

2. Approximate characteristics and the variational problem. We begin
this section by defining completely owr transport problem. We state it for three
boundary conditions, Dirichlet, inflow (Dankwerts or Robin), and outflow (homo-
geneous Neumann). So let 02 = I'n U I}, U Iy be decomposed into three disjoint
pieces such that u(z,t) - v < 0 for « € [}, and u(x,t) - v > 0 for € Ly, where
v =vg. Also let cp(x,t) denote the Dirichlet concentration and ¢y, (x,t) denote the
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inflow concentration. Introducing the diffusive flux z, our transport problem is

(2.1a) (pc) + V- (cu+2z)=fi — fre 2 xJ,
(2.1b) z=-DVec 1in 2 x J,

with the boundary conditions

(2.2a) c(z,t) = cp(a,t) on Ip x J,
(2.2b) z2 v = ((:m(:l:,t) — c)u ‘v on I x J,
(2.2¢) z-v=0 on Tyy X J,

and the initial condition

(2.3) o(z,0) = (x) on £2.

Assume that our functions are smooth enough for the discussion that follows.
Specific assumptions are enumerated in Section 4.

In general, the characteristics can be determined only approximately. For sim-
plicity of discussion, let u be extended as a smooth, bounded vector field outside 2,
and let ¢ be extended smoothly as a uniformly positive function. There are many
ways to solve the first order ordinary differential equation (1.2) for the approximate
characteristics. We consider here only the Euler method. Alternate schemes can be
used, such as the improved Euler or a Runga-Kutta method.

We discretize time by choosing a partition of J, 0 =t < t! < ... <t¥ =T, and
setting At™ = #"* — "1 As usual, let At = max, At". For a function (t), let
P = ().

The Euler method can be used to solve (1.2) for the approximate characteristics
in M™ > 1 discrete steps as follows: With ¢*~1™ = =1 4L mAt"/M", for m =
M™, .1 let

(248) ‘;n—l m— 1( ) — ,In—l m( ) . U( n—1, m( '),t”_l’m)Af”/M",
(2.4b) LMY () = g

Let #,(z,t) denote the piecewise linear interpolant in time of the #7~L™(x). If
At™/M™ is small enough (depending on the smoothness of v), then the approximate
characteristics do not cross each other. We assume this to be the case. We then
have a one-to-one mapping @,(-,t) of R? into IR%; call its inverse &,,(-,1).

For any time ¢ such that " ~1™~1 < ¢ <¢"~b™ let us define

(2.5) o(a,t) = v(Fn(Tn (2, t),t"70™) "7 1™)  and @ = 0¢.
Our approximate characteristics are defined equivalently with respect to o:
(2.6a) To g = 0(Fn,t), t"71<t<t",

(2.6b) in(x) = a.
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We assume that ©-v < Qon I}, and @ -v > 0 on Tyut.

For a function ¢(z,t) and any ¢t € J, if "7} <t <" let

’lj)(.’li,t) = P(Tp(x,1),t") and (x,t) = P(in(x,1),1).

Then z,ZA)(:L',t"'_l"i“) = ':,/AJ"*I*"“(:L') follows the approximate characteristics forward
from time #"~! to #" to become " (x); this is the type of test function we will use.

The natural, mixed variational problem corresponding to (2.1)-(2.2) is posed in
terms of (¢, z) € L*(2) x V, where if H(§2;div) denotes the set of square integrable
vector functions which have a divergence in L*({2), then V = {V € H(£2;div) :
V-v=0o0n Iy} Let us define W = {W € L*(2) : W is piecewise constant}; W
is dense in L%(£2).

We now define our special, mixed, variational form of (2.1)—(2.2). Let (-, -)s
denote the L*(.S)-inner product (or more generally integration over S), wherein we
omit S if S = §2. Replacing u by ¢+ (v — %) in (2.1a), following the argument given
in (1.3)-(1.4) for the velocity 4 and the approximate characteristics @, and using

(2.2), we obtain for any test function ¢ (x,t) = W(x,t), W € W extended by zero
outside {2, that

t"l
(27) (qann’W)_ (qsn—lcn—l’]'/i/n—l,-f-) + / (v Z,VT/) dt
tn—l
ot . ) )
= / [(}‘1 — fac, W) = (ept - v, W)y — (ciyu - v —z- v, W)pm] dt
-1
"
+ / {(V - [(@ = u)e], W) — (e(ii —u) - v, W) r } dt.
gn—1 in

This variational equation expresses conservation of mass along the approximate
characteristics. Multiply (2.1b) through by D~!V, V € V, and integrate by parts
in space to obtain that

(2.8) (D712, V)= (¢, V- V)= (c,V-)p, — (D, V - )1y

It would be difficult to approximate conservatively the inflow boundary conditions in
(2.7)—(2.8), since the unknown solution ¢ and z appears in the integrals over I3,. To
rectify this, for W e W, let 7(W) = {R C £2 : W is constant on R, R maximal},
and let R, (t) = {x € 2 :z = &,(y,t) for some y € R} C 2. Integrate by parts
locally in space on each R the third term on the left-hand side of (2.7) and the first
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term on the right-hand side of (2.8) to obtain the variational problem

(2.921,) (gﬁncn, ) (¢7l ten—1 M/’n—l + / 2 Vi )()R"\n“ dt
tn—1

RET(W)

o
— / [(fl — fac, W) —(¢pa - v, W)FD — (cinu - v, W)pm] dt
t

n—1

+ /f {(V (uw — 'u,)c],W) - (c(ﬂ, —u)- v, W) rn }dt,

n—1 n

WeWw,

(29b) (D~1z7 V) = 2 (Ca V. I/R")(‘,)R”\Fi,, - (CDa V. V)FD? Vey, Wew.
RET(W)

3. The characteristics-mixed method. To discretize space, choose an h > 0
and some quasi-uniform grid 7;, over §2 such that the inner and outer diameter of
each element is comparable to h. For any element R adjacent to the boundary,
we assume that R N 92 is contained in only one of I'p, I, or Iou. We also
assume that the lowest order Raviart-Thomas-Nedelec mixed finite element spaces
[22,21] Wi, x V), C W X V can be defined over owr grid (or more generally any
similar spaces, e.g., see also [15] for elements with a curved boundary, [24] and [7]
for quadrilateral elements, and [10] for prismatic elements). Finally, we need to
define a post-processing space W), consisting of functions that are discontinuous
and piecewise linear over the grid.

We define the characteristics-mixed method from (2.9) as follows. Both ¢} € W),
and ¢} € W), approximate ¢", and zy €V dppwxnnafes z". We begin by fmdmg
some reasonable approximation ¢j € Wh to ¢ (such as the LQ(Q)-I)rojection). For
each n > 1, we define first (¢}, z}') € Wy, x V), such that

(31a) (@ W) — (6" W) 1 Y (- vm, Wamn, A

RET,
= /t .1 [(f1 = f2én, W) = (eptt - v, W)y, — (ciww - v, W)p, ] dt,
t W e Wy,

(3.1b) (D)2, V) = > (e V- vr)orr, — (¢, V )y, V€V

RETh

We then locally post-process the concentration by finding ¢} € W,, such that on
each element R € 7},

(3.2a) (¢™(ch — c}b), 1)R =0,
(3.2b) (D"V& 4 2} Vw)r =0, weW,.

If I3, =, we can apply the Divergence Theorem to the two terms in (3.1) over
OR\ I}, to obtain the more usual mixed formulation; (3.1) is written to enable us to
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handle I}, in a conservative form. We have also handled the f3c term conservatively,
and it is computed on an element R as

" " .
(3.3) / (faé W)g, (o dt = (c;,%W)lR/ / o du dt.
t =1 J R, (1)

n—1

Mass is conserved locally on each element up to the error in approximating the
integrals. In fact, the discrete equations express local conservation of mass in which
fluid 1s transported along the approximate characteristics.

We remark that it 1s well known that for the mixed method, the error in the
approximation of the scaler variable in the L?({2)-norm is only of the first order in
h. Our post-processing technique (3.2) is similar to that used by Stenberg for the
Stokes problem (23]. It improves the approximation ¢} so that the error between
¢y and ¢™ 1s of higher order. This post-processing preserves mass on each element,
and it is easily computed. It is anti-diffusive, so a slope limiting procedure [20,11]
should be applied to &} to prevent overshoot and undershoot. This has the effect of
adding numerical diffusion near sharp fronts, where higher order accuracy cannot
be expected.

Issues of implementation will be discussed elsewhere (see also the preliminary
report [1]).

LEMMA 1. If ¢ is uniformly bounded above and below by positive constants, D
and D™ are uniformly bounded, syminetric, positive definite tensors, all integrals
converge, and the approximate characteristics do not cross, then there exists a
unique solution to the characteristics-mixed method.

PRrOOF: The linear system generated by (3.1)—(3.2) 1s square, so the existence of
a solution 1s implied by uniqueness. If (7;:_1, f1, cp, and ¢, are zero, then take
W =cp, V =z, and w = ¢}, to conclude uniqueness, since fo > 0. 1

4. Convergence results. We give an analysis of the approximation error in the
restricted case that our problem has periodic boundary conditions. We then have
a natural, periodic extension of u and ¢, and for fixed ¢, z,(-,?) is known to be
a differentiable homeomorphism of 2 to itself, assuming At" is sufficiently small
(depending on the smoothness of u and ¢, see [18] and also Lemma 2 in Section 6).
We also assume for convenience that a single Euler step is taken to define the
approximate characteristics (1.e., M" =1 for all n):

Ep(a,t)y =a —o(x,t")(t" —t) and o(x,t) = o(&,(x,t),t") = 0(x,1).
We restate the variational problem (2.9) as

'f"

(4.1a) ("™ W) — (" tem ™t Wby 4 / (V- 2z, W)dt

tn—1

n—1

= / {(f1 = fac, ﬁ/) + (V- [(a@ = u)d], W)} dt, Wew,
t
(4.1b) (D7 2, V) =(,V-V), VeV,

8



and our characteristics-mixed scheme (3.1) as

(4.2a) (¢"cht, W) = (¢" '@ T W Th ) 1 (V- 2, W) At

o
=/ (fr = foln, W)dt, W €W,
tn— 1

(4.2b) (D', V) = (c},V V), VeEW,

together with the post-processing step (3.2). Clearly Lemma 1 continues to hold.
We denote by Wk »?(S) the standard Sobolev space of k-differentiable functions

. , . d

in LP(£2). Let || - |[x,s be the norm of H*(S) = W*2(S) or (H*(S))

, where we

omit S if § = . Let WEP(J; W14(£2)) denote the usual set of functions with the

norin /
1/p
b llwes (Wi () = {Z/ Ha’ dt} :
t Wi.a(0)

where if p = oo, the integral is replaced by the essential supremum. We will denote

by @ a generic positive constant independent of h, n, the At™ and c.

The standard assumptions are as follows.

Al) ¢,2,V-2€ CYJ; HY(2)).

A2) 092 is 2-regular (e.g., 012 is C'! or {2 is convex).

A3) ¢ e Whe(J,WHe(2)) and Q7! < ¢(x,1).

A4) D is a uniformly bounded, symmetric, positive definite tensor such that
D, D' e (Wheo(J: W1 o0(9)))“"

5) v,V-veWhe(0 x J).

6) fo € L>=(J;Wh*(£2)) and f, > 0.

(A7) fL € L' (02 x J).

THEOREM 1. Assume (A1)-(A7). If the initialization error satisfies
(4.3) 169 — Plo < Ko(c") h?

for some constant K, depending on ¢*, and if there is some constant K' > 0 such
that At™ > K'h3/? then for h and At sufficiently small,

(4.4) max ||&7 — ¢"|lo < K(c) (R*? + At),

(4.5) max ||c; — ¢"||o < K(c)(h + At),

N 1/2

(4.6) { > e -2 At"} < K(c)(h + At),
n=1

where K depends on ¢ but not onn h or At:

(4.7) K(c) = {[ [ Qe + el + 19 - 210l
1/2
A B dt]
[l + 19 <1 ] + Kate?) |,
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for some constant K. Moreover, there is some constant € > 0 such that if u = 0
and € At™ > h?, then for h and At sufficiently small, (4.5)-(4.6) hold and

(4.8) max ||&} — c"|lo < K(c) (k% + At).

If there is no advection (u = 0), then we have optimal order convergence in space
and time; otherwise, we are only able to show a suboptimal result with a loss of 1/2
power on the spatial convergence rate of the post-processed concentration.

In our analysis, we will use the technique of comparing the finite element solution
to an elliptic projection (Ch, Z),) € W), x V), of the true solution (c, z) [26]. Define
it by
(4.9a) (B(CL—) W)+ (V- (Z),—2),W) =0, WeW,,

(4.9b) (D_I(Z;,, —2),V)=(Cr-¢,V-V), Ve,

Also define C L E W,, on each element R € 7j,:

(4.10a) (¢(Ch = Ch), 1), =0,
(4.10D) (DVC), + Z),Va)r =0, w e W,.

THEOREM 2. Assume (Al)-(A4). Then for each t € J and for h sufficiently small,

(4.11) WCh —c)lo < Kljz|j1 I,

(4.12) WZ1n — z|lo < K||z||1 h,

(4.13) ICh —cllo < E{llzlli + 11V - 2l } 1?,

(4.14) I(Co = )ello < KAzl + IV -2l + llzells + IV - zell } %,

where K is mndependent of t, ¢, h, and At.

5. Proof of Theorem 2. Results (4.11)-(4.12) are known; moreover, if Py, :
L*(2) — W), denotes the L*(£2)-projection operator defined by

(Pw, o —¢p,W)=0, W eW,,
then
(5.1) 1Ch = Pwicllo < Q1llzll + 11V - 2l } 2%,
and also
(5.2) 121 = 2ll-1 < Q{llzlly + IV - 2ll1} 2%,

where || - ||-1 denotes the norm of the dual to H'(£2). These results are derived by

. . . . . I
making strong use of the Raviart-Thomas Projection operator m, : (H 1({ 2))( — Vi,
which has the properties that

(5.3) (Vep =V .mp,W)=0, WeW,
(5.4) le — mrello < Qliell b
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Strong use is also made of a duality argument to obtain (5.1)-(5.2). See [15] for a

proof in the case of a Dirichlet problem (a straightforward variant of the proof han-

dles our periodic problem-see also the argument given below for obtaining (4.14)).
In general we have only that

(5-5) 1 = Pw,dliray < QUllwrryh, 1< p < oo
The superconvergence of (5.1) can be exploited to obtain (4.13) as follows.

With .
n==Cp,—c and 7=0C)—c,

the post-processing error equation is

(563) (qﬁﬁ, l)R = (QS(CII - PW}LC)7 l)R + (QS(PW;LC - (:)7 l)R’
(5.6b) (DVij,Vw)g = (z — Z1, Vw)r, w € Wi,

since —DVe = z. For @ € Wh, let w=7n+(c—w)€E Wi, to obtain that
(DV#,Vi)p = (2 = Z3,, Vi + V(c — G)))R — (DVij,V(c— JJ))R
< Q{llz = Zulld,r + IV (c = D)5 &} + SID2Vi[} £

Since Wj, contains the linear functions, the Bramble-Hilbert Lemma (3,4,17], a
good choice of @, and (4.12) imply that

1/2
(5.7 (S Ivilka} <@l
ReT,
Now for any constant W, by (5.6a),

(¢ﬁ7 ﬁ)R = (qsﬁv ﬁ - W)R + (QS(C], - pWhC)7 W)R + (¢(,PW1LC - C)7 W)Ra

and this last term is
(QS(,PW}LC - C)7 W)R = (((]5 - pW;,, qs)(rPWh c— C)7 W)R

We therefore estimate that

I7lle. 2 < Q{llAH — Wi r + 1C1 — Pw,.cllb &
+ 116 = Pwi @l oo (my IPwi e — €l g}

Since a good choice of W implies that
17 = Wllo,r < QIVillo,r I,
we obtain (4.13) with (5.7), (5.1), and (5.5).

11



To prove (4.14), differentiate (4.9) in time:

(5.8a) (dne, W) + (V (Zn — 2, W) =—(¢m, W), WeW,,
(5.8b) (DY Zy - 2)5,V) = (0, V- V)~ (D™H(Z1 — 2),V), V €Vy.

Using (4.11)—(4.12), an analysis as in [15] leads to

(5.9) [mello < Q{llzllx + llzell1 } A,
(5.10) 1(Zn = 2)ello < Q1llzll1 + llzell1 1A,
(5.11) IV - (Zn = 2)ello < Q{llzlly + lzellh + IV - ze[l1 } .

In fact, superconvergence is obtained for (C), — Py, ¢):. Since this result is critical,
we derive it in detail.
Let 1 solve the elliptic problem

¢ — V- (DVY) = (Ch — Py, c)e in 12,

=0 on 012,
so that
(5.12) Il < QICh = Puwsc)ello
and

(513) “(C'h - ,PW/.,C)fH%) = (d)(Ch - PW/. C)“’l’/)) - ((Ch - ,PWhC)tv % (DV(/)))
The last term above can be expanded by using (5.8b) with V = 7,(DV4):

(5.14)
—((Ch = Pw, 0), V - (DV9)) = = (Pw,ne, V - (DV))
—(PW, 0, V- 1, (DVY)) = — (0, V - m,(DVY))
( Z/, — 2)t, ’/T],(DV(/))) (( ) (Zy — z), ’/T],,(DV’(/)))
—(D™N(Z) — 2)t, 7 (DVY) — DVY) — ((Z1 — 2)i, Vi)
— ((D7™)e(21 = 2), i (DV) = DVY) = (D7 )21 — 2), DV).

The second term on the far right-hand side above can be integrated by parts and
combined with (5.8a) for any W € W, to obtain

(5.15) -((Zh — 2)¢, V'(/)) = (V (Zy — z)t,d))
= (V : (Zh. - Z)t,’ﬁli - W) - (¢"7t, W) - (¢t77>W)-

The next to last term above is

(5.16)  —(¢ne, W) = —(&(Ch — Pw, )1,
_(d)(ch - 7:,WILC)M

) - (QS(T’W; ) ’W)

W
W) = ((¢ = Pw, ¢)(Pw, c — )i, W).
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The last term in (5.15) is similarly expanded. Note that we can combine one term

in (5.16) with (5.13), so (5.13)—(5.16) yields that

(5.17)  [l(Ch = Pwi.e)ells

= (¢(Ch — Pw,c)i, ) = W) = (D™ (Z) — z)1, 7u(DV1p) — DVp)
— (D™ Zn — 2), mu(DVY) — DY) — (D™ )(Zn — z), DV)
+ (V- (Zn = 2)1,00 = W) — ((¢ — Pw, 8)(Pw, c — ¢}, W)
= (64(Ch = Pw,.0), W) = ((¢ = P, @)e(Pw,.c — ¢), W)

< Q{ICh = Pw, )ellolld = Wlo
+ [1(Zn = 2)ello + 1121 = zllo] 7 (DVY) = DV|o
+11Zn = 2= ll@llz + IV - (Zo = 2)elloll = Wlo
+ [II6 = Pwidll L~ l(Pw,c = )ello + 1Ch — Py, cllo

+ (¢ = Pwi, &)ell L ()l Pwic — ello] W lo }

< Q{ICr = Pwic)illo + 12w — 2)allo + 120 = =[lo] P
| Zn = zl-1 + [V - (Zn — 2)ello 1
+IVedlo B2 +1Ch = Pw, ello + [Vello 2 Iz

< QUICL = Py, e)ello
+ [lzlh + IV -2l + llzedl + 1V - zdla] 22 HIC = Pwe)iello,

wherein for the second inequality we use (5.4), (5.5), and the fact that a good choice
of W gives us that

1 =Wllo < Qligllih and  [[Wilo < Q{[[¢llo + [ls]lx 1},

and also wherein (5.17) for the third inequality we use the results (4.12), (5.1)—(5.2),
and (5.10)—(5.12). For & sufficiently small, we obtain our desired superconvergence

(5.18) ICh = Pw, c)ello < QU + IV - 2l + llzell + IV - 2l 127

As in the proof of (4.13), (5.1) and (5.18) can be exploited in an analysis of the
derivative of (5.6) to obtain (4.14).

6. Proof of Theorem 1. Let us define

n n n n ~7 ~n A ~TL . .
'=c, —CleWn, "=, —CleW,, and ("=z—-Z; eV,

13



Combining (4.1), (4.2), and (4.9), the error equation can be written as

(61&) ((z)n({n + ,’71:.)’ W) _ ((2511.—-1(51),—1 + ﬁn—l)’ Wn—l,—*—)
+ (V- W) A" + / ] (f26, W) dt
= / (fac = Cn), W)dt — / (V- [(it = u)d], W) dt
tn-1 -1

.t"-
+ / (V -2, W)dt — (V- 2" W) At" + (¢"n", W) At™,
t

n—1

W e W,
(6.1b) (D)1 V) = (6", V- V), Ve

Take W = " and V = (" in (6.1), add the two equations, and use (3.2a) and
(4.10a) to obtain that

(62) (¢"€",€") — (¢"1én Enmih)
o ars [ (nd b

[ e [ (@ 1@

n-—1 tn—1

+/' (V:2,6) = (V2" &) at
t

n—1

. (qﬁ"'f/"a 511)(1 _ At”) + (¢11,—-1ﬁn,—1,En—l,—%—).

The first three terms on the right-hand side above represent primarily time dis-
cretization errors. We will estimate them sequentially. It will be helpful to note the
following general results.

LEMMA 2. If ¢y € L'(J; L?()) and ¢, € L¥ (2), 1 < p < oo, %+ ;,17 =1, then for
almost every fixed t such that t"~1 <t <",

(63) (‘7&1 ) "LZ) = (1/;1’1/)2j”) = ("Llaw‘Z) + ("L17'¢2j7lz)
for some J,(z,t) =1+ J!(«x,t) such that
(6.4) | T (2, 8)] < K(#™ —t),

where K depends on ||v||pe(s,wi.«(0)). Moreover, for some positive K, and K,
depending on K, and for At" sufficiently small,

(6.5) (14 K (D)) ihillzo < billpogeny < (14 Ko(A) ) [l o,
(6.6) (14 K (AP Yol 1y < Wl (g < (14 KalAEV Y iball o .

14



PROOF: For any coordinates ¢ and j,

O i(x,t) Ov;(x,t™)

. = b= DT Ty gy
(6.7) O bij O ( )

where 6;; is the Kronecker delta. The change of variables « — &,(x,t) gives (6.3),
where J,(z,t) is the determinant of the Jacobian i, (x,t)/0z. It has the form

d
(68) ‘7" =-1-V- 0" (f” _ f) + Z Rfl(tn _ f)(/,
=2

where the R depend on products of derivatives of v™; thus, (6.4) holds. Provided
that KAt" is strictly less than one, the final two results follow from (6.3)-(6.4)
(unless p or p’ is co, but these cases are trivial). I

LEMMA 3. Ifp e Wh2(2 x J), 1 < p < oo, "1 <t <" and ¢, is defined by

(6.9) r(dFn(a,t),t) = (¢(z t)) = 6( (3, (2, t),1))
= ¢i(Tn(2,1),1) + 0(En(w,1),1) - Vip(En(z,1),1)

as the derivative along the approximmate characteristic (recall (2.6)), then

(6.10) " () — (e f)“/ e ( ),s)ds
and, for At™ sufficiently small,

(611) 9" = dllriey < (L KA e g ooy (A7,
(612) 16— bllunay < (14 KA ) el ooy (AE) 77,

where K is a constant depending on ||v||pes(1,w1.00(12))-

PROOF: Result (6.10) is immediate, and (6.11) follows with the Cauchy-Schwarz
inequality and (6.5). Since b= m, (6.12) follows from (6.5) and (6.11). 1
LEMMA 4. If+ € L*(2) and a € Wh*°(§2 x J), then for any n,

(6.13) (a1 =HF frmLEY < (a, ) + Kp)|2 At

where K > 0 depends on ||v|| e (1wt (2)) and ||a][w1.~(nx 1)

PROOF: Use Lemma 2 to make the change of variables

((L”_l d}n—l,—{-’ ,(/;n—l,—+-) — ((“l”—l,—f‘,(/} ,(/}‘7")
= ((L"”l,/),?,b) — (((L” a'” 1’+)¢ ¢) + (an - +¢ ¢~7n)
< (@) + {lla” — @ ey + QU g A I,

15



and then apply (6.11). N
Returning to the right-hand side of (6.2), by Lemma 2, the first term is

(6.14) / (falc = Cu), €) dt:/ (F2 (6= C), €77, di

n—1 tn—1

.f"

3
= / (fl (c" —=Cp), {"’j,,,) dt + / (fz (¢ —c"), {”j") dt
-1 n—1
4
S __/ (f2 nnj é-n.) dt
n—1
ot

v QI +legae + [ o= cga)

where @, a generic positive constant, depends on |[v||ze (7,w1.0(g)) and also on
| fallpeo (g0 (2y)- (In this section, we will keep track only of new quantities that
(Q may depend on and assume that it depends on all previous quantities.) Using

(4.10a),

(615) _(fZ 7,,71,’ {-n.) — (¢ I:,PW), (%) _ %] ,r]n’ é-n> o (¢PW1,_ (%)ﬁn’ é-n)
< Q™ llo b+l llo 1€ Nlo,

where () depends also on |[@||peo(s;wiee (2))s || f2llLeo (1w (2)), and on the lower
positive bound for ¢. Therefore with Lemma 3,

(6.16) / (fa(c— Ch),€) dt

‘t”

< QIR0+ ) 4 1+ 1+ [ el ar e e
t

n—

For the second term on the right-hand side of (6.2),

(6.17) _/t‘ 1(v.[(n_u)c],£) dt

SQ@WMAW+/
4

Al

19 (= el

n—1

Note that
(6.18) V- [(a—u)e] =V ((5-v)eg) = V(5 - v)cd+ (7 - v) - V(cp).
The chain rule and (6.7) show that
(6.19) Vo(x,t) = V- (0(@n(x,t),1"))
=V o(@n(t, 1),t") + O((t" — 1))
= (V- v)(x,t) + O((t" — 1)),
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where the last term depends only on |[v|| e (7w (02)), 50

ot
(6.20) / IV - (5 — v) || dt
t

n—1
.tTL
< QU 0) =V olqaen + (AP [ feliat
tn—1
.tﬂ,
<Q lelfs dt (A7),
tn=1

where @ depends on ||(V - v)7|| o (ox ) by Lemma 3. Also,

" S
(6.21) v(x,t) = 0(x,t) = v(x,t) + / ve(w,s)ds — / a—'&(:ﬂ,s)ds.
¢ t

S

Therefore,

.f"’

62 - [ (ve-0dd i< Qo + |

-1

el (s,

2 —

Y

where @) depends also on ||v]jw1c (2% .7)-
The third term on the right-hand side of (6.2) is estimated with Lemmas 2 and 3:

(6.23) / {(\7.2,5)—(\7.211,7611)}(11‘,

n—1

.
< Q{nf"naw T [T YA T dt}
. t‘n,—l

ot
<Qlienliar + [ (T2l + 192l ar (a2 |
Jin—1
Combining (6.2) with (6.16), (6.22), and (6.23) yields the estimate
(624) (¢ngn,€n) _ (d)n,-—-lén—l’én——l,-{—)

‘t"v
+ ((D”)_IC”,CH) A" 4+ / (hf,f) dt
Jin—1
't‘”
< Q{Ha"n‘é 3 (B + A1) + 7 + / [Nells + ller ] dt At
tn,-—l

oA
# [ L2l 19213 e ae e
-1

Jn

. (Qb"ﬁ”, En,) + ((/4)71.——17,771.—17 én-—l,-{—).

We now analyze the first two terms on the left-hand side of (6.24). They nearly
collapse under summation. Use Lemma 4 to estimate that

(0:25) CAEaN
(@I (T )
< @TETLET 4 56 + QUEMIE At

IN
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where @ depends also on ||¢||w1.~(ox.7). Since (¢™E",€") = (pmE™, €M),

(626) (¢71.£71 n (¢71 1{11 1 671 1+)

~—

> L[(¢"€",€") — (6" 71N - QllEn|ls At
— 712'[(¢7L€n € ) (¢n lfn l’é-n 1 ] _Q”{.””() A"
_ %(¢7l(£7l _ {n),é-n,).

We have now extracted the collapsing part of our expression. The last term above
must be controlled.

LEMMA 5. For any element R,

(6.27) (67(€" =€), &) = [Vor(& - ey
(6.28) IVerer, < IVerel,

(6.29) D™V o,k < WD) o,
(6.30) Ve = el 5 < KIVE i,

where K depends on the positive upper and lower bounds for D" and ¢™.

PROOF: By (3.2) and (4.10), we note that
(6.31a) (qﬁ"(f” —£"), I)R =0,
(6.31b) (D"VE" + (", Vw)r =0, weW,.
Since €™ is constant on R, (6.27)-(6.28) follow immediately from (6.31a). Taking
w = £"1n (6.31b), we obtain (6.29). Finally, for a good choice of constant W,
((,257( 511) £” . n) — ((ﬁn(gn . gn,)’gn _ W)R
< QIVFE" — ), AllE" ],
S QH /¢n({?n _ En) 107R||V£71,||0’R h,
and (6.30) follows. i
We conclude that
(632) |(¢n(gn _ En,),gn)l < QH(DH)—I/‘ZCHH?) ]L2,

where ) depends on the positive upper and lower bounds for D™ and ¢". Later we
will use our assuined relation between At and h to control this term.
It remains to analyze of the last two terms on the right-hand side of (6.24). First

_tu

(6:33) = (4", €") = —(¢" M €") ~ / ((67)e,€") dt

n=1

't’ll
<@+ [l + i) e e s,
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so we are left with

(634) (qsn—lﬁn——l’én—l,-i- _ é-n)
(((;;'7)" 1 + ” _ ¢n—lﬁn—1,£n)
< (@) =TT + QUITTHE + IR At

The first term on the far right-hand side is the most difficult to estimate. In the stan-
dard analysis of the modified method of characteristics [18], one extracts a negative
norm of the left-hand side of the inner product; however, in the characteristics-mixed
method, £" is discontinuous and therefore not in H'(§2). We begin by finding an
H!(§2)-function approximately equal to £".

LEMMA 6. There is some =" € H'(§2) and some constant K depending on upper
and lower bounds for D and on ||D||p~ (7w (0)) but independent of h and n such
that

T n

(6.35) =" < K

o}

and, for sufficiently small I,

(6.36) 1Z" = &%lo < L€ -2 + 1< o} 1,y

where || - ||-1 denotes the norm of the dual to H'({2).

ProoF: Let M, denote the standard Galerkin space of continuous, piecewise linear,
bilinear, or trilinear functions (as appropriate) defined by its nodal values over the
grid 7;,. Then define Z" € M, by

(6.37) (E’ll . {-7).’,/\/) + (D" '_‘“ + CTI VX) — () X e Mh.

With x = 2", we obtain (6.35) (and therefore also existence and uniqueness of ™).
Let 4 solve the dual problem

p— V- (D"Vy)=Z" —£" in 02,
—D"Vi¢-v=0 on 012,

for which
(6.38) il < QI — €[,
Then for any y € M,,,

(6.39) IE" = €"1lo

=t ="y -V (D”Vz/)))

(E" = €",4) + (D"VE", V) + (£, V - (D" V)
(E" =" ¢ —x)+ (D"VE", V(¢ - x))

+ (€%, V- (D"V)) = (", Vx).

[I]
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Since £ € W,,, using (6.1b),

(6.40) (£",V-(D"V4)) = (6", V- m(D"Vy)) = ((D™)~'¢", mu (D" V)
— (C‘ﬂ,’v,‘/)) _+_ ((D'n)—l ",7T],,(DHV’(7Z)) — D"’V’(Z)).

Combining this with (6.39) yields for a good choice of x € M, that

(641) ”—-n 511“(2) — (En . gn ‘/) . X) _+_ (Dn -—11 _+_ C” V((/J X))
((Dn) Cn (D"V¢) . DnV(/J)
QIIE" — &'l b+ ID"VE"lo + [IC" o } ]l b,

using (5.4). With (6.38) and (6.35), (6.36) follows for a sufficiently small h. B
Note that for any ¢ € L?({2),

("/)76”) = ((/7'—”) (U”)é-” - E‘")
S I I=" 1+ i llolle™ = =l
< QUIPI-1 + lI#llo A HIE™ -1 + 1< o}

where @ depends on || D||;~(s,wi.~(2)). Hence,

n—1,+

(6.42) (i)' ™" =gl e
< Q) ™ =N

n—1,+

+11(¢1) = ¢" 7" lo RLHE o + 1S o}

By [18, equations (4.32)-(4.37)] (cf. [13, equation (3.37)]),

St n-— n n— n
(6.43) I(#7) —¢"7H" T o < QA" lo At
and by Lemma 2,
, S =1t n—1~n—1 ~n—1
(6.44) 1(#1) =" " T o e < QA" lo 2

This last estimate 1s not optimal (discontinuities in 7 preclude the use of Lemma 3).
We have that

©45) ((61) 7" - g en)
< QUM + IC™ 2 + 13"~ 2] Ar™ 1~ R (Ae) ).
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Combining (6.24) with (6.26) and (6.32), and with (6.33)-(6.34) and (6.45), we
obtain that

(6.46) L[(gmEn &) — (¢nm et 6]
.t”

1 ((D”)_IC”, C”) (%At” _ Q’hz) + / (fzé,é) dt

tn-—1

< Q{ [né"ua G 4 A [ 4

"
T / [lell? + flex 2] dt A
tn—l

.171

[ TR+ V- 2] dt At"] At

Jin-1
.th

o[ g = e,
tn-

where @' is the generic constant in (6.32). Since we have assumed that At"™ >
K'h3/2,
Q'h* < Q'K'At" p!/?

is negligible for h sufficiently small. Therefore, a summation on n, an application
of Gronwall’s inequality (provided that At™ is sufficiently small), and Theorem 2
yield that

N .
(6.47) max &2 + 3 [I¢ME Ar + / (F2£,6)
" n=1 J

: Q{ J Ul e+ 1T - el + 19 - 213 e (80"

+ max =03 + IV - 23] (B* + h* At + 1° (At)7?)

b [ Ul 419 i+ 1013
< QU + (AL + 15 (M) 4 [E)2),
where Q(c) has the form of K(c). Since
1 (A1) < (K')4(Ab))

the first half of Thegreyxlll 11 +1-esults.

If =0, then (¢57) =~ = ¢" 1" ! and the term in (6.44) vanishes. With
e At™ > h?) for € sufficiently small, ¢ Q' is negligible compared to %, and we can
obtain the last half of Theorem 1.

7. A stability result. As a corollary to the proof of Theorem 1, we have the
following stability result independent of any assumptions on the true solution.
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THEOREM 3. Assume (A3)-(AG6) and that f; € L*(£2 x J). There is some constant
€' > 0 such that if € At™ > h?, then for h and At sufficiently small,

1/2
(7.1)  max {[|&]lo + llei] {ZM IIUN"} < K{|lille2cexn + 1Eillo},

n=1

for some constant K.

PROOF: Set W = ¢} and V = Z]' in (4.2) and combine with (3.2a) to obtain that

AL
(7.2)  (¢"er, ey — (" et &ty 4 (D)2, ,,)Af”+/ 1(f.zéz,,,éh.)dt
tn—
1" 7 . .
= / (fr,én)dt < Q{/ |1l dt + ||er |2 At“},
tn—1 trn—1

using Lemma 2.
,

An argument analogous to (6.25)—(6.26) yields that

(7.3) (" tet et

<M aTLET H e T E T

< (e teThE ) + (e ) + Qlierlls At
and so
(7.4) (67e ey — (e )

>

Lo &) = ("' a &) - Qlleqlls At
=%[(¢"67:,&7.")—<¢" 1t @] - Qllep|E At
— L(g"( — ).

Since (6.31) has the same form as (3.2), we obtain an analogue of Lemma 5 with
cp replacing €" and z;' replacing (. Therefore,

(7.5) llerllo < QlErllo
and
(7.6) [(™ (&} — ci), é)| < QID™)~ M2 21||3 b

< EQ” Dn —1/2 "HU At

The Theorem results from combining (7.2) with (7.4)—(7.6), taking € sufficiently
small, and applying Gronwall. |
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8. A remark on the use of other mixed spaces. We close the paper by
remarking that the characteristics-mixed method can be defined for other mixed
spaces. If W, does not consist of piece-wise constants, then W must be interpreted
carefully, since its spatial variation must be carried along the characteristics.

However, we are unable to modify our proof given above to obtain any better
results on the convergence of the postprocessed concentration. Our proof suggests
that the diffusive flux can be better approximated by higher order methods, but only
to order h3/2. It would be natural to use the lowest order spaces of Brezzi-Douglas-
Marini (6] and Brezzi-Douglas-Durdn-Fortin [5] to obtain a better approximation
to z, though 1t 1s difficult to see why this would be desired. Since these higher
order approximation spaces are computationally more difficult to implement, it is
uncertain that their use is of any benefit.
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