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A CHARACTERIZATION OF ALL SOLUTIONS TO THE FOUR BLOCK
GENERAL DISTANCE PROBLEM*

K. CLOVER?, D. J. N. LIMEBEER:, J. C. DOYLE, E. M. KASENALLY$,
AND M. G. SAFONOV

Abstract. All solutions to the four block general distance problem which arises in H optimal control
are characterized. The procedure is to embed the original problem in an all-pass matrix which is constructed.
It is then shown that part of this all-pass matrix acts as a generator of all solutions..Special attention is
given to the characterization of all optimal solutions by invoking a new descriptor characterization of all-pass
transfer functions. As an application, necessary and sufficient conditions are found for the existence of an
H optimal controller. Following that, a descriptor representation of all solutions is derived.

Key words. H-optimal control, four block problem, Parrott’s theorem, general distance problems,
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1. Introduction. The four block general distance problem has its genesis in certain
recent work on H optimal control [7], [10], [14], [15], [43]. In typical H design
situations, a nominal plant model is known, and the design engineer has the task of
selecting various frequency-dependent weights. The plant model and weights are then
combined into a single matrix

(1.1) P(s)--
Pal PJ

(s)

and we seek to characterize all internally stabilizing controllers which satisfy
IIF(P, K)II--< . Rather than tackling this (nonlinear) problem directly, it can be
converted into another problem which is linear in a free parameter. That is, find all
those Q e H+ such that

(1.2) [[(Tll + T12QT21)(s)II 3/

in which T11(s), T2(s), and T21(s) may always be chosen stable with T12(s) and Tz(S)
parts of inner matrices [10], [14], [15], [43], [46]. We change nothing by rewriting
(1.2) as

(1.3) T11+[TxT’2]
0 Q T21

(S) Y’ Q3L

in which T+/-(s) and _(s) are chosen to make [T+/- T12](s) and [’ Tl]-(s) inner. This,
too, is always possible [2], [10], [16], [43]. Finally, by invoking the norm preserving
property of inner matrices, we see that (1.3) is equivalent to the characterization of
all Q +’P such that

R21 R22+ Q
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where

(1.5)
R21 R22

(s)
Y12

In this paper we will study the four block general distance problem given in (1.4)
because of its intrinsic interest, and also due to its applicability to H control.

Historical accounts of the development of solutions to this problem are contained
in [11], [14] and [43]. Briefly, Doyle et al. [10], originally suggested a solution to the
four block problem (1.4) based on the work of Davis et al. [9]. Other approaches
included work on Hankel plus Toplitz operators in Jonckheere and Juang, [26] and
on band extension problems in Dym and Gohberg [12]. These approaches certainly
provide a theoretical solution, but when implemented on a computer, suffer from
serious degree inflation problems. In an attempt to understand these inflation
phenomena in the context of H control, detailed cancellation analyses were carried
out in [30], [31], [32], and [23] for cases of increasing complexity, and a controller
with degree no greater than that of P(s) in (1.1) was shown to exist. The outcome of
this work also showed that solutions with deg (Q)=<deg (R) exist to (1.4). These
observations lead to the expectation that the original algorithm could be greatly
improved and progress was made in [3] where just three Riccati equations of modest
degree were required. The purpose of this paper is to present a new solution to the
four block general distance problem requiring just two Riccati equations and also
treating the optimal cases.

As indicated above, the solutions to the four block general distance problem can
give representation formulae for all solutions to the H control problem (1.2). One
such formula is given in 5 where the optimal cases are treated in detail. This solution
requires two Riccati equations to be solved or, more precisely, (for certain optimal
cases) for the appropriate stable invariant subspaces of two Hamiltonian matrices to
be calculated. Solution formulae based on two Riccati equations were presented without
proof in [20] for the suboptimal case and subsequently derivations for a limited class
of plants were given in [11] using techniques similar to the state feedback results of
Khargonekar, Petersen, and Rotea [28]. Formulae for certain optimal cases were given
in [33], [35], and [45] using a descriptor representation and giving relations to
interpolation. Many alternative and, in several cases, totally independent derivations
of these results are now available using a variety of techniques. A solution based on
J-spectral factorization theory is given in [22], while the related approach based on
the notion of conjugation is employed in [29]. Hung has derived a formula in terms
of two Riccati equations which deals with certain optimal situations [24], while Verma
and Romig have a closed formula for one block problems [48]. An interesting by-
product of this activity has been the discovery of a number of new interconnections.
In [28], Khargonekar et al. note a connection between Y control and game theory.
The interplay between indefinite factorization and game theory, probably first noticed
by Banker [4], has been rediscovered in the more general setting of 2t control [20],
[22], [40]. The connection between risk sensitive optimal control [49] and game theory,
originally discovered by Jacobson in the perfect information case [25], has also received
renewed interest in the wider setting of control [5], [20] and entropy minimization
[21], [38]. Results on the finite horon, time-varying case are given in [34] and [47],
and finally, a solution applicable to distributed systems may be found in [13] and is
due to Foias and Tannenbaum.

Section 2 contains a summary ofthe notation we will use. In 3 we derive necessary
and sufficient conditions for the existence of a suboptimal solution to the four block
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problem, and give a representation formula for all solutions. We treat the optimal case
in detail in 4. Section 5 deals with the application to control theory. We derive
necessary and sufficient conditions for the existence of a solution, and then give a
formula for all solutions. By setting up the analysis in a descriptor framework, we are
able to give a simple and complete treatment of all the optimal cases. In the event that
Pl1(o3) 0 and P22(x3) 0, the controller formulae become cumbersome to write down.
To obviate this difficulty, we employ the loop shifting transformations introduced in
[45] to reduce the general case to a problem in which Pl1(O)=0 and P22(c)=0. We
summarize the key findings of this work in the conclusions ( 6).

2. Notation and Preliminaries. The aim of this short section is to summarize the
notation we intend to use; most of it is standard.

2.1. Notation., +, C real, nonnegative, and complex numbers,
(s) field of rational functions in s with real coefficients,
C/, C_ open right (respectively, left) half plane,
:P" set of p x rn matrices with elements in :(=, C, (s) etc.),
A (A) spectrum of a square matrix A,
Amax(A) eigenvalue of A with largest modulus,
A’ complex conjugate transpose ofA Cpm (transpose ifA EP’),
A# generalized inverse,
A* Moore-Penrose inverse,
A => 0, A > 0 A is positive semidefinite (respectively, positive definite),
A =<0, A < 0 A is negative semidefinite (respectively, negative definite),
’) space of p x m matrices with entries that are bounded on the

jw-axis (including the point at ),
II" 11 -norm of matrices in,
+’P" subspace of; p x rn matrices which are analytic and bounded

in C+,
L’pm subspace of; p x rn matrices which are analytic and bounded

in C_,
I1" II. Hankel norm,
9P same as (P") except elements are taken from [(Pm)(s),
Y’P" same as +’(P’) except elements are taken from (pxm)(s),
L’p" same as x’(pxm) except elements are taken from
G-(s) G(-g)’, the para-Hermitian conjugate of G(s),
#(a) Ilall= the spectral norm of A,
Re s real part of s,
Y(2(-) sets of functions f(s) which are analytic in C/(C_) such that

p (A) spectral radius.

Associated with a transfer function matrix G(s)E(s)pxm of McMillan degree
_-<n is a state-space realization

(2.1) G(s) .D+ C(sI-A)-IB
where A e C"", B C nxm, C Cpn, and D Cpm. We will use the alternative notation
G(s) (A, B, C, D) or

(2.2) G(s)= D
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for realizations of G(s). Generalized state-space models or descriptor system models
[37] give rise to transfer functions via G(s)--D+ C(sE-A)-IB (A, B, C, D, E).

In the above notation, we have G-(s) (-A’, C’,-B’, D’) and in the case that
D is nonsingular, we have G-l(s) (A-BD-IC, BD -1, -D-IC, D-). The system
zeros of G(s) are given by {A(A-BD-C)}_{McMillan zeros of G(s)}; these sets
are equal if the realization is minimal. If G-(s)= G-(s), then G(s) is all-pass. G(s)
is called stable if all its poles are in C_.

We will talk about basis changes T in the state-space of G(s); we will take this
to mean G(s) (A, B, C,D) G(s) s__ TAT_, TB, CT-1, D). For descriptor system
models, basis changes are given by

G(s) (A, B, C, D, E) te.v G(s) UAV, UB, CV, D, UEV).
We shall also make use of linear fractional transformations which are defined by

(2.3) Fl H, HJ
where U is of dimension x m ifH has dimension m x I.

3. Constructioa of aa all-pass embedding. In this section we derive necessary and
sucient conditions for the existence of a Q(s) such that

(3.1)
e21 R22+ Q22J

< 1

for given Ri(s) ’P’%, and necessary conditions for the existence of Q22(s) e
such that

(3.2)
R, R+Q:J

1"

For simplicity, we will assume that

(3.3) ([RI(), R2()]) < 1

and

(3.4) #
R21(oo

If ([Rll(jto),g(jto)])<l and 6([g(jto),gl(jto)])<l for some to, but not at
to oe, then a bilinear transformation of the half plane into the half plane can give an
equivalent problem satisfying (3.3) and (3.4). If however ([Rll(jto), R2(jto)])= 1 for
all to or ([Rl(jto), R(jto)])= 1 for all to, then significant modifications in detail
need to be performed and so this case is not treated here in the interests of brevity
and clarity.

Necessity of the conditions will be derived by assuming such a Q.(s) exists and
finding an all-pass dilation of (3.2) to the following special structure, which is used
to preserve the integrity of the first row and column of (3.1) and (3.2):

ml ma m3 m4

p Rx R2 R13 0

(3.5) Eaa(s)= P2 gl E E3 E24
P3 R31 Ea:z E33 E34
P4 0 E4 E43 E44

where Eij Rij + Qij, i,j 2, 3, 4, Q(s) +"pixn R(s) rx’PiXrr. With the all-
pass dilation constructed in a particular way (Lemma 3.1), so that R13 R31 E9_4, E4
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being full rank in C_ (i.e., R13 and R31 are minimum phase), it turns out that (3.2)
implies that (Proposition 3.2)

(3.6)

where

Rll R12 R13 1(3.7) Ra := R21 R22 R23
R31 R32 R33

and Ra does not depend on Q22. Similarly, it will be shown in Proposition 3.3 that
(3.1) implies that

(3.8) IIRll.<l.
The sufficiency of (3.8) is derived in 3.2 via a state-space construction along the

lines of Glover 17], 18]. Finally, all solutions are derived from this particular solution
of (3.1).

3.1. Necessary conditions. We now construct the all-pass dilation of (3.2).
LEMMA 3.1. Suppose there exists Q22(s)G /+oo such that (3.2) holds with Rij

satisfying (3.3) and (3.4). Then there exists an all-pass dilation in the form (3.5) where

(3.9) EaaEa=EaEaa=I,

(3.10) m3 Pl, m4< P2, P3 ml, P4 m2,

(3.11) R13 YL, rank R13 Pl /Re s < 0,

(3.12) R31 YgL, rank R31 rnl /Re s < 0,

(3.13) E23 :---[R21 E22][R11 R12]-(R 1-31)

(3.14)

(3.15)

(3.16)

R12]E32:=-(Rf?)-[R-1 R "1 Ea.]

rankE24=m4 VRes>0,

yielding

(3.20) E23 R2 R, + E22R "2 R -3 -1.

rank E42 P4 V Re s > 0,

IE33 E341 := IN31 E321[Rl e2--1] [(R-31) -(R-)E2a(EI24)](3.17)
E43 E44J 0 E42_IERl2 E22 0 (E/24)

whereE124E24 I, with E124 analytic in Re s > 0.

Proof. First let R3 and R-I be stable minimum phase spectral factors satisfying

(3.18) glag3 I-RIRI-R12R-2>=O /s=jw,

(3.19) RIR31 I-ggl- gg21 >- 0 Vs =jw

where the nonnegativity follows from (3.2). Furthermore, (3.3) implies rank Rl3(Oo) Pl
and (3.4) implies rank R31(oo)= ml, hence R13 and R31 are square with Rl-31 and R;
analytic in Re s < 0. Relations (3.2) and (3.9) also imply that

[11 12l Ill"-I "l] [131 I’3 R13J3 l0<--I-
R2 E223[R2 E2 E23Rl I-R2R-E22E2.J
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The second row of (3.5) may now be completed as follows:

.E24E"4 :-- ! RelRI E22E2- E23E2" 0.(3.21)

Similarly,

E32 -(Rfl)-I(RIR2-1 R2-E22),
(3.22)

E-2E42 :-- I R-(2R12- Ef2E22 E3E23 >- O.

It is then simply verified that (3.17) completes the dilation.
Now let us examine the partially agumented system

Rll R12 R13
(3.23) Ea := R21 E22 E23

R31 E32 E33

in more detail. First, note that since E is all-pass by Lemma 3.1, that

(3.24) IIEolI_-< 1.

Also by (3.17) and (3.9)

Eaa=-[R31 Ea2][Rll g12](gl-31)

-(R3-l)[I R-IRll- glg21 -glaIR12- RIE2][Rll

(3.25) g 3-11) g -1(g l-al + g a-l gl gl [Re21
Hence,

Rll R12](3.26) Ea T1
R21 E22

T_+ T

where

(3.27)

(3.28)

(3.29)

I I 1T1 0 I
(R 3--11 R 11 (R ;11)-R fl

I 0 -R-I(R-31)-]T2= 0 I -R2(R-)-

T3 0 0 0

(3.30)
Relation (3.26) implies that

(3.31) Ea-- T1
R21

Now define R23 R32 and R33 such

Rll R12 R13 1R, := R21 R22 R23
R31 R32 R33

(3.32)

{ jR11(constant) + T1
R21

Note that T1, T2, and T3 are analytic in Re s > 0.

R22]

R12]-(R 1-31)-

R121 [R-I ]

anticausal
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That is,

(3.33) E, R, + TaQ22T5 + T6
where T4--TI[0 I]’; Ts=[0 I]T2; (TnQ22Ts+ T6)eYt+ since T4, Ts, T6, Q22 are
analytic in Re (s)>0 and IIEolI _-< a implies that (TaQ22Ts+ T6) has no poles on the
imaginary axis. Hence (3.24), (3.33) and Nehari’s theorem give that IIRII. a.

The impoant observation here is that R can be constructed without explicit
knowledge of Q22. Moreover, RI, R2, R13, R21, R22, R31 uniquely determine R
The following proposition has thus been established.

PROPOSITION 3.2. If there exists Q22 E such that (3.2) holds with Ri2 satisfying
(3.3) and (3.8), then

(3.34) IIR,, R1211 1,

N1,(3"35)
R2

and

(3.36)

where R,, is given in (3.32).
For the case of strict inequality in (3.1), all the above inequalities can be made

strict and this is now proven.

PROPOSITION 3.3. If there exists Q22 tY(+ such that (3.1) holds with Ri satisfying
(3.3) and (3.4), then

(3.37) IIR,1 R,II<I,

<1,(3.38)

and

(3.39) IIRSII. <1
where Ra is given in (3.32). l-1

Proof. Formulae (3.37) and (3.38) are immediate consequences of (3.1) and also
imply that R13, R31 may be chosen with inverses in Yt. Note that in the expression
for E, given in (3.33), Ra, T4, T5, and T3 are all independent of Q22. Furthermore,
for A YtY(, define

(3.40) E,,(A) := Raq- T4(Q22q- A) Ts+ T6.
Then 11Eo(A)]] =< 1 for all A such that

Rll e1211(3.41) IIAII< 1- R2, E22 "Since the construction ofLemma 3.1 will still work, we will now suppose that RS 1
and construct a contradiction. For all A satisfying (3.41), we have

(3.42) E(&) V(s)= U(-s)

where V and U are the Laplace transforms of the corresponding Schmidt vectors for
the Hankel operator corresponding to RS [14], [36]. Note that U, V Yt2. Hence
(E,(A)-E,(0)) V(s)=0 TaATsV(s)=O for all A satis.fying (3.41). Thus

(3.43) TsV(s)=O.
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Now consider the last block row of (3.42)

JR31 E32 E33]V(s)--[O 0 I]U(-s)

and substitute for E33 as

E33 (R31RI-I h-

yielding

R31[I 0-R-(2(Rl-al)-]V(s)+Eae[O I-Re(R1-31)]V(s)=[O 0 I]U(-s).

The second term is EaeT5 V(s) =0 by (3.43). Hence

(3.44) [I 0 -g(g-al)-]V(s) g-ll[0 0 I]U(-s).

The left-hand side of (3.44) is in Yge where the right-hand side is in- and hence
both must be zero. This together with (3.28) and (3.43) gives that Te V(s) 0 which,
when substituted into (3.42) using (3.26), gives

U(-s) T3 V(s)

but U(-s) and T3 V(s) ?e so that both must be zero contradicting U being
the Laplace transform of a Schmidt vector.

3.2. State-space construction and sufficient conditions. We will first construct a
state,-space description of Ra given in (3.32). The terms R13 and R3 come from standard
spectral factorization problems and it is a routine exercise to find out the realization
of Ra.

LEMMA 3.4. Let

R21 R2eJ
be such that (3.2) holds for some Q22 G and have the state-space realization

s__ C1 D11 D12(3.45)
R2 R22

C2 D21 0

where Re Ai(A)> 0 for all i. Then Ra given by (3.32) has a state-space realization of the
form

A B1 Be B3

(3.46) R & C1 Dll D12 Din
C2 D21 * ,
C3 D31

where

(3.47)

(3.48)

(3.49)

(3.50)

D13D’ I- DieD’13 11 D12D120

DID31 I- DDll- DIDel > 0,

B3--(XC-[B B2][DI1 D12]’) (D-31)
C3=(DI)’(BY-[DI DI][C C]’).

X X ’>- 0 is the unique solution to the algebraic Riccati equation

(3.51) -XA’-AX+[B1 B2][B1 B2]’+B3B’3=O
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such that Re hi(A- B3Dl-31CI) >-_ 0 for all i. Y Y’>- 0 is the unique solution to the
algebraic Riccati equation

(3.52) -YA-A’Y+[C’I C][C’I C’]’+C’3C3 =0

such that Re Ai(A-B1D C3) => 0 for all i.

Proof The construction of B and D13 to form R13 and C3 and D31 to form R31
uses standard techniques for calculating spectral factors using Riccati equations [1],
[50].

The realization of Ra clearly matches RI, R12, R13, R21, R22, and R31. It remains
to verify that R23 R32 and R33 given in (3.32) match the given realization. This is a
routine state-space manipulation and uses the following realizations:

(R-)-[R,
-A’+ C’3(DI)’B

R-I] (D-)’B
C;(Dd)’[DI D,]-[C C]](Dd)’[DI D,]

and the dual

R
(R’3)-

Dll (D13),B B
D2 LBJ

Equations (3.50) and (3.52) then give that

[ ]C(D-)’ 1D1 (D_3),
D2

(3.53)

(Rf))-[R, C1] (sI_A)_I=_C3(sI_A)_1+{terms in analytic in Re (s) > 0}R]]
C2

and (3.49) and (3.51) imply that

(3.54)

(sI-A)-I[B1 B2]/Rlq|r 1
(R-3)-=-(sI-A)-B3+{terms in analytic in Re (s) > 0}.

L JR21

The definition of Ra in (3.32) together with (3.53) and (3.54) then give the result. [3

We now immediately have the following corollaries of Propositions 3.2 and 3.3,
on noting that X and Y are the Gramians for R and hence IIRolI,- (xY) [14], [6].

COROLLARY 3.5. Let

Rll R12] E ?fftL
R21 R22

satisfy (3.3) and (3.4) with the state-space realization of (3.45). Then
(i) If there exists Q22E Y(+ satisfying (3.2), then p(XY)<-_ 1.
(ii) If there exists Q22 ?+ satisfying (3.1), then p(XY) < 1. [3

Now that we have an explicit state-space realization of R and a condition on
the Gramians we can attempt a state-space constrution of an all-pass embedding along
the lines of (3.3) (without assuming knowledge of a candidate Q22). This construction
can be carried out along the lines of Glover [17], [18] and will then give a sufficiency
proof. We will consider the case R H < 1 in this section with the R, H 1 considered
in 4.
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First, consider the unitary dilation of the D-matrix. Such a dilation can be
constructed in the form

(3.55) De

ml m2 m3 pl m4 =< P2
Pl DI D2 D13 0

/92 D2a D22 D23 D24
P3 ma D31 D32 D33 D34
m2>=P4 0 D42 D43 0

In (3.55) D24"] is chosen to be an orthonormal basis for the nullspace of [DI D]D34
(which has dimension P2 since rank J3--m, and also implies that D4 exists).
Similarly, [D42 D43 ]’ is an orthonormal basis for the nullspace of [D12 J13] and

D-2 exists. The remaining terms are then uniquely given by

(356)
D32 D33 D24 D34J 0 D42 D43J"

Now suppose that we can find a realization of Eaa--Raa q-Qa,, in the form

IA e] IRa 0](3.57) Raa C 0 0

(3.58) Qa
Ce

Re,(A)<0 Vi

where

(3.59) Be BI B2 B 0],

(3.60) C’e C C C’3 0],

(3.61) /e [0 /2 ]3 J4],

(3.62) ’e=[0 (7 ],
and

(3.63) Ea s-- 0 /e
Ce Ce De

In order to construct A, Be, and Ce such that Ea is all-pass, we will write the all-pass
lemma equations of Glover [16, Thm. 5.1] with postulated solutions to the Lyapunov
equations as follows:

(3.64) Xe I YZ-1

where

(3.65) Z=I-XY,

(3.66) Ye-XI-[ -YZ zxZt]
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(The form of Xe and Ye essentially comes from Glover [16, Lemma 8.2] but this need
not concern us.) With this value for Xe, A, Be, Ce can be constructed to satisfy the
conditions of 16, Thm. 5.1], viz. De unitary and

(3.67) Xe+Xe
0 ’ + Je [B’e /’e]=0,

(3.68) De[Be B’e]+[Ce Ce]Xe=O.

Postmutiplying (3.68) by the invertible matrix [ -zY] yields the equivalent expressions

(3.69) Ce CeX- DeBPe
and

Since Z is nonsingular

(3.70)

and (3.68) holds.

-DeB’e Y+ DeB’eZ-Jf- Ce ---O.

/e (Z-1)’( YBe- CeDe)

Now let E be the left-hand side of (3.67); then [I 0]E[I 0]’=0 by (3.51) and
[I O]YeEYe[! 0]’=0 by (3.52). A will be chosen to make [I 0]E[0 !]’=0 as

(3.71) = -a’-JenPe
(Z-1)’{-(I YX)A’-( YB CteDe)nte}

(3.72) (Z-1)’{-A’- YAX + CreDenCe}.

With this value of A we obtain [I 0]E 0 and hence

and thus E 0. Therefore, with these values of , /e, and e, Ea satisfies (3.67) and
(3.68) and is henceall-pass. Furthermore, YZ-1>- 0 since p(XY)< 1 by Corollary 3.5
and hence Re Ai(A)<0 (by Wonham [52, Lemma 12.2, p. 227]) since ftYZ-I+
Z’-1 Y’- Je/te 0 and^ (,/}e,,) is clearly stabilizable. Therefore Qa + and it
remains to show that Be and Ce have the zero terms given in (3.61) and (3.62). From
(3.70) and (3.50)

Z’Be[I 0 00]’=YBI-[C1 C C’3] DI =0.

DI
Similarly, (3.69) and (3.49) give that

[! 0 00]Ce--C1X-[D,1 D12 D,3 B =0.

B
Therefore we have verified that Qa, given by (3.58), (3.72), (3.69), and (3.70) satisfy
(3.61) and (3.62) and, for all unitary De, gives an all-pass Ea with Oaa +cx. Note
that once the form of D and Xe have been specified, all the other terms are uniquely
determined and the required zero structure on Qa has been ensured by fixing the form
of the first row and column of Raa to be as in (3.5). All solutions can also be generated
from this Qaa as will now be stated in the main result of this section.
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THEOREM 3.6. Let Ris rL’pixr for i, j 1, 2 have the realization

with Re Ai(A) > 0 for all i, and

A B B2 1R] s_. C1 Dll D12
R22J

C2 D21 *

0"[Dll D12 < 1, [DI DI < 1.

(a) Then there exists Q :g( such that

<1(3.73)
R21 R22+Q

if and only if (3.37), (3.38) and IIRIIH < 1, or equivalently if and only if (3.37), (3.38)
and p(XY) < 1 where X, Y >= 0 are as defined in Lemma 3.4.

(b) If the conditions ofpart (a) are satisfied, then each Q6Y( satisfying (3.73)
is given by

(3.74) Q=FI
Q42

for some and IldPII < 1, where

[022 Q24q & C2(3.75)
042 Q44J 4

B2 B4 1D22 D24
D42 0

with Do, De given by (3.55). The remaining matrices are given by

(3.76) I21ICIID21D22D231IBI(4 0 D42 D43
B(

D12 0

(3.77) [/2 4]=(Z-1)’{Y[B2 0]-[C C C]} D22 D4
032 D34

(3.78) Z I XY, , (Z-1)’{-A’- YAX + C’eDeB’e}.

(c) If Ris satisfies (3.34) and (3.35) and p(XY) < 1, then every solution Q :
such that

R21 R22+ Q

is given by (3.74) for some + with II ll < 1.

Proof Part (a) follows from Propositions 3.2 and 3.3, Corollary 3.5, and the
construction preceding the theorem statement. Part (b) follows in a similar way to that
given in Glover 17], 18] as follows. First, recall that Ea is all-pass where

Rll R12 R13 0

Eaa(S) R21 E22 E23 Q24

[Ro31E32E33034Q42 Q43 Q44
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and hence,

<1F Ea,
0 R21 R22+ Q

satisfies
R21 R2+ Q

if a, < 1 19], [42] where

O Fl Q42 Q44J’

That Q is in follows from a small gain argument since Qo and
with IIQ44olI 1. Hence all such Q satisfy (3.73).

To show that all such Q can be expressed as in (3.74) we first show that Q2,
Q2 e. The A-matrix of Q2 is given by-D; C4 -’-ee (---- D;2D3;)

-’-(-D2 D4);

since De is unitary, D2O43 -O2(O); hence,

O3
I

eDte (O)’ by (3.70)

I

=(Z-1)’(YBD- C) (DII)

(Z-1)’(YX- I)C(DII) by (3.49)

-ci(f)’.

Hence A-2D24 =-(A’-C(D?)’B;) and Q2eL since ReA(A-
B3DIIC1) <0 are the zeros of R13 which, by construction, has no zeros in Re s > 0.
See (3.51 ).

)’ ’Z’A similar argument gives that B4D C2 -(Z- (A- BID] C3) and hence
Q2 eL. Suppose that Q satisfies (3.73) and define such that (3.74) holds, that
is,

:= Q(Q Q22)Q (I Q44)-1

and

-(I + Q44)-

and clearly exists as a proper rational function in. Fuhermore I111 < 1 since

< 1 Q,,() 0F,(..
0

(see [30]). Suppose that has a coprime factorization overL as UV-1 with
U, V . Since U, V is coprime and Q44 is stable, U, (V-Q44 U) is also coprime,
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and a coprime factorization of= U(V-Q44U) -1. Since Y(+ the winding
number of det (V-Qa4U)(jto) around the origin must be zero. However, det (V-
Q44 U)(j(.o det V(jto) det (I Q44(I)) (jo)) and hence the winding number of det V(jto)
is zero, since that of det (I- Q44(I))(jto) is zero (because Q44II < 1) hence ;+.

(c) The major difference between this case and part (b) is that R1-31 R- need not
be in Y(L and Qz-, Q-2 need not be in Y(+; however, R13 R3 Q24, and 042 will
still be full rank in the appropriate halfplanes and only rank deficient at a finite
number of points on s =jto. The proof that (3.74) with I111-< 1 gives a class of solutions
for Q is the same as in part (b) except that we now need to prove that [[Q4411 < 1.
Suppose ]IQ4411 1. Since Eaa is all-pass if t(Q44(jtoo))--1 for some too then
rank Q4z(jtoo) Qa3(jtoo)] < p4 m3 pl, i.e., Q42 Q43] has an imaginary axis zero.
Now

and

[042 B2 B3Q43] s--

C4 D42 D43

[D42 D4] -B I
-B; 0

from (3.76)

,+[/2 /3][B2 B3]’=-A by(3.71)

and hence the zeros of [Q42 Q43] can only appear at Ai(-A’). But Re Ai(-A’)< 0.
Thus rank[Q42(jto)Q43(jto)]=p4 ma=pl for all to, giving IIQ411< 1.

To prove that (3.74) with [tll-< 1 gives all solutions we first need that

implies when R3, R3, Q4, Q42 are only full rank for almost all s =jm. This
is simply proved by noting that if #((jmo))> 1 then #((s))> 1 for all s in some
neighbourhood of jmo, and hence we can find such that #((jm))> 1 and R,
R3, 4, and 42 all have full rank atj; a contradiction is then easily established.

Finally, defining and as in (b) with UV- we obtain that det V(jm) 0
for all w since Iloll  1, det (I-Q44)(jw)O for all w since Q44011 < 1, and hence

= U(V-Q44U) -1 and det (V-Q44U)=det (V) det (I-- Q44) 0 for all w implies
that and the result follows as in (b).

Remark. Theorem 3.6 gives a complete solution to the problem when p(XY) < 1,
the case when p(XY) 1 is substantially more involved and is given in 4. The solution
of

R R+Q

for the minimum possible will require an iterative search on with the problem
scaled to at each step (e.g., scale Do -D, B -/B, C -/C). A value
of 7 will be achievable if the algebraic Riccati equations for X(7) and Y() have
solutions with o(X()Y())N1. The optimal value of can occur when
p(X() Y())= 1 or when 7 is the largest value such that the Hamiltonians for X()
or Y(7) have imaginary axis eigenvalues. In this way the optimal value of 7 can be
calculated to any desired accuracy and a problem with o(XY)= 1 normally results.
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4. Descriptor all-pass systems and the sufficient conditions. In this section we
propose to lift the assumption that < 1 and treat the case when R 1.
Before starting the general analysis, we consider a simple example which illustrates
an important feature of the four block problem at optimality. Consider

(4.1> inf+ ]l[r11q 0

in which r11, r22 G L. It is immediate that there are two cases which require separate
consideration. These are

(4.2a) (1) 11r2211 <
(4.2b) (2) [Ir=211llrlll[
In the first case, any q(s) for which r22+ qll r ,ll will be an optimal solution;
a continuum of such solutions exist. In the second case, however, the (unique) optimal
Nehari extension of r(s) is the only solution. This example shows that there may or
may not be a reduction in the size of the solution set at optimality. In the one block
case, the size of the solution set always decreases at optimality [16].

In the general case there are also two forms of optimality. To see this we temporarily
suppose that Q(s) in (3.2) is allowed to range over. Under these conditions we have

inf
R R12(4.3)

O R21 R22+ Q
max

R21
by Parrott’s theorem [39], [41, Thm. 1.2]; a paicularly nice treatment of Parrott’s
theorem is given in Young [53]. The point is that in ceain cases

(4.4)
o R R+Q

and the requirement that Q be an element of rather than just makes no
difference to the achievable norm. This Parrott type of optimality has already been
covered by Theorem 3.6. The alternative form of optimality is treated below.

4.1. Alltl slfis te general ese. The purpose of this section is to treat
sumciency in the case that R2 1. We will take Lemma 3.4 as our staing point
and then show that an all-pass embedding may still be constructed along the lines of
Theorem 3.6. The key dimculty in the case of R2[ 1 is that Z in (3.65) is singular.
Our approach to this problem will be to construct the all-pass embedding in a descriptor
framework. We begin with an all-pass lemma for descriptor systems of the form (4.5)
and (4.6) below. Apa from dealing with the standard case of a possibly singular
we need to cater to the case of det (s-A) 0; (sE- A) singular for all values of s.

THEOREM 4.1. Consider the descriptor system of equations

(4.5) sx(s) x(s)+ u(s),

(4.6 y Cx(s + Du(s),

and suppose that there exists a matrix T such that

(4.7) r+ r’’+’=0,

(4.a r= r’’.
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(a) If T is nonsingular and

(4.9) CT LB’

for some L, (4.5) and (4.6) define a unique tranfer function given by

(4.10) G(s) D+ C(sE-A)#B

in which (.)# denotes a generalized inverse (which is defined in (4.16) below).
(b) If T is nonsingular and

(i) DD’= I,

(ii) CT+ DB’ O,

(4.11)

(4.12)

then

(4.13) GG-= L

(c) IfET>=O and (sE -A, B) isstabilizable (i.e.,x’(sE -A) =O,x’E # O,x’B =0=:>
(s + ) < 0), then all the finite eigenvalues of sE A satisfy (s + ) < O.

Proof In the proof of part (a), we use (4.7) and (4.8) to establish that (B)
(sE-A). This allows (4.5) to be solved for x(s) given any u(s). Following that,
(4.9) is used to prove that W(sE-A)c W(C) which establishes the existence of the
unique transfer function (4.10).

Suppose sE-A has Smith diagonalization

(4.14) sE a N(s)F(s)M(s)

in which N(s) and M(s) are unimodular polynomial matrices and

(4.15) F(s)= [ Fl(s)O ]"
We define

(4.16) (sE-A)#:=M-(s)[ F-l(s)O 0]N-(s)’0
To show that (4.5) has a solution for x(s) given any u(s), we note that (4.7) and (4.8)
give

(4.17) (sE A) T+ T’(-sE’- A’) BB’

and hence from (4.14)

(4.18)
FMT(N)- + N- T’M-F- N-1BB’(N-)-
=:>[0 I]N-B=O.

It is clear from (4.18) that (B) (sE-A) and thus that (4.5) has a solution for
all u(s). A simple verification shows that x(s) solves (4.5) if and only if

x(s)= M-’(s) F-I N-I(s)Bu(s)+ w(s)
0 I

(4.19)

=(sE-A)#Bu(s)+M-’(s)
I

w(s)
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for some w(s). Next, we note that (4.17) gives

T’)-(sE A)+ (-sE’- A) T-1 (T’)-BB’T-
(4.20) =ff(M-)-I(T’)-INF+F-N-T-1M-I=(M-)-I(T’)-IBB’T-1M-1

==>B’T-’M-’[OI] =0.

Thus

y(s) Cx(s) + Du(s)

=Du(s)+C(sE-A)#Bu(s)+CM-I[OI] w(s)

={D+C(sE-A)#B}u(s)+LB’T-’M-’[OI] w(s)

=G(s)u(s)

by (4.9) and (4.20).
(b) Equations (4.12), (4.14), and (4.16) imply that

C(sE A)#(sE A) -DB’T-’M-’

(4.21)

Thus

(4.22)

=-DB’T-I by (4.20)

C by (4.12).

I-GG-= I-DD’-C(sE-A)#BD’-DB’(-sE-A’)#C’
-C(sE-A)#((sE-A)T+ T’(-sE’-A’))

x (-sE -A’)#C’ by (4.10) and (4.17)

0 by (4.11), (4.12), and (4.21).

(c) Let A be a finite eigenvalue of (sE-A). Then there exists a corresponding
eigenvector x such that (i) x’E #0 and x’(AE-A)=O, x’(4.7)x=:)(A +.)x’ETx=
-x’BB’x<=O. If x’B#O, then A +<0 since ET>-O. If x’B=O, then A +<0 by the
stabilizability assumption. [3

Proceeding as before, we postulate matrices T and E which are associated with
equations (4.7) and (4.8), and which satisfy (4.12)

where X, Y, and Z are defined in (3.51), (3.52), and (3.65). Equations (3.67) and (3.68)
become

(4.25) De[B’ ’eOl + Ce eo31-X Z
l
-I

L Y

and

(4.24) ,o I Y
+

Z’ Y 0 ,o -I- JeO [B’e /’e0]=0



300 GLOVER, LIMEBEER, DOYLE, KASENALLY, AND SAFONOV

respectively. Evaluating the first column of (4.25) and comparing with (3.69) gives

(4.26) e0 e CeX- DeB’e.
In the same way, the second column of (4.25) together with (3.70) yields

(4.27) Beo-- YBe- CeDe---Z Be

for any unitary De. Beo therefore retains the critical zero (1, 1) entry. The (1, 1) partition
of (4.24) is zero by (3.51). From the (2, 1) partition of (4.24) we obtain

(4.28) /o -Z’A’- eoB’e--- -A’- YAX + C’eOeB’e Z’.
It is now easy to check thatthefemaining equations in (4.24) are also satisfied.

We also note that (Z’, Ao, Beo) is stabilizable since if x’Z’ # O, x’[sZ’- o, e0]
OX’[sZ’+ Z’A’]=0s + g< 0 since Re (A(A)) > 0. We can now prove the sufficiency
of the condition in Corollary 3.5(i).

THEORZM 4.2. Given that the conditions of Corollary 3.5(i) are satisfied, then

(a) Qaa(S): De+eo(sZ’-o)#eo,
(b) Raa + Qaa is all-pass.

Hence the conditions are both necessary and sucient.
Proo Equations (4.24) and (4.25) give that Theorem 4.1 can be applied to show

that Raa + Qoo is well defined and all-pass. Since Ro W, Qaa has no poles on
s =j or at infinity. All the finite poles will be at eigenvalues of (sZ’-o) which are
in the open left halfplane by Theorem 4.1(c) snce (Z, Ao, o) is stabilizable and
from the (2, 2)-block of (4.24) and Z’Y Y- YXY 0 since p(XY) 1. The suciency
of the condition follows from (a) and (b) by using the (2, 2) entry of Qoo(s).

4.2. Characterization of all solutions. Theorem 4.2 gives a solution in the case
[1Ra n 1 in descriptor form. All solutions can be generated from Qoa (s) but the more
detailed structure is required. To keep the notation simple the simplifying assumption

D DJ

will be made for this section. Model matching problems arising from H control can
in fact always be reduced to this case (see [45]). The main difference in the approach
in 3 is that all solutions to the problem with R rather than R are determined. We
wish to write any solution

as

QOJ=QQ 634
for I111< 1, H. We need to show that such a exists for all suitable (ij, and
this is not immediately clear since

r 7
/241 and [642 643]
k
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are not invertible. The following technical lemma will be used to check the existence
of a given any

032 033
LEMMA 4.3. Suppose that

ml m2

P(s) =P’ [Pll P12| () R X R xml
P2 P21 P22-]

in which p, >= m2, m, >= P2 and P22(o0) 0. Suppose also that P2 has a left inverse Pt2
and P2 has a right inverseP . Then if there exists a rational matrix R with
rank R p- m2 for almost all s such that

(4.29) (i) R[X-P P2]=0,

and if there exists a rational matrix S with rank (S) m -pz for almost all s such
that

(4.30) (ii) IX-P] S 0,

then there exists a rational matrix such that Ft(P,) X. More particularly,

(I+P22)-(4.31)

where

(4.32) xI P,2(X- P,,)P,.

Proof The idea of the proof is to establish that (i) and (ii) guarantee the existence
of a solution to the equation X P, P2P2. We then set (I- Pz@)- and
solve for @.

It follows from (i) that (X-P,)W(R). Since dim Y(Pa2)=m2>=dimW(R), it
follows from (i) that (X- P) W(R)= Y (P2) and therefore that the equation P,2Z=
(X-P) has a solution Z--P2(X-P,). In the same way we have (X-P)
(P). Since Z-(X-P,)-, we have Z-Y(P) and consequently qtP2=Z
has a solution =pI2(X-P1,)P,. It follows from P2()=0 and q=

(I- P22(I)) -1 that (I + aItP22)-lxI is a proper rational matrix. [3

The detailed structure of Q..(s) will now be examined when

In this case we may choose

(4.33) De

0 0 I 0

0 0

I 0

and substituting (4.33) into (4.26)-(4.28) yields

_B1(4.34) d’eo --[0 set2 XC
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(4.35)

(4.36)

/e0 [0 YB YB3-C -C],

,’o A’ YAX+ C3BI+CB3.

Since (3.51) and (3.52) have an appropriate dual relationship to each other, their
solutions may be transformed to the balanced form

(4.37)

by an appropriate change of basis in the state space of R(s); k is the multiplicity of
the unit singular value of FR. This balancing induces the following partitioning on

Be and Ce in (3.59) and (3.60).

IBell--I Nil B12 B13 01(4.38)
Be2J LB2a B22 B23 0

el 11 12 13(4.39)
Cte2 C C2 C

Furthermore if rank B22 < k, then an additional unitary change of basis on the
k states can give B22 [/z2], with B221 full rank.

Substitution into (3.49) and (3.50) gives

(4.40)
B3 [_ Ca

(4.41)
C3 Bel

Finally, (3.51) and (3.52) become

(4.42)

--[All 0] 1 [Bll B12
A2J 0 It: 0 It: LAI2 A;2J

+
B2a B2 }XCI

CI

Bll
B2I ],BI XCI

B2 C t21

(4.43)

-A2 AJ 0 I 0 I A21 A22
+

Cl C2 ]YBa
B21

Cl -7’C2 YB11 O.
C:2 B21

The (2, 2) blocks of (4.42) and (4.43) establish the following equation:

(4.44) B22B-2 C2C22

and consequently that there exists a matrix U such that

(4.45) UB,: C22, U:= C2:(B.2) C.)B2:.
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It now follows that a descriptor representation for Qaa(s) is given by

21 --All- YAllX + C’13Bl1’ q- C1B13 -C12UB22 X

22 -B22B2 -B22B2 J x2
(4.46)

Ul

YB12 -Z’C’11 -C2 u2+
B22 0 -B22U’J u3

U4

Y2 C12fi[ UB’2 x 0 0 0 I u2(4.47) +
Y3 [-BI" 0 x2 I 0 0 0 //3

Y4 [-B2 -B2 0 I 0 0 4

on substituting (4.37) to (4.41) into (4.34)-(4.36). The (2, 1) block of (4.46) gives

(4.48)
0 -B22B2x B22B2x2+ B22u2- B22U’

:=> B.2x2 (B22)t(-B22B2x1 + B22u2- C2u4).

Substituting (4.48) into (4.46) and (4.47) gives the state-space realization,

(4.49)

Q22 Q23 Q24 1Q32 Q33 Q34 (s)
Q42 Q43 Q44

C12X UB2
11

22B22)B12-(I-B*

(2’)-1( ’B12 C2U
U 0

0 0

I B2*2B22 0

-!
-(2’)-1C 2(I C22 C’22)/

-B*z2C2 J

where

(2’)-’(-A1 Allr + C’ -+- C’13Bll llB13-J-C12C22(B22)B2).

Suppose that 01 and 0 are orthogonal bases for (B2) and (C22), respectively,
and that 02 and 04 are chosen to make [02 01] and [04 03] orthogonal. If we

omultiply the last row of (4.49) by [ol] and the last column by [04 (R)3], we obtain

(4.50)

Q22 Q23 Q24 0

Q32 Q33 Q34 0

042043044 0

0 0 0 -I1

If B2 has a singular value decomposition

then [(R)2 (R)1]=[Y1 Y2] and (B2)*= U2F-IY.
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C12’Z UB2
s__ / -BI’

(,’)-l( B12- C2 U) -C1 -(.,’)-1C204 0

U 0 l4 0

0 0 0 0

o o o o
o o 0 -in which

(4.51) rank (Be:z) rank (C22) -<- k.

Equation (4.50) has an interesting structure in that it shows how the effective dimension
of the free parameter is reduced by /. We will examine this point a little further and
obtain a constraining equation on the free parameter @ which is reminicent of [16,
eq. (8.69)]. Following that, we will prove that

(4.52)

A (2’)-’(B12-C2U) -(,")-1C2041
captures all solutions in the optimal case corresponding to IIFII 1.

Let us write the left-hand side of (4.50) as

Yl Q Q4 0 u

(4.53) Y: 042 044 0 U2

Y3 0 0 It U3

and allow this to induce the following partitioning on the free contraction

(4.54) [u]//3 L@I)21 O22J Y3

Since U --Y3 we may eliminate this variable in (4.54) to obtain

(4.55)
/2-- ((I)ll +@12(I--@22)-1@21)Y2 ifdet (I-@2(o)) 0 is assumed

t {I (I)ll (I)12] })F _1’11 y=y

in which I1@11 =< by Redheffer’s theorem [42]. A class of solutions is therefore given by

O.141(4.56) Q= F{[ Q22 44J ()}
Transforming back to the coordinates in (4.53) gives

o]ro - (4.57) @= U[(R) 01]
// [.(R)lJ

and (4.57)B2

(4.58) ==>@B2 C2:,

which is a linear constraint on @ and similar to that obtained in [16].
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We are now in a position to state and prove the main result of this section.
THEOREM 4.4. Let Rij L’P"" for i, j 1, 2 have the realization

"-- C1 0 0
R21 R223 C2 0 0

with Re Ai(A) > 0.
If the conditions of Corollary 3.5(i) are met, then every Q satisfying

is given by

R21 R22 -k- Q

(4.59) Q--- El 642 044
in which

for some Y( with

d.24]

Proof The proof can be deduced using arguments similar to those given in the
proof of Theorem 3.6. We begin by making two preliminary observations. First, it is
an immediate consequence of Redheffers theorem that (4.59) captures a class of
solutions. Second,

(4.60) e21 R22-4c-Q22 R23+ Q23 Ritz V21---0 g21(-s
R, R2+Q2 R3q-Q3 R13 V, 0 U31(-s

for any

O 0 0 1Q= 0 Q22 Q23
0 Q32 Q33

such that liRa + Qllo--IIel[ 1 where V(s) and U(-s) are the maximal Schmidt
vectors of the Hankel operator FR [14], [18]. Since

it is immediate that

R2(4.61) p + k => rank
R V3

pl + rank (C22)

for almost all s; k is the multiplicity of the unit Hankel singular value ofFR. Similarly,
since 11Raa -b Qa. [Iv Ra 11H l

(4.62)

0 0 0

Q_22--Q22 Q_23 Q23

032- Q32 033- 033

R, V, -]
R12 V21 --0.

R13 V31

0.22
Q42

has a state-space realization given by (4.52).
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In the same way we have that

(4.63) [ R 1"-1 R’I R31] 0 022-Q22 023-Q23 024U?I UI UI 0 032- Q32 033- Q33 034
and

R R2(4.64) rank
U- U-

=0

R
] -> m + rank (B22)

U .J
241 has an asymptotically stable left inverse while 042We now show that ()34_

an asymptotically stable right inverse. Substituting from (4.50) gives

(4.65) 034J C12X UBI_
Z

and a simple calculation yields

24 s__(4.66)
Q34-] O,[ C122 UB,2]

120]
B’13

(4.67) 042 043] s__ [
L

has a right inverse

-(2’)-1C2041040
(2’)-1[C2 C3]]ol o

(2’)-1[ "rl 2 C2U]-CI

o 0

Q43] has

-AI --(2’)-1[ ]rB12 C2 U]02 ]
(4.68) 042 643] s__ B 02 J.B3 0

Since (A)> 0, the left and right inverses in (4.66) and (4.68) are asymptotically
stable. Furthermore,

(4.69) rank 034 =p-rank (B) for all Re (s)>_0,

(4.70) rank[d4 (4]= m-rank (B) for all Re (s)->0.

Hence, we may invoke Lemma 4.3 and the all-pass character ofE to establish
the existence of a I1.11_-< such that

Q22 Q23 Q24
[Q_--22 Q23](4.7])
LO 033 =F 3 Q4 ;

644
It remains for us to show that any such c Y(. It follows immediately that

(4.72) air/--[ (-2411 [ (-22- Q22 Q_-23-Q23] [042 043]
Q34J LQ32- Q32 Q33- Q33

G(s)
C

Gt(s) DIc D

and a dual result is clearly true in the case of a right inverse.
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is stable. Now suppose that has a coprime factorization ND-1 with N, D Y.
Since (I-Q44t)-1 is stable, and q N(D-Q44N)-1 is a coprime factorization,
it follows that (D-Q44N) is outer. We may now deduce from

(4.73) det (D-Q44N)(jto)=det D(jto). det (I-044(I))(jto)
and 044(I) I1 < that the winding number of det D(jto) around the origin is zero. This
means that D is outer and therefore that ND-I Yt+ as required. [3

5. A representation formula for all internally stabilizing controllers that satisfy a
closed-loop H norm constraint. In this section we will show how the solution to the
four block problem given in 3 and 4 may be used to solve a rational Y control
problem. Suppose we are given

(5.1)

n m

P=
P21 P22 q

C2 D21 D22 q

in which p _-> m and -> q, and that we seek all controllers that stabilize FI(P, K) and
that satisfy the norm constraint

(5.2) IIF,(P, K)II<- ,.
We will make a number of assumptions regarding (5.1), the last of which is temporary
and is removed in our later development.

(i) (A, B2, C2) is stabilizable and detectable.
(ii) rank (D12) m and rank (D2) q.

(iii) rank
jtoI A

n + m for all real to.
L C1 D12

(iv) rank([jtoI-AL C2 O21
n + q for all real to.

(v) Temporary assumption. Dll 0 and D22 0.
Additionally, the results that follow presume that the problem has been scaled so that
the columns of D12 and DI are orthog,onal. This is always possible ~bY assumption
(ii) (see [43]). We will introduce D+/- and D+/- which make [D+/-D2] and [DD.] unitary.

The main results of this section will now be stated, and their proofs will be given
in the following three sections. Theorem 5.1 gives necessary and sufficient conditions
for the existence of a solution, while Theorem 5.2 characterizes all the solutions.
Assumption (v) will be removed in 5.3.

THEOREM 5.1. Suppose that P(s) is given by (5.1) and that assumptions (i)-(v)
are satisfied. Then for any 3’ > 0 there exists an internally stabilizing controller K (s) such
that F P, K )11 <= Y, if and only if:

There exists

Xoo2 of rank (n)

such that

[Xool I =[x, l(5.3) go
Xoo2A [_Xo2jrx, Re h,(Tx)<_-0 Vi,

(5.4) X Xoo2 X 2Xo
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where

(5.5,) H [ A- BzD2C1
-CD+/-DC1

(ii) There exists

Yoo2J
2n of rank (n) such that

(5.) Joo g g
(5.7

where

y-2B1B- B2B 1
-(A-B2D2C,)’I"

Re li(Ty)O Vi,

(5.8)

and
(iii)

(5.9)

YI Yo2-- Y’2

Joo [(A- B1D’2,C2)’
+/-D+/-B1

7-2Ctl C1- CC2]-(A- B1DI C2)

Xoo2Xoo
--1

"y Y2X2

-1 13t X 2 goo21 > O
Y2YI d

Remark 5.1 (connections with previous results). In the case where Xool and Yool
are invertible we have (5.9)>-0 if and only if

0 yl)_
(5.9)

0 Yo 3,-1YooXoo Yoo- g I 0 g(I y-2XY) I

Thus (5.9) is equivalent to the three conditions (1) X0, (2) Y0, and (3)
p(XY) y2. These last three conditions are given in [11] and [20] in the suboptimal
case. The optimal cases in which X and Y exist were considered in [33] where a
connection with vector interpolation is given.

The conditions of Theorem 5.1 treat the cases in which X and/or Y are
singular. Examples of this type of optimality are given in [27].

THEOREM 5.2. If the conditions of eorem 5.1 are satisfied, then all internally
stabilizing controllers K that satisfy II(e, g)ll are given by

(5.10) K Fl(Y{, U) with U , gll , det (I Y{22() U()) # 0

where

(5.11) Y{(s) +
G2J

(sE-A)[B B],

(5.12) E -2YXI Y2X2,

(5.13) Bkl YIB1DI +
(5.14) Bk2 Y

-2YB2+ Y2C1D2,

(5.15) G -OC,X,-;X,
(5.16) Ck2 -C2X1- T-2D21BX2,
(5.17) Ak EkT + Bk Ck2
(5.18) TEk
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Remark 5.2 (computations, degree reduction, and the effective dimension of the
free parameter). There are two possible consequences of Ek being singular. First,
SEk- Ak may have eigenvalues at infinity which do not appear as poles of Y(s), and
second, sEk -Ak may be singular for all values of s. The same remarks applied to the
realization of Qaa(s) given in 4, and this was shown to be reducible to a standard
state-space realization. The reason was twofold: First, Ea Ra +Q satisfies the
descriptor all-pass equations of Theorem 4.1, and second the realization ofQ has a
particular structure as shown in 4.3. It is easy to use the linear fractional relationship
between Y{’(s) andQ (s) to verify that the calculations, which were previously applied
to Q(s) in 4, are applicable to the realization of Y((s), and these are now outlined.

Suppos ohogonal changes of basis U and V are chosen so that UEkV [k ] in
which Ek is nonsingular. Then (5.13) to (5.17) become

Akl 2(5.19) Ak

(5.20)
B

(5,2 1 G
G2

V k21 G22

in which the paitioning is compatible with that of. As explained in 4, the state
dimension of 2((s) may be reduced by the rank defect of by a singular peurbation
type procedure. Direct calculation shows that a state-space model that is free of infinite
eigenvalues is given by

(5.3

(5.4 c =G ,
-A=A

[ Dkrll Dkrl2] Ak22[Bk21 Bk22].(5.25)
Dkr21 Dkr22 Ck22

To explicitly show the reduction in dimension of the free parameter U(s), we select
ohogonal matrices Y and Z (which always exist) such that

/kr21 ](5.26) Y[fkr2 Dkr21]
0 0

(5.27)
Dkrl2

Z-- t.)krl2 0

y-I

Thus

Dkr11(5.29) YE(s)= kr21
Jk 21 --Dkr22.1 [ Ckrlk,_] (sI Ak)-l[Bkr
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5.1. A review of controller parameterization theory. The purpose of this section is
to show how the original H control problem may be recast as a four block general
distance problem. Our treatment of parameterization theory will be brief, as this
material is standard and the details already appear in several places [10], [14], [15],
[43]. Since Pll, P12, P21, and P22 share the same state-space it is clear the K stabilizes
FI(P, K) if and only if it stabilizes P22. Since (A, B2, C2) is assumed stabilizable and
detectable, such controllers always exist. Let

(5.30) Pa2
be left and right coprime stable rational matrix fraction descriptions of P22 and

(5.31) Vr Ur Dr
-N1 D1 Nr V 0 !

the corresponding Bezout identities. All the matrices in (5.31) belong to W+, and the
set of all compensators which stabilize P22 and thus also P are given by [43]

(5.32) K F,(Ko, Q), Q

where

V-; Ur V"; ](5.33) Ko(s) v_fl V_{1Nr j

Since

K(I- P22K)-I (-DrQ- Ut)D,

we obtain

(s) P11 + P12K(I- P22K)-’P,
(5.34) (P,,- P,2UD,P21)-(P,Dr)Q(DP2,)

T11 -- 7120721,which is an affine parameterization of all internally stable closed loops.
Since (A, B) is stabilizable there exists a state feedback matrix F such that A- B2F

is stable. Similarly, since (C2, A) is detectable there exists an output injection matrix
H such that A-HC is stable. Given any such pair of stabilizing matrices F and H,
the right and left coprime factorizations of P22 together with the solutions of the Bezout
identities are given by [10], [14], [15], and [43]

(5.35)
Ut"l

A BzF B2
-F I

v/
c2 o

and

E
(5.36)

Nt
Ur"]

A HC2
F !

D -C2 0

Substituting (5.35) and (5.36) into (5.33) yields

(5.37) Ko(s) -F 0 I

-C I 0
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after simplification. We will now make the following specific choices of the stabilizing
matrices F and H which will lead to all-pass properties in T12 and T21 in (5.34).
Specifically, we define F and H by

(5.38) F-- D2C1-F B2X,
(5.39) H B1D’I + YC’
where X and Y are the unique stabilizing solutions to

(5.40) X(A-B2D2C,)+(A-B2D2C1)’X-XBzBIX+CD_t_D’, C,=O

and

(5.41) Y(A- BID.,C2)’+(A- B,D.,C:z) Y- YC.CzY+ BID’, D_t_B, =O.

Direct substitution into (5.34) leads to

A-B2F B:zF B1 -X*CD.c B2
T+/- T12] 0 A- HC2 B1- HD2 0 0

(5.42) +/- 0 0 ] (S) C,- D12F D12F 0 D_ D,:
Y* +/- 0 0T21 0 0 0 -D_t.B

0 C2 O21 0 0

With this particular choice of F and H, [Tzl T12] and [’1T-] are all-pass [10], [14],
[15], [43]. We call T_(s) and T+/-(s) all-pass extensions of T2 and T2, respectively,
and this all-pass property allows us to write

(5.43) 1] rll-[r+/- r12][ Q r21 R22 0 1[R21
where

(5.44) R(s)
R21 R_I T-_

T,[ T2 T-I].

Substituting (5.42) into (5.44) gives

-(A- BF)’ XB,(B, HD,)’ XBID XB,D,
0 -(A HC2)’ Y*B, b’_t_ C;

(5.45) R(s) DCIX* 0 0 0

-B FY 0 0

which describes the four block problem to be solved.
In the case where X and/or Y are singular, this realization will not be minimal

and it will be convenient to delete the nonminimal states as follows [31], [32]. Let

0
U’, X>0 where U=[U U] is unitary;

0 0
V’, YI>0 where V=[V V] is unitary.

The ccati equations for X and Y then give that

U(A-BDC)U= U(A-BF)U=O, D2CU=O
V;(A-n,D;,CgV,= V;(A-HCgV=O, V;n,D=O
B HD B’zDz- YCD2I V(B-HD2)=O
C DF DD2C1-DBX(C DF) Ua=0
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The state transformation o’ v,] applied to R(s) then exhibits the nonminimal
modes which may be removed, and this followed by the state transformation [Xo;’ oY1]
gives

(5.46) R(s)= CR, 0 0
DC,U 0

CR2 0 0
-B& U1X FV1

UB1D+/- UIBID21 !- c’
0

0

An alternative realization for R(s) can be obtained via a state-space transformation

TR= 0 I

That is,

(5.47) R(s)

where

-A’v CFCV
0 -a’.

D’+/-C1U DC1V
-B U,X, D2C, V,

0 UH
VBD +/- Y1V1C

0 0

0 0

AF X1U(A- B2F) U1X’An Y71V(A HC) V1 YI
BIH-- y71V(B1-HD21) YT’VBllJ+/- VCD2,

C,F C1- DI2F) UIX-(’ D+/-DC1UIX-1- DI2B’ U1
and the Riccati equations for X and Y can be rewritten as

(5.48) A’FX-’ + X-IAF + CyC,F O,

(5.49) AHY- + Y-IA’H +BHB, O.

However,

5.2. Necessary and sufficient conditions. A necessary condition for

1Q II --< 3’ is [[Rll el2ll 3"( T2 Tl1[ T2 Tl]lJc 3’: T2 Tll[Ic 3’.

T Tll
-(A BF) XB,
D’+/-CIX 0

--A’F B1]--[DCIU U
0

so that the corresponding spectral factorization Riccati equation to find R13 (note that
R13R13- y2I--[Rll RI][R-11 R]- 3"2I-T-fTllTIT+/-) has a solution >0=
satisfying

2=x
where

AF(5.50) H. _UBIB U,

-2 Ct3" U D+/-D+/-C U
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Similarly, the condition [[RI R-l[[o_-< y implies that there exists _>-0 such that

Hg[] =[] T., ReAi(T)=<0 Vi,

where

(5.51) H=[ A’I4 T-2VBaI+/-B V]VCC V -An
In order to apply the necessary and sufficient conditions of Theorem 4.2, the solutions
to the Riccati equations (3.51) and (3.52) (which determine R3 and R31 in R(s) are
required, and they are now given.

LEMMA 5.3. For the realization of R(s) defined in (5.46) the Riccati equations:

(5.52a) -P1AR-ARP1 + BRaBR1 + BR2BR2+ T-2p1CtR1CRIP1---0

(5.52b) -Q,AR -A’RQ, + C’RICRI + C2CR2+ y-2OaB’lBRaOa =0

are satisfied for

and

P1-- 0 Y1

TR--
0 I

Qa T’RQoTR

Re Ai(AR y-2P, C’, CR,) >_ O

Re Ai(AR--y-2BRaB’R,Q1)>--O Vi.

Proof. P1 is simply shown to satisfy (5.52) by (5.49) and (5.50) with antistability
given by the stability of T and An. An analogous derivation applies to Qo for the
alternative realization of R in (5.47) and then T-a relates Q1 to Go.

Proof of Theorem 5.1. Theorem 4.2 and the above calculations giv.e the necessary
and sufficient conditions for controllers to exist to be that -> 0 and Y_-> 0 exist, and

/max(P, Q,) -<-

To write this condition as that stated in the theorem, we write

(5.53)
y2I- PQa (y2T- Pl T’RQo) TR

0 Ya 0 yI TR

in which

1-[ "/ V U1

Since P1 and Q1 are both monotonically decreasing functions of y [51], hmax(PiQa)
is also a monotonically decreasing function of y, and so Amax(PQa) -< y2 if and only
if n(y)_>- 0.
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This condition now needs to be written in terms of XI, X2, Ycxl, and Y2. The
Riccati equations for X1 (5.48) give, as in [11, VII.C], that

I H H-7-I 72X 0 U 0 U
Hence

O U 0 U1 --;2q [1--IX/T1
XT- ’ TI

and exploiting the structure of U’(A-B2D2C1)U and U’CD+/- give

Ix ,l_ [x ,lHoo
LX2.] Xo23

T

where

satisfy

Xcxl UI(XT1- ’)/--22)U -]" U2U,

Xoo2 U1U

XtoolXoo2--Xoo2Xool
Xand all such matrices are given by [x2] S for a nonsingular S. (This comes from the

strict stability of U’2(A- B2D2C1) U2 and the uniqueness of X.) Furthermore, exploit-
ing the structure of[ 0’ ,]H[ 0 ] shows that ifx%1x x%x, then" ’ exists.
An analogous argument applies to Yool, Y2, and Y. The final condition II(y)-> 0 is
equivalent to

0<_-
0 Vl 0 v
X 2Xoo

-’-’)/ --1

-1
7 Xoo2Yoo21

5.3. Characterization of all solutions. Theorem 4.4 characterizes all optimal sol-
utions to the model matching problem and Theorem 5.2 claims to do the same for the
feedback control problem. A derivation of the formula in Theorem 5.2 can be obtained
by applying Theorem 4.4 to generate all Q(s)’s, and then substituting into Ko(s) to
generate all K(s)’s. Finally, all the nonminimal modes are removed from this para-
meterization. In the rest of this section we assume, without loss of generality, that
3/= 1 for simplicity.

Applying Theorem 4.2 to the realization of R given in (5.46) gives

1Q42 Q44J I -B2 j

((!-O.P.)s-(-A’-O..%P. + q.B... + C.C..P))-’

[01BR2 -C2].

Recall from (5.53) that

(I- QIP1) T [’/X1
k 0
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in which II H(1). Changing coordinates gives

(5.54a)

(5.56)

(5.54b)

(5.54c)

(5.54d)

Q22

Q42

[XTA=
0

Q24 o
+ (slI-Ao)-l[Bo, /o2]

Q44J

o]i (-rA"-Or’A"P + QTRBR1BtR1 + T-IcICR1P1)

y-i

(5.54e)

The characterization of all K(s) is given by

K(S)-- E Ko, E
Q42

Fl(ff{, U)

where

/1
0 Ko2

ff{= F
0 0

[K21 0 K22
I 0

Substituting for the realization gives that

0
(5.57) Y((s)

I

0

I [ Q220’042
0
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where

(.8) E= 0 n

(5 59) , [A- B2F HC2
t -oC:

(5.60) B,= /o, /o2

(5.61) "=-C2 CozJ"
This realization contains rank (X) uncontrollable modes and rank (Y) unobservable
modes and these are exhibited by the following transformation. First, define

(5.62)

(5.63)

(5.64)

(5.65)

V’ 0 0 I I U UlXcol
T/= -U I 0 T= 0 I

YQ1 IV, 0 I 0 0

A221

V’U V’U Xoo
/2 T/,T [-I 0] 0

reollW U W U rcllV UlXol

3, 3

2 1 22 d2 dT
23
=0 by (5.56),

d3=0 by (5.57),

A2131,,A223
A233

C22 C23],

Hence the first rank (X) states are uncontrollable. Furthermore,

/213 V’(A- BzF- HC2) VI + V’B2FVI [ V(A- HCz) V’ ]0

[A23, A232 A233] =-Y,IV[A-BzF-HC2 -BzB’zUIX,X B2FV1]Tr-- ’r VCC2 31o21 3]022] Tr
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:::::>A233 --0 and the last rank (Y) states are unobservable. A reduced state model can
hence be obtained and its realization transformed as follows"

=[v -v,][ v’u(5.66)
-YIVU V n /oollV U1Xool, U

without loss of generality (see proof of Theorem 5.1) we can assume

Xc11 O]Xool-- U 0 I
U’, Xc2 U1 U,

gl--V[ gll O]0 I
V’, go2 VlV

and hence

B B,

(5.67)

Bk2]

’D12]Yo,B+ V, VIC

(5.68)

where

L1,--B2BX- YC’2C2,

LI2 B2B(I- UIX,fU)-

L21 -(I- V, q’, V)C.C2+CDzD C,,

L22 (A- B2D2C, BlDg.,C2)’+ V,o2, U{,

VL22U1 9-- Y7’) VBIISf)+/-B U, + VCD+/-DCI U,(fi[-X-’).
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The equations XXool + U1X1XU U1U and Yool Y+ V1 YY1 V1 V1V and direct
substitution gives

[Yl- g2] [ Ell El21 IXll
L21 L22J LX2J

0

and finally A --Ak since

H LXoo2J Xoo2] zx"

5.4. Removing assumption (v). In this section we show how we might tackle
problems in which Dll # 0 and/or D22 # 0. The idea is to show that assumption (v)
results in no loss of generality, and that the original problemwith Dll # 0^and D22 # 0
may be replaced with an equivalent problem in which Dll =0 and D22=0. This
observation is paicularly useful in theoretical work requiring state-space calculations,
since, as we will soon show, the case DI # 0 leads to controllers with an unwieldy
number of terms.

Step 1. The purpose of this step is to solve the four block problem at infinity.
Suppose F is a constant feedback to be defined, and suppose also that P(s) is as
given in (5.1). Then for any such F

(5.70)

L Pa, Paa Pa2 3

1 11 O12

[ A+BF(I-DzF)-’C B,+BF(I-DzF)-’D2, B2(I-FD)-’ ]C+DF(I-DF)-C D+DF(I-DF)-De D(I-FD)-I DF)-C (I DF)-De (I DeF) D
To find anF that solves the problem at infinity, we define Q= F(I-DeF)- and
apply Parrott’s result [39], which states that

Q= -D2(D,1 + D1,D[(TI-(DD,1D[)’(DD1,D))-I(DDllD)’DD,1)DI
solves the problem

[[ Dollt’t tDDllDlt l <T.D2D11D& D12D11D21 + QJ

<A solution exists if and only if max llDDll, I]DIII). Back substitution
gives

F ( +OD) -1

in which the existence of the inverse is assumed. There are two points to note:

(1) IIDll%
(2) i-DF= (I +DQ)- which shows that the existence of (I +DQ)-

the existence of (I-DF)-.
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Step 2. Here we select an orthogonal to-matrix in Fig.
(Fl(to, P11(s))(0o))11 =0. Note that

1 such that

Dll :-- Dll -F D12QD21

and define

to21 to223
3/

--1 fill
(I 3/--2DlD11) 1/2

(I --2 --! 1/21--3/ DllDll)

which satisfies toto’ 3/-21 for all 3/-> 3/p. By direct computation

(5.71)

0 0
,P(s- dl 0 /12(s) F

0 022
I 0

[ A+ B1022(I D11022)--11 /1(I 022Dll)-1021 /2 -t-/1022(I D11022)-1/12
}12(I --/11 {}22)--11 0 [} 12(I --/11 }22)--1/12
+

which has the required property that Dll--0. It is an immediate consequence of a
specialization of Redheffer’s theorem that IIF,(P,

--1
3/ [30]. A small gain argument shows that the internal stability property is preserved
for all

FIG. 1. Loop transformations.
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Step 3. Here we eliminate /22 by connecting (/22--/22) in parallel with/322(s)
which is illustrated in F.ig. 1. See also [20].

.Step 4. Compute K(s) using equations (5.11)-(5.18). (Note that D12D12 # I and
D21D’21 # I so another scaling is requir,ed.)

Step 5. Reverse the effects of D22 and Fo to obtain a representation formula
for all controllers. Yet another calculation verifies that

[ Kll K12] II F g12

K2, K22J
F /r21 R22-21/22R12 R21/22 Rll

Note that the effects of the scale introduced in Step 4 must now be reversed.
It remains to show that provided 3’ is big enoug,h, the realization for P(s) in (5.1)

satisfies (i)-(iv) if and only if the realization for P(s) given in (5.70) satisfies these
same assumptions. In our analysis below, we treat the transformation between P(s)
and if(s) first, and the transformation between if(s) and/3(s) second.

LEMMA 5.4. Assumptions (i)-(iv) apply to the realization in (5.1) ifand only if they
apply to the realization in (5.70).

Proof (i) Stabilizibility and detectability are invariant under output feedback.
Assumption (ii) is immediate from (5.70). Assumption (iii) and (iv) follow from

-B2 I 0sI .,{ A

k 11 D12 C D12 Foo(I D22Foo)-1C2 (I FooD22) -1

[sI-, /1 ] [I BzFoo(I-D22Foo)-l][sI-A2 D21 0 (I D22Fo)-I C2 D21
LEMMA 5.5. Suppose that an internally stabilizing controller exists such that

Fl( P, g llo % ,Then
(1) (A, B2, C2) is stabilizable and detectable.
(2) rank (D12)= m <=>rank (/12)= m, and rank (D21)C:>rank (/521)-- q.
(3) rank ([J__/lA B2 (rJI-" 2D12] n + m for all real w ff and only ff rank t -c, 12])

n + m for all real w.

(4) rank t c D,]) n+ q for all real w ff and only ff ranktc D,
n + q for all real w.

Proo (1) Since ]O22[[2 < T-, it follows from a small gain argument that F;(, K)
is internally stable. As K is an internally stabilizing controller for (s), it follows that
(, 2, C2) is stabilizable and detectable.

(2) This follows from the inveibility of 12 and 2, (5.70) and (5.71).
Paas (3) and (4) follow from Lemma 5.3 and the identities

--dl 12 0,2(1-- 11022) -1 --1 12

d2 D21J 2 21 022(I- 1122)-11 (1 D22022)-1021
If we need to calculate a controller generator in terms of the original plant

description, it is possible to repeat calculations of the type given in the previous two
sections (these have only been ,checked in detail by the present authors in the case
where X and Y exist). In this event Step 2 is left out and we proceed as follows"
Execute Step 1 as before; note that this step can be carried out if and only if
max (]]D_DllI]2, 11Dll/_112)< 3’. After this step there holds IID11]12 < 3’. Execute Step
3 as before to remove D22. Execute Step 4 using the results of Theorem 5.1’ and
Theorem 5.2’ given below. End with Step 5 as before.
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THEOREM 5.1’. Suppose that P(s) is given by (5.1), and that the assumptions (i)-(iv)
are satisfied with D22=0 and [[Dill12 < )’. Then internally stabilizing controllers exist for
)" > 0 with Ft( P, K II <- )" if and only if

(i) Condition (i) of Theorem 5.1 is satisfied with (5.5) replaced by

H=
He.21 -Htll

in which

HI, A + B,DI D+/-D )’2B2D2)()’2I D,1DI D+/-D)-’C

H21 CD+/-(I --2 D+/-)-ID, C1--)" D+/-DllDll +/-

H12 (B1- B2D2Dll)( )’21- DID+/-D’, Dll)-I(B1- B2D2Dll)’- B2B’
(ii) Condition (ii) of Theorem 5.1 is satisfied with (5.8) replaced by

J=
J21 -Jll

where

Joll-- A+B,()’2I ]2ff)+/-D,1D, l)-l( ~’ ff)+/-DD+/- 11 C1 )’2Dl C2),
~, /+/-BJco21- BlJDtl I )’-2+/-D! OllO+/-)11

Joo12-- (C1- OllOl C2)’( )"2I -/ll/tl/+/-Ol)-l( C1- DllDI C2)- CC2.
X 2Xoo )" 2 >0. [’](iii)

)’- Yo2Xoo2 Yo2 Yoo
All the solutions may be characterized by Theorem 5.2’.

THEOREM 5.2’. If the conditions of Theorem 5.1’ are satisfied, then all internally
stabilizing controllers satisfying Ft(P, K)[[oo -<- )’ are given by

K F,(X, U) with U RHT, UIIoo --<
where

0 Okl2 + (S--ek)#[l Nk2],Y{(S)=
Dk21 Dk22A Ck2

Ek Y’IXI 2’-2Y2Xo2
Bkl ()’2y’IBI+ Y2C1D11+ y2C2D21()’2I D1D11))()’2I b’,.)+/-D11Dll)-1D21,
Ck =-D2()’21-DllDID+/-D)-I()’2C1Xool + Dl BXo2

+ ()’2I DllDI)D12BX2),

D12 {I- D2Dll()’2I- DlD+/-DDll)-lDlD,2} 1/2,

" f)+/-D’ D11D21}Dk21 {I D21Dll()’2I DI1D+/- 11) -1 1/2

Dk22 -(D-I )’D2,D )’I Dl )’, [)
+/-D1)-lD12Dk12

Ak EkT + Bk D-f,I Ck2
r’yEk + Bk2D-f,2Ckl,

Bk2 { + Y2(C CD21D ))YIB2+ YBlb’+/-D+/-DI 11

)’21 D11/’+/-D_,DI)-1~ D12}Dk12,

Ck2 --Dk21{C2X1 + D21()’21 D,D+/-DDll)-’(DID+/-D C1XoI +BX2
-DlD12BX2)}.
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6. Conclusions. The purpose of this paper was to derive a representation formula
for all H solutions to the four block general distance problem in which particular
attention was paid to the optimal cases. The suboptimal case was treated in 3, and
was derived by an all-pass embedding procedure which is reminiscent ofthat introduced
by Parrott [39]. The optimal case was treated in 4 and the formula for all solutions
appears as (4.52) and (4.59). Section 5 dealt with the application to H optimal control.
In addition, we note the following:

(1) In contrast to the one block problem, there are two types of optimality. The
first is essentially the same as that addressed in Parrott’s theorem [39], and has nothing
to do with the requirement that the approximation Q be an element of H+. The second
is associated with a Hankel norm condition on Ra in (3.46). In the first type of
optimality, special algorithms may be required to take care of axis phenomena in the
spectral factorization problems (3.18) and (3.19). These issues are addressed in detail
in [8].

(2) The analysis in 3 breaks down when IIRalIH- 1 since Z in (3.65) becomes
singular. This difficulty is addressed in 4 where we introduce an alternative construc-
tion based on descriptor representations of all-pass transfer functions; see also [35]
and [44] in this connection. In the case of this Hankel norm type of optimality, the
effective dimension of the free parameter drops by rank (B22) =< k. B22 is defined in
(4.38) and k is the multiplicity of the largest Hankel singular value of R. This loss
of effective dimension may be characterized by the linear constraining equation (4.45)
which is similar to that given in [16, eq. (6.23)].

(3) An important application of this work is the derivation of a closed form
representation formula for all controllers that satisfy an L norm constraint. One such
formula is given in 5 and appears in equations (5.10)-(5.18) in the case thatD =0
and D2-- 0 in the realization of P(s) given in (5.1). All the optimal cases are covered.

(4) The case in whichD 0 has been treated by direct calculation and the results
are given in Theorem 5.2’. Since these formulae are awkward to write down, an
alternative approach based on loop shifting is also presented [45]. The idea here is to

replace the original problem which has DI # 0 with an equivalent problem in which

DI =0.
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